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A B S T R A C T 

Understanding the origin and evolution of magnetic fields on cosmological scales opens up a window into the physics of 
the early Universe. Numerical simulations of such fields require a careful treatment to faithfully solve the equations of 
magnetohydrodynamics (MHD) without introducing numerical artefacts. In this paper, we study the growth of the magnetic 
fields in controlled kinematic dynamo set-ups using both smoothed particle hydrodynamics implementations in the SWIFT 

code. We assess the quality of the reconstructed solution in the Roberts flow case against the reference implementation in 

the PENCIL CODE and find generally a good agreement. Similarly, we reproduce the known features of the more complex 

Arnold–Beltrami–Childress (ABC) flow. Using a simple induction-diffusion balance model to analyse the results, we construct 
an ‘o v erwinding’ trigger metric to locally detect regions where the magnetic diffusion cannot counteract the expected induction 

because of limitations in the method’s ability to resolve magnetic field gradients. This metric is then used to identify the necessary 

resolution and resistivity levels to counteract the overwinding problem. We finally apply this metric to adiabatic cosmological 
simulations and discuss the resolution requirements needed to resolve the growth of the primordial fields without artefacts. 

Key words: dynamo – MHD – methods: numerical – cosmology: theory. 
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 I N T RO D U C T I O N  

strophysical observations, such as rotation measure (RM) and 
ynchrotron emission, indicate the presence of magnetic fields on 
he scale of galaxies and the intergalactic medium. Similarly, the 
bsence of secondary X-ray signals from blazars sets a lower bound 
n the magnetic field strength in cosmic voids (Neronov & Vovk 
010 ). Magnetic fields are thus expected to be found embedded all the 
ay to the large-scale structure of the Univ erse. F or comprehensiv e

e vie ws, see Han ( 2017 ) and Korochkin et al. ( 2021 ). Despite the
biquitous evidence of their presence, the origin of the magnetic 
elds on cosmic scales is still unknown. For instance, magnetic fields
ay have originated in the early Universe, emerging during inflation, 

lectroweak, or quantum chromodynamics (QCD) phase transitions; 
ee Durrer & Neronov ( 2013 ) for a re vie w of these mechanisms. The
tudy of such fields would thus open a window towards understanding
undamental physics processes in the early Universe, possibly much 
efore nucleosynthesis. Alternatively, these magnetic fields could 
 E-mail: shchutskyi@lorentz.leidenuniv.nl 
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ave formed in astrophysical objects through battery mechanisms 
e.g. Biermann & Schl ̈uter 1951 ; Langer & Durrive 2018 ; Attia et al.
021 ; Mikhailov & Andreasyan 2021 ). 
Irrespective of their origin, magnetic fields grow through gravi- 

ational collapse and undergo exponential amplification via dynamo 
rocesses in dense astrophysical environments such as galaxies (e.g. 
randenburg & Ntormousi 2023 ). This amplification erases any 
emory of initial conditions and ceases once the fields become 

ynamically significant, influencing gas motion, i.e. saturating close 
o an energy equipartition regime (e.g. Ruzmaikin, Sokoloff & 

hukurov 1988 ; Rogachevskii 2021 ). Studying magnetic fields as 
 window on to the early Universe thus requires us to focus on
egions of space where these dynamo mechanisms are not dominant. 

As such, the intergalactic medium (IGM) could serve as a reservoir
or unaltered primordial magnetic fields. Ho we ver, numerical studies 
uggest that voids and the IGM may be contaminated by magnetic
elds expelled from dense astrophysical objects, for instance 

hrough active galactic nucleus (AGN) activity in clusters. This 
ollution could even reach a significant volume-filling fraction of 
he IGM (e.g. Ar ́amburo-Garc ́ıa et al. 2021 ), potentially influencing
M and X-ray observations of magnetic fields in these regions (e.g.
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h permits unrestricted reuse, distribution, and reproduction in any medium, 
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r ́amburo-Garc ́ıa et al. 2022 ; Bondarenko et al. 2022 ). The recent
ork of Tjemsland, Meyer & Vazza ( 2024 ) shows that the fraction
f space filled by a strong intergalactic magnetic fields has to be at
east 67 per cent. This likely excludes most astrophysical production 
cenarios. 

In order to make theoretical predictions, the large-scale evolution
f magnetic fields can be investigated using cosmological simu-
ations. These simulations typically employ the magnetohydrody-
amics (MHD) approximation, which neglects relativistic effects,
lasma effects, and treats the gas as a compressible conducting fluid
n equilibrium. The equation of state is assumed to be an ideal gas
ith an adiabatic index γ = 5 / 3. 
Simulations provide insight into the large-scale distribution of
agnetic fields. Combined with sub-grid models for galaxy forma-

ion, such simulations are a powerful tool to predict the non-linear
volution of matter and the coupling with magnetic fields; see for
nstance Vogelsberger et al. ( 2020 ) for an o v erview of cosmological
imulation methods. 

Quantitatively studying magnetic fields in void environments and
n the IGM requires simulations that co v er large scales for statistical
ccuracy while maintaining sufficient resolution to capture processes
ele v ant to magnetic field evolution. In the largest cosmological
imulations with box sizes of L box ∼ 100 Mpc to > 1 Gpc , the
ass resolution typically ranges from m gas � 10 6 to 10 9 M � (e.g.
olag & Stasyszyn 2009 ; Nelson et al. 2019 ; Schaye et al. 2023 ) or,

qui v alently, the spatial resolution is only 1–10 kpc in the most dense
egions (e.g. Vazza et al. 2014 ; Kaviraj et al. 2017 ). Given that the
as mass of a Milky Way-sized galaxy is around 10 11 M �, each such
alaxy is resolved by 10 2 to 10 5 gas particles. For comparison, MHD
tudies of the magnetic field evolution in isolated galaxies typically
mploy � 10 5 resolution elements (e.g. Wang & Abel 2009 ; Pak-
or & Springel 2013 ; Rieder & Teyssier 2016 ; Pfrommer et al. 2022 ).
ome of the magnetic field amplification processes are thus possibly
nderresolved in large-scale simulations, which can be compensated
y sub-grid processes akin to large-eddy-simulation approximations
Vazza et al. 2020 ; Liu, Kretschmer & Teyssier 2022 ). 

In addition to resolution, cosmological MHD simulations also deal
ith large magnetic Reynolds numbers, R m 

 m 

= 

v rms 

ηk 0 
, (1) 

here v rms is the root mean square velocity over the simulation
olume, k 0 = 2 π/λ is the characteristic wavenumber at length scale
, and η is the plasma resistivity. MHD simulations of galaxy clusters
uggest a good match with the observed shape of the magnetic field
or turbulent resistivity values of η ≈ 6 × 10 27 cm 

2 s −1 (Bonafede
t al. 2011 ). Assuming a typical Virial radius of R vir � 2 . 5 Mpc and
 cluster velocity of v vir ∼ 10 3 km s −1 , these values lead to magnetic
eynolds numbers R m 

� 10 3 to 10 4 . 
Ho we ver, semi-analytical dynamo studies in the cosmological

onte xt pro vide a wider range of estimates for magnetic Reynolds
umbers. These studies, which consider various turbulence models
nd gas densities, suggest that magnetic Reynolds numbers can
ange from R m 

≥ 100 to 2000 (Schekochihin et al. 2005 ) or up
o R m 

∼ 10 17 (Schober et al. 2012 ). The resolution requirements
o directly simulate on cosmological scales with such Reynolds
umbers is much beyond current and future computing capabilities,
nd here again, sub-grid process are often employed to model the
nresolved part of the turbulence cascade. Alternatively, some simu-
ations consider neglecting sub-grid effects and restrict their analysis
o the well-resolved regime (Marinacci et al. 2015 ; Mtchedlidze et al.
022 ). 
NRAS 541, 3427–3444 (2025) 
The MHD differential equations can be solved numerically us-
ng various methods. Most simulations employ mesh-based ap-
roaches, such as AREPO , (Pakmor, Bauer & Springel 2011 ) and
NZO (Bryan et al. 2014 ). Alternatively, meshless schemes like
eshless finite mass (MFM) in GIZMO (Hopkins & Raives 2015 ),

moothed particle hydrodynamics (SPH)-based MHD approaches
uch as the ones in the GADGET code (Dolag & Stasyszyn 2009 ;
tasyszyn, Dolag & Beck 2012 ), GASOLINE (Wissing & Shen
020 ), or SPH MHD implementation in GIZMO (Hopkins & Raives
015 ) have also been used for astrophysical and cosmological
imulations. 

In this study, we make use of SWIFT , an open-source SPH-based
ode for large-scale cosmological simulations (Schaller et al.
024 ), of fering se veral models for hydrodynamics and sub-grid
hysics. The code also includes two variants for SPMHD: one
ased on the direct integration of B /ρ (Karapiperis et al., in
reparation), inspired by the implementation of Price et al. ( 2018 ),
nd the other using a vector potential approach, B = curl A ,
erived from the work of Stasyszyn & Elstner ( 2015 ).Having
everal independent numerical results with different hydrodynamics
odels, sub-grid models, and two MHD implementations can

e advantageous for estimating the numerical uncertainty of the
esults. 

In this work, both MHD fla v ours provided in SWIFT will be tested
n a set of standard kinematic large-scale dynamo problems: the
oberts flow I (Roberts 1972 ), which has been studied both analyt-

cally and through numerical simulations (Tilgner & Brandenburg
008 ; Stasyszyn & Elstner 2015 ; Clarke et al. 2020 ), as well as
he Arnold–Beltrami–Childress (ABC) flow (Archontis, Dorch &
ordlund 2002 ; Teyssier, Fromang & Dormy 2006 ; Baggaley et al.
009 ; Bouya & Dormy 2012 ). Convergence against the reference
mplementation in the PENCIL CODE (Pencil Code Collaboration
021 ) will be used to assess the correctness of our SPH solver.
o ensure the validity of the results, MHD simulations are expected

o maintain a solenoidal magnetic field. To monitor this, local diver-
ence error metrics are used and corrective measures are employed.
e study the impact of such measures on the growth of the magnetic

eld in these well-controlled experiments. The lessons learned from
tudying these flows allow us to construct an ‘o v erwinding’ trigger
etecting where the simulation’s resolution is too low for a given
inematic dynamo to be properly resolved. This trigger can then be
sed in a cosmological setting to assess whether the geometry of the
eld in void regions is unaffected by numerical artefacts and could

hus be used, in the future, to put constraints on the origin of the
elds. 
This paper is structured as follows. The codes, relevant differential

quations and the error metrics are described in Section 2 . The per-
ormance of our simulation code on the Roberts and ABC kinematic
ynamo problems is presented in Section 3 . The construction of
he o v erwinding trigger and tests are presented in Section 4 with
pplications to a simple cosmological test case following in Section
 . Finally, in Section 6 , we offer some conclusions and outlook on
uture applications of our code. 

 M E T H O D S  

n this section, we introduce the equations of MHD and their numer-
cal implementations in the SWIFT (Section 2.2 ) and PENCIL CODE

Section 2.3 ) codes. We also introduce in Section 2.4 the error metrics
e will use to monitor the divergence errors appearing in the code. 
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.1 MHD 

he evolution of magnetic field and plasma can be modelled using the 
HD approximation (Widrow 2002 ; Brandenburg & Subramanian 

005 ): 

∂ B 

∂ t 
= curl [ v × B ] + η� B , (2) 

∂ v 

∂ t 
+ ( v · ∇ ) v = − 1 

ρ
∇ P − 1 

ρ
∇ S + � , (3) 

ith v the fluid velocity, ρ the fluid density, B the magnetic flux 
ensity, η the physical resistivity, S the Maxwell stress tensor 

 ij = 

1 

2 

B 

2 

μ0 
δij − B i B j 

μ0 
, (4) 

ith μ0 the vacuum permeability, and thermal pressure 

 = ( γ − 1) ρu, (5) 

here u is the specific internal energy. The vector � corresponds 
o an additional artificial viscosity and will be explained below. 
dditionally, there is an equation go v erning the specific energy 
ensity (see e.g. Price 2012 ): 

∂ e 

∂ t 
+ ( v · ∇) e = − 1 

ρ
∇ j v i S ij + � , (6) 

here e = v 2 / 2 + u + B 

2 / 2 ρ is the specific energy density, � –
nergy dissipation term from viscous and resistive heating. 

These equations describe the magnetic field, velocity and specific 
nergy evolution as a function of spatial coordinates and time in the
ulerian frame. 

.2 MHD in the SWIFT code 

he set of equations introduced abo v e can be discretized in the La-
rangian frame using a particle-based approach within the framework 
f SPH (see e.g. Price 2012 ). More specifically, our implementation 
s built on top of the SPHENIX (Borrow et al. 2021 ) formulation
f SPH that was designed specifically to perform well in galaxy 
ormation simulations. 1 

.2.1 Momentum equation in SPH 

e start with the discretization of the momentum equation ( 3 ). The
WIFT code discretizes the gas into a set of particles and solves the
quations of motion at particle positions, i.e. in a frame where the
bserv er mo v es with the fluid: 

d v 

d t 
= − 1 

ρ
∇ S + � + M (7) 

ith d/ d t the material deri v ati ve, � corresponding to additional
rtificial viscosity terms that help capture shocks at both hydrody- 
amic and magnetic wave discontinuities. This is achieved by using 
PHENIX viscosity terms with a signal velocity that incorporates 

he Alfv ́en speed (Karapiperis et al., in preparation). The term 

M is an additional force that corrects tensile instability akin to 
he Powell et al. ( 1999 ) term, an effective numerical force that
rises due to the SPH discretization and counteracts the particle 
lumping associated with 1 

ρ
∇ S . The magnitude of this ef fecti ve

orce is proportional to the divergence of the magnetic field (Børve,
mang, & Trulsen 2001 ). The corrective term M explicitly violates 
 For completeness, all the runs employed version 3ea21e98 of the code. 
w  

(

nergy conservation (Price 2012 ). The force becomes significant in 
egions where the magnetic pressure is comparable in magnitude to 
he thermal pressure. Consequently, maintaining a small divergence 
f the magnetic field is crucial to minimize both the particle-clumping 
omponent of 1 

ρ
∇ S and the corrective term M . 

In SPH, the local matter density is computed as a sum: 

ˆ a = 

∑ 

b 

m b W ( | r a − r b | , h a ) , (8) 

here a and b are particle labels, W is the smoothing kernel, and h
he smoothing length, which is related to the local mean inter-particle
eparation. 

The MHD momentum equation becomes 

d v i a 
d t 

= −
∑ 

b 

m b 

[
f ab S 

ij 
a 

ˆ ρ2 
a 

∂ W ab ( h a ) 

∂ x 
j 
a 

+ 

f ba S 
ij 

b 

ˆ ρ2 
b 

∂ W ab ( h b ) 

∂ x 
j 

b 

]
+ 

+ 
 

i 
a + M 

i 
a + f a,i 

grav , (9) 

here f a,i 
grav are the accelerations coming from gravity and f ab : 

 ab = 1 + 

h a 

3 ̂  ρa 

∂ ̂  ρa 

∂ h a 

, (10) 

re terms accounting for the spatial variation of the smoothing 
engths. This set of equations is identical to the pure hydrodynamical 
ase (see e.g. Price et al. 2018 ; Schaller et al. 2024 ) but with the
ressure replaced by the Maxwell tensor and the tensile correction 
dded. 

.2.2 Magnetic field evolution in SPH using direct induction 

he simplest way to implement the evolution of the magnetic fields
nto SPH is to trace their evolution at particle positions 

d B 

d t 
= ( B · ∇) v − B · div v + η� B + �AR (11) 

ith v the fluid particle velocity, �AR an artificial resistivity correc- 
ive term to aid handling of magnetic field discontinuities (see e.g.
rice 2012 ; Price et al. 2018 ). 
Our direct induction (DI) implementation is fully described by 

arapiperis et al. (in preparation). In summary, the equations of 
esistive MHD are solved by evolving the quantity B /ρ, with B 

he magnetic flux density and ρ the mass density. The induction 
quation then reads 

d 

d t 

(
B 

ρ

)
= 

(
B 

ρ
· ∇ 

)
v + 

η

ρ
� B + �AR − 1 

ρ
∇ψ (12) 

ith ψ a scalar field (the Dedner field), which is used to remo v e
ia hyperbolic and parabolic divergence cleaning any non-zero div B 

rising due to numerics (see e.g. Dedner et al. 2002 ; Tricco, Price &
ate 2016 ). The evolution equation for the scalar field itself is given
y 

d 

d t 

(
ψ 

c h 

)
= −σh c h div B − 1 

2 

ψ 

c h 
div v − σp 

ψ 

τc 
, (13) 

ith c h an appropriately chosen cleaning speed and τc is local Dedner
calar dissipation time 

 h = 

√ 

v 2 A + c 2 S , τc = 

h 

c h 
, v A = 

√ 

B 

2 / ( μ0 ρ) , (14) 

here σh and σp are constant parameters with typical values σ � 1 . 0
Price et al. 2018 ), v A is the Alfv ́en speed, and c S the sound speed. 
MNRAS 541, 3427–3444 (2025) 
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Several ways of expressing a divergence operator in SPH exist
Price 2012 ). In our implementation of the cleaning terms, we choose
he antisymmetric divergence formulation 

iv B a = 

1 

ρa 

∑ 

b 

m b ( B b − B a ) · ∇W ab ( h a ) . (15) 

The discretized version of the induction equation then becomes
Price et al. 2018 ; Karapiperis et al. in preparation): 

d 

d t 

(
B 

ρ

)
a 

= �a 
Str + �a 

Dender + �a 
Ohm 

+ �a 
AR (16) 

ith the stretching source term 

a 
Str = −f ab 

ˆ ρ2 
a 

∑ 

b 

( v a − v b )( B a · ∇ a W ab ( h a )) , (17) 

ivergence cleaning term 

a 
Dender = −

∑ 

b 

m b 

[
f ab ψ a 

ˆ ρ2 
a 

∇ a W ab ( h a ) + 

f ba ψ b 

ˆ ρ2 
b 

∇ b W ab ( h b ) 

]
(18) 

ith the Ohmic (or physical) resistivity term 

a 
Ohm 

= 2 η
∑ 

b 

m b 

∂ r W ab ( h a ) 

| r ab | ̂  ρa ̂  ρb 

( B a − B b ) . (19) 

Note that our implementation also uses artificial resistivity terms
ut these were switched off in what follows as we are concerned with
he precise effect of physical Ohmic resistivity alone. 

.2.3 Vector potential MHD implementation in SWIFT 

lternatively, the magnetic field divergence constraint can be en-
orced by evolving for the vector potential (VP; Stasyszyn & Elstner
015 ) instead of the magnetic field. The magnetic field in terms of
he vector potential A is then 

B = curl A . (20) 

he induction equation for A reads 

d 

d t 
A = v × curl A + ( v · ∇) A + η� A − ∇�, (21) 

here � is the electromagnetic g auge. The g auge does not influence
he magnetic field and only go v erns the evolution of the vector
otential. Since Maxwell’s equations, when expressed in terms of
he vector potential, do not uniquely determine it, a gauge condition

ust be chosen (Jackson 1999 ). One possible choice is the Coulomb
auge, where div A = 0. To enforce this condition numerically, a
ew scalar field can be introduced, sourced by the residual div A
Stasyszyn et al. 2012 ). Similarly to Dedner divergence cleaning, the
lectromagnetic g auge � propag ates and remo v es the div ergence of
he A field through its evolution equation 

d 

d t 
� = −c 2 h ( ∇ · A ) − c 2 h 

τc 
�, (22) 

here c h , τc defined the same way as for Dedner cleaning (equation
4 ). The SPH version of the induction equation for vector potential
hen reads 

d 

d t 
A a = �a 

Str + �a 
Gauge + �a 

Ohm 

(23) 

ith stretching term 

a 
Str = 

f ab 

ˆ ρa 

∑ 

b 

m b ( v a − v b ) · A a ∇ a W ab ( h a ) , (24) 
NRAS 541, 3427–3444 (2025) 
auge term 

a 
Gauge = 

f ab 

ˆ ρa 

∑ 

b 

m b ( � a − � b ) ∇ a W ab ( h a ) , (25) 

ith the observed B field reading 

B a = 

∑ 

b 

m b 

ˆ ρb 

( A a − A b ) × ∇ a W ab ( h a )) . (26) 

As was the case for the direct induction method, we add an Ohmic
esistivity term which, here, acts directly on A : 

a 
Ohm 

= 2 η
∑ 

b 

m b ̂  ρa 

| r ab | ̂  ρ2 
ab 

∂ r W ab ( h a ) + ∂ r W ab ( h b ) 

2 
( A a − A b ) , (27) 

here ˆ ρab = 

1 
2 ( ̂  ρa + ˆ ρb ). 

In what follows, we will make use of both fla v ours of SPMHD
ith special attention to the direct induction scheme. 

.3 MHD in the PENCIL CODE 

s mentioned abo v e, we make use of the PENCIL CODE (Bran-
enburg & Dobler 2002 ; Brandenburg 2003 ), a thoroughly tested
nd validated grid code, as a reference against which to e v aluate
erformance of SWIFT ’s MHD implementations. 
In the PENCIL CODE , space is divided into a grid of fixed points.

patial deri v ati ves are calculated as combination of values of a
unction at the point and its neighbours in the direction of deri v ati ve
sing centred finite differences approach 

 

′ 
i = ( −f i−3 + 9 f i−2 −45 f i−1 + 45 f i+ 1 −9 f i+ 2 + f i+ 3 ) / (60 δx) , 

(28) 

 

′′ 
i = (2 f i−3 − 27 f i−2 + 270 f i−1 − 490 f i + 

+ 270 f i+ 1 − 27 f i+ 2 + 2 f i+ 3 ) / (180 δx 2 ) . (29) 

 or time inte gration the third-order 2 N -Runge–K utta scheme is used
Williamson 1980 ). 

The equations for density and velocity fields in the Eulerian frame

∂ 

∂ t 
ln ρ + ( v · ∇) ln ρ = −div v , (30) 

∂ 

∂ t 
v + ( v · ∇) v = −∇P 

ρ
+ ln ρ + 

1 
ρ

J × B + f visc + f grav , (31) 

here f visc is the viscous force per unit mass, which is proportional
o the viscosity ν and the divergence of the traceless rate-of-strain
ensor. The magnetic field equations are solved using the vector
otential in the Weyl gauge ( � = 0) in an Eulerian frame: 

∂ A 

∂ t 
= u × ∇ × A + η∇ 

2 A . (32) 

o deal with discontinuities and discretization errors the code
nvolves some non-zero ν and η in equations ( 31 ) and ( 32 ) using a
igh-order spatial discretization as in equations ( 28 ) and ( 29 ). For the
inematic dynamo problems such as Roberts Flow I, the momentum
quation is not solv ed e xplicitly. Instead the velocity field is given as
 coordinate-dependent function. For internal energy the isothermal
quation of state was used. 

.4 Magnetic field error metrics in SWIFT 

n a direction induction method, magnetic field evolution divergence
rrors can occur due to numerical errors. Even though the Dedner
leaning scheme acts to reduce the divergence, it is useful to have
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 set of tools to monitor the spurious monopole component of the
agnetic fields. We introduce the ones we use here. 
The most widely used error metric for SPMHD is the ratio (e.g.

quation 78 of Price & Monaghan 2005 ) 

 0 ,a = 

| div B a | h a 

| B a | . (33) 

hilst directly related to the problem we want to monitor and to the
erm sourcing the Dedner scalar evolution, this error metric is large 
nly if the divergence is of order of largest resolvable gradient by
PH, ∼ | B a | /h a (see below). 
In addition, the outcomes of divergence presence are not limited 

o some unphysical field fraction in the magnetic field, and thus
equire additional monitoring techniques. If the error metric R 0 is 
mall, it does not guarantee that the effect of the spurious divergence
s small. For example, there are monopole forces proportional to 
iv B that could result in major forces affecting the dynamics of a 
article. To monitor such situations, another, more rarely used metric 
onitors the component of the magnetic field that is parallel to the

otal magnetic force acting on the fluid (see equation 79 of Price &
onaghan 2005 ). It thus is a spurious force 

 1 ,a = 

( B a · f mag ,a ) 

| B a || f mag ,a | 
, (34) 

here f mag ,a is the sum of the first term corresponding to − 1 
ρ
∇ S in

quation ( 9 ) and the monopole correction force M a . 
Finally, even when magnetic forces parallel to the magnetic field 

re small (i.e. R 1 is small), the monopole component of the magnetic
eld can create an additional spurious Lorentz force. To monitor this,
ne can estimate the magnitude of the monopole component relative 
o the physical magnetic field. To this end, we introduce the ratio of
he magnetic field divergence to the current 

 2 ,a = 

| div B a | 
| curl B a | . (35) 

All these error metrics can be large in regions where the values
f the div B a and curl B a operators are very sensitive to the particle 
rrangement. The particle noise level can be conservatively estimated 
s the level of error of the SPH gradient operator (e.g. Price 2012 ;
ioleau 2015 ). Assigning a unity scalar quantity to SPH gas particles
nd computing a gradient vector, which in the continuum limit should 
e zero, yields: 

∇ 1 〉 a = 

∑ 

b 

m b 

ˆ ρb 

∇ W ( | r − r b | , h ( r )) 

∣∣∣∣
r = r a 

. (36) 

his quantity will be non-zero due to particle arrangement in space. 
sing this construction, the errors induced by particle noise in the 
ivergence and curl operators can be estimated as: 

〈 δdiv B a 〉 � ( 〈∇1 〉 a · B a ) , 

 δcurl B a 〉 � [ 〈∇1 〉 a × B a ] , 

〈 δ f mag ,a 〉 � 

S ii a 

3 ̂ ρa 
〈∇1 〉 a . (37) 

In what follows, and more generally in SWIFT , when measuring 
he three error metrics introduced abo v e, we e xplicitly zero the
uantities that are not 10 × larger than their corresponding pure-noise 
ounterparts. This allows us to focus our analysis on regions where 
he errors are not triggering solely due to the noise in the particle
istribution. Note ho we ver that the Dedner e volution equation ( 13 )
oes not use this limit; any (spurious) div B appearing in the fluid is
ourcing the scalar field evolution. 
 KI NEMATI C  DY NA MO  TESTS  

ynamos are crucial for cosmological and astrophysical magnetic 
eld evolution. Therefore, correctly capturing the amplification 
rocess is a necessary step in the validation of a numerical code.
n this section, we study the performance and limitations of the
PMHD implementations in SWIFT code introduced abo v e on the
tandard Roberts ( 1972 ) flow and the ABC (Childress 1970 ; Arnold
014 ) flow dynamo test problems. Both of these tests probe the
inematic dynamo regime. 
The main aim of these tests is to verify that the induction source

erm together with resistive terms in the code are modelled correctly
nd allow correct reproduction of magnetic field growth. In particular, 
e focus on characteristics such as the growth rate dependence on

he physical resistivity and resolution convergence as well as on 
ualitative features such as the spacial magnetic field distribution 
nd the mode transitions. We compare our results to the PENCIL

ODE and to published solutions. 

.1 The Roberts flow I test 

here are several simple dynamo capable flows consisting of four 
ortices in the xy-plane with a uniform velocity field in the z direction
Roberts 1972 ). These flow problems have been widely studied both
ith simulations and semi-analytically. The different flows proposed 

n this paper vary in their v z ( x , y ) dependence and provide a range of
echanisms for magnetic field growth. One of them, the first flow,

xhibits growth via the alpha effect (Tilgner & Brandenburg 2008 ).
lows II and III show growth due to a memory effect (Rheinhardt et al.
014 ). The fourth flow provides growth through effective negative 
urbulent dif fusi vity (De vlen, Brandenburg & Mitra 2013 ). 

The first flow was chosen for our study for its simplicity and
ele v ance to cosmology and astrophysics since it manifests the
lpha effect, which is important in galaxy discs (e.g. Widrow 2002 ;
randenburg & Ntormousi 2023 ). 
To test the induction in the SWIFT code, the kinematic dynamo

egime was chosen. This is the regime where the velocity field is not
ffected by the back-reaction from the magnetic field via the Lorentz
orce. This renders the equations linear and allows different modes 
sourced in the initial conditions) to grow independently. On the code
evel we force the particles to obey at all times the following velocity
ectors: 

 a = v f ( r a ) , (38) 

here v f is the forcing velocity field given below. 

.1.1 Detailed set-up 

 or the v elocity field of the flow, we use the same convention as
heinhardt et al. ( 2014 ): 

v f,x = v 0 sin k 0 x cos k 0 y 

 f,y = −v 0 cos k 0 x sin k 0 y 

v f,z = ω 0 sin k 0 x sin k 0 y

here v f,i are the components of the particle velocity, x , y , z the
article positions, and v 0 , ω 0 the magnitudes of the planar and
 ertical v elocities, respectiv ely. In our configuration, we fix k 0 =
 π/L box = 1 and ω 0 / 

√ 

2 = v 0 = 1 such that the spread in velocities
s normalized v rms = 1. 

For the magnetic fields, we use three separate initial configura- 
ions: 
MNRAS 541, 3427–3444 (2025) 
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First, random initial conditions (ICs) : we generate a uniform
istribution of vector potentials A with random length in range
0, A 0 ]. While initially the vector potential is not smooth, the magnetic
eld is calculated through SPH version of the equation B = curl A
equation 20 ) is spatially smooth and divergence-less form of B by
onstruction. 

Second, random ICs without bulk MF : calculation of the magnetic
eld from random vector potential may introduce a small constant
eld component. Such components along the z direction will not
ecay, and thus can influence decaying modes (see Section 3.2
elow). Thus, the volume averaged magnetic field is subtracted. 
Third, we employ a Beltrami-type field , i.e. a field for which

he relation curl B = k B holds, which is also divergence-less. More
pecifically, we use: 

 x = B 0 ( sin ky + sin kz) , 

 y = B 0 ( cos k x − cos k z) , 

B z = B 0 ( sin kx + cos ky) . (39) 

he constants B 0 , A 0 are the magnetic field and vector poten-
ial normalization factors respectively. Setting the magnetic field
avenumber to k = 1 was enough to start the mode with the largest
rowth rate in the range η ∈ [0 . 1 , 0 . 2] (see Section 3.2 ). We set
he initial field B 0 or A 0 such that B rms ( t = 0) = 10 −4 B eq , where
quipartition estimate is: 

mag � εkin , εmag = 

B 

2 
eq 

2 μ0 
, εkin = 

v 2 rms 

2 
, (40) 

here k = 2 π/L for our domain of size L 

3 . 
As mentioned abo v e, we make use of equation ( 1 ) for the magnetic

e ynolds number definition. F or completeness, we chose a value of
he internal energy, u , of order 1000 such that the resulting flow
emains sub-sonic at all times. Note that, in this set-up, the sound
peed only affects the time-step size (via the Courant condition) and
he Dedener cleaning speed. 

.1.2 Qualitative Roberts flow I results 

e study the Roberts flow I problem using 16 3 , 24 3 , 32 3 , 48 3 , 64 3 ,
nd 128 3 particles initially arranged in a glass-like (random) set-up
ith uniform density. 2 

To ensure that SWIFT correctly reproduces Roberts flows, we expect
he magnetic field distribution, B ( x , y , z), across the simulation
olume to be comparable to that obtained from other MHD codes.
hile the amplitude of the magnetic field in a growing mode

ncreases exponentially with time, its normalized spatial distribution
given by B ( x , y , z, t ) /B rms ( t ) – should remain time-independent. 
For code comparison, we use data from a Roberts flow simulation

erformed with the PENCIL CODE . This simulation follows the set-
p described abo v e, initialized with a random v ector potential at a
hysical resistivity around η � 0 . 18. Since Roberts flows exhibit
ranslational symmetry along the z direction, a growing mode
nitialized with random conditions can manifest with an arbitrary
hift along z. To eliminate this ambiguity in the SWIFT simulations,
e opted for a single-mode initial condition (equation 39 ), which
NRAS 541, 3427–3444 (2025) 

 A glass arrangement can be obtained by starting with particles in a cubic 
rid lattice with small perturbations in lattice positions, with no pressure 
radients or velocities and by letting particles mo v e under numerical forces 
o a configuration where the kinetic energy does not change any more. 

e  

t
 

s  

v  
nsures that the growing mode appears without an arbitrary vertical
hift. 

Fig. 1 compares the spatial configuration of the magnetic field
omponents between SWIFT and PENCIL CODE runs. The upper
ow displays the magnetic field distribution in a 32 3 -resolution
ENCIL CODE simulation, taken as a grid cell values at z = 0.
he lo wer ro w presents results from a 32 3 -resolution SWIFT run,
liced at z = 0 . 05 L box . In both cases, the plots show density maps
f the individual magnetic field components, normalized by the
oot mean square magnetic field o v er the simulation volume. The
isual agreement between the two codes indicates that SWIFT ’s direct
nduction MHD implementation accurately reproduces the expected
eld configuration, demonstrating consistency with the PENCIL CODE

esults. We also verified that the vector potential implementation
eads to similar results. 

Having verified that our SPMHD implementation agrees quali-
atively with the reference implementation in the PENCIL CODE , we

o v e on to quantitative measurements of the growth rate of the field.

.2 Growth rate comparison 

he instantaneous growth rate, γi , is defined as: 

i = 

d 

d t 
ln ( B rms ) , (41) 

here B rms is the root mean square average of the B-field in the whole
imulation volume. The instantaneous growth rate is averaged on the
nterval where it is roughly constant. For our runs, specifically, we
hoose to measure quantities at an interval δt = 0 . 05 in internal time
nits o v er the range t ∈ [30 , 70], where the growth rate is indeed
ell-behaved and constant. The growth rate and fluctuations are then

alculated as: 

= 〈 γi 〉 t , δγ = 2 
√ 

〈 ( γi − γ ) 2 〉 t . (42) 

In the Roberts flow set-up, the excited magnetic field mode grows
xponentially with time and has a growth rate that depends directly
he magnetic Reynolds number. In our e xperiments, the v elocity and
avelength of the flow are fixed and the physical resistivity is varied

n order to change R m 

. We report the resulting dependence of the
rowth rate on the resistivity in Fig. 2 . The top panel depicts the
rowth rate as a function of resistivity near the dynamo onset, while
he bottom panel illustrates its behaviour in the ideal MHD limit ( η →
). Note that the x-axis in the bottom panel is log-scaled for resistivity.
he graph represents results from PENCIL CODE simulations at a
2 3 resolution, DI and VP MHD implementations in SWIFT code at
4 3 resolution. In the PENCIL CODE , random ICs were used for all
ata points. For the SWIFT code, random ICs were applied for η <

 . 1, while one-mode ICs were used for η ∼ [0 . 1 , 0 . 2]. Both MHD
a v ours in SWIFT exhibit slightly lo wer gro wth rates compared to

he reference results from the PENCIL CODE . Ho we ver, both SPMHD
mplementations accurately capture the o v erall relationship between

and η for high resistivity. The VP scheme underestimates growth
ates relative to the DI scheme. One possible explanation is that, in
he version of the code used for this study, parameters in the gauge
quation were not as well optimized for the VP implementation as
hey were for the cleaning in DI. 

The errors in equation ( 20 ) probably do not influence the mea-
urement of magnetic field growth since the spacial distribution of
ector potential is time independent for a growing mode, such that

A ( x , y , z, t) = f ( t) A ( x , y , z). 
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Figure 1. Maps of the magnetic field components B x (left), B y (middle), and B z in units of the magnetic field RMS in the xy-plane at z = 0 . 0 for PENCIL and 
z = 0 . 05 for SWIFT (for explanation of such choice see the text) at around t > 20 using the direct induction scheme (bottom row) with N = 32 3 particles. The 
streamlines indicate the magnetic fields inside the plane. The growing mode of the magnetic fields in SWIFT reproduces well the observed features in the fields 
extracted from the PENCIL CODE . 
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The lower resolution runs, 32 3 and 16 3 exhibit the same behaviour, 
ut the deviation from the PENCIL CODE is larger for smaller 
esolutions. 

The limit of small physical resistivity is crucial for the future SWIFT

pplications to cosmology and astrophysics since it translates to large 
 R m 

� 10 ∼ 100) magnetic Reynolds number. In the Roberts flow I
ase, when decreasing the resisti vity do wn to η � 3 × 10 −3 (i.e R m 

�
00), the growth rate deviation of the SPMHD implementations from 

he PENCIL CODE increases (bottom panel of Fig. 2 ). For our runs, the
rowth rate is not the same and shows some resolution-dependent 
uctuations. These fluctuations are illustrated as error bars on the 
gure where we used 2 standard deviations as the size of the bar. For
rowing mode solutions, the relative magnitude of the growth rate 
ncertainty is at the level of 10 −2 but increases for lower resistivity
nd for lower resolution. At η � 10 −3 –10 −4 (or R m 

= 1000–10 000)
he growth rate fluctuations become of the same order as the growth
ate itself. 

Focusing now on the last two points from the right, (i.e. η =
 . 1811 , 0 . 2), from Fig. 2 , the decaying mode forms, as expected.
ur experiments sho w, ho we ver, that if the random ICs (rather than

he Beltrami field) are used the ne gativ e growth rate does not become
onstant with time and slowly tends to zero with the magnetic field
eaching some plateau and only slowly changing with time. This 
ehaviour is highlighted on Fig. 3 where we tested both MHD 

mplementations and and three types of initial conditions for the 
I case: 

(i) random magnetic field with bulk field subtracted, 
(ii) random magnetic field without bulk field subtraction, and 
(iii) single-mode ICs, i.e. Beltrami field. 

For all schemes and ICs, the decay stops. But with one-mode
Cs the decaying modes exist for a more extended period of time,
hich helps the precise measurement of the growth or decay rate.
e thus use such single-mode ICs in the following precision tests,

n range η ∼ [0 . 1 , 0 . 2]. For small resistivity, η → 0, the modes with
 < 1 become important (e.g. Roberts 1972 ). For this reason we used
andom ICs in η < 0 . 1, because they contain a spectrum of modes,
ith wavelength spanning from resolution scale up to the simulation 
oxsize. 

.3 Transition from growing to decaying regime 

n important aspect is the dynamo onset resistivity and the corre-
ponding R m 

. This is the critical resistivity at which the behaviour
ransition from a growing to a decaying magnetic field. If captured
ncorrectly by an implementation, kinetic dynamos can appear under 
ncorrect conditions. In the case of more complex simulations such 
s cosmological MHD simulations this can result too much or too
ittle magnetic field growth and can be harder to identify than for less
omplex systems. The cosmological simulations can also have some 
esolved and under resolved flows, and the resolution dependence 
f critical magnetic Reynolds number R 

crit 
m 

in the Roberts flow 

 test can thus give us insight to the dependence of the dynamo
trength on the flow resolution in different regions of cosmological 
imulations. Tilgner & Brandenburg ( 2008 ) measured the transition 
MNRAS 541, 3427–3444 (2025) 
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M

Figure 2. Top panel: the growth rate of the Roberts Flow 1 dynamo as a 
function of the physical Ohmic resistivity for the PENCIL CODE with 32 3 

cells compared to both SWIFT MHD implementations using 64 3 particles. 
The bottom panel shows the same data but using a logarithmic axis for the 
resistivity to focus on the behaviour of the growth rates close to the ideal 
MHD limit ( η → 0). Ne gativ e growth rates indicate decaying modes. The 
error bars represent the magnitude of numerical growth rate fluctuations. 
The direct induction (DI) implementation of SPMHD in SWIFT matches 
the PENCIL CODE results closely for almost all values of the resistivity (and 
thus Reynolds number); the cross-over point between growing and decaying 
modes, in particular, matches precisely. Deviations are only found close to 
the ideal MHD limit. The vector potential (VP) implementation displays a 
systematically lower growth rate than the other models. 
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Figure 3. Magnetic field time evolution for decaying mode with different 
ICs: with one specific mode excited (DI one mode IC, dotted line), with 
random initial magnetic without bulk magnetic field subtraction (DI rand. 
IC with bulk MF, dashed line), with random magnetic field with bulk field 
subtracted (solid, DI and VP rand. IC no bulk MF). The single-mode ICs 
consist of a Beltrami field with wavelength λ = L box . For all of the runs the 
correct decaying mode appears initially, but for DI is followed by other, slowly 
growing mode and slowly decaying modes. The runs indicate that longevity 
of the decaying mode can be impro v ed by bulk field subtraction. Ho we ver, 
the longer time behaviour is not connected to the bulk field subtraction. Since 
one-mode ICs provide the longest existence time for the decaying mode, this 
initial field configuration was chosen to study the dynamo onset resistivity in 
what follows. 

Figure 4. Relative deviation of the critical Reynolds magnetic number of the 
Roberts flow I problem from the one extracted from our highest-resolution 
( N = 128 3 particles) as a function of the number of particles (bottom axis), 
or smoothing length (top axis) in a simulation of size L box = 2 π . The top and 
bottom lines indicate slopes of N 

−0 . 5 and N 

−1 . Both MHD implementations 
in SWIFT converge with increasing resolution at a relatively similar rate. 
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rom decaying to growing modes in the Roberts flow I test to occur
round R 

crit 
m 

� 5 . 52, which corresponds to η = 0 . 1811 for the set-
p. The results of the simulations are resolution dependent, but we
hould expect them to converge to the correct R 

crit 
m 

. To validate the
mplementations and obtain their convergence rates, we started by
unning a series of additional simulations using 128 3 particles around
he expected critical resistivity. We then measure the growth rate
nd interpolate between the measured values to get R 

crit 
m 

. Using this
rocedure, we find: 

 

crit 
m 

= 5 . 487 ± 0 . 005 (DI implementation) , 

 

crit 
m 

= 5 . 571 ± 0 . 004 (VP implementation) , 

n reasonable agreement with published values. 
To study the convergence rate, we repeat the same e x ercise but

sing simulations with 16 3 , 24 3 , 32 3 , 48 3 , and 64 3 particles. We then
easure the difference between the critical resistivity obtained at a

iven resolution and the value extracted from our highest resolution
un (reported abo v e). This dif ference is sho wn in Fig. 4 as a function
f the particle number (bottom axis) or, equi v alently, as a function of
he SPH smoothing scale, i.e. the spatial resolution (top axis). As can
NRAS 541, 3427–3444 (2025) 
e seen, both schemes do converge to the solution though at slightly
ifferent rates. We additionally measure the convergence rate as a
unction of particle number by fitting a power law to the data on the
gure. We find slopes of: 

= −0 . 762 ± 0 . 023 (DI implementation) , 

= −0 . 690 ± 0 . 014 (VP implementation) , 

.e. a convergence rate close to second-order in the spatial resolution
 δR m 

∝ h 

2 ). 

.4 Impact of resolution and resistivity 

agnetic field pattern develops thinner features as the resistivity
ecreases. At some threshold resistivity and resolution, distortions of
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Figure 5. Maps for B y /B rms at t = 50 in XY plane for Roberts flow 1 runs at 16 3 (left), 32 3 (centre left), 64 3 (centre right) resolution with η = 0 . 01 and η = 0 
run at 64 3 (right). For low resolution runs magnetic field pattern appears more distorted than at higher resolution. As the resolution is increased more thin 
magnetic field features become visible. In the limit of zero resistivity, the magnetic field pattern becomes unresolved for any resolution. 

t  

η

fi
p
i  

m  

x  

a
w  

f
c  

i

s
e
r
v  

w  

r
s  

i
s

3

P
(
i
fi  

e  

d  

i
t  

d
i
c  

p
t

t
m
t  

s
o  

c  

i

Figure 6. Magnitude of mean volume and time averaged divergence error 
versus physical resistivity for 64 3 runs for SWIFT MHD implementations. The 
divergence errors here for both DI and VP are the measure of accuracy of the 
produced B field. For DI the divergence is also entering equations of motion. 
The error experiences order of magnitude jump around η ∼ 3 × 10 −3 for both 
MHD implementations in the same region where large growth rate deviations 
from PENCIL CODE appear. For direct induction scheme the Dedner cleaning 
helps to keep divergence errors where otherwise they will be big (DI solid 
and dashed lines). 
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he magnetic patterns appear. Ho we ver, for higher resolution, at fixed
, the distortions are absent, indicating the connection of magnetic 
eld pattern breakdown in the ideal MHD limit and resolution. The 
rocess of increasing resolution at a fixed resistivity is visually 
llustrated in the left three panels of Fig. 5 . The figure presents density
aps of magnetic field slices, depicting B y ( x , y , z, t ) /B rms ( t ) in the
y-plane for resolutions of 16 3 , 32 3 , and 64 3 at η = 0 . 01, along with
 64 3 run without resistivity. In all cases, random initial conditions 
ere used, and the slice heights were adjusted to capture the same

eature. The maps represent the magnitude of the magnetic field 
omponent, using the same magnitude scale as in Fig. 1 . Streamlines
ndicate magnetic field lines in the xy-plane. 

As the resolution increases from left to right, initially unresolved 
tructures reveal more detail, reducing blob-like distortions. How- 
ver, in the zero-resistivity case, the pattern remains distorted at all 
esolutions, with ele v ated magnetic field regions appearing along the 
ortex boundaries ( x = πn and y = πm , where n, m are integers),
ith a characteristic size on the order of the resolution scale (Fig. 5 ,

ight most plot). The growth of magnetic distortions at the resolution 
cale in the absence of resistivity is not unique to the SWIFT DI or VP
mplementations and has also been observed in other MHD dynamo 
imulations (e.g. Brandenburg 2010 ). 

.5 Influence of spurious magnetic field di v er gence 

hysical magnetic field should maintain the solenoidality condition 
 div B = 0). Probing the level of spurious divergence can help 
ndicate how much the simulation results can be trusted. The velocity 
eld forcing term used for the Roberts flow test decouples the force
quation from the induction one. As such, the only way spurious
i vergence can af fect the magnetic field evolution is through the
nduction equation. Ideally, in the Eulerian frame, the induction 
erm curl [ v × B ] should not generate any di vergence. Ho we ver,
ue to inaccuracies in the SPH operator, the induction term may 
nadvertently introduce divergence. The presence of a monopole 
omponent in the magnetic field, B mon , can then act as a source for
hysical fields through the term curl [ v × B mon ], potentially altering 
he magnetic field growth rate. 

As an initial check, we monitored the mean divergence error 
hroughout our runs. The divergence was evaluated once the growing 

ode was established, using a time-averaged measurement o v er 
he interval t ∈ [30 , 70] and with v olume-a v eraging o v er the entire
imulation domain. The results are reported as a function of resistivity 
n Fig. 6 . The figure presents the divergence error, R 0 , without noise
ancellation for 64 3 DI and VP runs. Now we also include the direct
nduction runs with measures to clean the divergence (Section 2.2.2 ). 
or resistivity values abo v e η � 3 × 10 −3 , magnetic field is well
ehaved, the error remains below 10 per cent in all cases. Ho we ver,
or smaller resistivity, the errors increase significantly. In the VP runs, 
he error saturates at approximately 20 per cent. In DI runs without
leaning, the error continues to grow as resistivity decreases until 
 significant portion of the field consists of monopole component. 

hen Dedner cleaning is enabled, the errors are significantly reduced 
o an acceptable level of about 5 per cent, and exhibit behaviour more
imilar to VP. The DI implementation with cleaning results less errors
han VP o v er whole resistivity range. 

In addition to monitoring global averages, it is also instructive 
o examine the spatial distribution of divergence errors. We used 
wo error metrics introduced in Section 2.4 : R 0 and R 2 . Maps of
hese error metrics for Roberts flow I at η = 0 . 01 (where pattern
estruction occurs for N = 16 3 particles; see below) are shown
n Fig. 7 for three different resolutions, along with an additional
un in the ideal MHD limit. All runs were performed using the
I implementation with divergence cleaning enabled. These maps 

orrespond to the same set-up and time as those in Fig. 5 . 
The mean errors remain small across the simulation volume for all

esolutions but are more pronounced inside vortices, that correlates 
ith large shear in the velocity of the Roberts flow. The R 2 metric
MNRAS 541, 3427–3444 (2025) 
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Figure 7. Density maps for dimensionless divergence error metrics R 0 = h div B / | B | (top) and R 2 = div B / | curl B | (bottom) with additional cuts to reduce 
SPH noise. The Roberts flow I runs were performed with η = 0 . 01 for three resolutions: 16 3 (top column), 32 3 (upper middle column), 64 3 (lower column) 
particles, and an additional single run with η = 0 at 64 3 resolution (right-most panel). Regions with R i � 0 . 1 indicate lar ge diver gence errors. The divergence 
errors are ele v ated mostly inside vortices. Resolution increase leads to decrease of divergence error metrics. Both R 0 and R 2 maps are similar in general ho we ver 
have some small differences at resolution scale. Divergence errors are small even in the ideal MHD limit. Ho we ver, the R 2 metric sho ws more ele v ated v alues 
in this regime. 
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Figure 8. Evolution of the magnetic fields (left) and divergence errors (left) 
on a Roberts flow I test case with 32 3 particles using the direct induction 
(DI) MHD implementation in SWIFT . We perform runs with a large initial 
injected divergence (Inj) and the Dedner cleaning (Clean) term switched on 
or off, and with clean ICs with the Dedner term still on. We perform the tests 
for growing (solid line) and decaying (dashed line) modes. The divergence 
errors decrease quickly and do not affect the magnetic field growth rates. The 
addition of the Dedner cleaning terms helps to decrease the error before the 
divergence gets cleaned by resistivity. 
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ighlights similar regions as R 0 but tends to yield slightly lower
alues. In the ideal MHD case (i.e. zero resistivity), the R 0 metric
emains mostly below 10 per cent, whereas R 2 exceeds 10 per cent.
his indicates that the two error metrics are not entirely equi v alent,
nd R 0 alone does not fully capture all unphysical magnetic 
eld. 
The Roberts flow I is an idealized set-up where the divergence can

emain low both in space and time, and particle distributions, along
ith other quantities, are smooth. Ho we ver, in real astrophysical

nd cosmological simulations, strong density, magnetic field, and
elocity contrasts exist, and the particle distribution is highly non-
niform. Additionally, processes such as energy injection from sub-
rid models and particle removal can introduce sudden spikes in
ivergence. Therefore, it is crucial to investigate the impact of large
ivergence errors on the growth rate, evaluate the effectiveness and
etermine the main source of divergence cleaning. 
To assess the cleaning performance in a dynamo setting, we

onducted additional runs in which a large divergence error was
eliberately introduced in the initial conditions. This was achieved
y generating random initial conditions similar to ones described in
ection 3.1 , but with randomly oriented B field vectors instead of
andom A , thereby ensuring a significant monopole component in
he magnetic field. 

Fig. 8 illustrates the evolution of the magnetic field and divergence
rror o v er time for the DI implementation. Initially, divergence
leaning was disabled (Ing), and we observed that physical resistivity
lone was sufficient to dissipate the large initial divergence error.
o we ver, when di vergence cleaning was enabled, the errors were

emo v ed much more rapidly (Ing + Clean). Ultimately, the divergence
rror saturated at the same level as in runs with divergence-free
random ICs from Section 3.1 ) initial conditions (Clean). 

Thus, while some error reduction occurs naturally due to the
esistivity term, the Dedner cleaning terms provide a significantly
ore ef fecti ve correction. 
NRAS 541, 3427–3444 (2025) 

r  

A

The growth rates of growing modes (solid lines) remained un-
ffected by the div ergence cleaning. Howev er, for decaying modes
dashed lines), the run with resistivity alone exhibited a slightly
lower decay compared to the runs with Dedner cleaning, suggesting
he presence of a small additional diffusion effect from the cleaning
rocess. 

.6 The ABC flow 

efore closing this section on classical dyanmo tests, we briefly
eport the results of our experimentations with the more complex
BC (Childress 1970 ; Arnold 2014 ) flow. 
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Figure 9. Growth rate (top plot) and frequency (bottom plot) versus magnetic 
Reynolds number for Bouya & Dormy ( 2012 ) (converted for our set-up) and 
for SWIFT MHD implementations. The SWIFT code reproduces oscillatiry MF 
growth in R m1 ∈ [10 , 100]. The mode transition in SWIFT happens in range 
R m 

∈ [40 , 41 . 67]. The reference transition point is R 

ref 
m1 ∈ [41 . 65 , 41 . 74], 

ho we ver, we find this value inconsistent with the transition from the plots 
the reference provides, R 

plot 
m1 ∈ [42 . 88 , 43 . 01], from the postion of the knee 

in growth rate graph and the step in frequency graph (figs 1 and 3 from 

Bouya & Dormy 2012 ). Error bars in growth rate and frequency originate the 
calculation methods. 
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For the previously considered Roberts flow I, the modes were 
rowing exponentially while for the ABC flow they can manifest 
scillatory behaviour. In addition, the ABC flow represents a more 
omplex flow where v has a dependency in all three spatial directions. 
roperties such as the growth rates and the oscillation frequency of

he ABC flows were studied numerically (Galloway & Frisch 1986 ; 
ouya & Dormy 2012 ; Brandenburg & Chen 2020 ). 
Our set-up used for the ABC flow uses the same mechanism for

article flow forcing v f as the one used for the Roberts flow I. The
elocity field for the flow follows Bouya & Dormy ( 2012 ) 

v f,x = A sin k 0 z + C cos k 0 y 

v f,y = B sin k 0 x + A cos k 0 z 

 f,z = C sin k 0 y + B cos k 0 x, (43) 

here v f,i are the components of the forcing velocity and x , y , z the
article positions. We choose A, B, C = 1 / 

√ 

3 such that v rms = 1,
 0 = 2 π/L box = 1. The random ICs from Section 3.1 were used for
he magnetic field. 

The most commonly used parameters for the symmetric ABC 

ow are A = B = C = 1, resulting in a reference root mean square
elocity of v ref 

rms = 

√ 

3 . To facilitate a clearer comparison of growth
ates with the Roberts flow I runs, we set v rms = 1 in our SWIFT tests.
his ensures that the system size and typical velocity match those of

he Roberts flow I, with the only difference being the flow geometry.
In this set-up, comparing growth rates, frequencies, and Reynolds 

umbers with the reference requires applying a time and coordinate 
ransformation. Notably, Bouya & Dormy ( 2012 ) do not provide 
n exact definition of R m 

as in equation ( 1 ), but instead define R m 

hrough the induction equation: 

∂ B 

∂ t 
= curl [ v × B ] + 

1 

R m 

� B . (44) 

o match our convention, we performed a time translation of this
quation: t = t ref 

√ 

3 . As both the reference and SWIFT simulations
ave L = L 

ref = 2 π for the flow periodicity, this leads to the velocity
elation v = v ref / 

√ 

3 . Similarly, the growth rates and frequencies
elate as inverse times: γ, ω = γ, ω 

ref / 
√ 

3 . Since in both cases same
he MHD equation are solved the magnetic Reynolds number relate 
s R m 

= R 

ref 
m 

√ 

3 
To measure growth rates of oscillatory modes in SWIFT , we track

he peaks of the root mean square (RMS) magnetic field o v er the
imulation volume as a function of time. In ln ( B rms ) versus t space,
hese peaks exhibit a linear trend. We determine the growth rate and
ts associated error by performing a linear fit to ln ( B rms ) at the peak
oints. 
F or frequenc y measurements, we emplo y tw o methods: (1) mea-

uring the mean time interval between successive peaks and (2) 
erforming a Fourier transform of the instantaneous growth rate. 
he first method provides high accuracy when a single dominant 
rowing mode is present. However, it becomes less reliable when 
ultiple oscillatory modes with similar amplitudes and growth rates 

oexist, as seen in mode crossing within the ABC flow. The second
ethod’s accuracy is constrained by the total simulation time. To 

nsure robustness, we compute the frequency using both methods 
nd report the value with the smallest error. Note that one oscillation
eriod in B rms ( t) corresponds to a magnetic field (MF) direction flip.
herefore, the full flip oscillation period is twice that value. 
We do not measure growth rates and frequencies immediately 

rom t = 0 because the modes take time to manifest in B rms ( t).
nstead, we use the following time intervals: t ∈ [120 , 300] for
uns far from mode transition points and t ∈ [820 , 1000] for runs
ear the transition. As a comparison, the reference studies extend 
imulations much more – up to t ref 

end � 6000 – to achieve better
ode separation. Ho we ver, the selected time interv als in SWIFT

re sufficient to accurately measure growth rates and oscillation 
requencies. 

We conducted simulations for magnetic Reynolds numbers in the 
ange R m 

∈ [15 , 100]. In all runs, we observe oscillatory growth of
he magnetic field. The growth rate as a function of R m 

is expected to
av e a positiv e re gion for R m 

∈ [15 , 30] and R m 

> 40. The top plot
n Fig. 9 shows the growth rate versus magnetic Reynolds number
or 64 3 particles in SWIFT , along with the rescaled results of Bouya &
ormy ( 2012 ) for v rms = 1, as described earlier. Note that in the

eference, the resolution was varied with R m 

, with the minimal
alue being 64 3 . All MHD implementations in SWIFT follow the
rowth rate trends reported in the reference solutions. The critical 
agnetic Reynolds numbers for the onset of dynamo action are found

o be R 

crit, 1 
m 

(DI) � 15 . 6 and R 

crit, 1 
m 

(VP) � 16 . 7, which are slightly
arger than the reference value R 

crit, 1 
m 

� 15 . 5 reported in table 1 of
randenburg & Chen ( 2020 ). 
Similar to the Roberts flow I results, both DI and VP implemen-

ations slightly underestimate the growth rates when compared to 
ouya & Dormy ( 2012 ), with the VP method showing a somewhat

arger deviation. None the less, both models successfully reproduce 
MNRAS 541, 3427–3444 (2025) 
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Figure 10. Isosurfaces for | B| /B rms = 3 magnetic field for the run with 
DI at R m 

= 100. Tube-like structures with positive and negative sign of B x 

appear, similar to ones observed from Fig. 7 from reference Bouya & Dormy 
( 2012 ), although they run at R m 

� 752 (where we multiplied R m 

by 
√ 

3 to 
transform to v rms = 1 system). 3D isosurface visualisation was performed 
with PARAVIEW . 

t  

s  

 

o  

D  

o  

a  

R  

w  

p  

h  

t  

o
 

t  

g  

i
 

f  

d  

o  

a

4
P

H  

c  

a  

b  

r

Table 1. Overwinding resistivity for v rms = 1 and magnetic Reynolds 
number for the Roberts flow I test. 

Resolution h ηmin R 

max 
m 

16 3 0.54 8 × 10 −2 12 
32 3 0.27 2 × 10 −2 50 
64 3 0.13 5 × 10 −3 200 
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he e xpected qualitativ e behaviour, and the discrepancies remain
mall, with the growing modes appearing in the anticipated regimes.

The lower panel of Fig. 9 illustrates the oscillation frequency
f the modes as a function of R m 

. The frequencies for both
I and VP implementations closely match the reference results
utside the mode transition region. Ho we ver, the transition occurs
t R 

Swift 
m1 ∈ [40 , 41 . 67], a value close to the reference transition at

 

rep 
m1 ∈ [41 . 65 , 41 . 74]. While the reported reference values o v erlap
ith SWIFT ’s results, a closer inspection of their growth rate knee
osition and frequency evolution suggests that the actual transition
appens at R 

plot 
m1 ∈ [42 . 88 , 43 . 01]. This v alue dif fers slightly from

heir reported range and does not o v erlap with the transition values
btained for SWIFT . 
As with Roberts flow I, we expect a characteristic spatial dis-

ribution of the magnetic field. Ho we ver, due to the oscillatory
ro wth, these features e volv e o v er time. To analyse this, we e xamined
sosurfaces where | B | /B rms = 3 at the time of peak B rms ( t). 

According to Bouya & Dormy ( 2012 ), the isosurfaces of B should
orm diagonal ‘magnetic field cigars’ with opposing magnetic field
irections. For the 64 3 DI run, this cigar-like structure is indeed
bserved, as shown in Fig. 10 (for R m 

= 100). The same structure
lso appears in VP runs (not shown). 

 RESOLU TION  A N D  OV E RW I N D I N G  

ROBLEM  

aving established that the MHD implementation in the SWIFT code
an reproduce known results on kinematic dynamos, we now turn our
ttention to the link between resolution and resistivity. The discussion
elo w follo ws Charbonneau ( 2012 ) with application to the finite
esolution scale introduced in simulations. 
NRAS 541, 3427–3444 (2025) 
.1 Roberts flow I minimal resistivity 

he magnetic field pattern breakdown the ideal MHD limit ( η →
 , R m 

→ ∞ ) and its dependence on resolution (Fig. 5 ) suggest a
onnection between the simulation resolution scale, (in our case, the
moothing length, h ) and the resistivity. In the Roberts flow I test, we
ave four vortices winding up and resistivity diffusing the magnetic
eld. To form a steady pattern the resistivity should thus balance the

nduction term in MHD equations. 
To understand why the pattern breakdown appears, let us consider

 simpler version of the problem, where there is one single vortex
ith v z = 0 and a magnetic field confined to the plane. The fluid
o v ement in the vortex of size L v and with root mean square

elocity v rms will drag and wind the magnetic field thus increasing
he magnetic field gradients. This process is characterized by a
irculation time-scale 

 c ∼ L v 

v rms 
. (45) 

f the magnetic field gradients have typical scale of l B the diffusion
ill act on characteristic times 

 d ∼ l 2 B 

η
. (46) 

 steady magnetic field pattern can form if the balance occurs,
.e. t c ∼ t d . This is possible when the characteristic scale of the
radient is 

 B ∼
√ 

ηL v 

v rms 
. (47) 

ince our SPH simulation can not resolve gradients smaller than
or of order of) the smoothing length h , the time-scale balance is
bsent for such gradient. In this situation, the resistivity can thus, in
rinciple, not counteract the winding, leading to the magnetic field
attern breakdo wn. Alternati vely, this balance can also be thought as
 magnetic field cascade that can or cannot be countered by cut in the
pectrum from the action of the physical (Ohmic) resistivity term. 

Estimates for the minimal resistivity and the maximal magnetic
eynolds number that can reached within the simulation are thus: 

min ∼ h 

2 v rms 

L v 
, R 

max 
m 

∼ v rms 

ηmin · k f 
∼ L 

2 
v 

πh 

2 
, (48) 

here k f � 

2 π
2 L v 

is flow wav e v ector was used. This expression relates
 

max 
m 

to how well vortices are resolved in terms of our resolution scale
 . We call the limiting resistivity the overwinding resistivity . 
Applying this framework to the Roberts flow I case, we can

ompute the minimal resistivity that our method can correctly evolve.
he values for the runs at different resolutions are given in Table 1 .
e expect for the pattern to be only slightly affected when η � ηmin 

nd destroyed if η � ηmin . On Fig. 5 , we showed the magnetic
eld patterns for the runs with η = 0 . 01. At the lowest resolution
 N = 16 3 , left) the pattern is highly distorted. When the resolution
s increased to N = 32 3 and N = 64 3 , the pattern becomes more
ymmetric and develops thinner features. As expected from the
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Figure 11. B y /B rms with magnetic field streamlines (left) and o v erwinding 
trigger maps (right) for the Roberts flow I test in xy plane at t = 75, with 
heights adjusted to show the same feature. The top set of plots show the 
unresolv ed re gime with large OW trigger values ( 〈 OW 〉 � 10). There are 
tw o w ays to enter the properly resolv ed re gime (where 〈 OW 〉 � 10 −1 ): with 
resistivity increase (middle set of plot) or with resolution increase (bottom 

plot). Note also that the OW metric tends to have higher values inside shear 
zones and inside vortices. 
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nalysis abo v e, at zero resistivity (right-most panel) the balance 
annot take place in principle at any resolution. The magnetic field 
radients thus reach the resolution scale and the pattern disappears. 
Similarly, the analysis of the growth rate as a function of resistivity

Fig. 2 ) confirms that for the runs at a resolution N = 64 3 , the large
eviations of the growth rate and increase in growth rate fluctuations 
appen around η ∼ 2 − 5 × 10 −3 . This value is in good agreement
ith the predicted o v erwinding resistivity value from Table 1 . 

.2 The o v erwinding trigger 

or arbitrary types of flows present in astrophysical and cosmological 
pplications the defining a minimal resolvable resistivity or Reynolds 
umber is a challenging problem. We attempt to construct such a 
rigger here based on the considerations exposed above. 

The magnetic field gradients are go v erned by source terms in
nduction equation, which can increase them 

S ind = �str + �Dedner . (49) 

iffusion sources decrease the gradients: 

S diff = �Ohm 

+ �AR . (50) 

The gradients in the SPH simulations are bound due to the 
esolution scale. This rough estimate of the maximal gradient that 
an be resolved typically holds: 

 � B | ≤ 2 | B | 
h 

2 
. (51) 

Therefore, there exists a limit on the dif fusi ve source term in
he induction equation, which in turn sets an upper bound on the
chie v able magnetic Reynolds number when magnetic field gradients 
each resolution scale. 

If the induction source term, S ind , counteracts the diffusion 
 i.e. S diff · S ind < 0) and | S ind | > | S max 

ind | � 

2 | B | ( η+ ηAR ) 
ρh 2 

, then in the
resence of magnetic field cascade the magnetic fields will inevitably 
each resolution scales, or | � B | � 

2 | B | 
h 2 

. This will result in o v erwind-
ng issues similar to what was found in the Roberts flow I. 

To monitor this issue we define an overwinding trigger as follows: 

W = 

| S ind | 
| S diff | 

1 

2 

(
1 − cos ( S ind , S diff ) 

) h 

2 | � B | 
2 | B | , (52) 

here S diff includes all dif fusi ve sources in the simulation (physical 
nd artificial). 3 We expect the trigger value to be large, OW � 10,
f there is significant o v erwinding and OW � 10 −1 if the resistivity
anages to counteract the winding locally and thus separate the 

ascade from the resolution scale. 
The observed behaviour for the magnetic fields on Fig. 5 can now

e reinterpreted in terms of this OW metric. When the resolution 
s increased, the OW trigger will decrease too since the magnetic 
eld gradients can reach a smaller scales and thus result in a
uch larger η� B . In the highest resolution case ( N = 64 3 ), this

s enough to separate the magnetic field from the resolution limit. 
nd, as expected, for the case of zero resistivity nothing prevents the
agnetic fields from reaching the resolution scales resulting in the 

ortex pattern destruction. 
We conclude this section with a visual example of the behaviour 

f the o v erwinding trigger. If the trigger values are large, OW � 10,
 Note that for this study we choose to include the Dedner cleaning term into 
he induction source in the trigger (equation 52 ). 

e  

a  

c  

s

he resistivity plays only a small role in the o v erall evolution of the
eld. For this regime, OW follows the scaling 

 W ∼ h 

2 η−1 , O W 

∣∣
h = const 

∼ N 

−2 / 3 
p η−1 , (53) 

here the second equation holds for a fixed resolution case (i.e.
here there is a direct link between N and h ). This scaling can be
sed to estimate the required resolution or resistivity needed in a
imulation to prevent overwinding ( OW � 1). 

Such a use case is depicted in Fig. 11 for the Roberts flow test. The
eft panels show the B y /B rms magnetic field configuration in the xy 

lane at time t = 75 with slice heights adjusted to see the same feature
hilst the right panels show the corresponding value of the OW . The

op row corresponds to a set-up where the field configuration cannot
e properly resolved with 16 3 particles and this value of the resistivity.
ither a resistivity increase from η = 0 . 0125 to η = 0 . 2 (first to
econd panel) or a resolution increase from 16 3 to 64 3 particles (first
o third panel) are sufficient to decrease the trigger value to the regime
here the vortices are fully resolved by the simulation. Of course,

hanging the value of the physical resistivity is not al w ays a practical
ption as its value can be set by physical considerations. Increasing
he resolution is then the sole option to obtained a well-behaved field
ith resolved kinematic dynamo growth. 
The computational cost incurred then increasing resolution can be 

stimated as ∼ N T sim 

/�t , with T sim 

the final time of the simulation
nd �t the time-step size. This latter quantity is itself �t ∼ h 

c h 
, where

 h is signal propagation speed (sound speed typically or Alfven wave
peed for MHD scenarios). Assuming a constant propagation speed, 
MNRAS 541, 3427–3444 (2025) 
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Figure 12. Magnetic field in micro-Gauss with field streamlines (left), gas o v erdensity (centre) and ratio of velocity to root mean square velocity of the 
gas with flow streamlines (right) for adiabatic cosmological run with zero resistivity at redshift z = 0 with 128 3 particles using the direct induction SPMHD 

implementation in the SWIFT code. The density map shows, as expected, the formation of voids and filaments, while the velocity profile shows the flow of gas 
from voids into filaments and high density nodes. The magnetic field amplitude distribution mostly follows the density. 
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he full cost is then ∼ N 

4 
3 

p ∼ η−2 OW 

−2 . Thus, targeting a decrease
f the OW value by an order of magnitude will cost 2 orders of
agnitude more computational costs. On the other hand, an order of
agnitude increase in the resistivity constant value will lead to the

ame magnitude change in OW . 
Therefore, the most ef fecti ve way to pre v ent o v erwinding and

 v oid e xcessiv e damping of rele v ant physical features at a given
esolution is to adjust the resistivity such that OW � 1. 

 C O S M O L O G I C A L  M H D  SIMULATIONS  

aving demonstrated, that the MHD implementation in SWIFT code
eproduced the features of the Roberts flow and ABC flow kinematic
ynamo tests within the resolution-dependent Reynolds number
indo w, we no w want to demonstrate its capability to capture

he basic amplification processes associated with dynamo action.
n this section, we explore simulations solving cosmological MHD
quations, with a focus on the dynamics without considering sub-grid
hysics models (i.e. so-called adiabatic simulations). 
Cosmological MHD simulations involve v arious flo w types during

tructure formation, which can lead to magnetic field amplification
hrough gravitational collapse and the stretching of magnetic field
ines. Cosmological runs without resistivity can suffer from the
o v erwinding’ problem discussed in the last section, where the
agnetic field becomes e xcessiv ely stretched. To mitigate this,
e perform additional simulations with non-zero constant physical

esistivities: first, with a typical value found in galaxy clusters,
∼ 6 × 10 27 cm 

2 s −1 , and then with higher resisti vity v alues to
urther minimize o v erwinding. 

.1 Simulation set-up 

osmological simulations with a side length of 150 Mpc were
onducted using MHD and adiabatic gas evolution, that is without
ncluding feedback or cooling physics. We perform simulations
ith 2 × 64 3 and 2 × 128 3 particles. This leads to a gas particles
ass of m gas = 8 × 10 10 M � and 1 × 10 10 M �, respectively. The

nitial conditions for baryons and dark matter were generated using
ONOFONIC code (Hahn, Rampf & Uhlemann 2020 ) at a starting

edshift of 63. We adopt the same cosmology as the FLAMINGO
NRAS 541, 3427–3444 (2025) 
roject (Schaye et al. 2023 ). 4 The initial magnetic field was generated
s a Beltrami field (equation 39 ), with 10 waves along one axis
f the box, and a root mean square code-comoving magnetic field
trength of B 

comov 
rms (z 0 ) = 10 −6 μG, which corresponds to B rms (z 0 ) =

 . 97 × 10 −2 μG in physical magnetic field. This field is uncorrelated
ith the density structure in the ICs and does not represent a physical

cenario. Note that the Beltrami field configuration was chosen to
ake initial conditions reproducible for runs using a vector potential

cheme, which we will explore in future studies. 

.2 Ideal MHD cosmological runs 

e start out analysis by an o v erview of the general properties of the
as distribution at z = 0 for our higher-resolution run. 

In Fig. 12 , we show the spatial distribution of an infinitely thin
lice in the xy -plane, depicting the magnetic flux density (in μG ,
eft panel), the matter o v erdensity (middle panel), and the ratio of
ocal velocity to the root mean square velocity across the simulation
ox (right panel). Streamlines in the magnetic flux density plot
llustrate the geometry of the magnetic field in the xy -plane, while
treamlines in the velocity plot represent the gas flow. The magnitude
f the magnetic field strength largely follows the gas density, with
enser regions exhibiting stronger magnetic fields. Gas density and
elocity profiles follow the usual pattern expected from such cos-
ological simulations: gas forms voids and filaments, with velocity

rofile showing the gas flux from low density regions into dense
laments. The low-density areas display a smoother magnetic field.
n the filaments, the magnetic field strength is non-uniform, both
n amplitude and direction. Additionally, the velocity streamlines
e veal stagnation-point-like flo ws, similar to those observed between
ortices in the Roberts flow I. These flows, found in and along the
laments, suggest that magnetic field amplification may occur not
nly due to gravitational collapse but also as a result of stretching
ithin these flows. 
We now turn out attention to the value of the three error metrics

e introduced in Section 2.4 . On Fig. 13 , we show the spatial
istribution, in the same plane as for the previous figure, of R 0 , R 1 ,
nd R 2 (equations 33 –35 ). The SPH noise cut discussed in Section
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Figur e 13. Diver gence error metrics (equations 33–35 ) for our adiabatic cosmological run with zero resistivity at redshift z = 0 and 128 3 particles using the 
direct induction SPMHD implementation in SWIFT . The R 0 metric indicates that there are regions with large divergence errors, ho we ver, the R 2 error metric 
lights up less showing that at some places with large R 0 the physical field is more significant and thus the divergence error may not influence the dynamics 
of the field. Therefore, there are large magnetic field gradients at resolution scale. Since the R 1 is below our noise cut everywhere, we expect no unphysical 
(monopole) force acting on the matter evolution. The R 0 errors have large volume filling fraction and concentrate at density gradients. 
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.4 has been applied using the noise estimates from equation ( 37 ).
e show the error in the range R i ∈ [10 −2 , 10 0 ]. 
As can be seen, a significant fraction of the simulation volume 

xhibits large divergence errors ( R 0 ). Ho we ver, when compared
o the density and magnetic field distributions in Fig. 12 , both the
entres of low-density regions and the areas within filaments show 

o wer error le v els than the re gions at the borders between low and
igh-density areas, where large density gradients are found. This 
ndicates that the error is possibly driven by poorer quality gradient 
perators in such regions. The other divergence error metrics show 

uch lower of error. The R 1 metric is below the noise cut across the
ntire simulation, indicating that there are no significant magnetic 
onopole forces acting on the particles in this set-up. The R 2 

etric, which estimates the monopole component of the magnetic 
eld relative to the physical current, shows significantly fewer 
rrors than R 0 o v erall, typically at a level smaller than R 2 < 10 −1 .
his, by design, also suggests the presence of large gradients in 
oth the physical and monopole components of the magnetic fields 
t the resolution scale, with only some regions (indicated by R 2 )
xhibiting a significant monopole component. 

.3 Non-ideal MHD cosmological runs 

e now consider the case of cosmological simulations with Ohmic 
esistivity. We run the same set-up as explored above but start at 8 ×
ower mass resolution and using a a constant physical resistivity η = 

 × 10 27 cm 

2 s −1 ; a value typical for galaxy clusters (Bonafede et al.
011 ). For such a simulation, we found that the the OW (equation
2 ) is very high everywhere. Its mean value was found to be 〈 OW 〉 ∼
0 4 , indicating that magnetic field gradients are underresolved. 
Since we expect the o v erwinding metric to follow the scaling from

quation ( 53 ), two approaches can mitigate this issue and achieve a
etter resolved kinematic dynamo for the fields (i.e. 〈 OW 〉 � 1): (1)
ncreasing the resistivity to η � 6 × 10 31 cm 

2 s −1 or (2) increasing 
he number of particles. 

Ho we ver, it is worth noting that, in a typical cosmological set-up,
ncreasing the number of particles may introduce new substructures, 
hich could again be underresolved, but on smaller scales. In regions 
here a mostly uniform density is expected, such as voids, reducing 

he trigger values from 10 4 requires increasing the particle count 
ufficiently to decrease h/L B by at least a factor of 100, a challenging
emand. 
We showed the effect of changing resolution or the value of

esistivity on the Roberts flow I test in Section 4.2 . We now perform
he same type of experiments in our cosmological set-up, in order
o demonstrate the importance of monitoring OW also in SPMHD 

pplications beyond tests. 
To this end, we conducted three more simulations at the same

esolution (64 3 particles) but with three different resistivity values: 
= 3 × 10 30 , η = 3 × 10 31 , and η = 9 × 10 31 cm 

2 s −1 , correspond-
ng to, respectively, the first, second, and last rows of Fig. 14 . The
gure presents the spatial distribution of an infinitely thin slice in

he xy -plane at redshift zero, showing the magnetic flux density
in μG , left), the divergence error R 0 (including our noise cut,
iddle column), and the o v erwinding trigger values (right column).
treamlines in the magnetic flux density plot illustrate the field 
eometry. From top to bottom, both resolution and resistivity vary 
cross the panels, as indicated on the right of the figure. 

At the lowest resistivity, η � 3 × 10 30 cm 

2 s −1 (top row), the R 0 

rofile reveals significant volume-filling errors, while the o v erwind- 
ng trigger remains high at 〈 OW 〉 � 6 . 95. 

With a 10-fold increase in resistivity (second row of Fig. 14 ), the
 v erwinding trigger decreases to 〈 OW 〉 � 0 . 56, which is close to
he expected value of 0.69 from the OW resistivity scaling (equation
3 ). The OW trigger maps are non-uniform, showing higher values in
ow-density regions compared to high-density regions. The volume- 
lling fraction of R 0 errors is also reduced, though some regions still
xhibit R 0 > 1. Additionally, a significant decrease in magnetic field
agnitude is observed, while its overall morphology remains largely 

reserved. 
With a further three-fold increase in resistivity (bottom row of 

ig. 14 ), the o v erwinding trigger 〈 OW 〉 deviates from the expected
caling, decreasing more rapidly to 〈 OW 〉 � 0 . 01. Ho we v er, re gions
ith OW � 1 persist near the filament edges. The global error levels

re significantly reduced, remaining within an acceptable range of 
 0 < 10 −1 throughout. Comparing the second and bottom rows of
ig. 14 , the magnetic field amplitude sho ws dif ferent trends: it is
ampened in some regions along the filaments, while inside the 
laments and at the nodes, it becomes amplified. 
Finally, we increased the resolution of the simulation with η = 

 × 10 31 cm 

2 s −1 from 64 3 to 128 3 particles in order to locally
MNRAS 541, 3427–3444 (2025) 
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M

Figure 14. Maps of the magnetic field B (in μG ), error metric R 0 , and OW trigger values in our adiabatic cosmological simulations at z = 0 run with the 
direct induction SPMHD implementation in SWIFT for a 64 3 particles run with η = 3 × 10 30 cm 

2 s −1 (top row), η = 3 × 10 31 cm 

2 s −1 (second row), a run with 
the same resistivity but with 128 3 particles (third row), and a run with 64 3 particles but η = 9 × 10 31 cm 

2 s −1 (bottom row). Increasing the resistivity (first to 
second row) leads to a decrease in the OW trigger values and a reduction in the volume-filling fraction of divergence errors, while also significantly decreasing 
the magnetic field magnitude. Increasing the resolution from the second to the third row further reduces the OW trigger, though the o v erall R 0 filling fraction 
remains similar. From the second to the bottom row, a further increase in resistivity significantly reduces the OW trigger while bringing divergence error 
levels to an acceptable range ( R 0 < 10 −1 ). At the same time, the magnetic field structure changes slightly: some filament regions experience damping, while 
high-density regions exhibit increased magnetic field strength. 
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Figure 15. Root mean square magnetic field versus scale factors for the adi- 
abatic cosmological runs with 64 3 particles with η = 0; 3 × 10 31 ; 3 × 10 30 ; 
9 × 10 31 cm 

2 s −1 ; (corresponding to the z = 0 slices shown in Figs 13 and 14 ). 
A large constant physical resistivity strongly dampens the initial magnetic 
field amplitude. The evolution is consistent with cosmological expansion 
around z � 10, followed by amplification near z � 0. 
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educe the smoothing length and mitigate o v erwinding. The results
rom this higher-resolution simulation are shown on the third row 

f Fig. 14 . The resolution change led to a global reduction of
he o v erwinding trigger in both high- and low-density regions, as
xpected from the scaling of the metric. Ho we ver, some areas near
he filament edges still exhibit large overwinding. Meanwhile, the 
olume-filling fraction of R 0 remains largely unchanged with only a 
mall reduction. Recall though that we found to the large divergence 
rror to not be dynamically rele v ant in our analysis of the ideal-MHD
ase. 

.4 Discussion 

s we just demonstrated, our SWIFT -based SPMHD adiabatic cosmo- 
ogical simulations (i.e. without additional sub-grid physics) produce 
easonable magnetic field, density distributions, and velocity slices, 
hus demonstrating the general reliability of the implemented MHD 

odel. Ho we v er, the accurac y of the results is affected by large
rrors, which are primarily attributed to unresolved gradients in both 
he physical and monopole components of the magnetic field. These 
rrors tend to concentrate around density gradients, suggesting a 
eed for additional numerical techniques to mitigate their impact. 

While the addition of constant physical resistivity helps reduce 
oth R 0 and OW , it also significantly dampens the magnetic fields.
his is, thus, an undesirable solution in many cases. 
To illustrate this, we show on Fig. 15 the evolution of the root mean

quare magnetic field strength, B rms (in μG ), as a function of redshift
or our simulations with 64 3 particles with zero physical resistivity, 
s well as for the simulations corresponding to the first, second, 
nd last rows of Fig. 14 . The dashed line indicates the cosmological
ilution of the initial magnetic field if no MHD forces were present.
The expected solution is that of cosmological expansion line 

black dashed) for z > 10, followed by amplification from structure
ormation. 

A significant magnetic field damping is observed at high redshifts 
 z > 10) for non-zero resistivity. This occurs because, at earlier
imes, when the universe is smaller and magnetic field gradients 
re on smaller scales, the constant resistivity term has a stronger
ffect. As a result, a substantial initial damping occurs. 
Nevertheless, after the initial damping at z � 10, all runs with
esistivity exhibit a similar evolution. Initially, they follow the same 
ilt as the evolution driven by cosmological expansion, followed then 
y amplification near z = 0. 
A potential solution is to implement an adaptive artificial resistivity 

hat dynamically responds to the o v erwinding metric, maintaining it
round OW � 1. In the case for runs abo v e this approach could
educe e xcessiv e damping at high redshifts while still ef fecti vely
ontrolling o v erwinding at z = 0. Ho we v er, an y such implementation
hould be designed to not violate astrophysics considerations. Future 
ork should explore this adaptive method to balance error correction 
ith physical accuracy in evolving magnetic fields. 

 C O N C L U S I O N S  

n this paper, we presented the results of new SWIFT SPH MHD
mplementations using DI and VP methods for kinematic dynamo 
ests. Both implementations successfully reproduce the expected 
ualitative and quantitative features when compared to other codes. 
For Roberts flow I, growth rates (Fig. 2 ) and the spatial distribution

f the magnetic field (Fig. 1 ) closely match PENCIL CODE results,
emonstrating numerical convergence (Fig. 4 ). Additionally, we 
xamined ABC flow, where magnetic field structures (Fig. 10 ), 
rowth rates, and oscillation frequencies (Fig. 9 ) were also well
eproduced compared to reference results. 

Re garding div ergence errors, VP maintains error lev els below 20
er cent across all resistivities. For DI, ho we ver, di vergence errors
ncrease at lo w resisti vity unless Dedner cleaning is applied (Fig.
 ). With cleaning, the errors remain within an acceptable range.
dditionally, we assessed the stability of DI with divergence cleaning 
y introducing a significant initial monopole component in the 
agnetic field in the Roberts flow I set-up. In this scenario, Dedner

leaning ef fecti v ely remo v ed the errors, which did not significantly
mpact growth rates (Fig. 8 ). 

To better track spatial divergence errors, we introduced additional 
onitoring quantities, which, in the lo w-resisti vity regime, revealed 

egions not captured by conventional diagnostics (Fig. 7 ). We also
stablished and tested the o v erwinding metric – a criterion for the
nset of a numerically unresolved dynamo regime in Roberts flow I
equation 52 ). 

Furthermore, we performed several adiabatic cosmological runs 
without sub-grid modelling) with zero resistivity. These runs pro- 
uced reasonable magnetic field, density, and velocity distributions 
Fig. 12 ) but exhibited large divergence errors, particularly near 
ensity gradients (Fig. 13 ). By introducing a constant resistivity 
erm based on the o v erwinding metric, we significantly reduced
ivergence errors while largely preserving the magnetic field struc- 
ure (Fig. 14 ). Ho we v er, a notable dra wback of using constant
esistivity is the initial o v erdamping of the magnetic field magnitude
Fig. 15 ). This issue could potentially be mitigated by an adaptive
esistivity approach, which future work should explore to balance 
rror correction with the preservation of physical dynamics. 

In conclusion, both the DI and VP SPMHD implementations in 
WIFT successfully reproduce the action of kinematic dynamo in 
ontrolled environments such as in the Roberts flow I and ABC
ows. We demonstrated that poor numerical behaviour at high 
eynolds numbers can be identified using the o v erwinding trigger
nd divergence error metrics. Additionally, the code qualitatively re- 
roduces cosmological simulations, solving the MHD equations in an 
 xpanding univ erse without sub-grid physics. Introducing a constant 
esistivity term based on the o v erwinding metric ef fecti vely reduced
ivergence errors over the course of the cosmological simulation. To 
MNRAS 541, 3427–3444 (2025) 
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urther impro v e the implementations, an adaptiv e artificial resistivity
cheme, dynamically adjusted based on local o v erwinding, could be
mplemented. This approach would better control divergence errors
nd enhance the field’s smoothness while minimizing the risk of
 xcessiv e magnetic field damping. 

ATA  AVA ILA BILITY  

he SWIFT simulation code is entirely public, including the examples
resented in this work. It can be found alongside an e xtensiv e
ocumentation on the website of the project: www.swiftsim.com .
he PENCIL CODE (Pencil Code Collaboration 2021 ), is freely
vailable on https://github.com/pencil-code . The simulation set-ups
nd corresponding input and reduced output data for the PENCIL CODE

uns are freely available on ht tp://norlx65.nordit a.org/ ∼brandenb/pr
jects/Roberts- Flow- Test. 
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