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ABSTRACT

Model uncertainties in the non-linear structure growth limit current probes of cosmological parameters. To shed more light on the
physics of non-linear scales, we reconstructed the finely binned three-dimensional power-spectrum from lensing data of the Kilo-
Degree Survey (KiDS), relying solely on the background cosmology, the source redshift distributions, and the intrinsic alignment (IA)
amplitude of sources (and their uncertainties). The adopted Tikhonov regularisation stabilises the deprojection, enabling a Bayesian
reconstruction in separate z-bins. Following a detailed description of the algorithm and performance tests with mock data, we present
our results for the power spectrum as relative deviations from a ΛCDM reference spectrum that includes only structure growth by cold
dark matter. Averaged over the full range z . 1, a Planck-consistent reference then requires a significant suppression on non-linear
scales, k = 0.05–10 h Mpc−1, of up to 20%–30% to match KiDS-1000 (68% credible interval, CI). Conversely, a reference with a
lower S 8 ≈ 0.73 avoids suppression and matches the KiDS-1000 spectrum within a 20% tolerance. When resolved into three z-bins,
however, and regardless of the reference, we detect structure growth only in the range z ≈ 0.4–0.13, but not in the range z ≈ 0.7–0.4.
This could indicate spurious systematic errors in KiDS-1000, inaccuracies in the intrinsic alignment (IA) model, or potentially a
non-standard cosmological model with delayed structure growth. In the near future, analysing data from Stage IV surveys with our
algorithm promises a substantially more precise reconstruction of the power spectrum.
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1. Introduction

In contrast to the continuous background expansion of the Uni-
verse, the structure growth in the matter density field is less cer-
tain, with uncertainties in theoretical models that vary by 10%
or more in the non-linear regime through their dependence on
baryon-galaxy feedback; possible deviations from purely cold,
stable, and interaction-free dark matter; or, perhaps, modifica-
tions in the standard model of gravity (e.g., Laguë et al. 2024;
Bucko et al. 2024; Mauland et al. 2024; Ferreira et al. 2024;
Salcido et al. 2023; Schneider et al. 2022; Harnois-Déraps et al.
2015; Smith & Markovic 2011; Jing et al. 2006, and references
therein). Currently the theory uncertainties are limiting stud-
ies of cosmological parameters because they often rely on
measures of the cosmic structure, such as the matter power
spectrum, Pδ(k, z), at different redshifts, z =: 1/a − 1,
and spatial (comoving) wave number, k (e.g., Pranjal et al.
2025; García-García et al. 2024; Secco et al. 2022; Li et al. 2023;
Asgari et al. 2021; Heymans et al. 2013). To shed more light on
the physics imprinted on non-linear scales, direct measurements
of a model-free Pδ(k, z) with a minimum of assumptions promise
to be a valuable model test. That this is already feasible for z .
1 and 10−2 . k/(h Mpc−1) . 10 with Stage III galaxy sur-
veys when exploiting the weak gravitational lensing effect, such
as with KiDS-1000 (Kuijken et al. 2019, 2015), is shown in this
work. This foreshadows exciting applications to future lensing
data, such as those by Euclid (Euclid Collaboration: Mellier et al.
? Corresponding author: psimon@astro.uni-bonn.de

2025), the Vera C. Rubin Observatory Legacy Survey of Space
and Time (The LSST Dark Energy Science Collaboration 2018),
or the Nancy Grace Roman Space Telescope (Spergel et al. 2015).

The coherent distortion of distant galaxy images, just
sources hereafter, by the weak shearing of light bundles pass-
ing through intervening foreground structure probes the mat-
ter power spectrum (for a review, see, e.g., Kilbinger 2015;
Schneider 2006; Bartelmann & Schneider 2001). More specif-
ically, and putting negligible higher-order corrections aside
(Hilbert et al. 2009), the second-order correlations, ξ±(θ), at lag θ
in the cosmic shear field are simply a linear projection of Pδ(k, z)
throughout the look-back light cone up to the distance of the
sources (Preston et al. 2024; Mezzetti et al. 2012; Simon 2012;
Bacon et al. 2005; Pen et al. 2003; Tegmark & Zaldarriaga
2002; Seljak 1998). Therefore, by using ξ(i j)

± (θ) between tomo-
graphic bins, i and j, for different characteristic distances of
sources, the correlation data can be deprojected to recover,
within limitations, the original Pδ(k, z). More conveniently, as
in Simon (2012, S12), we focus on a transfer function, fδ(k, z) =
Pδ(k, z)/Pfid

δ (k, z), with respect to a reference model, Pfid
δ (k, z), to

highlight deviations from the presumed reference inside an aver-
age z-bin. For this reference, we chose a purely cold dark matter
(CDM) model to probe for deviations, fδ(k, z) , 1, that may hint
at missing physics in a basic, well-understood dark matter sce-
nario or at unidentified systematic errors in the data. However, at
the end of the day, the kind of reference is a deliberate choice.

Required for the deprojection, on the other hand, is the
knowledge of the projection (lensing) kernel and the inclusion
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of the intrinsic alignment (IA) of sources in the correlation
function, an essential part of modern cosmic-shear analyses
(Hirata & Seljak 2004; Crittenden et al. 2001; Croft & Metzler
2000). The lensing kernel is fully described by the radial distri-
bution of sources inside the tomographic bins; the average matter
density in today’s Universe, Ωm, relative to the critical density,
ρcrit = 3H2

0(8πGN)−1; and the expansion rate E(a) := H−1
0 ȧ/a,

where H0 = 100 h km s−1 Mpc−1 is the Hubble constant and GN
is Newton’s gravitational constant. The kernel parameters Ωm
and E(a) are confined to percentage precision by cosmological
experiments already (E2(a) ≈ Ωm[a−3−1]+1 for a flat universe),
especially owing to CMB experiments (Planck Collaboration VI
2020; Hinshaw et al. 2013), but also by combining probes from
the closer Universe (e.g., Heymans et al. 2021; Abbott et al.
2018). Nevertheless, in the refinement of the method in S12
for KiDS-1000, we marginalised here over the small back-
ground cosmology uncertainties, and over those in the source
distributions (Hildebrandt et al. 2021). Another refinement is the
required inclusion of the IA, and its uncertainty, in the depro-
jection procedure by the widely employed non-linear align-
ment (NLA) model (Joachimi et al. 2011; Bridle & King 2007),
informed by the IA constraints in Asgari et al. (2021).

Despite the simplicity of the well-defined projection, the
noise level in ξ

(i j)
± (θ) makes the recovery of the matter power

spectrum still challenging because the deprojection has to undo
a convolution in radial and transverse direction, producing
strongly correlated, oscillating noise in an unstable reconstruc-
tion. This complication could be mitigated by data volumes
substantially larger than KiDS-1000, beating down oscillating
noise, or by additional assumptions on the redshift dependence
or shape of the power spectrum in fitting an analytical model
with few parameters to the data (Perez Sarmiento et al. 2025;
Ye et al. 2024; Truttero et al. 2025; Broxterman & Kuijken
2024; Preston et al. 2024, 2023; Pen et al. 2003; Seljak 1998).
Avoiding analytical models, we instead propose constraining
fδ(k, z) averages in different k- and z-bins, as in S12 but addition-
ally filtered by a classic Tikhonov regularisation, for instance as
applied in the mathematically related problem of deconvolving
noisy images (e.g., Murata & Takeuchi 2022). In contrast to S12,
the Tikhonov regularisation, installed on our Bayesian statistical
model as prior, penalises strongly oscillating power spectra for
noisy data, giving an advantage to solutions of fδ(k, z) that, on
the one hand, are smoother in the k-direction, but, on the other
hand, use no prior information on their z-dependence. We show
with verification data that this regularisation indeed stabilises
the reconstruction and extracts from KiDS-1000 data useful con-
straints on the transfer function fδ(k, z), either averaged over the
full redshift range or averaged within three separate redshift bins
to broadly probe a redshift evolution. Furthermore, for an effi-
cient sampling of the posterior constraints of the matter power
spectrum, we describe and test a Markov chain Monte Carlo
(MCMC) code tailored to deal with the numerous 60 (or more)
degrees-of-freedom of the binned, band power Pδ(k, z); its prac-
tical details are given in Appendix A.

The outline of the paper is as follows. Section 2 reviews
our weak lensing formalism and shows that the projection of
Pδ(k, z) into ξ

(i j)
± (θ), both binned, can be reduced to one pro-

jection matrix, to be reused as long as the same lensing ker-
nel and IA parameters, including source redshift distributions,
are employed. Section 3 defines the statistical model for our
Bayesian analysis, including a prior for the Tikhonov regulari-
sation. We summarise the KiDS-1000 data for our cosmic shear
analysis in Sect. 4 and report our results in Sect. 5. Section 5

also reports, as verification of our reconstruction method, the
results of a mock analysis based on KiDS-1000-like data pro-
duced by ray-tracing N-body data. Another verification test, this
time based on the data vector of an analytical model subject
to random noise, is presented in Appendix A. We discuss our
results and conclusions on the reconstructed matter power spec-
trum in Sect. 6. Notably, our figures use comoving wave num-
bers, k, for spatial scales of the matter power spectrum, empha-
sised by the ‘c’ in the unit [k] = h cMpc−1.

2. Weak lensing formalism

This work is an application of the well-established theory of cos-
mic shear. For a review and its mathematical foundation, we refer
to Kilbinger (2015) or Schneider (2006), and only briefly sum-
marise our formalism here.

2.1. Cosmic shear

Weak gravitational lensing by fluctuations in the large-scale
structure of the foreground matter density, δm = ρm/ρ̄m − 1, dis-
torts images of background galaxies. Their average shear distor-
tion in direction θ of the sky shall be expressed by the complex
γ(θ) = γ1(θ) + iγ2(θ) for an ensemble of galaxies with probabil-
ity distribution function (PDF) pχ(χ) in comoving distance, χ. To
lowest order, and sufficiently accurate in practical applications,
the Fourier transform γ̃(`) is related to the linear projection of
fluctuations along θ,

κ(θ) =
3H2

0 Ωm

2c2

∫ χh

0

dχ
a(χ)

W(χ) fK(χ) δm
[
fK(χ)θ, χ

]
, (1)

through the convolution (` , 0)

γ̃(`) =

∫
R2

d2θ γ(θ) exp (−iθ · `) =
(`1 + i`2)2

`2 κ̃(`) , (2)

where c is the vacuum speed of light. In the above equations, κ̃(`)
is the Fourier transform of the convergence κ(θ), the scalar fK(χ)
is the (comoving) angular diameter distance for the curvature
scalar K, the vector fK(χ)θ denotes a separation in a tangential
plane on the sky at distance χ, the term 1 + z = a−1(χ) is our
relation between redshift, z, and scale factor, a(χ), at the look
back time of χ, and

W(χ) :=
∫ χh

χ

dχ′ pχ(χ′)
fK(χ′ − χ)

fK(χ′)
(3)

is the lensing efficiency, cut off at the size of the observable
Universe, χh. As approximation, we assumed a flat sky with
Cartesian coordinates for θ but expect negligible inaccuracies
for angular separations below several degrees.

Practical estimators of γ(θ) in the direction θ of a galaxy
image use a convenient definition of galaxy ellipticity, ε, that is
calibrated to be an unbiased estimator, 〈ε〉 = γ, for a selected
source population (e.g., Giblin et al. 2021).

2.2. Second-order statistics

Our analysis exploits the coherent shear distortion of galaxy
images over the sky to infer the three-dimensional power spec-
trum, Pδ(k, z), of matter density fluctuations inside the light
cone,

〈δ̃m(k, z) δ̃∗m(k′, z)〉 =: (2π)3 δD(k − k′) Pδ(k, z) , (4)
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Fig. 1. Probability density distribution functions, p(i)
z (z), of KiDS-1000

source galaxies within the five tomographic redshift bins (from i = 1
to i = 5): (0.1, 0.3], (0.3, 0.5], (0.5, 0.7], (0.7, 0.9], and (0.9, 1.2]. These
estimates are from Hildebrandt et al. (2021).

for a range of wave numbers and redshifts. The δD(x) denotes the
Dirac delta function, and δ̃m(k, z) is the Fourier coefficient of a
fluctuation mode at redshift z inside the light cone. To obtain the
power spectrum from γ(θ), we estimate the two-point correlation
function of cosmic shear,

ξ±(θ) :=
〈
γt(θ1) γt(θ2)

〉
±

〈
γ×(θ1) γ×(θ2)

〉
(5)

at lag θ = |θ2 − θ1| from an ensemble of sources. Here, γt
and γ× denote the tangential and cross-shear components rela-
tive to the orientation of θ2 − θ1 =: θ eiφ on the sky, defined
by γt + iγ× := −e−2iφγ. In addition, using the hybrid extended
Limber approximation in Fourier space (Kilbinger et al. 2017;
Kaiser 1992), the correlation function of cosmic shear is a linear
projection of Pδ(k, z),

ξ±(θ) =
9H4

0Ω2
m

4c4

∫ χh

0

∫ ∞

0

dχ d` `
2π

W
2
(χ)

a2(χ)
J0,4(`θ) Pδ

(
` + 1/2

fK(χ)
, χ

)
(6)

through the lensing kernel K(χ) ∝ Ω2
m W

2
(χ) a−2(χ) – the mini-

mal ingredient that has to be known to invert the projection. The
expressions Jn(x) denote nth-order Bessel functions of the first
kind, of which J0(x) has to be applied for ξ+ and J4(x) for ξ−.

2.3. Tomographic lensing and intrinsic alignment of sources

Owing to the information loss in the projection Eq. (6) for
a single sample of sources, a power spectrum averaged over
the entire light cone could be obtained at best, as in Pen et al.
(2003) or Schneider et al. (2002). More advanced is splitting
the source samples by redshift in a tomographic analysis for
a better statistical precision, reflected by improved cosmol-
ogy constraints in tomographic analyses, or to achieve a (lim-
ited) redshift resolution for the recovered Pδ(k, z). Therefore,

we split our source sample into five redshift bins, using non-
overlapping ranges of photometric redshifts, namely the zB-
intervals (0.1, 0.3], (0.3, 0.5], (0.5, 0.7], (0.7, 0.9], and (0.9, 1.2],
as done already in Hildebrandt et al. (2021). Figure 1 plots esti-
mates of the resulting distributions p(i)

z (z) for each bin i. The
tomographic analysis then correlates the shear signal between
bins i and j, denoted by the superscript “(i j)” in ξ(i j)

± (θ). Com-
pared to Eq. (6), this increases the data vector size by a factor of
5(5 + 1)/2 = 15 but also adds information on the Pδ(k, z) evolu-
tion because the shear tomography probes the same foreground
with sources at different z.

This tomographic analysis requires special attention with
regard to additional contributions to the shear signal from the
intrinsic alignment (IA) of sources (e.g., Lamman et al. 2024).
In the ideal absence of IA, the orientations of intrinsic source
ellipticities are statistically independent among each other and
to the cosmic shear signal. So-called ‘II’ contributions, how-
ever, originate from correlated orientations of physically close
galaxies. In addition, galaxy shapes are aligned to the surround-
ing matter density, giving rise to a ‘GI’ signal (Hirata & Seljak
2004). While II contributions could in principle be reduced
by correlating only bin combinations with little radial over-
lap, and the GI signal could be suppressed by a nulling tech-
nique (Joachimi & Schneider 2008), we followed the common
approach of modelling the II and GI signal in ξ

(i j)
± (θ) to avoid

information loss,

ξ
(i j)
± (θ) = 0ξ

(i j)
± (θ) + IIξ

(i j)
± (θ) + GIξ

(i j)
± (θ) . (7)

In this equation,

0ξ
(i j)
± (θ) :=

9H4
0Ω2

m

4c4

×

∫ χh

0

∫ ∞

0

dχ d` `
2π

W
(i)

(χ)W
( j)

(χ)
a2(χ)

J0,4(`θ) Pδ

(
` + 1/2

fK(χ)
, χ

)
(8)

is the ideal shear signal without IA. Covering both auto- (i = j)
and cross-correlations (i , j) of source samples, this expression
is more general than Eq. (6). Herein, the lensing efficiency with
superscript, W

(i)
(χ), refers to Eq. (3) but for the PDF p(i)

χ (χ) of
the ith bin. Notably, the p(i)

χ (χ) are related to the p(i)
z (z) in Fig. 1

by p(i)
χ (χ) = p(i)

z [z(χ)] |dz/dχ| for dz/dχ = H0 c−1 E[(1 + z)−1].
For the II and GI terms, we employed the NLA model by

Joachimi et al. (2011), derived from the linear alignment model
by Bridle & King (2007) but replacing the linear matter power-
spectrum by the non-linear one. Clearly just tweaking the orig-
inal linear IA model, the NLA is nevertheless sufficiently accu-
rate to model contemporary lensing data (Harnois-Déraps et al.
2022), predicting

IIξ
(i j)
± (θ) :=

∫ χh

0

∫ ∞

0

dχd` `
2π

F2(χ)

×
p(i)
χ (χ) p( j)

χ (χ)

f 2
K(χ)

J0,4(`θ) Pδ

(
` + 1/2

fK(χ)
, χ

)
(9)

for II correlations and for the GI term

GIξ
(i j)
± (θ) :=

3H2
0Ωm

2c2

∫ χh

0

∫ ∞

0

dχd` `
2π

F(χ)

×
W

(i)
(χ) p( j)

χ (χ) + W
( j)

(χ) p(i)
χ (χ)

a(χ) fK(χ)
J0,4(`θ) Pδ

(
` + 1/2

fK(χ)
, χ

)
.

(10)
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The amplitude of the IA signal scales in this model with

F(χ) = −AIA C1 ρcrit
Ωm

D+(χ)

≈ −2.4 × 10−2
(AIA

3.0

) (
Ωm

0.3

) (
D+(χ)

0.5

)−1

(11)

and depends on distance χ (or redshift) only through the linear
growth factor, D+(χ) (by definition D+ ≡ 1 at χ = 0). For our
main result, we neglected further dependencies on redshift or the
evolution of the average galaxy luminosity with redshift, similar
to Asgari et al. (2021) who find in their cosmological analysis of
KiDS-1000 little evidence for a more complex F(χ).

With respect to future applications, the work by
Fortuna et al. (2021), and, more recently, by Preston et al.
(2024) observe that the NLA model, even if overly simplistic,
could be accurate enough to model IA in Stage IV survey data if
a redshift dependence of the NLA parameters is accounted for.
We briefly return to this topic in our discussion on conceivable
systematic uncertainties in our analysis in Sect. 6.

2.4. Projection kernels of the matter power spectrum

The shear correlation function with IA terms, Eq. (7), is still
linear in the matter power spectrum, hence a deprojection of
ξ

(i j)
± (θ) into Pδ(k, z) is, as in S12, principally possible through lin-

ear minimum-variance estimators that depend only on the back-
ground fiducial cosmology, source distributions, and IA param-
eters. On the practical side, however, the deprojection is ham-
pered by broad, partly similar lensing kernels, the relatively low
signal-to-noise ratio, and a confined θ-range, rendering the esti-
mators ill-conditioned (or singular). They are also biased when
ignoring the θ-confinement which amounts to setting ξ(i j)(θ) ≡ 0
outside the θ range (Section 7 in Schneider et al. 2002). Similar
to S12, we addressed these practicalities by boundary conditions
Pδ(k, z) ≥ 0 through priors in the framework of a Bayesian anal-
ysis, at most a couple of redshift bins for Pδ(k, z), and by varying
Pδ(k, z) within a confined region in (k, z)-space only, assuming a
reference power, Pfid

δ (k, z), otherwise. Additionally, it is sensible
to constrain the relative deviations fδ(k, z) := Pδ(k, z)/Pfid

δ (k, z)
instead of Pδ(k, z) directly: Most of the evolution is probably
already accounted for in Pfid

δ (k, z), and a slowly changing fδ(k, z)
within a broad z-bin is a reasonable quantity to be averaged. We
describe the implementation details below.

In our set-up, the fδ(k, z) shall be constant within cells of a
regular mesh of (Nk + 1) × (Nz + 1) mesh points (km, χn), where
km < km+1, zn < zn+1, and χn := χ(zn); the intervals [z1, zNz+1) and
[k1, kNk+1) define the z- and k-ranges where the power spectrum
may differ from Pfid

δ (k, z), here for k/(h Mpc−1) ∈ [10−2, 20) and
z ∈ [0, 2). The matter power spectrum for Eq. (7) thus equals

Pδ(k, χ) = Pfid
δ (k, χ)

1 +

Nz,Nk∑
n,m=1

Hmn(k, χ)
[
fδ,mn − 1

] , (12)

where

Hmn(k, χ) :=
{

1 , if k ∈ [km, km+1) and χ ∈ [χn, χn+1)
0 , otherwise (13)

is a two-dimensional top-hat function. The average of fδ(k, z)
within a cell (or band) is denoted by the coefficient fδ,mn.
The mesh in k-direction is equi-spaced on a log-scale, ∆k =
k N−1

k ln (kNk+1/k1), while the z-direction uses for one variant

zn ∈ {0, 0.3, 0.6, 2}, for Nz = 3, and zn ∈ {0, 2} in other vari-
ant with one wide bin, Nz = 1, when averaging fδ(k, z) over the
entire redshift range. The number of k-bins is always Nk = 20.

Using this fδ,mn-representation of Pδ(k, z), Eq. (7) is now
recast into

ξ
(i j)
± (θ) =

Nz,Nk∑
n,m=1

X(i j)
± (θ; m, n) fδ,mn + ξ

(i j)
±,fid(θ) , (14)

for the projection matrix

X(i j)
± (θ; m, n) :=

1
2π θ2

∫ χn+1

χn

dχ
(

0K (i j)
γγ (χ) + IIK (i j)

γγ (χ) + GIK (i j)
γγ (χ)

)
×

km+1 fK(χ)θ∫
km fK(χ)θ

ds s J0,4(s) Pfid
δ (k[s, χ, θ], χ) , (15)

the integral kernels

0K
(i j)
γγ (χ) :=

9H4
0Ω2

m

4c4

W
(i)

(χ)W
( j)

(χ)
a2(χ)

; (16)

IIK
(i j)
γγ (χ) := F2(χ)

p(i)
χ (χ) p( j)

χ (χ)

f 2
K(χ)

; (17)

GIK
(i j)
γγ (χ) :=

3H2
0Ωm

2c2 F(χ)

×
W

(i)
(χ) p( j)

χ (χ) + W
( j)

(χ) p(i)
χ (χ)

a(χ) fK(χ)
, (18)

and a constant offset

ξ
(i j)
±,fid(θ) :=

1
2π θ2

∫ χh

0
dχ

(
0K

(i j)
γγ (χ) + IIK

(i j)
γγ (χ) + GIK

(i j)
γγ (χ)

)
×

∞∫
0

ds s J0,4(s)�Pfid
δ (k[s, χ, θ], χ) (19)

from (k, z) regions that are unaffected by the choice of fδ,mn. The
offset employs the definition

�Pfid
δ (k, χ) :=

 Pfid
δ (k, χ) , if

Nz,Nk∑
m,n=1

Hmn(k, χ) = 0

0 , otherwise
, (20)

and the foregoing equations abbreviate k[s, χ, θ] := s+θ/2
fK(χ)θ .

Our code computed the projection matrix X(i j)
± (θ; m, n) once

for a series of θ-bins, enabling a quick prediction of ξ(i j)
± (θ) when

Monte Carlo sampling the posterior PDF of fδ,mn. An efficient
way to numerically calculate X(i j)

± (θ; m, n) and ξ(i j)
±,fid(θ) is given in

Appendix A of S12, albeit with the little modification (2 fK[χ])−1

in what is now k̄ j := (2 fK[χ])−1+(k̂ j+k̂ j+1)/2 due to the extended
hybrid Limber approximation adopted here. As further practical
footnote on code implementation, we performed the above inte-
grals with integration variable a instead of χ, as well as pz(z)
instead of pχ(χ), for which the following transformations are
notable, given a general function g(χ) and H(a) =: H0 E(a),∫ χ2

χ1

dχ g(χ) =
c

H0

∫ a1

a2

da
a2 E(a)

g[χ(a)] (21)

since |dχ/da| = c/(a2H[a]),∫ χ2

χ1

dχ p(i)
χ (χ) g(χ) =

∫ a1

a2

da
a2 p(i)

z [z(a)] g[χ(a)] (22)
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since |dz/dχ| = H(z)/c, and hence∫ χ2

χ1

dχ p(i)
χ (χ) p( j)

χ (χ) g(χ)

=
H0

c

∫ a1

a2

da E(a)
a2 p(i)

z [z(a)] p( j)
z [z(a)] g[χ(a)] . (23)

When integrating over p(i)
z (z), we adopted histograms with top-

hat functions, without interpolation, exactly as indicated in Fig.
1. The very first bin, left-aligned towards z = 0, has p(i)

z (z) = 0.
Probably obvious through these integrals and the pre-factors in
Eqs. (8)–(10), the projections of Pδ(k, z) into ξ(i j)(θ) are inde-
pendent of H0 as long as [k] = h Mpc−1 (comoving), whereas
the ξ(i j)

± (θ) scale with Ω2
m since F(χ) ∝ Ωm.

3. Bayesian inference of the three-dimensional
matter power-spectrum

With the linear relation between the three-dimensional (3D)
power spectrum and the two-point shear correlation functions
described, we now outline the statistical model and the numer-
ical sampler for the posterior probability density of fδ,mn within
a Bayesian framework (e.g., Gelman et al. 2003, for a review).
In comparison to S12, our updated methodology introduces the
Tikhonov regularisation as Bayesian prior, in effect inferring
a k-smoothed power spectrum, and a Hamiltonian MCMC for
improved computational speed for Nz×Nk ∼ 60 model variables.

3.1. Statistical model

The statistical model of fδ,mn employs a compact nota-
tion for the tomographic data, model variables and param-
eters, all presented here. The vector of model variables
π =

(
fδ,mn|1 ≤ n ≤ Nz, 1 ≤ m ≤ Nk

)
compiles the bin-averaged

fδ(k, z) on a (Nk + 1) × (Nz + 1) mesh, and the data vector d
contains the binned ξ

(i j)
± (θk) for a sequence of Nθ = 9 angu-

lar separations, θk. Equation (14) predicts the components of
d for a given (flat) background cosmology, IA parameters, and
source redshift distributions, altogether compressed into q =

{Ωm, AIA, p(1)
z (z), . . . , p(5)

z (z)} hereafter. The prediction is denoted
by the model vector m(π, q) = Xq π+ξfid

q with elements arranged
in the same order as those in d, using the projection matrix Xq

which contains the coefficients X(i j)
± (θ; m, n) for fixed q. The ele-

ments of ξfid
q are the offsets ξ(i j)

±,fid(θk), also for fixed projection
parameters q. The statistical information on π is expressed by
the Bayesian posterior PDF of π conditional on d,

P(π|d) = E−1(d)Lq(d|π) Phat(π) Pτ(π) , (24)

adopting a Gaussian likelihood

−2 lnLq(d|π) =
[
d − m(π, q)

]T C−1 [
d − m(π, q)

]
(25)

with error covariance C of the measurement d, and two
prior probability densities, Phat(π) and Pτ(π), to regularise the
sampling in fδ-parameter space. The normalisation, E(d) =∫

dπLq(d|π) Phat(π) Pτ(π) , 0, is not of interest for the Monte
Carlo sampler, and hence we set E(d) ≡ 1 without impacting the
results. We describe the two prior PDFs in the following.

3.2. Tikhonov regularisation prior

The Tikhonov regularisation prior, Pτ(π), greatly improves the
constraints, pruning implausible solutions for fδ,mn. This is nec-
essary because the combination of heavy smoothing and added
noise in ξ

(i j)
± (θ) has the unpleasant side-effect of producing

strong oscillations, correlated errors, in fδ(k, z) when inverting
the tomographic signal. Similar to 3D-lensing mass reconstruc-
tions (Hu & Keeton 2002), the oscillations are reduced by apply-
ing regularisation conditions. To this effect, the Tikhonov regu-
larisation down-weights oscillating fδ(k, z), preferring solutions
of fδ,mn smoothed in k-direction,

−
1
τ

ln Pτ(π) =

Nz∑
n=1

Nk−1∑
m=1

(
fδ,mn − fδ,(m+1)n

)2 . (26)

At the same time, no prior constraints are imposed on the over-
all amplitude of fδ,mn or the difference signal between z-bins
because only signal differences from the same z-bin, n, appear
inside the prior density. The weight of the prior relative to the
data likelihood Lq(d|π) is controlled by the Tikhonov parame-
ter τ, demonstrated in Fig. 2 for a simulated analysis with three
redshift bins, Nz = 3.

This intentionally extreme scenario in Fig. 2 highlights the
impact of the regularisation with a truly z-evolving and scale-
dependent fδ,mn by choosing a constant reference Pfid

δ (k, z) for all
z-bins: a theory power spectrum at z = 1. Unlike the actual KiDS
analysis in Sect. 5, the fδ,mn therefore now quantify the structure
growth relative to z = 1. To assess the quality of the reconstruc-
tion and our ability to detect the z- and k-dependence of fδ,mn, we
analysed a mock vector d = m(π, q) with parameters in Table 1
and KiDS-1000-like noise, C, yielding posterior 68% credible
regions with regularisation (τ = 5, dark orange) and without
(τ = 0, light orange). The figure compares these credible regions
to virtually noise-free data, unaffected by the Tikhonov regu-
larisation, depicted as solid lines (“noise/100”). The solid lines
are, to account for the z-weighting of fδ(k, z) in a reconstruction,
the posterior medians for a data vector with unrealistically high
signal-to-noise ratio (S/N) of C′ = 10−4 × C as error covariance
and no Tikhonov regularisation. But even for such high S/N data,
artefacts appear towards large scales, close to k ∼ 0.02 h Mpc−1,
and at the high-k end, near k ∼ 10 h Mpc−1, thus towards k where
the tomographic data poorly constrain the power spectrum. To
mitigate these artefacts, the additional dotted lines depict for
each z-bin a theoretical Pfid

δ (k, z̄)/Pfid
δ (k, z = 1) at one specific

redshift, z̄, that matches the solid lines most closely, and which
shall be the ‘true’ average fδ,mn for this experiment. Undoubt-
edly, a Tikhonov prior, τ = 5, substantially reduces the statis-
tical uncertainty in the reconstruction (sizes of credible regions
for τ = 0 versus τ = 5). On the downside, however, the regu-
larisation might be overly restrictive by straightening out oscil-
lations actually present in the data, as already partly present for
τ = 5 (dotted lines versus dashed lines, the posterior median).
By running more tests with different τ, not shown here, we con-
sider τ = 5 a good compromise that catches gradual trends with
k while improving the precision in the reconstruction, as in the
left panel. We reiterate that the degree of evolution and scale-
dependence in this test, due to the static reference power spec-
trum, is extreme compared to what is expected in the KiDS-1000
analysis. If the reference is close to the true matter power at all
z, fδ,mn will be close to unity.

A cruder alternative to Tikhonov filtering (τ = 0) for smooth-
ing the reconstruction involves drastically reducing the number
of k-bins, such as to Nk = 5. This approach, however, signif-
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Fig. 2. Impact of the Tikhonov regularisation used to suppress oscillating solutions fδ(k, z). Shown are, for a noise-free mock data vector and the
KiDS-1000 error covariance, the posterior constraints (68% credible regions) on fδ averaged over the redshift bin Z1 = [0, 0.3] (left), Z2 = [0.3, 0.6]
(middle), and Z3 = [0.6, 2] (right) with and without regularisation (dark orange τ = 5.0 with median as dashed line or light orange τ = 0). To boost
scale-dependence and evolution, fδ(k, z) is here defined relative to the power spectrum at fixed redshift, probing the relative structure growth since
z = 1. The solid line is the median posterior fδ for 100× reduced measurement errors, providing a nearly noise-free reference (noise/100) that
averages the growth over the redshift bin while still exhibiting artefacts near the edges. The dotted lines are the theoretical Pfid

δ (k, z̄)/Pfid
δ (k, z = 1)

for one specific z̄ chosen to most closely match the solid lines, indicating the redshift with highest weight in the average.

icantly blurs fδ(k, z) and their scale-dependent features, effec-
tively smoothing it to the fixed size of the larger k-bins, resulting
in a distinctly lower resolution compared to Tikhonov filtering.
In contrast, Tikhonov filtering applies adaptive smoothing, using
smaller smoothing kernels where the S/N is higher and broader
kernels elsewhere. This method’s resolution is limited only by
the size of the numerous, smaller k-bins, for which we chose
Nk = 20.

3.3. Positivity priors

Already applied for Fig. 2, we restricted valid solutions to pos-
itive fδ,mn (since Pδ(k, z) ≥ 0), by using uniform, top-hat prior
PDFs for fδ,mn ∈ [0, fδ,max],

− σ2
f ln Phat(π) =

Nz,Nk∑
n,m=1

(
f 2
δ,mn H

[
− fδ,mn

]
+

[
fδ,mn − fδ,max

]2 H
[
fδ,mn − fδ,max

])
, (27)

where H(x) is the Heaviside step function. Enforcing positive
solutions for the matter power spectrum is beneficial in reducing
both the statistical errors and oscillations in the reconstruction,
as already reported in S12. The positivity priors adopt wide inter-
vals, fδ,max = 100, compared to expected values of fδ,mn ∼ 1. In
addition, for numerical convenience, the top-hat priors have soft
edges, σf = 10−2, to relax issues with low acceptance rates and
undefined gradients in the Monte Carlo sampler of P(π|d) near
the edges.

3.4. Monte Carlo sampler

For sampling the posterior PDF, Eq. (24), we applied a MCMC
technique that represents P(π|d) by nmcmc = 104 points (πi, wi)
with statistical weights, wi, for given projection parameters
q. The MCMC sampler is a Hamiltonian Monte Carlo algo-
rithm, known to be efficient even for high-dimensional models
(Nz × Nk ∼ 60) by proposing new, quickly decorrelating sam-
pling points with high acceptance rate (Gelman et al. 2003). The
sampler, however, requires as input the gradient ∇π lnLq(d|π)

Table 1. Parameters of the reference power spectrum, Pfid
δ (k, z), and

the projection parameters (lensing kernel, IA) used to infer fδ(k, z) =
Pδ(k, z)/Pfid

δ (k, z).

AIA Ωm Ωb ns

+1.070 0.305 0.047 0.901
h σ8 Γ w0

0.695 0.720 (†) 0.167 −1.000

Notes. For Pfid
δ (k, z) in this ΛCDM setting, we employed an updated

version of halofit (Smith et al. 2003; Takahashi et al. 2012). The ref-
erence assumes a flat cosmology, this means ΩΛ = 1 − Ωm. AIA: IA
amplitude of the NLA model; Ωm: (total) matter density parameter; Ωb:
baryon density parameter; ns: shape parameter of the primordial power
spectrum; h: Hubble constant in units of 100 km s−1 Mpc−1; σ8: nor-
malisation of the linear power spectrum at z = 0; Γ: shape parameter
according to Sugiyama (1995); w0: equation-of-state parameter for dark
energy; (†)this value has been lowered from the 0.76 in Heymans et al.
(2021), Table C.1, to obtain an average of f̄δ ≈ 1 over all k and z
(Sect. 5.1).

and the gradient of the logarithmic prior densities – all easily
available in our case, foremost because of the linear projection
m(π, q) = Xqπ + ξfid

q . We demonstrate the appropriate sampler
performance in Appendix A and provide more implementation
details there. Due to the efficient decorrelation of the MCMCs,
we shortened the burn-in phase for the KiDS-1000 analysis,
nburnin = 5×103, in comparison to Appendix A, and used shorter
chain lengths because of the subsequent merger of many chains
when marginalising over q, outlined in the next section.

3.5. Marginal errors including uncertainties in IA and lensing
kernel parameters

The parameters for the lensing kernel and IA are neither exactly
known nor intended to be constrained by our shear data. There-
fore, to account for their uncertainties in fδ,mn, the analysis com-
bines many chains with nruns = 500 realisations of q drawn
from a baseline error model. The error baseline adopted a flat
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Table 2. Overview of the KiDS-1000 ‘gold sample’

Bin zB range neff/arcmin−2 σε δi
z

1 (0.1, 0.3] 0.62 0.270 +0.000 ± 0.0106
2 (0.3, 0.5] 1.18 0.258 +0.002 ± 0.0113
3 (0.5, 0.7] 1.85 0.273 +0.013 ± 0.0118
4 (0.7, 0.9] 1.26 0.254 +0.011 ± 0.0087
5 (0.9, 1.2] 1.31 0.270 −0.006 ± 0.0097

Notes. The data in this table are compiled from Hildebrandt et al. (2021)
and Giblin et al. (2021). The effective number density, neff , accounts for
the lensfit weights, see Joachimi et al. (2021) for details. The fourth col-
umn displays the measured ellipticity dispersion per component. Our
analysis takes into account the correlation of the redshift bias uncer-
tainties; zB denotes the photometric redshift.

cosmology, ΩΛ = 1 − Ωm, and a random sample of the pos-
terior joint distribution of (Ωm, AIA) from the recent 3 × 2 pt
cosmological analysis in Heymans et al. (2021); their marginal
errors are Ωm = 0.305+0.012

−0.012 and AIA = +1.04+0.28
−0.30 (68% CI).

The 3 × 2 pt experiment combines the KiDS-1000 cosmic shear
constraints with those from galaxy-galaxy lensing and, impor-
tantly, the galaxy clustering in the partly overlapping, spectro-
scopic surveys of both the 2-degree Field Lensing Survey and
the Baryon Oscillation Spectroscopic Survey (Blake et al. 2016;
Alam et al. 2015) to break the σ8 − Ωm degeneracy in the shear
data. This substantially reduces the uncertainty of Ωm in the lens-
ing kernel while, at the same time, using only z . 1 data. Further-
more, for error realisations of the source distributions, we shift
the histograms in Fig. 1 according to p(i)

z (z)→ p(i)
z (z+δi

z), for ran-
dom draws of δi

z confined by the error model in Hildebrandt et al.
(2021), their Figure 6 and Table 3; the root-mean-square (RMS)
error of δi

z is σi
z ≈ 1.3 × 10−2 for all tomographic bins, except

for i = 3 where σi
z = 2 × 10−2. Within this Monte Carlo process,

we fixed the reference Pfid
δ (k, z) for all chains to that in Table 1

to avoid conflicting definitions of fδ,mn while varying Ωm.
After all MCMCs with randomised lensing kernels and IA

parameters were available, we combined the nruns runs by select-
ing from each chain j a number of nmerge = 103 sampling points
πi j with probability wi j/

∑
i wi j. Selected points were put back

into the sample j, to be possibly selected again. By doing so,
the selected nmerge points sample the posterior of chain j when
equally weighted. Mixing the MCMC points from all nrun chains
for the final Monte Carlo sample then contains nmerge × nruns =

5×105, equally weighted sampling points πi j of the marginalised
posterior distribution of fδ,mn.

4. Data

We used the public data from the fourth Data Release (DR4)
of the Kilo-Degree Survey (Kuijken et al. 2019), commonly
referred to as the KiDS-1000 data1. The images underlying the
data were taken by the high-quality VST-OmegaCAM (Kuijken
2011), covering a total area of about 1006 deg2 in four optical
filters (ugri). After masking, the effective area of the KiDS-1000
data is 777.4 deg2. Its overlap with the VIKING survey (Vista
Kilo-degree Infrared Galaxy survey, Edge et al. 2013), which
observes in five near-infrared bands, ZY JHKs, allows a better
control over redshift uncertainties (Hildebrandt et al. 2021).

1 The KiDS data products are public and available through http://
kids.strw.leidenuniv.nl/DR4

4.1. Source catalogue

The following summarises the production of the shear catalogue,
carried out by the KiDS-1000 Consortium. The images were
processed using the THELI (Erben et al. 2005) and ASTRO-WISE
(Begeman et al. 2013) pipelines, source ellipticities were esti-
mated by lensfit (Miller et al. 2013; Fenech Conti et al. 2017).
Based on the nine-band catalogue, individual photometric red-
shift estimates, zB, were obtained using BPZ (Benítez 2000),
dividing the sources into five tomographic bins (Fig. 1).

To calibrate the redshift distribution of each tomographic
bin, Wright et al. (2020a) construct a self-organising map
(SOM) linking the nine-band photometry of the sources to a
representative spectroscopic sample. Galaxies without matching
spectroscopic counterparts, or for which the zB are catastroph-
ically different from the redshift of the matched spectroscopic
sample, are expunged from the catalogue (Wright et al. 2020b).
The mean and the scatter, δi

z, on the bias of the means of the
p(i)

z (z), estimated by the SOM, are numerically estimated using a
suite of KiDS-like mock observations (Hildebrandt et al. 2021)2.
The resulting ‘gold sample’ contains ∼2.1 × 107 sources with
well-calibrated photometric redshift distributions; Giblin et al.
(2021) gives more details. Table 2 in the Appendix sum-
marises the main parameters relevant for our analysis. Cosmo-
logical parameter constraints from the KiDS-1000 tomographic
data, with the methodology in Joachimi et al. (2021), are pre-
sented in Asgari et al. (2021), exclusively using cosmic shear, in
Heymans et al. (2021), using 3 × 2pt data, and in Tröster et al.
(2021), for a beyond ΛCDM analysis using 3 × 2pt data.

4.2. Data vector and covariance of measurement noise

Based on the tomographic shear data, the KiDS-1000 DR4 pro-
vides estimates of the binned shear correlation function, ξ(i j)

± (θ),
for every combination of tomographic bins, (i j), employing the
popular computer software TreeCorr (Jarvis et al. 2004; Jarvis
2015). We used these data without modification. For the ξ± esti-
mator details, we refer to Asgari et al. (2021), Section 2.1 and
Appendix C, and only note that we analysed the ξ(i j)

± (θ) binned
into Nθ = 9 angular log-bins for the range θ = 0′.5–300′.
Another notable technical detail, the data vector for the DR4 was
obtained by rebinning a previously finely binned vector, instead
of rerunning TreeCorr. Further, Asgari et al. (2021) exclude
scales smaller than 4′ for ξ− due to high systematic uncertain-
ties in the theoretical matter power-spectrum on small scales,
whereas our model-free measurement of Pδ(k, z) included scales
down to 0′.5.

The covariance matrix of noise, C in Eq. (25), for the esti-
mator of ξ(i j)

± (θ) used the analytical model by Joachimi et al.
(2021), Appendix E. This model accounts for the intrinsic shape
scatter of sources, for both Gaussian and non-Gaussian cosmic
variance, mostly relevant towards larger angular scales, for the
super-sample covariance due to fluctuation modes greater than
the survey footprint, and for the calibration uncertainty in the
multiplicative shear bias. As for ξ(i j)

± (θ), the covariance matrix is
part of the package of additional DR4 data products.

2 Sample variance of the large-scale structure introduces a correlation
between the scatter of δi

z across different tomographic redshift bins, see
Figure 2 in Hildebrandt et al. (2021) for the explicit values.
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4.3. Systematic shear error

In addition to intrinsic alignments, a residual systematic error
in the shear signal through the data reduction or the instru-
ment may also be potentially present in ξ(i j)

± . Detecting B-modes
in the shear field, specifically κ̃(`) , κ̃∗(−`) as defined in
Eq. (2), is considered a strong indicator of systematic errors,
because B-modes generated by weak gravitational lensing are
negligible. Clearly separating B-modes from E-modes in a ξ(i j)

±

with finite support is, however, unfeasible, but other related
statistics are known to separate both modes (and ambiguous
modes), most prominently COSEBIs (Schneider et al. 2010).
For KiDS-1000, logarithmic COSEBIs capturing scales ` .
103 do not indicate B-modes on a 95% confidence level
(Asgari et al. 2021; Giblin et al. 2021), several other tests for
systematic errors are negative, and the cosmological analy-
sis with the E-mode COSEBIs yields results consistent with
a ξ

(i j)
± analysis. Therefore, a significant bias of parameters in

a cosmological analysis due to a systematic shear error is
unlikely.

Notably, however, the COSEBIs cosmological analysis alone
is insensitive to small angular scales of ` ∼ 104, included in our
analysis through θ . 4′ in ξ(i j)

− . In addition, even a small system-
atic shear error in ξ(i j)

± might cause artificial deviations of Pδ(k, z)
from the reference Pfid

δ (k, z), i.e., fδ,mn , 1, if the error is of the
order of the difference signal between the measured ξ(i j)

± and the
expected signal in Eq. (14) for fδ,mn ≡ 1. The 1σ–2σ window
left open for B-modes by the logarithmic COSEBIs therefore
leaves the possibility that deviations in KiDS-1000 might partly
be related to a systematic shear error in the data. We return to
this caveat in Sect. 6.

5. Results

This section reports our results for the relative power spectrum,
fδ,mn, in two variants: an entirely average, non-evolving scenario
(one broad redshift bin) and an evolving scenario with three
independent redshift bins. In addition, we verified our pipeline
with results from a mock analysis based on ray-traced N-body
data in an entirely ΛCDM framework.

5.1. Reference ΛCDM matter power-spectrum

For the KiDS-1000 analysis presented here, the reference power
spectrum, Pfid

δ (k, z), is a revised halofit model with the param-
eters in Table 1 (Takahashi et al. 2012; Smith et al. 2003). These
parameters are maximum-posterior values taken from Table C.1
(3 × 2 pt, joint) in Heymans et al. (2021) with one modification:
the value for σ8 was lowered from 0.76 to 0.72 to achieve the
best fit to KiDS-1000 data that averages out to 〈 fδ,mn〉mn ≈ 1
over all m and n (the next Sect. 5.2 provides more details).
This σ8 reduction is presumably required because the Pδ(k, z)
model in Heymans et al. (2021) includes neutrino suppression
and baryonic feedback, missing here, and is, even without neu-
trinos and baryons, already systematically lower by roughly 5%–
10% within k ≈ 0.1–10 h Mpc−1 compared to halofit. We refer
to Section 4 in Mead et al. (2015) for a discussion on the lat-
ter aspect, and reiterate that our Pfid

δ (k, z) choice is arbitrary –
in our analysis, a purely ΛCDM model that matches the KiDS-
1000 data. The results for fδ(k, z) in the following sections con-
sequently probe the deviations of the true Pδ(k, z) relative to the
best-fitting ΛCDM reference.
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Fig. 3. Test of data against a null model with identical fδ,mn = f̄0
for all m and n (Nz = 3). Shown on the y-axis is the probability of
−2 ln P( fδ,mn = f̄0|d) being greater than in the null model. The dotted
line is the result for one noisy verification data vector that has f̄0 = 1;
the solid line is for the KiDS-1000 data. The set-up in Table 1 and the
source distributions in Fig. 1 without errors in the projection parameters
are assumed.

5.2. Evidence for deviation from reference

A hypothesis test against null models with constant fδ,mn = f̄0,
for all m and n, and fixed projection parameters q shows that
the KiDS-1000 data support deviations from the reference power
spectrum in either k or z, shown by the results in Fig. 3. For
each f̄0 on the x-axis in this figure, 105 noise realisations of dnull
were used in the null model to predict the cumulative distribu-
tion C[tnull] of the test statistic tnull := −2 ln P( fδ,mn = f̄0|dnull).
The y-axis shows the probability, p := C[td], that the null model
exceeds the td := −2 ln P( fδ,mn = f̄0|d) in the actual data (solid
line) or, for verification, in random null-model data (dashed
line). Starting with the reference power spectrum ( f̄0 = 1), as
indicated by the yellow vertical line, the KiDS-1000 data have
p = 0.012 and the verification data p = 0.78. Therefore, while
the verification data are well within the expectation of the null
hypothesis, the KiDS-1000 data are inconsistent with reference
model on a 1− p = 98.8% confidence level. Varying f̄0, however,
would not improve the test result because the KiDS-1000 curve
already peaks at f̄0 ≈ 1: the reference power spectrum, Pfid

δ (k, z),
is the best fit out of a family of models with constant fδ,mn. The
only way to improve the fit would be to make fδ,mn varying with
either scale, k (this means m), or redshift, z (this means n).

In fact, the peak at f̄0 ≈ 1 was our deliberate choice for
KiDS-1000, achieved by lowering σ8 for Pfid

δ (k, z) to 0.72 com-
pared to the best-fitting value of 0.78 in Heymans et al. (2021)
in order to move the peak from f̄0 ≈ 0.9 to its final location
f̄0 ≈ 1. This way, the fδ,mn in our data are normalised to the aver-
age 〈 fδ,mn〉mn ≈ 1. The failed null test still stands, however, and
is evidence for the existence of a better fit by introducing either
a k- or z-dependence of fδ,mn, or both. This is explored in the
following two more complex scenarios.

5.3. Average deviations over full redshift range

The first scenario introduces a k-dependence for fδ,mn without
redshift evolution (Nz = 1), reported with 68% CI about the
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Fig. 4. Reconstructed matter power spectrum in KiDS-1000 for τ = 5.0 and Nk = 20 in three variants. The errors marginalise over uncertainties
in the lensing kernel and IA. Shown are the posterior 68% CI about the median (lines). Left panel: Transfer function fδ(k, z) averaged over the
entire redshift range Z1 = [0, 2] and relative to the reference, Pfid

δ (k, z), with parameters listed in Table 1. Middle panel: Same as the left panel,
but for three independent transfer functions averaged separately within the ranges Z1 = [0, 0.3], Z2 = [0.3, 0.6], and Z3 = [0.6, 2]. Right panel:
Dimensionless power spectrum, ∆2(k, z) = 4π k3Pδ(k, z) = 4π k3 fδ(k, z) Pfid

δ (k, z), interpolated to the centres of three redshift bins Z1, Z2, and Z3.

median in the left panel of Fig. 4. In other words, the redshift
evolution of Pδ(k, z) is assumed to be that of the reference power
spectrum. Towards non-linear scales k & 0.1 h Mpc−1, there is
no indication for a deviation from the reference exceeding the
68% CI, in particular the suppression of power does not fall
below fδ ≈ 0.8, nor do the data support a boost of power beyond
fδ ≈ 1.2. Towards linear scales, below k ≈ 0.1 h Mpc−1, is a
slight, yet insignificant, rise towards fδ ≈ 1.5. This might be a
sign that halofitwith higher σ8 provides a slightly better fit on
linear scales. Yet, on average, variations relative to Pfid

δ (k, z) stay
within about 20% (68% CI) down to k ∼ 10 h Mpc−1.

5.4. Deviations for three separate redshift bins

For more insight in a possible z-evolving fδ in the second sce-
nario, we probed the average fδ(k, z) inside three separate red-
shift bins, Z1 = [0, 0.3], Z2 = [0.3, 0.6], and Z3 = [0.6, 2]. Their
marginalised posterior constraints (68% CI about the median)
are plotted as three credible regions in the middle panel of
Fig. 4, one region for each redshift bin. The lowest bin, Z1, is
fully consistent with fδ = 1, on k-average fδ = 1.15 ± 0.28,
while the middle bin, Z2, on average fδ = 0.57 ± 0.27, indi-
cates a power suppression, reaching the depth fδ = 0.3 ± 0.2
at k ∼ 0.5 h Mpc−1, and the highest bin, Z3, overall prefers a
boosted power of fδ = 2.22±0.81. The signal suppression in the
middle redshift bin and the boost in the highest bin cancel each
other when averaging fδ over the whole redshift range, resulting
in the fδ = 0.99 ± 0.20 in the left panel.

The close description of the ξ(i j)
± (θ) data points by the flexible

fδ model is illustrated by the posterior predictive of the model in
Fig. B.1 (Appendix). Shown in the various panels are our KiDS-
1000 data points (black with 1σ errors bars) for θ ξ(i j)

− (θ) (lower
left panels) and θ ξ

(i j)
+ (θ) (upper right panels) in comparison to

the posterior model constraints (68% and 95% CIs in dark and
light blue). The CIs in this plot do not marginalise over q; how-
ever, this has an effect of less than 10%. The red line corresponds
to the ΛCDM reference model, this means fδ,mn ≡ 1, obtained
from a best fit of σ8 to the data points (Sect. 5.1). Allowing for
deviations fδ,mn , 1 in the three separate redshift bins Z1 to Z3
moves the CIs relative to the reference, thereby improving the
fit, although the reference still stays within the 95% CI, as, for

instance, for ξ(55)
± (θ). Whilst an overall good match to the (corre-

lated) data points, a conflict with the model is probably present
for ξ(22)

+ (θ), and perhaps in ξ(12)
+ (θ) to ξ(15)

+ (θ), where the data pre-
fer a higher amplitude than the model fitting all tomographic
bins. Figure A.4 shows a similar plot with verification data,
based on the reference model, as comparison. A higher value
of S 8 :=

√
Ωm/0.3σ8 ≈ 0.791, as indicated by the green line

for the N-body verification data (without IA, Sect. 5.5), would
account for the higher ξ(1 j)

+ -amplitude but, on the other hand, is
rejected by the data due to mismatches at higher redshift (e.g.,
ξ(35)

+ or ξ(45)
+ ). This might indicate spurious systematic errors in

the low-z bins, discussed in Sect. 6.
Expressed in terms of the actual power spectrum, ∆2(k, z̄) :=

4π k3 fδ(k, z̄) Pfid
δ (k, z̄), interpolated to the z-bin centres, z̄, the

diverse redshift evolution of fδ(k, z) in the KiDS-1000 data trans-
lates into a suppression of non-linear structure growth between
0.3 . z . 2. Namely, the z̄ = 0.15 matter power spectrum in
the right panel of Fig. 4 (magenta) has clearly more power than
the two higher redshift bins (green for z̄ = 0.45 and cyan for
z̄ = 1.3) for k & 0.1 h Mpc−1, while the two other power spectra
are consistent with each other, maybe with the green rising over
cyan near k = 10 h Mpc−1. Consequently, with cyan and green
being moved closer to each other, there is for k & 0.1 h Mpc−1

less structure growth detected between z̄ = 0.45–1.3 than in
the reference ΛCDM cosmology but, conversely, more between
z̄ = 0.15–0.45, pulling back the low-z bin to the reference power
spectrum.

It is noteworthy that the statistical errors of fδ,mn and hence
∆2(k, z) are correlated, best visualised by the correlation matrix
in Fig. 5. Each pixel in the correlation matrix encodes the Pear-
son correlation coefficient, r, between two k-bins, either from
same or from different z-bins. The matrix is organised in Nk ×Nk
blocks, where k increases from left to right and top to bottom.
The three blocks on the diagonal, bottom left to top right (lowest
z to highest z), are correlations within the same redshift bin, and
the six off-diagonal blocks are cross-correlations between dis-
tinct z-bins. The enhancement of correlations within the blocks,
making them stick out as tiles in a 3 × 3 mosaic, is a side-effect
of the Tikhonov regularisation smoothing the fδ,mn along the k-
axis. Correlations are high for adjacent k-bins in the same z-
bin, r ≈ 0.4–0.8, especially in the highest z-bin (top right), but
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Fig. 5. Correlation matrix of fδ,mn errors for the KiDS-1000 anal-
ysis with three redshift bins, corresponding to the middle and right
panels in Fig. 4. The three blocks on the diagonal from bottom left
to top right are the correlation matrices for the z-bins Z1 = [0, 0.3],
Z2 = [0.3, 0.6], Z3 = [0.6, 2], respectively; off-diagonal blocks show
correlations between distinct z-bins; pixels within the 20 × 20 blocks
are correlations between the k-bins, ascending from left to right inside
a block.

quickly drop off with distance on the k-scale. Adjacent k-bins
are also statistically dependent when from adjacent z-bins, albeit
now anti-correlated with typically r ≈ −0.4 to −0.1. Not shown
is the correlation matrix for a Nz = 1 reconstruction, left panel
in Fig. 4, to save space; it is essentially a diagonal matrix where
adjacent k-bins have |r| . 0.1, except at the lower and upper
boundary of the k-range where r ≈ 0.5–0.6.

5.5. Verification test with ray-traced mock data

To add more realism to the code verification than in Appendix
A, especially with respect to the fδ result for Nz = 3, we
performed a more stringent test with N-body ray-traced data
(Takahashi et al. 2017). As in Burger et al. (2024), we subdi-
vided the 108 full-sky shear fields from the simulated data
according to the KiDS-1000 sky area and, for each tomographic
bin, combined 30 shear grids for ascending source redshifts
according to the redshift distributions in Fig. 1. This yields an
ensemble of n = 1944 mock KiDS-1000 surveys. From these,
source positions were picked to match the angular positions,
shear weights, and shape noise to the measured counterparts in
the public KiDS-1000 ellipticity catalogue (Giblin et al. 2021).
In contrast to Appendix A, however, intrinsic alignments of
sources are not included here, thus AIA = 0. Similar to the actual
KiDS-1000 data vector, we used TreeCorr to compute ξ(i j)

± (θ)
from the mock shear catalogues.

Driven first by the question whether our code can recover
fδ(k, z) = 1 from a simulated (unrealistically) high S/N data vec-
tor when using exactly the same cosmological parameters as in
the simulation, we averaged all n realisations of the data vec-
tor, denoted by d̄sim, and used the individual realisations, dsim

i , to
estimate the (standard) error covariance of d̄sim,

Csim =
1

n(n − 1)

n∑
i=1

(
dsim

i − d̄sim) (
dsim

i − d̄sim)T
. (28)

This covariance matrix was turned into an unbiased estimator of
the inverse covariance using Hartlap et al. (2007). The average
d̄sim and Csim are basically a single measurement in a hypotheti-
cal survey with n times the angular area than KiDS-1000, albeit

underestimating the cosmic variance error. For an initial inspec-
tion, the solid green lines SIM-THS17 in Fig. B.1 (Appendix)
compares d̄sim to the real KiDS-1000 data (black data points with
error bars): The simulated tomography correlations are mostly
within the 1σ noise scatter of the KiDS-1000 data points, yet
exhibit systematically more signal compared to the reference
model (red lines) by occasionally exceeding the 95% CIs, prob-
ably due to the higher fluctuation amplitude, S 8 ≈ 0.791 in the
simulation compared to S 8 ≈ 0.765 in KiDS-1000, and, less
relevantly, the missing IA terms in the simulation. Now, using
d̄sim and Csim as input, the data points in the top panel of Fig. 6
show the code results for fδ(k, z) in three redshift bins. To test
the code’s ability to recover the power spectrum in the simu-
lation, fδ(k, z) = 1, the reference Pfid

δ (k, z) was set here to the
same cosmological parameters as in the N-body data, namely
Ωm = 0.279, ΩΛ = 1 − Ωm, Ωb = 0.046, h = 0.7, ns = 0.97,
and σ8 = 0.82. Since the lensing kernel is exactly known in this
experiment, no marginalisation of q was done. We find the fol-
lowing.

The reconstructed power spectrum in Fig. 6, top panel, for
the lowest redshift bin (filled squares) is overall consistent with
fδ,mn = 1 for the range k = 0.01−20 h Mpc−1 within the 68%
CI, indicated by the error bars. But two significant deviations
emerge: first, in the higher redshift bins beyond k ≈ 5 h Mpc−1,
and, second, smaller deviations around 0.01 h Mpc−1. The high-k
suppression of the signal is a real feature in the simulation data
due to the pixelated shear grids of the simulation (pixel size 0′.4),
significantly biasing low the values for ξ(i j)

− for θ . 5′. The low-
est redshift bin is presumably also affected, but scales of a few
arcmins correspond here to a characteristic k too high to be vis-
ible in the plot: the typical wave number, keff = 2π/( fK(χd) θ1′ ),
of an angular scale θ1′ = 1′ on a lens plane at distance χd corre-
sponds to keff ≈ 33.5, 12.0, 5.2 h Mpc−1 for lens planes located at
the centres of the bins Z1, Z2, and Z3, respectively. The addi-
tional lines in the plot support the idea of a pixelation bias:
they are reconstructions of noise-free data, based on the simple
Limber-Kaiser projection in Eq. (8) – crucially, not showing the
systematic signal drop for Z2, or for Z3 around k = 1 h Mpc−1.
Instead, however, the lines exhibit artefacts as zig-zag oscilla-
tions of amplitude ∆ fδ ≈ 0.1, strongly increasing towards the
edges of the plotted k-range and probably related to the limita-
tions of the deprojection method (Sect. 3.1). The artefacts are
partly mirrored in the data point scatter and overlap with the pix-
elation bias for Z3 (yet not for Z2) at large k.

The second, weaker ∼1.5σ–2σ deviations appear around
k = 0.01 h Mpc−1 for Z2 and Z3. They, too, are probably
to some extend present in the N-body data: Figure 19 in
Takahashi et al. (2017) report a 10% deviation from halofit
near k = 0.01 h Mpc−1. Nevertheless, we doubt that this explains
the full effect and point out that the plots compare an average
data vector in a simulation of finite volume, still subject to noise,
to the cosmic average. Especially on large scales, cosmic vari-
ance noise is relevant and under-estimated in Csim. In addition,
the noise-free data (solid lines) suggest some excess signal on
large scales due to edge artefacts. In summary, the bottom panel
of Fig. 6 is an excellent reconstruction of the relative power with
∆ fδ ≈ 0.1 accuracy, or better, for k . 10 h Mpc−1 and z . 1.

Another inference of fδ(k, z) with the simulated data is shown
in the bottom panel of Fig. 6 – this time for a KiDS-1000-like
error covariance, n × Csim. By using the average d̄sim as input,
the (essentially linear) reconstruction in the figure represents the
ensemble mean of fδ(k, z) posteriors in three redshift bins. In
this average reconstruction, the posterior errors are similar to the
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Fig. 6. Verification test of the analysis code for fδ(k, z) using: an N-
body simulated data vector, averaged over n = 1944 realisations of the
KiDS-1000 data without IA; the code and data set-up for the KiDS-
1000 analysis has Nk = 20 k-bins and three redshift bins Z1 = [0, 0.3],
Z2 = [0.3, 0.6], and Z3 = [0.6, 2]. The reference power, Pfid

δ (k, z),
is here identical to the cosmology of the simulation (Takahashi et al.
2017). The errors (68% CI) do not marginalise over a projection kernel
uncertainty. Top panel: Simulated covariance of the average data, com-
prising n times the area of KiDS-1000. Deviations from the expected
fδ(k, z) = 1 towards higher z and k & 1 h Mpc−1 are related to the
finite grid pixel size in the simulation (pixelation bias). The lines are
additional reconstructions using noise-free data, based on Eq. (8) and
halofit without pixelation bias. Bottom panel: Same as top panel, but
with statistical errors as in a single KiDS-1000 survey.

ones in the KiDS-1000 reconstruction, middle panel of Fig. 4,
increasing in size for higher z, although now the fδ,mn are consis-
tent with fδ = 1 throughout (68% CI). The suppression of power
by pixelation bias is here fully contained within the statistical
errors, only vaguely hinted at in the green Z2 posterior region
of Fig. 6, bottom panel, which falls just below fδ = 1 around
k = 10 h Mpc−1. Therefore, also for KiDS-1000-like noise lev-
els, the code recovers the correct power spectrum in the N-body
data. The highest precision of fδ = 1.00±0.27 is achieved for Z1,
the middle bin Z2 has fδ = 0.81 ± 0.31, and Z3 fδ = 1.29 ± 0.63
(medians and 68% CIs, no q errors).

 90

 100

no margin.
z error

IA error
Ωm error 0.0<z<0.3

 90

 100

0.3<z<0.6

 90

 100

 0.01  0.1  1  10

e
rr

o
r 
f δ

,m
n
 r

e
la

ti
v
e
 t

o
 f

u
ll 

e
rr

o
r 

/ 
%

k / h cMpc-1

0.6<z<2.0

Fig. 7. Percentage fraction in total marginal posterior error of fδ,mn
due to uncertainties in the lensing kernel and IA parameter. Shown is
the statistical error relative to the full marginal error (RMS variance of
posterior) as a function of k in three redshift bins without marginalisa-
tion (solid lines), with marginalisation over errors in the source redshift
distributions only (dashed lines), Ωm in the lensing kernel only (dash-
dotted lines), and for the AIA error only (dotted lines).

For comparison, Fig. A.5 (Appendix) shows an ensemble of
reconstructions with individual, 16 randomly chosen dsim

i , illus-
trating the possible variations in the inferred fδ(k, z). Each panel
is a prediction of a KiDS-1000 reconstruction in a ΛCDM sce-
nario. Here, we observe a small tendency of the posterior median
in Z3 to be above fδ = 1 and the median in Z2 to be below fδ = 1,
despite both having fδ ≈ 1 for k . 5 h Mpc−1. This tendency is
also visible in Fig. 6 of average reconstructions, bottom panel,
with the posterior median always being above fδ = 1 for Z3, or
below for Z2, and probably has two reasons. First, the Z3 bin is
poorly constrained, giving a broad marginalised posterior PDF
skewed towards higher fδ values, shifting up the centres (pos-
terior medians) of our CIs; this is illustrated by Fig. A.3 in the
Appendix. Second, errors in Z2 and Z3 are anti-correlated, pre-
ferring a lower value for Z2, if the fδ at similar k in Z3 is scat-
tered upwards. But, on a broad note, one should not expect the
maximum of the marginalised PDF to coincide with the maxi-
mum of the full posterior (for the non-marginalised parameters)
because this requires that the full posterior PDF must obey cer-
tain symmetries about its maximum, as, for instance, present in
a multivariate Gaussian posterior – excluded here because of
our skewed, non-Gaussian marginalised posterior distributions.
For increased S/N in the data, however, the long tails of skewed
posteriors are suppressed, and the median shift is no longer dis-
cernible in the top panel of Fig. 6.

5.6. Impact of uncertainty in IA and lensing kernel

The individual impact by uncertainties in the projection param-
eters q on the reconstructed fδ,mn is of interest for improving
future analyses or to gauge the relevance of errors in the projec-
tion kernel. We therefore compare the marginalised fδ,mn errors
in the middle panel of Fig. 4 to the statistical errors obtained
without marginalisation, or to the errors where all parameters q
are fixed but for one that is marginalised over.

Figure 7 shows the results in these different scenarios as
function of scale k for three z-bins, indicated in the lower right
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of each panel; a 100% error is as large as in a scenario where all
q uncertainties are marginalised over. The solid black lines use
a fixed q without any marginalisation, setting a lower limit for
all scenarios (but is also subject to numerical noise owing to the
limited number of realisations, nmerge = 500). A lower limit of
90% to the black line for all k means that uncertainties due to
source shape noise, cosmic variance, and calibrated shear bias,
all accounted for in the noise covariance C, are responsible for
at least 90% of the total error in the reconstruction, while the
addition of lensing kernel uncertainties and IA errors amounts
to 10% or less of the total. This addition is explored in more
detail by the dashed lines that marginalise over redshift errors
only, the dotted-dashed lines for only Ωm uncertainties in the
lensing kernel, and the dotted lines for AIA errors only. In sum-
mary, IA errors have a subdominant impact, about several per
cent, reflected by the closeness of the dotted line to the solid
line. The largest impact of the Ωm uncertainty is in the low-
est z-bin, whereas the uncertainty in the source z-distributions
is the dominating contributor in the middle and highest z-bin for
k . 1 h Mpc−1. Therefore, better calibrating photo-z errors in
future analyses yields improvements of up to 10% in the total
statistical error.

6. Discussion

In this study we presented, verified, and applied to KiDS-1000
data a revised method for reconstructing the three-dimensional
(band) matter power spectrum with tomographic shear data. Our
approach relies on the specification of a projection kernel only,
and is hence agnostic about an analytical model for Pδ(k, z),
while being applicable for all cosmologies where the ξ(i j)

± (θ) are
projections of Pδ(k, z) along the line of sight. Numerically con-
venient, we express Pδ(k, z) =: fδ(k, z) Pfid

δ (k, z) in terms of a
reference and probe deviations, fδ,mn ∈ [0, 100], relative to it,
putting the free variables fδ,mn into the same dynamical range.
Not required, however, is a reference close to the true power
spectrum; for instance, in Fig. 2 we use a reference fixed in cos-
mic time to highlight the structure growth, or, on the extreme
end, a constant Pfid

δ (k, z) ≡ P0 would yield a fδ,mn that directly
represents the power spectrum. The rescaling of Pfid

δ (k, z) by a
constant inside any z-bin, whilst redefining fδ,mn, does not affect
the inferred ∆2(k, z) ∝ fδ(k, z) Pfid

δ (k, z); the reconstructed mat-
ter power spectrum is robust against the reference used. Choos-
ing a reference towards a slowly evolving fδ(k, z) is neverthe-
less preferable because the z-bin-average that the fδ,mn repre-
sent depends on the specific noise properties and source z-
distributions in the tomographic survey; a comparison to theoret-
ical models will have to replicate the data-specific z-weighting
more closely for a significantly varying fδ(k, z) inside a wide
z-bin. This is obvious in Fig. 2 for a z-independent reference,
where more weight is given closer to the lower boundary of
each z-bin: the average fδ,mn is close to the true fδ(k, z) near
zmax = 0.13, 0.4, 0.7 for Z1, Z2, and Z3; yet the bin centres are
at zmid = 0.15, 0.45, 1.30. Although a best-fitting ΛCDM model
without baryonic feedback or neutrinos as reference is a good fit
to the data already, as shown by the red lines relative to the black
data points in Fig. B.1, the fδ,mn values indicate where additional
changes might be needed or how much deviation from the ref-
erence is acceptable until we conflict with the data. We proceed
here with two variants of the analysis, one for an fδ,mn-average
over the full redshift range and one to probe the z-evolution of
fδ(k, z).

Our first variant in the left panel of Fig. 4 averages fδ(k, z),
denoted f̄δ(k) hereafter, over the entire z-range covered by KiDS-
1000, with the most signal from essentially z . 1. This analy-
sis shows that in the non-linear regime, k ≈ 0.05–10 h Mpc−1,
the KiDS-1000 matter power-spectrum is consistent with the
ΛCDM reference in Table 1 within 20% (68% CI). There-
fore, there is no evidence for a variation, suppression or boost,
exceeding 20% relative to the reference scenario with cold dark
matter (excluding neutrino suppression and baryon feedback).
This is also within the range reported by other lensing stud-
ies, discussed below, although we caution that the results are
not always one-to-one comparable to ours because they are
partly based on the premise that the lensing Pδ(k, z) has the
Planck S 8 (Planck Collaboration VI 2020), but is attenuated in
the non-linear regime to fit the lensing measurements of sig-
nificantly lower S 8 to explain the so-called S 8 tension. Such
an attenuation, if present, would be addressed in our reference
by a systematically lower S 8 instead of fully showing up in
f̄δ(k), especially because our data lack constraining power in
the unattenuated linear regime, k . 0.01 h Mpc−1. To level the
field with analyses using the Planck S 8 as the premise, we
changed the reference to a power spectrum with Planck cos-
mology, ∆2

Planck(k, z), and recast Fig. 4, left panel, into Fig. 8
for the ratio ∆2(k, z̄)/∆2

Planck(k, z̄) at z̄ = 0.5, a redshift where
the lensing method is roughly the most sensitive. Only from this
Planck perspective do our results now clearly require a suppres-
sion, 1− fδ,mn, of the ΛCDM reference at k ≈ 3 h Mpc−1 of up to
35%± 15%± 25% (68% and 95% CI). As indicated by the lines
in the plot, it is conceivable to explain the tension with Planck
by a variety of hypothetical mechanisms involving, among other
things, extreme baryonic feedback, (sterile) neutrinos, or alter-
natives to non-interacting cold dark matter.

Therefore, whereas a CDM power spectrum without suppres-
sion and low S 8 is on average a good description of the KiDS-
1000 shear tomography, small modifications to CDM would
be insufficient to reconcile KiDS-1000 with Planck: mecha-
nisms with a substantial suppression (more than 20%) have to
be invoked, in agreement with other recent studies analysing
KiDS-1000 lensing data. For instance, the recent Schneider et al.
(2022, S+22) combines KiDS-1000 data with observations of
X-ray emission and the kinematic Sunyaev–Zeldovich (kSZ)
effect in galaxy clusters to inform baryonic feedback parame-
ters incorporated in their ΛCDM-flavoured Pδ(k, z). By initially
using the KiDS-1000 data alone, the deviations from their model
without baryonic feedback are inconclusive but remain, as in
our measurement in the left panel of Fig. 4, within 10–20%
for k = 1–10 h Mpc−1 (68% CI). Only when adding the X-ray
and kSZ data do their constraints strongly favour a power sup-
pression of up to 30% (68% CI) at k ≈ 5 h Mpc−1, somewhat
more than our data support. Building only on lensing informa-
tion, Preston et al. (2023, PEG23) analyse KiDS-1000 and data
from the third-year Dark Energy Survey (DES Y3) to extend a
ΛCDM model by one modification parameter, Amod, pushing the
non-linear Pδ(k, z), equivalent to Amod = 1, towards the linear
power spectrum, Amod = 0. Their KiDS-1000 fit with uninfor-
mative priors on cosmological parameters and Amod ∈ [−5, 5] is,
as in Fig. 4, inconclusive, Amod ≈ 0.9 ± 0.2 (their Figure 2, left
panel). However, when assuming a Planck cosmology and the
suppression-inclined prior Amod ∈ [0.5, 1], PEG23 claim strong
evidence for a suppression of ≈ 25% ± 6% at k ≈ 3 h Mpc−1

(68% CI), more significant yet fully consistent with our Fig. 8
(we reiterate our relaxed prior fδ,mn ∈ [0, 102]). Furthermore,
Broxterman & Kuijken (2024, BK24) fit a double power law
Pδ(k, z) ∝ kp (1 + z)−mBK to ξ

(i j)
± (θ) for KiDS-1000, DES Y3,
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Fig. 8. Power spectrum ratio ∆2
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Shown in grey are the 68% and 95% CI from our analysis. The
KiDS-1000 spectrum ∆2

KiDS(k, z) uses the fδ,mn in Fig. 4 averaged
within one broad redshift bin (left panel). The Planck model for
∆2

Planck(k, z) is the TT, TE, EE+lowE best fit of a standard ΛCDM
(Planck Collaboration VI 2020) extrapolated to z = 0.5 with
HMCode2020 by Mead et al. (2021). The lines are model transfer func-
tions to ∆2

Planck(k, z) invoking flavours of extreme baryonic feedback
(HMCode2020: log10 (TAGN/K) = 8.8, Abaryon = 3.13, ηbaryon = 0.603;
BCM by Schneider & Teyssier 2015: log10 (Mc/h−1 M�) = 15.0792, ηb =
0.5, ks = 55.0), neutrino suppression for cumulative neutrino masses∑
ν mν (BCM), or a mixture of CDM and WDM (Kamada et al. 2016,

mwdm: WDM particle mass, fwdm: WDM mass fraction).

and the third year Hyper Suprime-Cam Survey (HSC Y3), yield-
ing a reasonable ΛCDM match without suppression in the range
k = 0.01–5 h Mpc−1 (68% CI) and a 2σ agreement among the
three Stage III surveys. Compared to our results for Nz = 1,
similarly averaging over the full redshift range, their constraints
are weaker in the non-linear regime ( fδ ≈ 0.8+0.5

−0.2), despite the
same data, probably because of our tighter Ωm prior for the
projection kernel: the Pδ(k, z) amplitude in ξ

(i j)
± (θ) is degener-

ate with the pre-factor Ω2
m in the Eqs. (8)–(10). Finally, similar

results are reported by authors that use only DES Y3 lensing
data although the required suppression in the non-linear regime
relative to Planck tends to be somewhat lower than for KiDS-
1000 by a factor between one and two (Bigwood et al. 2024,
PEG23, Ferreira et al. 2024, Aricò et al. 2023). Utilising lensing
probes alone, Perez Sarmiento et al. (2025) demonstrates consis-
tency with the Planck cosmology on linear scales, yet reveals
a 20–25% suppression in the non-linear regime, by combining
DES Y3 and CMB lensing data. In conclusion, other works
support our finding of an average matter power-spectrum that
at k & 0.05 h Mpc−1 is either, within 20% tolerance, a purely
ΛCDM spectrum of low S 8 ≈ 0.73, or a spectrum with both
higher Planck S 8 ≈ 0.83 and significant suppression of up to
20%–30% in the non-linear regime relative to CDM.

Surprisingly, our KiDS-1000 analysis becomes more com-
plex and discrepant with our best-fitting ΛCDM reference of
low S 8 if the fδ,mn, unlike in previous studies, are free to vary
with redshift, achieved in our second analysis by increasing the
number of z-bins to Nz = 3 broad z-bins. This is only prac-
tical by employing Tikhonov regularisation, or something else
to this effect, as clearly illustrated by the dramatically shrink-
ing sizes of the credible regions from τ = 0 to τ = 5 in

Fig. 2. Applied to KiDS-1000, the 68% CI constraints in the
middle panel of Fig. 4 then depict a remarkably diverse pic-
ture: only the fδ,mn in the low-z bin, Z1 = [0, 0.3], are now con-
sistent with the reference matter power spectrum, averaged for
all k-bins to f̄δ = 1.15 ± 0.28, whereas the power spectrum in
Z2 = [0.3, 0.6] is overall suppressed, f̄δ = 0.57 ± 0.27, and
boosted for Z3 = [0.6, 2], where f̄δ = 2.22 ± 0.81. The verifi-
cation tests in Appendix A, for analytic data (noisy) vectors, and
in Sect. 5.5, for mock N-body shear catalogues, assure us of an
fδ,mn accuracy of 10% or better within k ≈ 0.01–10 h Mpc−1. The
observed tendency of shifting the median posterior fδ,mn of our
68% CIs towards f̄δ ≈ 1.3 for Z3 and towards f̄δ ≈ 0.8–0.9 for
Z2, due to the broadened skewed posterior PDFs in these z-bins,
actually goes in the direction of the KiDS-1000 result. It is nev-
ertheless too small for the pronounced split between Z2 and Z3
credible regions in the real data, which also are, unlike the verifi-
cation results, blurred by the IA and lensing kernel uncertainties
(an extra ∼ 10% error, Fig. 7). For the baseline fδ(k, z) ≡ 1 in Fig.
A.5, the split in the mock data realisations is not nearly as pro-
nounced as for KiDS-1000, making the KiDS-1000 result very
roughly a 1/16 ≈ 6% event, or less, for the baseline scenario.

To explore the possibility of spurious systematic errors pos-
sibly mimicking the evolving fδ(k, z), we estimated in three sce-
narios the amplitude of bias needed to replicate our KiDS-1000
results if the ΛCDM reference were the true matter power spec-
trum. First, a spurious shear m-bias in the data is assumed to
be the dominating source of systematic error. The required bias
is then obtained through fitting (1 + mi) (1 + m j) ξ

(i j),fid
± (θ), pre-

dicted by the reference model, to the KiDS-1000 data vector
by maximising the data likelihood, Eq. (25), with respect to
the bias parameters mi in the tomographic bins i. The corre-
sponding (posterior median) fδ,mn of the best-fitting model are
plotted as data points with filled squares in Fig. 9 in compari-
son to KiDS-1000 (shaded regions). Evidently, the m-bias model
closely traces the KiDS-1000 results, but, according to its best-
fit parameters {mi} = {+1.00,+0.48,−0.023,−0.028,+0.035},
it needs an unrealistic m-bias in the first two source bins
that exceeds the reported values in Asgari et al. (2021) by
more than 30σ. The second scenario assumes spurious photo-
z errors in p(i)

z (z) as dominating source of bias. Again, we fit
a ξ(i j),fid
± (θ) to the KiDS-1000 data vector, now for the p(i)

z (z +
δi

z) shifted by the bias parameters δi
z, while the reconstruc-

tion uses the original p(i)
z (z). The best-fit values are {δi

z} =
{−0.075,−0.079,+0.009,+0.018,−0.052}. As in the previous m-
bias scenario, this model fits the KiDS-1000 results equally well
(filled circles in Fig. 9), but requires a high bias (photo-zs are
systematically low) in the first two and the last source z-bins.
This bias level exceeds the estimated tolerances of photo-z errors
in the KiDS-1000 gold sample by more than 5σ (Table 2). A
third conceivable source of systematic error is an IA model bias.
Too simplistic physically, the approximations in the NLA model
are nevertheless flexible enough to fit measurements of IA as a
means for calibrating the IA distortion of ξ(i j)

± (θ) (Fortuna et al.
2021; Preston et al. 2024). It may be, however, that z-binning
of ∆2(k, z) makes us sensitive to a z-dependent IA amplitude,
missing in the NLA model and typically irrelevant in Stage
III cosmological analyses. To test if a z-dependent IA ampli-
tude AIA(z) := A′IA (1 + z)η (1 + zpiv)−η, as in the eNLA model,
potentially explains the fδ,mn data after all, we fit ξ(i j),fid

± (θ) to
KiDS-1000 by varying {A′IA, zpiv, η} only, yielding the parameters
{0.3, 0.19, 1.5} for the open diamond data points in Fig. 9. Cru-
cially, the reconstruction algorithm is ignorant about AIA(z) and
assumes a constant AIA. Indeed, then some of the split between
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± (θ). The filled squares assume shear m-bias factors
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z} = {−0.075,−0.079,+0.009,+0.018,−0.052}, and
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filled data points use alternating k-bins to avoid overlap.

Z2 and Z3 (especially the drop in Z2) could be explained by the
IA model bias. And, since zpiv = 0.3 and η = 1.5 are deemed
consistent with KiDS-1000 uncertainties in Asgari et al. (2021),
this hypothesis is a plausible explanation for at least part of the f̄δ
redshift variation. More plausible still is a combination of AIA(z)
and a moderate photo-z bias, 2σ–4σ, indicated by the crosses
in Fig. 9. Lastly, recalling the 1σ–2σ evidence for B-modes in
Sect. 4.3, a systematic shear error might also be relevant here.
However, we lack a KiDS-1000 model of these for ξ(i j)

± , and
it is unclear if they plausibly contribute to the f̄δ , 1 result.
In summary, whereas (especially) m-biases and photo-z biases
alone are unlikely sources of systematic errors that shape the
result of evolving f̄δ, the negligence of a z-dependent IA ampli-
tude, AIA, as in our reconstruction set-up, in combination with
moderate photo-z biases might explain our Nz = 3 result. At this
point, we are unable to exclude either possibility, or that of small
systematic errors related to B-modes, but note that the discussed
scenarios mainly target the first two tomographic bins, zB ≤ 0.5,
where the posterior predictive of the model also indicates some
conflict with the data (Fig. B.1). Future reconstructions of the
matter power spectrum inside separate redshift bins should also
pay close attention to the IA modelling.

A truly evolving fδ(k, z), on the other hand, would offer
insights into the physics of non-linear structure growth at k &
0.1 h Mpc−1 and z . 1. In brief, the KiDS-1000 data indicate
too little power for the epoch z ≈ 0.3–0.6 and too much power
for z ≈ 0.6–2, compared to the purely-ΛCDM reference model
that actually matches the fδ,mn averaged in a single z-bin (68%
CI). Phrasing this a bit more carefully, this statement applies to
weighted averages inside three wide z-bins where most weight
is given to ∆2(k, z) around z ≈ 0.13, 0.4, 0.7 for Z1, Z2, and Z3,
similar to Fig. 2. Even so, the average deviations in the Z2 and

Z3 are, in fact, such that they make ∆2(k, z) inside the bins sta-
tistically consistent (right panel of Fig. 4), independent of the
chosen reference – thus there is no significant detection of any
growth from about z = 0.7 to 0.4. The only increase in power
is detected towards lower z ≈ 0.13. This qualitatively matches
the S 8-tension: cosmological probes that give more weight to
z & 0.7, such as CMB experiments, would observe a ∆2(k, z)
with amplitude higher than in our reference, hence a higher S 8,
whereas probes more sensitive to z ∼ 0.4 or lower, such as lens-
ing experiments, would observe a ∆2(k, z) with S 8 equal to our
reference or even lower. We are not aware of a similar conclusion
in the lensing literature, although the recent BK24 report a van-
ishing growth rate at 1σ, their growth index mBK, for KiDS-1000
and HSC Y3 (yet not for DES Y3). That finding for mBK might
be related to our result, depending on how the Z1–Z3 are effec-
tively weighted in the BK24 analysis. Possible physical causes of
the peculiar structure growth in KiDS-1000 compared to the ref-
erence model are, however, presumably non-trivial and beyond
the scope of this paper. For example, a baryonic feedback model
would have to be strongly evolving with redshift below z ∼ 1
(and non-monotonic) to match the KiDS-1000 fδ,mn, typically
not found in state-of-the art models (e.g., Schaller et al. 2025,
and references therein).

Finally, the close connection of the S 8-tension to the KiDS-
1000 result for ∆2(k, z) in Nz = 3 z-bins makes this an interesting
case, either as evidence in favour of modifications towards the
structure growth in the ΛCDM reference, or in favour of spuri-
ous systematic errors in a shear tomography analysis mimicking
the tension. This evidence appears to be unnoticed in previous
Stage III analyses – a full analytic model of ∆2(k, z) fitted to
the shear tomography can give an unsuspecting match similar to
our Nz = 1 analysis – so that a confirmation of the KiDS-1000
result with other lensing data is important. Furthermore, looking
forward not too far into the future, Stage IV data will be avail-
able soon with roughly 20 times the survey area of KiDS-1000
and also deeper observations, with surveys such as the space-
based missions Euclid and Roman, or the ground-based survey
by Rubin. Of these the Euclid Wide Survey will provide tomo-
graphic measurements within 13 source z-bins up to z ∼ 2.5,
statistical errors reduced by about one order of magnitude com-
pared to Stage III, and an excellent control of systematic errors
for shear and photo-z. We see no restriction to applying our
reconstruction technique to Stage IV data, merely assuming a
lensing kernel and an IA model (possibly updated and carefully
calibrated). This promises measurements of the matter power
spectrum at different redshifts to unprecedented precision, per-
haps up to z ∼ 2 with Nz = 4 or more bins, critically testing
models of the non-linear structure growth.
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Appendix A: Hamiltonian Monte Carlo algorithm
and code verification

The Bayesian reconstruction of the 3D matter power spectrum,
expressed by π = (. . . , fδ,mn, . . .), is numerically challenging due
to the high number of variables, up to Nz × Nk = 60 or more
in future Stage IV applications. As practical solution, the fol-
lowing describes our implementation details of a Hamiltonian
Monte Carlo sampler of the posterior PDF P(π|d), as well as our
verification and convergence tests. Compared to a Metropolis-
Hastings algorithm, this MCMC approach has an improved con-
vergence and quicker decorrelation – but requires first-order
derivatives of the posterior PDF. The derivatives were here easily
obtained analytically, contrary to previous KiDS-1000 cosmol-
ogy analyses where other MCMC algorithms are used. We focus
on the specifics of our implementation but refer to Brooks et al.
(2011) for more background information.

A.1. Basic concept

In brief, the Hamiltonian MCMC algorithm is based on the
insight from statistical mechanics that a canonical ensemble of
particles j = 1 . . .Nz × Nk with generalised coordinates π j,
masses m j, canonical moments p j, the Hamiltonian

H(π, p) = U(π) +
∑

j

p2
j

2m j
, (A.1)

and temperature parameter β randomly occupies states in phase
space according to the PDF

f (π, p) =
1
Z

exp
(
− βH[π, p]

)
=

1
Z

exp
(
− βU[π]

)
exp

−β ∑
j

p2
j

2m j

 , (A.2)

where the partition function, Z, is a normalisation constant.
Turning this insight around, our sampler simulates a canonical
ensemble following individual particles along trajectories under
the influence of the potential U(π) = − ln P(π|d) to trace the pos-
terior PDF, P(π|d). The trajectory of each particle is determined
by the symplectic Hamilton equations

dπ j

dt
= +

∂H(π, p)
∂p j

=
β p j

m j
;

dp j

dt
= −

∂H(π, p)
∂π j

= −β
∂U(π)
∂π j

, (A.3)

interrupted by random jumps between hyper-planes of constant
energy, E(π, p) = H(π, p) = const, such that energy levels
change from E to E′ with probability min{1, eβ(E−E′)}. These ran-
dom events simulate the transfer of energy between particles and
a heat bath of temperature T ∝ β−1. Ignoring the moments p j, the
distribution of states πi of an ensemble of particles then samples
the marginalised PDF∫

Vp

dp f (π, p) ∝ exp
(
− βU[π]

)
= [P(π|d)]β . (A.4)

This does not mean, however, moments can be chosen arbitrarily.
Instead, the p j obey the Gaussian distribution of a maximum-
entropy ensemble in f (π, p) and, therefore, are randomly set to
p j ∼ N(0, σp), where σ2

p = m j/β, in the algorithm below. For
convenience, we set the heat bath temperature to β ≡ 1, thus the
ensemble πi samples the posterior P(π|d), as needed.

A.2. Implementation details

The art of optimising the Hamiltonian MCMC is in the way we
evolve states in the canonical ensemble, how we switch between
energy levels, which sampling points are kept, and how parti-
cle masses, m j, are chosen. For our application, we found suf-
ficient convergence already when using a simplistic model of
equal mass weights, m j ≡ 1. Furthermore, to produce a sequence
of sampling points πi, we followed the MCMC standard proce-
dure.
1. We pick a random starting point, π, i = 0.
2. The elements of the momentum in p, conjugate to π, are ran-

domised independently, p j ∼ N(0, σp).
3. The algorithm then numerically integrates the Hamilton Eqs.

(A.3) with a symplectic integrator to follow the trajectory,
starting from (π, p), for n equal time steps ∆t, proposing the
end point as a new MCMC point, (πn∆t, pn∆t).

4. This proposal πn∆t is accepted with probabil-
ity min{1, eβ(E−En∆t)}, where E := H(π, p) and
En∆t := H(πn∆t, pn∆t) are the energies of the initial and
the proposed new state. If rejected, we go back to the initial
trajectory point, π, and start again from step 2.

5. If accepted, we keep the proposed state as MCMC data point,
πi = πn∆t. Since rejections mean we have to go back and
reuse a sampling point, the stored πi has weight wi = 1 +
nr,i, where nr,i denotes the number of rejections needed for
πi.

6. We stop after nmcmc accepted sampling points (πi, wi), or
start over again from step 2 with π = πi and i → i + 1
otherwise.
In contrast to Metropolis-Hastings, the Hamiltonian method

proposes a new MCMC point by (approximately) transporting
the previous point along the iso-contours of the posterior den-
sity, keeping the rejection rate low even if the previous and pro-
posed point are well separated, thereby decorrelating sampling
points. Notably, this way of proposing new points is symmet-
ric due to the time symmetry of the Hamilton equations and the
isotropy of the randomised momenta, satisfying the conditions of
a detailed balance. In addition, as long as the time symmetry is
preserved, unavoidable inaccuracies when numerically integrat-
ing Eqs. (A.3) do not bias the sampling, although they usually
increase rejection rates when moving too far away from the pos-
terior density iso-contours. As discussed in Brooks et al. (2011),
the leapfrog method is a suitable choice as numerical integrator
of (A.3) for a MCMC sampler due to its symplectic symmetry.
To increase the acceptance rate for larger time steps ∆t, we use
the more accurate fourth-order, also symplectic, integrator. The
various integrator steps are not spelt out here in detail to save
space but can be found in Yoshida (1990).

To control the rejection rate of the MCMC sampler, we
adjusted the size of a time step, ∆t. Decreasing the time step,
∆t, typically lowers the rejection rate, but boosts correlations
between the sampling points. Starting from ∆t = 10−3, we fol-
lowed the heuristic to keep the rejection rate somewhere around
30% by (i) decreasing ∆t → ∆t

1.2 , if the rate exceeds 50%, or (ii)
by increasing ∆t → 1.2 ∆t, if it falls below 16%, after 20 con-
secutive accepted sampling points. At the same time, the number
of trajectory steps was fixed to n = 100. With these settings, the
time steps stabilise typically around ∆t = 10−2. As final data
product, we kept nmcmc = 5 × 104 sampling points after a burn-
in phase of 2 × 104 steps during which the step size was con-
tinuously adjusted. For all chains, we started the burn-in with
the initial state drawn from a normal distribution centred around
fδ,mn = 1, fδ,mn ∼ N(1, 0.5).
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To compute the movement along a trajectory by the Hamilton
equations, we employed an analytic expression for the gradient

∇πU(π)
= −∇π lnLq(d|π) − ∇π ln Phat(π) − ∇π ln Pτ(π) (A.5)

which, for Eq. (24), is split into three summands: one for the
likelihood,

−∇π lnLq(d|π) =
(
C−1Xq

)T (
Xqπ + ξfid

q − d
)
, (A.6)

one for the top-hat priors,

−
∂ ln Phat(π)
∂ fδ,mn

=

{
2σ−2

f fδ,mn , if fδ,mn ≤ 0
2σ−2

f
(
fδ,mn − fδ,max

)
, if fδ,mn > fδ,max

, (A.7)

and one for the Tikhonov regularisation,

−
∂ ln Pτ(π)
∂ fδ,mn

=


2τ

(
fδ,1n − fδ,2n

)
, if m = 1

2τ
(
fδ,Nkn − fδ,(Nk−1)n

)
, if m = Nk

2τ
(
2 fδ,mn − fδ,(m−1)n − fδ,(m+1)n

)
, if 1 < m < Nk

.

(A.8)

The computation time of the sampler was reduced by comput-
ing the matrix (C−1Xq)T just once and then reusing it for fixed
projection parameters q.

A.3. Verification and convergence tests

To validate the convergence of the Monte Carlo sampler, we car-
ried out three different tests using the KiDS-1000 data vector for
the projection parameters q as in Table 1. The set-up is iden-
tical to that in our analysis in Sect. 5.4 for the most complex
model with three redshift bins, Nz = 3. The first test is a sanity
check to verify by eye the transition towards a stationary pro-
cess during the burn-in phase. For this, we inspected as function
of iteration i the variation of fδ,mn and the (negative log-) proba-
bility −2 ln P(π|d) along the chain. The top panel of Fig. A.1 is
one random example; other chains and variables fδ,mn in πi look
qualitatively similar and are not shown here. Apart from the deep
drop of −2 ln P at the very beginning of the chain, where the
sampler takes the points away from the initial random π, there
are no more systematic drifts present for fδ,mn and −2 ln P. This
indicates a stationary sampling is quickly reached.

The second test, bottom panel of Fig. A.1, quantifies the
decorrelation of sampling points, πi, along the chain. For a
fair sampling of the posterior density, the sampling points have
to become independent quickly. To quantify this, we looked
at the correlation coefficients Rmn,kl in the covariance matrix
〈πi π

T
i+δi〉 of two sampling points πi = (. . . , fδ,mn, . . .) and πi+δi =

(. . . , fδ,kl, . . .) separated by a lag of δi iterations along the same
chain. The expectation is that the amplitude of Rmn,kl between
a pair of model coefficients fδ,mn and fδ,kl decreases towards
zero with increasing lag δi. This is indeed the case, as shown
in the figure bottom panel for several independent chain runs.
The orange curves report for a series of ten MCMCs the trend of
the maximum |Rmn,kl| for all coefficient combinations (m, n) and
(k, l), the blue curves are the average of all |Rmn,kl|. All chains
exhibit the same trend: the maximum |Rmn,kl| quickly falls below
a few per cent already after δi ∼ 100, whereas the average |Rmn,kl|
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Fig. A.1. Diagnostic plots of the Hamiltonian MCMC sampler with
KiDS-1000 data and our final analysis set-up for fixed projection param-
eters as in Table 1. Top panel: Example of fδ,mn variations along one
random chain at the beginning of the burn-in, starting from the random
initial point i = 0 (blue line). The orange line depicts the (negative
log-) posterior probability −2 ln P(πi|d). Bottom panel: Decrease in the
correlation of fδ,mn and fδ,kl with δi iterations lag as estimated in ten
randomly chosen, independent chains. The orange lines follows, one
line per chain, the maximum absolute-value Pearson correlation coef-
ficient |Rmn,kl|, while the blue lines follows the average |Rmn,kl| over all
variable combinations (mn, kl). The sampling points quickly decorre-
late after a few hundred iterations; the flattening after lag δi ∼ 100 is
due to the statistical error in the estimated |R| for chains of finite length
nmcmc = 5 × 104.

is even lower, reaching sub-per cent levels. After that, all curves
tend to flat out, probably due to statistical noise in our |Rmn,kl|

estimates from the finite number of pairs of sampling points in a
given chain.

For the third convergence check, we applied the Gelman–
Rubin diagnostics to all coefficients fδ,mn individually
(Gelman & Rubin 1992). This test probes if a single chain
has sufficiently converged, by comparing our nchain = 10
independent MCMC runs. Similar to the marginalisation pro-
cess, Sect. 3.5, we were not using the full chains but, instead,
randomly draw nmerge = 103 points for a thinned each chain. The
Gelman–Rubin statistic tgr :=

√
V̂/W is based on the average

f̄δ,mnk and variance of σ2
δ,mnk of fδ,mn within a (thinned) chain k,

where W :=
∑

k σ
2
δ,mnk/nchain is the average of all within-chain

variances, B/nmerge :=
∑

k( f̄δ,mnk − f̄δ,mn)2/(nchain − 1) for
f̄δ,mn :=

∑
k f̄δ,mnk/nchain is the variance between chains, and

V̂ := nmerge−1
nmerge

W +
nchain+1

nchain
B/nmerge. The ratio B/W follows a

F-distribution in the null hypothesis of independent, stationary
chains, and normally distributed fδ,mn; and tgr ∼ 1 is to high
confidence tgr < 1.1. We repeatedly find tgr < 1.001 for all our
free model variables, fδ,mn, consistent with the null hypothesis.
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Fig. A.2. Reconstructed relative power spectrum, fδ(k, z), in redshift range 0 ≤ z < 2 using a verification data vector mimicking KiDS-1000
data (noise added, not marginalising IA or lensing kernel errors). The true relative power has fδ ≡ 1 for all scales and redshift. The data vector
is computed from an independent code, not based on the projection matrix X(i j)(θ; m, n). Shown is the posterior median within a 68% CI. The
reconstructions use a Tikhonov parameter of τ = 5.0 and Nk = 20 k-bins. Left panel: The relative power is averaged over the entire redshift range
Z1 = [0, 2]. Middle panel: For a relative power that is averaged independently for three redshift bins Z1 = [0, 0.3], Z2 = [0.3, 0.6], and Z3 = [0.6, 2].
Right panel: Dimensionless average power spectrum, ∆2(k, z) = 4π k3Pfid

δ (k, z) fδ(k, z), interpolated to the centres of the redshift bins Z1 to Z3.

For test reconstructions of the 3D matter power spectrum,
Fig. A.2 shows two successful verification runs of the sampler,
but now with simulated data, a model correlation vector, d, with
added random noise according to the Gaussian likelihood model
of the KiDS-1000 data. The verification data assumed a matter
power spectrum identical to Pfid

δ (k, z), thus fδ,mn = 1 for all m and
n. In order to not rely on our MCMC code and the X(i j)

± (θ; m, n)
expansion in particular, we calculated the verification data vec-
tor ξ(i j)

± (θ), Eq. (7), with a separate computer code from a past
study (Simon & Hilbert 2018). The left panel in Fig. A.2, plots
the results for fδ,mn averaged over one redshift bin, Nz = 1. The
middle panel, uses another noise realisation and splits, as before,
fδ,mn into Nz = 3 broad redshift bins to probe the z-evolution.
In both panels, we find results consistent with the true values
fδ,mn = 1 on a 68% CI level.

Increasing the number of z-bins decreases the constraining
power for each bin. This adds skewness to the posterior PDF
of fδ,mn, especially for Z3, as illustrated by Fig. A.3. The figure
shows the posterior PDF of fδ,mn in three z-bins at fixed comov-
ing scale k = 1.8 h Mpc−1 for the NZ = 3 verification data
(shaded 68% CI regions). Other scales look qualitatively similar.
Notably, the skewness systematically shifts our credible regions
towards the long tails in direction of higher fδ values because
we report 68% intervals about the median posterior value. This
shift for the cyan Z3 regions can also be seen in random realisa-
tions of KiDS-1000 mock data, obtained by ray-tracing N-body
simulations, in Fig. A.5.

The excellent fit of the model to the verification input data
vector, d, is best viewed in the posterior predictive plot, Fig. A.4.
This plot compares the posterior model (blue regions for the two
CIs 68% and 95% about the median) to the ξ(i j)

± (θ) data points
with 1σ error bars (black) as function of θ. The lower triangle
of panels ‘z–i j’ shows θ ξ(i j)

− for the tomographic bin pair (i j),
and likewise for the upper triangle and θ ξ

(i j)
+ . The data points

scatter symmetrically about the median model at the centre of
the CIs. Sometimes the residuals exceed 1σ or more, expected
statistically for hundreds of (correlated) points. On the whole, we
cannot see clear model shortcomings to match the verification
data at any angular scale or redshift. This is underscored by the
red solid lines for the true (fiducial) ξ(i j)

± (θ): the red lines are
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Fig. A.3. Posterior PDF of fδ,mn at k = 1.8 h Mpc−1 in three separate
redshift bins Z1 = [0, 0.3], Z2 = [0.3, 0.5], and Z3 = [0.6, 2]. The filled
regions are PDFs for a noisy verification run with fδ(k, z) ≡ 1, as in
Fig. A.2, and the lines use the KiDS-1000 tomographic data (without
marginalisation of projection parameters).

well within the 68% CI, in dark blue, of the posterior model
constraints. Figure B.1 is the same plot but for the actual KiDS-
1000 data (Sect. 5.4 provides more details).

In summary, the foregoing tests demonstrate the excellent
convergence of the Hamiltonian Monte Carlo sampler used in
the KiDS-1000 analysis and its ability to infer the 3D matter
power spectrum with up to Nz × Nk = 60 variables. More tests
with fδ,mn , 1 verification data or mock data based on a CDM
N-body simulation are presented in Sect. 3.2 and Sect. 5.5.
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Fig. A.4. Same as in Fig. B.1 but here for a verification data vector (black points with errors bars), this means fδ,mn ≡ 1 by construction, with
added random noise based on the error covariance matrix for KiDS-1000.
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Fig. A.5. Illustration of possible variations in fδ(k, z) reconstructions (68% CIs about the median) using τ = 5.0 and Nk = 20 on noisy data vectors
from the ray-traced KiDS-1000 mock-data which has fδ ≈ 1 (Sect. 5.5). There is a tendency for fδ > 1 in Z3 = [0.6, 2] (cyan), and a tendency for
fδ < 1 in Z2 = [0.3, 0.6] (green) due to skewed PDFs and correlated errors. The magenta region shows the constraints for Z1 = [0, 0.3] which are
the tightest compared to Z2 and Z3. An average over many reconstructions is shown in the bottom panel of Fig. 6.
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Appendix B: Posterior predictive for KiDS-1000 data

data
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Fig. B.1. Posterior predictive of the Bayesian analysis using KiDS-1000 tomographic shear correlations and a relative power, fδ(k, z), averaged
inside the three redshift bins Z1 = [0, 0.3], Z2 = [0.3, 0.6], and Z3 = [0.6, 2]. For each tomographic bin combination (i j), the panels with labels
‘z–i j’ show the posterior model constraints as light blue (95% CI) regions and dark blue (68% CI) regions about the median for either θ ξ(i j)

− (θ)
(lower left triangle) or θ ξ(i j)

+ (θ) (upper right triangle), both in units of 10−4 arcmin and as function of lag θ. Black points with error bars (1σ)
are the KiDS-1000 data points. The red lines correspond to the ΛCDM reference power spectrum with S 8 ≈ 0.73, the solid green lines ‘SIM-
THS17’ correspond to the prediction by Takahashi et al. (2017), see Sect. 5.5, for S 8 ≈ 0.79. Errors of ξ(i j)

± (θ) are correlated between θ-bins and
tomographic bins, marginal errors due to lensing kernel and IA uncertainties are not included here (adding another ∼ 10% to CIs). Conflicts with
the data are visible for θ ξ(i j)

+ in z–22 and to a lesser degree for z–12 to z–15. Figure A.4 shows a random realisation of the reference model.
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