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ABSTRACT

Understanding the origin and evolution of magnetic fields on cosmological scales opens up a window into the physics of
the early Universe. Numerical simulations of such fields require a careful treatment to faithfully solve the equations of
magnetohydrodynamics (MHD) without introducing numerical artefacts. In this paper, we study the growth of the magnetic
fields in controlled kinematic dynamo set-ups using both smoothed particle hydrodynamics implementations in the SWIFT
code. We assess the quality of the reconstructed solution in the Roberts flow case against the reference implementation in
the PENCIL CODE and find generally a good agreement. Similarly, we reproduce the known features of the more complex
Arnold-Beltrami—Childress (ABC) flow. Using a simple induction-diffusion balance model to analyse the results, we construct
an ‘overwinding’ trigger metric to locally detect regions where the magnetic diffusion cannot counteract the expected induction
because of limitations in the method’s ability to resolve magnetic field gradients. This metric is then used to identify the necessary
resolution and resistivity levels to counteract the overwinding problem. We finally apply this metric to adiabatic cosmological
simulations and discuss the resolution requirements needed to resolve the growth of the primordial fields without artefacts.

Key words: dynamo— MHD —methods: numerical —cosmology: theory.

1 INTRODUCTION

Astrophysical observations, such as rotation measure (RM) and
synchrotron emission, indicate the presence of magnetic fields on
the scale of galaxies and the intergalactic medium. Similarly, the
absence of secondary X-ray signals from blazars sets a lower bound
on the magnetic field strength in cosmic voids (Neronov & Vovk
2010). Magnetic fields are thus expected to be found embedded all the
way to the large-scale structure of the Universe. For comprehensive
reviews, see Han (2017) and Korochkin et al. (2021). Despite the
ubiquitous evidence of their presence, the origin of the magnetic
fields on cosmic scales is still unknown. For instance, magnetic fields
may have originated in the early Universe, emerging during inflation,
electroweak, or quantum chromodynamics (QCD) phase transitions;
see Durrer & Neronov (2013) for a review of these mechanisms. The
study of such fields would thus open a window towards understanding
fundamental physics processes in the early Universe, possibly much
before nucleosynthesis. Alternatively, these magnetic fields could
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have formed in astrophysical objects through battery mechanisms
(e.g. Biermann & Schliiter 1951; Langer & Durrive 2018; Attia et al.
2021; Mikhailov & Andreasyan 2021).

Irrespective of their origin, magnetic fields grow through gravi-
tational collapse and undergo exponential amplification via dynamo
processes in dense astrophysical environments such as galaxies (e.g.
Brandenburg & Ntormousi 2023). This amplification erases any
memory of initial conditions and ceases once the fields become
dynamically significant, influencing gas motion, i.e. saturating close
to an energy equipartition regime (e.g. Ruzmaikin, Sokoloff &
Shukurov 1988; Rogachevskii 2021). Studying magnetic fields as
a window on to the early Universe thus requires us to focus on
regions of space where these dynamo mechanisms are not dominant.

As such, the intergalactic medium (IGM) could serve as a reservoir
for unaltered primordial magnetic fields. However, numerical studies
suggest that voids and the IGM may be contaminated by magnetic
fields expelled from dense astrophysical objects, for instance
through active galactic nucleus (AGN) activity in clusters. This
pollution could even reach a significant volume-filling fraction of
the IGM (e.g. Ardmburo-Garcia et al. 2021), potentially influencing
RM and X-ray observations of magnetic fields in these regions (e.g.
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Aramburo-Garcia et al. 2022; Bondarenko et al. 2022). The recent
work of Tjemsland, Meyer & Vazza (2024) shows that the fraction
of space filled by a strong intergalactic magnetic fields has to be at
least 67 per cent. This likely excludes most astrophysical production
scenarios.

In order to make theoretical predictions, the large-scale evolution
of magnetic fields can be investigated using cosmological simu-
lations. These simulations typically employ the magnetohydrody-
namics (MHD) approximation, which neglects relativistic effects,
plasma effects, and treats the gas as a compressible conducting fluid
in equilibrium. The equation of state is assumed to be an ideal gas
with an adiabatic index y = 5/3.

Simulations provide insight into the large-scale distribution of
magnetic fields. Combined with sub-grid models for galaxy forma-
tion, such simulations are a powerful tool to predict the non-linear
evolution of matter and the coupling with magnetic fields; see for
instance Vogelsberger et al. (2020) for an overview of cosmological
simulation methods.

Quantitatively studying magnetic fields in void environments and
in the IGM requires simulations that cover large scales for statistical
accuracy while maintaining sufficient resolution to capture processes
relevant to magnetic field evolution. In the largest cosmological
simulations with box sizes of Lp,x ~ 100Mpc to > 1Gpc, the
mass resolution typically ranges from mg,, >~ 10° to 10° Mg, (e.g.
Dolag & Stasyszyn 2009; Nelson et al. 2019; Schaye et al. 2023) or,
equivalently, the spatial resolution is only 1-10 kpc in the most dense
regions (e.g. Vazza et al. 2014; Kaviraj et al. 2017). Given that the
gas mass of a Milky Way-sized galaxy is around 10'! M, each such
galaxy is resolved by 10% to 10° gas particles. For comparison, MHD
studies of the magnetic field evolution in isolated galaxies typically
employ > 10° resolution elements (e.g. Wang & Abel 2009; Pak-
mor & Springel 2013; Rieder & Teyssier 2016; Pfrommer et al. 2022).
Some of the magnetic field amplification processes are thus possibly
underresolved in large-scale simulations, which can be compensated
by sub-grid processes akin to large-eddy-simulation approximations
(Vazza et al. 2020; Liu, Kretschmer & Teyssier 2022).

In addition to resolution, cosmological MHD simulations also deal
with large magnetic Reynolds numbers, R,

vrms

Ry = s
" ko

)]

where vy, is the root mean square velocity over the simulation
volume, kg = 27 /A is the characteristic wavenumber at length scale
A, and 7 is the plasma resistivity. MHD simulations of galaxy clusters
suggest a good match with the observed shape of the magnetic field
for turbulent resistivity values of n ~ 6 x 10*’cm? s~! (Bonafede
etal. 2011). Assuming a typical Virial radius of R.; =~ 2.5 Mpc and
a cluster velocity of vy ~ 10% km s~ !, these values lead to magnetic
Reynolds numbers R, ~ 103 to 10*.

However, semi-analytical dynamo studies in the cosmological
context provide a wider range of estimates for magnetic Reynolds
numbers. These studies, which consider various turbulence models
and gas densities, suggest that magnetic Reynolds numbers can
range from Ry > 100 to 2000 (Schekochihin et al. 2005) or up
to R ~ 107 (Schober et al. 2012). The resolution requirements
to directly simulate on cosmological scales with such Reynolds
numbers is much beyond current and future computing capabilities,
and here again, sub-grid process are often employed to model the
unresolved part of the turbulence cascade. Alternatively, some simu-
lations consider neglecting sub-grid effects and restrict their analysis
to the well-resolved regime (Marinacci et al. 2015; Mtchedlidze et al.
2022).
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The MHD differential equations can be solved numerically us-
ing various methods. Most simulations employ mesh-based ap-
proaches, such as AREPO, (Pakmor, Bauer & Springel 2011) and
ENZO (Bryan et al. 2014). Alternatively, meshless schemes like
meshless finite mass (MFM) in GIzMO (Hopkins & Raives 2015),
smoothed particle hydrodynamics (SPH)-based MHD approaches
such as the ones in the GADGET code (Dolag & Stasyszyn 2009;
Stasyszyn, Dolag & Beck 2012), GASOLINE (Wissing & Shen
2020), or SPH MHD implementation in GIzZMO (Hopkins & Raives
2015) have also been used for astrophysical and cosmological
simulations.

In this study, we make use of SWIFT, an open-source SPH-based
code for large-scale cosmological simulations (Schaller et al.
2024), offering several models for hydrodynamics and sub-grid
physics. The code also includes two variants for SPMHD: one
based on the direct integration of B/p (Karapiperis et al., in
preparation), inspired by the implementation of Price et al. (2018),
and the other using a vector potential approach, B = curl A,
derived from the work of Stasyszyn & Elstner (2015).Having
several independent numerical results with different hydrodynamics
models, sub-grid models, and two MHD implementations can
be advantageous for estimating the numerical uncertainty of the
results.

In this work, both MHD flavours provided in SWIFT will be tested
on a set of standard kinematic large-scale dynamo problems: the
Roberts flow I (Roberts 1972), which has been studied both analyt-
ically and through numerical simulations (Tilgner & Brandenburg
2008; Stasyszyn & Elstner 2015; Clarke et al. 2020), as well as
the Arnold-Beltrami—Childress (ABC) flow (Archontis, Dorch &
Nordlund 2002; Teyssier, Fromang & Dormy 2006; Baggaley et al.
2009; Bouya & Dormy 2012). Convergence against the reference
implementation in the PENCIL CODE (Pencil Code Collaboration
2021) will be used to assess the correctness of our SPH solver.
To ensure the validity of the results, MHD simulations are expected
to maintain a solenoidal magnetic field. To monitor this, local diver-
gence error metrics are used and corrective measures are employed.
We study the impact of such measures on the growth of the magnetic
field in these well-controlled experiments. The lessons learned from
studying these flows allow us to construct an ‘overwinding’ trigger
detecting where the simulation’s resolution is too low for a given
kinematic dynamo to be properly resolved. This trigger can then be
used in a cosmological setting to assess whether the geometry of the
field in void regions is unaffected by numerical artefacts and could
thus be used, in the future, to put constraints on the origin of the
fields.

This paper is structured as follows. The codes, relevant differential
equations and the error metrics are described in Section 2. The per-
formance of our simulation code on the Roberts and ABC kinematic
dynamo problems is presented in Section 3. The construction of
the overwinding trigger and tests are presented in Section 4 with
applications to a simple cosmological test case following in Section
5. Finally, in Section 6, we offer some conclusions and outlook on
future applications of our code.

2 METHODS

In this section, we introduce the equations of MHD and their numer-
ical implementations in the SWIFT (Section 2.2) and PENCIL CODE
(Section 2.3) codes. We also introduce in Section 2.4 the error metrics
we will use to monitor the divergence errors appearing in the code.
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2.1 MHD

The evolution of magnetic field and plasma can be modelled using the
MHD approximation (Widrow 2002; Brandenburg & Subramanian
2005):

oB

o = curl[v x B] + nAB, 2)
ov 1 1

— +W-V)v=——VP - —VS+1I, 3)
ot o P

with v the fluid velocity, p the fluid density, B the magnetic flux
density, n the physical resistivity, S the Maxwell stress tensor

1 B2 B;B;
Sij = 5*5”‘ - Z, “)
Mo Mo
with uo the vacuum permeability, and thermal pressure
P =(y —1pu, (5)

where u is the specific internal energy. The vector IT corresponds
to an additional artificial viscosity and will be explained below.
Additionally, there is an equation governing the specific energy
density (see e.g. Price 2012):

de

1 —
o1 +(U'v)€=—;VjU,‘Sij+H, (6)

where ¢ = v2/2 4+ u + B?/2p is the specific energy density, II —
energy dissipation term from viscous and resistive heating.

These equations describe the magnetic field, velocity and specific
energy evolution as a function of spatial coordinates and time in the
Eulerian frame.

2.2 MHD in the SWIFT code

The set of equations introduced above can be discretized in the La-
grangian frame using a particle-based approach within the framework
of SPH (see e.g. Price 2012). More specifically, our implementation
is built on top of the SPHENIX (Borrow et al. 2021) formulation
of SPH that was designed specifically to perform well in galaxy
formation simulations.'

2.2.1 Momentum equation in SPH

We start with the discretization of the momentum equation (3). The
SWIFT code discretizes the gas into a set of particles and solves the
equations of motion at particle positions, i.e. in a frame where the
observer moves with the fluid:

dv 1

— =——VS+ 0O+ M @)
dr 0

with d/dt the material derivative, I1 corresponding to additional
artificial viscosity terms that help capture shocks at both hydrody-
namic and magnetic wave discontinuities. This is achieved by using
SPHENIX viscosity terms with a signal velocity that incorporates
the Alfvén speed (Karapiperis et al., in preparation). The term
M is an additional force that corrects tensile instability akin to
the Powell et al. (1999) term, an effective numerical force that
arises due to the SPH discretization and counteracts the particle
clumping associated with %VS. The magnitude of this effective
force is proportional to the divergence of the magnetic field (Bgrve,
Omang, & Trulsen 2001). The corrective term M explicitly violates

!For completeness, all the runs employed version 3ea21e98 of the code.
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energy conservation (Price 2012). The force becomes significant in
regions where the magnetic pressure is comparable in magnitude to
the thermal pressure. Consequently, maintaining a small divergence
of the magnetic field is crucial to minimize both the particle-clumping
component of 1 VS and the corrective term M.

In SPH, the local matter density is computed as a sum:

pa = myW(lry —ryl, ha), ®)
b

where a and b are particle labels, W is the smoothing kernel, and &
the smoothing length, which is related to the local mean inter-particle
separation.

The MHD momentum equation becomes

W S, [fabsz;f OWar(ha) | foaSy' dWan(hy)

dr Pa x4 IS axl{
I, + M)+ fo, ©)
where g“r;]"v are the accelerations coming from gravity and f,;:
ha 0pa
ab = 1+ s 10
Jab 35, oh, (10)

are terms accounting for the spatial variation of the smoothing
lengths. This set of equations is identical to the pure hydrodynamical
case (see e.g. Price et al. 2018; Schaller et al. 2024) but with the
pressure replaced by the Maxwell tensor and the tensile correction
added.

2.2.2 Magnetic field evolution in SPH using direct induction

The simplest way to implement the evolution of the magnetic fields
into SPH is to trace their evolution at particle positions

dB .
E:(B~V)v—B-d1vv+nAB+QAR (11)
with v the fluid particle velocity, Qag an artificial resistivity correc-
tive term to aid handling of magnetic field discontinuities (see e.g.
Price 2012; Price et al. 2018).

Our direct induction (DI) implementation is fully described by
Karapiperis et al. (in preparation). In summary, the equations of
resistive MHD are solved by evolving the quantity B/p, with B
the magnetic flux density and p the mass density. The induction
equation then reads

d (B B n 1
—(=)=(=V)v+ “AB+Qar— - V¢ (12)
dr \ p p p p

with ¢ a scalar field (the Dedner field), which is used to remove
via hyperbolic and parabolic divergence cleaning any non-zero divB
arising due to numerics (see e.g. Dedner et al. 2002; Tricco, Price &
Bate 2016). The evolution equation for the scalar field itself is given
by

d 1
" <K> = —oycndivB — Efdivu - apf, (13)

Ch Ch Tc

with ¢, an appropriately chosen cleaning speed and t. is local Dedner
scalar dissipation time

h
ch=\/VAt+cs Te= o = Vv B2/(1op), (14)

where oy, and o}, are constant parameters with typical values o ~ 1.0
(Price et al. 2018), v4 is the Alfvén speed, and cg the sound speed.

MNRAS 541, 3427-3444 (2025)
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Several ways of expressing a divergence operator in SPH exist
(Price 2012). In our implementation of the cleaning terms, we choose
the antisymmetric divergence formulation

i ; my(By —

The discretized version of the induction equation then becomes
(Price et al. 2018; Karapiperis et al. in preparation):

divB, = B.) - VW (ha). (15)

d B a a a
a ; = Qg + QDender + Q0mm + Qir (16)
a

with the stretching source term

fab

a b

Qgtr = - (va - Ub)(B Va Wab(ha)) (17)

divergence cleaning term

Qenger = = Zmb{f“”‘”“v Wab(h)+f”;‘””vbwab(hb) (18)
b

with the Ohmic (or physical) resistivity term
0r Wap(ha)
Q0pm =21 Z

—— 5 (Ba— By). (19)
|r ab |pu Pb
Note that our implementation also uses artificial resistivity terms
but these were switched off in what follows as we are concerned with
the precise effect of physical Ohmic resistivity alone.

2.2.3 Vector potential MHD implementation in SWIFT

Alternatively, the magnetic field divergence constraint can be en-
forced by evolving for the vector potential (VP; Stasyszyn & Elstner
2015) instead of the magnetic field. The magnetic field in terms of
the vector potential A is then

B = curlA. (20)
The induction equation for A reads

d

EA =vxcurlA+ (- -V)A+nAA - VI, 21

where I" is the electromagnetic gauge. The gauge does not influence
the magnetic field and only governs the evolution of the vector
potential. Since Maxwell’s equations, when expressed in terms of
the vector potential, do not uniquely determine it, a gauge condition
must be chosen (Jackson 1999). One possible choice is the Coulomb
gauge, where divA = 0. To enforce this condition numerically, a
new scalar field can be introduced, sourced by the residual divA
(Stasyszyn et al. 2012). Similarly to Dedner divergence cleaning, the
electromagnetic gauge I" propagates and removes the divergence of
the A field through its evolution equation

d c?

—I'=—c}(V-A) - 2T, 22
a ci( ) . (22)
where ¢y, 7. defined the same way as for Dedner cleaning (equation
14). The SPH version of the induction equation for vector potential
then reads

d

EA Qgtr + QGaug,e + Q((/l)hm (23)
with stretching term
a fab
QStr = th(va - vh) ) Aava Wab(hu)v (24)
a p

MNRAS 541, 3427-3444 (2025)

gauge term
a fub
QGauge = pAi th(ra - Fh)Va Wuh(ha)s (25)
a
b
with the observed B field reading

B, = Zb: %(Aa — Ap) X Y, Wap(h,)). (26)

As was the case for the direct induction method, we add an Ohmic
resistivity term which, here, acts directly on A:

27} Z mhlaa ar“’ah(ha) + arWub(hb)

(Aa — Ap), (27)
|rab|pab 2

QI(I)hm
where fop = 5(Pa + Pp)-

In what follows, we will make use of both flavours of SPMHD
with special attention to the direct induction scheme.

2.3 MHD in the PENCIL CODE

As mentioned above, we make use of the PENCIL CODE (Bran-
denburg & Dobler 2002; Brandenburg 2003), a thoroughly tested
and validated grid code, as a reference against which to evaluate
performance of SWIFT’s MHD implementations.

In the PENCIL CODE, space is divided into a grid of fixed points.
Spatial derivatives are calculated as combination of values of a
function at the point and its neighbours in the direction of derivative
using centred finite differences approach

fi = (= fir3+9fi2—45 fio1 + 45 fis1=9 fisz + fi13)/(608x),
(28)

I = Qfies =27 fia + 270 fio1 —490f; +
+270 fi41 — 27 fiya + 2 fi43)/(1808x%). (29)
For time integration the third-order 2N -Runge—Kutta scheme is used

(Williamson 1980).
The equations for density and velocity fields in the Eulerian frame

0
a]np + (v - V)lnp = —divo, (30)
0
ST V= =P +np+ 1T X B+ fuet Fomr G
where f ;. is the viscous force per unit mass, which is proportional

to the viscosity v and the divergence of the traceless rate-of-strain
tensor. The magnetic field equations are solved using the vector
potential in the Weyl gauge (I' = 0) in an Eulerian frame:

0A

§=uxVxA+nv2A. (32)

To deal with discontinuities and discretization errors the code
involves some non-zero v and 7 in equations (31) and (32) using a
high-order spatial discretization as in equations (28) and (29). For the
kinematic dynamo problems such as Roberts Flow I, the momentum
equation is not solved explicitly. Instead the velocity field is given as
a coordinate-dependent function. For internal energy the isothermal
equation of state was used.

2.4 Magnetic field error metrics in SWIFT

In a direction induction method, magnetic field evolution divergence
errors can occur due to numerical errors. Even though the Dedner
cleaning scheme acts to reduce the divergence, it is useful to have
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a set of tools to monitor the spurious monopole component of the
magnetic fields. We introduce the ones we use here.

The most widely used error metric for SPMHD is the ratio (e.g.
equation 78 of Price & Monaghan 2005)

divB,| h,
Ry, = [WVBalha. 33)

Whilst directly related to the problem we want to monitor and to the
term sourcing the Dedner scalar evolution, this error metric is large
only if the divergence is of order of largest resolvable gradient by
SPH, ~ |B,|/h, (see below).

In addition, the outcomes of divergence presence are not limited
to some unphysical field fraction in the magnetic field, and thus
require additional monitoring techniques. If the error metric Ry is
small, it does not guarantee that the effect of the spurious divergence
is small. For example, there are monopole forces proportional to
divB that could result in major forces affecting the dynamics of a
particle. To monitor such situations, another, more rarely used metric
monitors the component of the magnetic field that is parallel to the
total magnetic force acting on the fluid (see equation 79 of Price &
Monaghan 2005). It thus is a spurious force

(B, - fmag.a)
Rio= 70—,
|Ball f nag.al

where [, , is the sum of the first term corresponding to —%VS in
equation (9) and the monopole correction force M ,.

Finally, even when magnetic forces parallel to the magnetic field
are small (i.e. R; is small), the monopole component of the magnetic
field can create an additional spurious Lorentz force. To monitor this,
one can estimate the magnitude of the monopole component relative
to the physical magnetic field. To this end, we introduce the ratio of
the magnetic field divergence to the current

_|divB,|
" curlB,|”

(34)

2a (35)

All these error metrics can be large in regions where the values
of the divB, and curl B, operators are very sensitive to the particle
arrangement. The particle noise level can be conservatively estimated
as the level of error of the SPH gradient operator (e.g. Price 2012;
Violeau 2015). Assigning a unity scalar quantity to SPH gas particles
and computing a gradient vector, which in the continuum limit should
be zero, yields:

mp
(VDo =) 5, YWar —rol b)) (36)
b r=rg
This quantity will be non-zero due to particle arrangement in space.
Using this construction, the errors induced by particle noise in the
divergence and curl operators can be estimated as:

(8divB,) ~ (V1)s - Ba),
(scurlB,) ~ [(V1), x B,].
(8 fmga) = 3 (V. 37)

In what follows, and more generally in SWIFT, when measuring
the three error metrics introduced above, we explicitly zero the
quantities that are not 10 x larger than their corresponding pure-noise
counterparts. This allows us to focus our analysis on regions where
the errors are not triggering solely due to the noise in the particle
distribution. Note however that the Dedner evolution equation (13)
does not use this limit; any (spurious) divB appearing in the fluid is
sourcing the scalar field evolution.

Resolving kinematic dynamos in SPH MHD
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3 KINEMATIC DYNAMO TESTS

Dynamos are crucial for cosmological and astrophysical magnetic
field evolution. Therefore, correctly capturing the amplification
process is a necessary step in the validation of a numerical code.
In this section, we study the performance and limitations of the
SPMHD implementations in SWIFT code introduced above on the
standard Roberts (1972) flow and the ABC (Childress 1970; Arnold
2014) flow dynamo test problems. Both of these tests probe the
kinematic dynamo regime.

The main aim of these tests is to verify that the induction source
term together with resistive terms in the code are modelled correctly
and allow correct reproduction of magnetic field growth. In particular,
we focus on characteristics such as the growth rate dependence on
the physical resistivity and resolution convergence as well as on
qualitative features such as the spacial magnetic field distribution
and the mode transitions. We compare our results to the PENCIL
CODE and to published solutions.

3.1 The Roberts flow I test

There are several simple dynamo capable flows consisting of four
vortices in the x y-plane with a uniform velocity field in the z direction
(Roberts 1972). These flow problems have been widely studied both
with simulations and semi-analytically. The different flows proposed
in this paper vary in their v,(x, y) dependence and provide a range of
mechanisms for magnetic field growth. One of them, the first flow,
exhibits growth via the alpha effect (Tilgner & Brandenburg 2008).
Flows Il and III show growth due to a memory effect (Rheinhardt et al.
2014). The fourth flow provides growth through effective negative
turbulent diffusivity (Devlen, Brandenburg & Mitra 2013).

The first flow was chosen for our study for its simplicity and
relevance to cosmology and astrophysics since it manifests the
alpha effect, which is important in galaxy discs (e.g. Widrow 2002;
Brandenburg & Ntormousi 2023).

To test the induction in the SWIFT code, the kinematic dynamo
regime was chosen. This is the regime where the velocity field is not
affected by the back-reaction from the magnetic field via the Lorentz
force. This renders the equations linear and allows different modes
(sourced in the initial conditions) to grow independently. On the code
level we force the particles to obey at all times the following velocity
vectors:

v, = v(ra), (38)

where vy is the forcing velocity field given below.

3.1.1 Detailed set-up

For the velocity field of the flow, we use the same convention as
Rheinhardt et al. (2014):

vy = UpSinkox coskoy
vty = —Vp coskox sinkgy
Vi, = @ sinkox sinkyy

where vg; are the components of the particle velocity, x, y, z the
particle positions, and vg, @y the magnitudes of the planar and
vertical velocities, respectively. In our configuration, we fix kg =
27/ Lyox = 1 and a)o/ﬂ = vy = 1 such that the spread in velocities
is normalized vy, = 1.

For the magnetic fields, we use three separate initial configura-
tions:

MNRAS 541, 3427-3444 (2025)

920z Arenuer gz uo 1sanb Aq Z195028/221E/v/L ¥S/aI0IME/SeIuwW/Wwod"dno-olWapeo.//:sd)y WOy papeojumod



3432  N. Shchutskyi et al.

First, random initial conditions (ICs): we generate a uniform
distribution of vector potentials A with random length in range
[0,A¢]. While initially the vector potential is not smooth, the magnetic
field is calculated through SPH version of the equation B = curlA
(equation 20) is spatially smooth and divergence-less form of B by
construction.

Second, random ICs without bulk MF': calculation of the magnetic
field from random vector potential may introduce a small constant
field component. Such components along the z direction will not
decay, and thus can influence decaying modes (see Section 3.2
below). Thus, the volume averaged magnetic field is subtracted.

Third, we employ a Beltrami-type field, i.e. a field for which
the relation curl B = kB holds, which is also divergence-less. More
specifically, we use:

S
|

= By(sinky + sinkz),
B, = By(coskx — coskz),
B. = By(sinkx + cosky). (39

The constants By, Ay are the magnetic field and vector poten-
tial normalization factors respectively. Setting the magnetic field
wavenumber to k = 1 was enough to start the mode with the largest
growth rate in the range n € [0.1, 0.2] (see Section 3.2). We set
the initial field By or Ay such that Bu(t = 0) = 107 Beq, where
equipartition estimate is:

2 2

- , €kin = —o=, (40)
2uo

€mag = €kin, €mag =
where k = 27/ L for our domain of size L3.

As mentioned above, we make use of equation (1) for the magnetic
Reynolds number definition. For completeness, we chose a value of
the internal energy, u, of order 1000 such that the resulting flow
remains sub-sonic at all times. Note that, in this set-up, the sound
speed only affects the time-step size (via the Courant condition) and
the Dedener cleaning speed.

3.1.2 Qualitative Roberts flow I results

We study the Roberts flow I problem using 16°, 243, 323, 483, 64°,
and 128 particles initially arranged in a glass-like (random) set-up
with uniform density.>

To ensure that SWIFT correctly reproduces Roberts flows, we expect
the magnetic field distribution, B(x, y, z), across the simulation
volume to be comparable to that obtained from other MHD codes.
While the amplitude of the magnetic field in a growing mode
increases exponentially with time, its normalized spatial distribution
—given by B(x, y, z, 1)/ Bims(t) — should remain time-independent.

For code comparison, we use data from a Roberts flow simulation
performed with the PENCIL CODE. This simulation follows the set-
up described above, initialized with a random vector potential at a
physical resistivity around 7 2~ 0.18. Since Roberts flows exhibit
translational symmetry along the z direction, a growing mode
initialized with random conditions can manifest with an arbitrary
shift along z. To eliminate this ambiguity in the SWIFT simulations,
we opted for a single-mode initial condition (equation 39), which

2A glass arrangement can be obtained by starting with particles in a cubic
grid lattice with small perturbations in lattice positions, with no pressure
gradients or velocities and by letting particles move under numerical forces
to a configuration where the kinetic energy does not change any more.
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ensures that the growing mode appears without an arbitrary vertical
shift.

Fig. 1 compares the spatial configuration of the magnetic field
components between SWIFT and PENCIL CODE runs. The upper
row displays the magnetic field distribution in a 323-resolution
PENCIL CODE simulation, taken as a grid cell values at z =0.
The lower row presents results from a 323-resolution SWIFT run,
sliced at z = 0.05 Lpox. In both cases, the plots show density maps
of the individual magnetic field components, normalized by the
root mean square magnetic field over the simulation volume. The
visual agreement between the two codes indicates that SWIFT’s direct
induction MHD implementation accurately reproduces the expected
field configuration, demonstrating consistency with the PENCIL CODE
results. We also verified that the vector potential implementation
leads to similar results.

Having verified that our SPMHD implementation agrees quali-
tatively with the reference implementation in the PENCIL CODE, we
move on to quantitative measurements of the growth rate of the field.

3.2 Growth rate comparison

The instantaneous growth rate, y;, is defined as:

d
Yi = aln(Brms)s (41)

where B, is the root mean square average of the B-field in the whole
simulation volume. The instantaneous growth rate is averaged on the
interval where it is roughly constant. For our runs, specifically, we
choose to measure quantities at an interval 6z = 0.05 in internal time
units over the range ¢ € [30, 70], where the growth rate is indeed
well-behaved and constant. The growth rate and fluctuations are then
calculated as:

8y =2V =¥ (42)

In the Roberts flow set-up, the excited magnetic field mode grows
exponentially with time and has a growth rate that depends directly
the magnetic Reynolds number. In our experiments, the velocity and
wavelength of the flow are fixed and the physical resistivity is varied
in order to change R,,. We report the resulting dependence of the
growth rate on the resistivity in Fig. 2. The top panel depicts the
growth rate as a function of resistivity near the dynamo onset, while
the bottom panel illustrates its behaviour in the ideal MHD limit (n —
0). Note that the x-axis in the bottom panel is log-scaled for resistivity.
The graph represents results from PENCIL CODE simulations at a
323 resolution, DI and VP MHD implementations in SWIFT code at
643 resolution. In the PENCIL CODE, random ICs were used for all
data points. For the SWIFT code, random ICs were applied for n <
0.1, while one-mode ICs were used for n ~ [0.1, 0.2]. Both MHD
flavours in SWIFT exhibit slightly lower growth rates compared to
the reference results from the PENCIL CODE. However, both SPMHD
implementations accurately capture the overall relationship between
y and 7 for high resistivity. The VP scheme underestimates growth
rates relative to the DI scheme. One possible explanation is that, in
the version of the code used for this study, parameters in the gauge
equation were not as well optimized for the VP implementation as
they were for the cleaning in DI.

The errors in equation (20) probably do not influence the mea-
surement of magnetic field growth since the spacial distribution of
vector potential is time independent for a growing mode, such that
Ax,y,z,t) = f(t)A(x, y, 2).

y = (Vi)
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Figure 1. Maps of the magnetic field components B, (left), B, (middle), and B; in units of the magnetic field RMS in the xy-plane at z = 0.0 for PENCIL and
z = 0.05 for SWIFT (for explanation of such choice see the text) at around ¢ > 20 using the direct induction scheme (bottom row) with N = 323 particles. The
streamlines indicate the magnetic fields inside the plane. The growing mode of the magnetic fields in SWIFT reproduces well the observed features in the fields

extracted from the PENCIL CODE.

The lower resolution runs, 32% and 16* exhibit the same behaviour,
but the deviation from the PENCIL CODE is larger for smaller
resolutions.

The limit of small physical resistivity is crucial for the future SWIFT
applications to cosmology and astrophysics since it translates to large
(R, 2, 10 ~ 100) magnetic Reynolds number. In the Roberts flow I
case, when decreasing the resistivity downton ~ 3 x 1073 (i.e R, ~
300), the growth rate deviation of the SPMHD implementations from
the PENCIL CODE increases (bottom panel of Fig. 2). For our runs, the
growth rate is not the same and shows some resolution-dependent
fluctuations. These fluctuations are illustrated as error bars on the
figure where we used 2 standard deviations as the size of the bar. For
growing mode solutions, the relative magnitude of the growth rate
uncertainty is at the level of 1072 but increases for lower resistivity
and for lower resolution. At ~ 1073~10~* (or R, = 1000-10 000)
the growth rate fluctuations become of the same order as the growth
rate itself.

Focusing now on the last two points from the right, (i.e. n =
0.1811, 0.2), from Fig. 2, the decaying mode forms, as expected.
Our experiments show, however, that if the random ICs (rather than
the Beltrami field) are used the negative growth rate does not become
constant with time and slowly tends to zero with the magnetic field
reaching some plateau and only slowly changing with time. This
behaviour is highlighted on Fig. 3 where we tested both MHD
implementations and and three types of initial conditions for the
DI case:

(i) random magnetic field with bulk field subtracted,

(ii) random magnetic field without bulk field subtraction, and
(iii) single-mode ICs, i.e. Beltrami field.

For all schemes and ICs, the decay stops. But with one-mode
ICs the decaying modes exist for a more extended period of time,
which helps the precise measurement of the growth or decay rate.
We thus use such single-mode ICs in the following precision tests,
in range 1 ~ [0.1, 0.2]. For small resistivity,  — 0, the modes with
k < 1become important (e.g. Roberts 1972). For this reason we used
random ICs in n < 0.1, because they contain a spectrum of modes,
with wavelength spanning from resolution scale up to the simulation
boxsize.

3.3 Transition from growing to decaying regime

An important aspect is the dynamo onset resistivity and the corre-
sponding Ry,. This is the critical resistivity at which the behaviour
transition from a growing to a decaying magnetic field. If captured
incorrectly by an implementation, kinetic dynamos can appear under
incorrect conditions. In the case of more complex simulations such
as cosmological MHD simulations this can result too much or too
little magnetic field growth and can be harder to identify than for less
complex systems. The cosmological simulations can also have some
resolved and under resolved flows, and the resolution dependence
of critical magnetic Reynolds number RS in the Roberts flow
I test can thus give us insight to the dependence of the dynamo
strength on the flow resolution in different regions of cosmological
simulations. Tilgner & Brandenburg (2008) measured the transition

MNRAS 541, 3427-3444 (2025)
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Figure 2. Top panel: the growth rate of the Roberts Flow 1 dynamo as a
function of the physical Ohmic resistivity for the PENCIL CODE with 323
cells compared to both SWIFT MHD implementations using 64° particles.
The bottom panel shows the same data but using a logarithmic axis for the
resistivity to focus on the behaviour of the growth rates close to the ideal
MHD limit (n — 0). Negative growth rates indicate decaying modes. The
error bars represent the magnitude of numerical growth rate fluctuations.
The direct induction (DI) implementation of SPMHD in SWIFT matches
the PENCIL CODE results closely for almost all values of the resistivity (and
thus Reynolds number); the cross-over point between growing and decaying
modes, in particular, matches precisely. Deviations are only found close to
the ideal MHD limit. The vector potential (VP) implementation displays a
systematically lower growth rate than the other models.

from decaying to growing modes in the Roberts flow I test to occur
around RS ~ 5.52, which corresponds to n = 0.1811 for the set-
up. The results of the simulations are resolution dependent, but we
should expect them to converge to the correct R°™. To validate the
implementations and obtain their convergence rates, we started by
running a series of additional simulations using 128 particles around
the expected critical resistivity. We then measure the growth rate
and interpolate between the measured values to get RS, Using this
procedure, we find:

RS = 5.487 £ 0.005
RS = 5.571 +0.004

(DI implementation),

(VP implementation),

in reasonable agreement with published values.

To study the convergence rate, we repeat the same exercise but
using simulations with 163, 243, 323, 483, and 643 particles. We then
measure the difference between the critical resistivity obtained at a
given resolution and the value extracted from our highest resolution
run (reported above). This difference is shown in Fig. 4 as a function
of the particle number (bottom axis) or, equivalently, as a function of
the SPH smoothing scale, i.e. the spatial resolution (top axis). As can
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Figure 3. Magnetic field time evolution for decaying mode with different
ICs: with one specific mode excited (DI one mode IC, dotted line), with
random initial magnetic without bulk magnetic field subtraction (DI rand.
IC with bulk MF, dashed line), with random magnetic field with bulk field
subtracted (solid, DI and VP rand. IC no bulk MF). The single-mode ICs
consist of a Beltrami field with wavelength A = Lyx. For all of the runs the
correct decaying mode appears initially, but for DI is followed by other, slowly
growing mode and slowly decaying modes. The runs indicate that longevity
of the decaying mode can be improved by bulk field subtraction. However,
the longer time behaviour is not connected to the bulk field subtraction. Since
one-mode ICs provide the longest existence time for the decaying mode, this
initial field configuration was chosen to study the dynamo onset resistivity in
what follows.

0.54 0.36 0.27 0.18 0.13

160 247 3% @ - 647
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Figure 4. Relative deviation of the critical Reynolds magnetic number of the
Roberts flow I problem from the one extracted from our highest-resolution
(N = 128 particles) as a function of the number of particles (bottom axis),
or smoothing length (top axis) in a simulation of size Lyox = 2. The top and
bottom lines indicate slopes of N~ and N~!. Both MHD implementations
in SWIFT converge with increasing resolution at a relatively similar rate.

be seen, both schemes do converge to the solution though at slightly
different rates. We additionally measure the convergence rate as a
function of particle number by fitting a power law to the data on the
figure. We find slopes of:

a =—0.762 +£0.023
a = —0.690 £0.014

(DI implementation),

(VP implementation),

i.e. a convergence rate close to second-order in the spatial resolution
(SR o h?).

3.4 Impact of resolution and resistivity

Magnetic field pattern develops thinner features as the resistivity
decreases. At some threshold resistivity and resolution, distortions of
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Figure 5. Maps for By /B at t = 50 in XY plane for Roberts flow 1 runs at 163 (left), 323 (centre left), 64 (centre right) resolution with n = 0.0l and n = 0
run at 643 (right). For low resolution runs magnetic field pattern appears more distorted than at higher resolution. As the resolution is increased more thin
magnetic field features become visible. In the limit of zero resistivity, the magnetic field pattern becomes unresolved for any resolution.

the magnetic patterns appear. However, for higher resolution, at fixed
n, the distortions are absent, indicating the connection of magnetic
field pattern breakdown in the ideal MHD limit and resolution. The
process of increasing resolution at a fixed resistivity is visually
illustrated in the left three panels of Fig. 5. The figure presents density
maps of magnetic field slices, depicting By (x, y, 2, )/ Bms(¢) in the
xy-plane for resolutions of 163, 323, and 643 at n = 0.01, along with
a 643 run without resistivity. In all cases, random initial conditions
were used, and the slice heights were adjusted to capture the same
feature. The maps represent the magnitude of the magnetic field
component, using the same magnitude scale as in Fig. 1. Streamlines
indicate magnetic field lines in the xy-plane.

As the resolution increases from left to right, initially unresolved
structures reveal more detail, reducing blob-like distortions. How-
ever, in the zero-resistivity case, the pattern remains distorted at all
resolutions, with elevated magnetic field regions appearing along the
vortex boundaries (x = wn and y = wm, where n, m are integers),
with a characteristic size on the order of the resolution scale (Fig. 5,
right most plot). The growth of magnetic distortions at the resolution
scale in the absence of resistivity is not unique to the SWIFT DI or VP
implementations and has also been observed in other MHD dynamo
simulations (e.g. Brandenburg 2010).

3.5 Influence of spurious magnetic field divergence

Physical magnetic field should maintain the solenoidality condition
(divB = 0). Probing the level of spurious divergence can help
indicate how much the simulation results can be trusted. The velocity
field forcing term used for the Roberts flow test decouples the force
equation from the induction one. As such, the only way spurious
divergence can affect the magnetic field evolution is through the
induction equation. Ideally, in the Eulerian frame, the induction
term curl[v x B] should not generate any divergence. However,
due to inaccuracies in the SPH operator, the induction term may
inadvertently introduce divergence. The presence of a monopole
component in the magnetic field, By,on, can then act as a source for
physical fields through the term curl[v x By,on], potentially altering
the magnetic field growth rate.

As an initial check, we monitored the mean divergence error
throughout our runs. The divergence was evaluated once the growing
mode was established, using a time-averaged measurement over
the interval ¢ € [30, 70] and with volume-averaging over the entire
simulation domain. The results are reported as a function of resistivity
on Fig. 6. The figure presents the divergence error, Ry, without noise
cancellation for 643 DI and VP runs. Now we also include the direct
induction runs with measures to clean the divergence (Section 2.2.2).

101
10°§
i 1
= 107
ﬁ>3 10'25
=) | _
—~ . —4— DI (no cleaning) 647 N
10 | -}~ DI (with cleaning) 64° .
| —+— vpea?
-4
e 107* 10-3 102 10!
n

Figure 6. Magnitude of mean volume and time averaged divergence error
versus physical resistivity for 643 runs for SWIFT MHD implementations. The
divergence errors here for both DI and VP are the measure of accuracy of the
produced B field. For DI the divergence is also entering equations of motion.
The error experiences order of magnitude jump around  ~ 3 x 103 for both
MHD implementations in the same region where large growth rate deviations
from PENCIL CODE appear. For direct induction scheme the Dedner cleaning
helps to keep divergence errors where otherwise they will be big (DI solid
and dashed lines).

For resistivity values above n >~ 3 x 1073, magnetic field is well
behaved, the error remains below 10 per cent in all cases. However,
for smaller resistivity, the errors increase significantly. In the VP runs,
the error saturates at approximately 20 per cent. In DI runs without
cleaning, the error continues to grow as resistivity decreases until
a significant portion of the field consists of monopole component.
When Dedner cleaning is enabled, the errors are significantly reduced
to an acceptable level of about 5 per cent, and exhibit behaviour more
similar to VP. The DI implementation with cleaning results less errors
than VP over whole resistivity range.

In addition to monitoring global averages, it is also instructive
to examine the spatial distribution of divergence errors. We used
two error metrics introduced in Section 2.4: Ry and R,. Maps of
these error metrics for Roberts flow I at n = 0.01 (where pattern
destruction occurs for N = 16° particles; see below) are shown
in Fig. 7 for three different resolutions, along with an additional
run in the ideal MHD limit. All runs were performed using the
DI implementation with divergence cleaning enabled. These maps
correspond to the same set-up and time as those in Fig. 5.

The mean errors remain small across the simulation volume for all
resolutions but are more pronounced inside vortices, that correlates
with large shear in the velocity of the Roberts flow. The R, metric
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Figure 7. Density maps for dimensionless divergence error metrics Rop = h divB/|B| (top) and R, = divB/|curlB| (bottom) with additional cuts to reduce
SPH noise. The Roberts flow I runs were performed with 1 = 0.01 for three resolutions: 16> (top column), 323 (upper middle column), 643 (lower column)
particles, and an additional single run with n = 0 at 643 resolution (right-most panel). Regions with R; > 0.1 indicate large divergence errors. The divergence
errors are elevated mostly inside vortices. Resolution increase leads to decrease of divergence error metrics. Both Ry and R, maps are similar in general however
have some small differences at resolution scale. Divergence errors are small even in the ideal MHD limit. However, the R, metric shows more elevated values

in this regime.

highlights similar regions as Ry but tends to yield slightly lower
values. In the ideal MHD case (i.e. zero resistivity), the Ry metric
remains mostly below 10 per cent, whereas R, exceeds 10 per cent.
This indicates that the two error metrics are not entirely equivalent,
and R, alone does not fully capture all unphysical magnetic
field.

The Roberts flow I is an idealized set-up where the divergence can
remain low both in space and time, and particle distributions, along
with other quantities, are smooth. However, in real astrophysical
and cosmological simulations, strong density, magnetic field, and
velocity contrasts exist, and the particle distribution is highly non-
uniform. Additionally, processes such as energy injection from sub-
grid models and particle removal can introduce sudden spikes in
divergence. Therefore, it is crucial to investigate the impact of large
divergence errors on the growth rate, evaluate the effectiveness and
determine the main source of divergence cleaning.

To assess the cleaning performance in a dynamo setting, we
conducted additional runs in which a large divergence error was
deliberately introduced in the initial conditions. This was achieved
by generating random initial conditions similar to ones described in
Section 3.1, but with randomly oriented B field vectors instead of
random A, thereby ensuring a significant monopole component in
the magnetic field.

Fig. 8 illustrates the evolution of the magnetic field and divergence
error over time for the DI implementation. Initially, divergence
cleaning was disabled (Ing), and we observed that physical resistivity
alone was sufficient to dissipate the large initial divergence error.
However, when divergence cleaning was enabled, the errors were
removed much more rapidly (Ing+Clean). Ultimately, the divergence
error saturated at the same level as in runs with divergence-free
(random ICs from Section 3.1) initial conditions (Clean).

Thus, while some error reduction occurs naturally due to the
resistivity term, the Dedner cleaning terms provide a significantly
more effective correction.

MNRAS 541, 3427-3444 (2025)
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Figure 8. Evolution of the magnetic fields (left) and divergence errors (left)
on a Roberts flow I test case with 323 particles using the direct induction
(DI) MHD implementation in SWIFT. We perform runs with a large initial
injected divergence (Inj) and the Dedner cleaning (Clean) term switched on
or off, and with clean ICs with the Dedner term still on. We perform the tests
for growing (solid line) and decaying (dashed line) modes. The divergence
errors decrease quickly and do not affect the magnetic field growth rates. The
addition of the Dedner cleaning terms helps to decrease the error before the
divergence gets cleaned by resistivity.

The growth rates of growing modes (solid lines) remained un-
affected by the divergence cleaning. However, for decaying modes
(dashed lines), the run with resistivity alone exhibited a slightly
slower decay compared to the runs with Dedner cleaning, suggesting
the presence of a small additional diffusion effect from the cleaning
process.

3.6 The ABC flow

Before closing this section on classical dyanmo tests, we briefly
report the results of our experimentations with the more complex
ABC (Childress 1970; Arnold 2014) flow.
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For the previously considered Roberts flow I, the modes were
growing exponentially while for the ABC flow they can manifest
oscillatory behaviour. In addition, the ABC flow represents a more
complex flow where v has a dependency in all three spatial directions.
Properties such as the growth rates and the oscillation frequency of
the ABC flows were studied numerically (Galloway & Frisch 1986;
Bouya & Dormy 2012; Brandenburg & Chen 2020).

Our set-up used for the ABC flow uses the same mechanism for
particle flow forcing v as the one used for the Roberts flow 1. The
velocity field for the flow follows Bouya & Dormy (2012)

vy = Asinkoz + C coskpy
vr,y = Bsinkox + A cos koz
vi, = Csinkoy + B cos kox, (43)

where v ; are the components of the forcing velocity and x, y, z the
particle positions. We choose A, B, C = 1/\/3 such that v, = 1,
ko = 27/ Lpox = 1. The random ICs from Section 3.1 were used for
the magnetic field.

The most commonly used parameters for the symmetric ABC
flow are A = B = C = 1, resulting in a reference root mean square
velocity of v = /3. To facilitate a clearer comparison of growth
rates with the Roberts flow I runs, we set v, = 1 in our SWIFT tests.
This ensures that the system size and typical velocity match those of
the Roberts flow I, with the only difference being the flow geometry.

In this set-up, comparing growth rates, frequencies, and Reynolds
numbers with the reference requires applying a time and coordinate
transformation. Notably, Bouya & Dormy (2012) do not provide
an exact definition of Ry, as in equation (1), but instead define R,
through the induction equation:

oB 1

3 = curl[v x B] + R—mAB. (44)
To match our convention, we performed a time translation of this
equation: t = ™ /3. As both the reference and SWIFT simulations
have L = L™ = 25 for the flow periodicity, this leads to the velocity
relation v = v /+/3. Similarly, the growth rates and frequencies
relate as inverse times: ¥, w = ¥, »™f/+/3. Since in both cases same
the MHD equation are solved the magnetic Reynolds number relate
as Rp = R /3

To measure growth rates of oscillatory modes in SWIFT, we track
the peaks of the root mean square (RMS) magnetic field over the
simulation volume as a function of time. In In(B,ys) versus ¢ space,
these peaks exhibit a linear trend. We determine the growth rate and
its associated error by performing a linear fit to In(Byys) at the peak
points.

For frequency measurements, we employ two methods: (1) mea-
suring the mean time interval between successive peaks and (2)
performing a Fourier transform of the instantaneous growth rate.
The first method provides high accuracy when a single dominant
growing mode is present. However, it becomes less reliable when
multiple oscillatory modes with similar amplitudes and growth rates
coexist, as seen in mode crossing within the ABC flow. The second
method’s accuracy is constrained by the total simulation time. To
ensure robustness, we compute the frequency using both methods
and report the value with the smallest error. Note that one oscillation
period in B,s(f) corresponds to a magnetic field (MF) direction flip.
Therefore, the full flip oscillation period is twice that value.

We do not measure growth rates and frequencies immediately
from ¢t = 0 because the modes take time to manifest in By,s(?).
Instead, we use the following time intervals: ¢ € [120, 300] for
runs far from mode transition points and ¢ € [820, 1000] for runs
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Figure 9. Growth rate (top plot) and frequency (bottom plot) versus magnetic
Reynolds number for Bouya & Dormy (2012) (converted for our set-up) and
for SWIFT MHD implementations. The SWIFT code reproduces oscillatiry MF
growth in Ry € [10, 100]. The mode transition in SWIFT happens in range
Rm € [40, 41.67]. The reference transition point is R:ﬁ € [41.65,41.74],
however, we find this value inconsistent with the transition from the plots
the reference provides, R.pr:?l € [42.88,43.01], from the postion of the knee
in growth rate graph and the step in frequency graph (figs 1 and 3 from
Bouya & Dormy 2012). Error bars in growth rate and frequency originate the
calculation methods.

near the transition. As a comparison, the reference studies extend
simulations much more — up to #*f ~ 6000 — to achieve better
mode separation. However, the selected time intervals in SWIFT
are sufficient to accurately measure growth rates and oscillation
frequencies.

We conducted simulations for magnetic Reynolds numbers in the
range R, € [15,100]. In all runs, we observe oscillatory growth of
the magnetic field. The growth rate as a function of R,, is expected to
have a positive region for R,, € [15,30] and R,, > 40. The top plot
in Fig. 9 shows the growth rate versus magnetic Reynolds number
for 647 particles in SWIFT, along with the rescaled results of Bouya &
Dormy (2012) for vy = 1, as described earlier. Note that in the
reference, the resolution was varied with R,,, with the minimal
value being 64°. All MHD implementations in SWIFT follow the
growth rate trends reported in the reference solutions. The critical
magnetic Reynolds numbers for the onset of dynamo action are found
to be REUI(DI) ~ 15.6 and R™!(VP) =~ 16.7, which are slightly
larger than the reference value RSt ~ 15.5 reported in table 1 of
Brandenburg & Chen (2020).

Similar to the Roberts flow I results, both DI and VP implemen-
tations slightly underestimate the growth rates when compared to
Bouya & Dormy (2012), with the VP method showing a somewhat
larger deviation. None the less, both models successfully reproduce
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Figure 10. Isosurfaces for |B|/Bmms = 3 magnetic field for the run with
DI at R, = 100. Tube-like structures with positive and negative sign of By
appear, similar to ones observed from Fig. 7 from reference Bouya & Dormy
(2012), although they run at Ry, =~ 752 (where we multiplied Ry, by V3 to
transform to vyms = 1 system). 3D isosurface visualisation was performed
with PARAVIEW.

the expected qualitative behaviour, and the discrepancies remain
small, with the growing modes appearing in the anticipated regimes.

The lower panel of Fig. 9 illustrates the oscillation frequency
of the modes as a function of R,. The frequencies for both
DI and VP implementations closely match the reference results
outside the mode transition region. However, the transition occurs
at RS¥ ¢ [40, 41.67], a value close to the reference transition at

ml
R" € [41.65,41.74]. While the reported reference values overlap
with SWIFT’s results, a closer inspection of their growth rate knee
position and frequency evolution suggests that the actual transition
happens at Rﬁllft € [42.88, 43.01]. This value differs slightly from
their reported range and does not overlap with the transition values
obtained for SWIFT.

As with Roberts flow I, we expect a characteristic spatial dis-
tribution of the magnetic field. However, due to the oscillatory
growth, these features evolve over time. To analyse this, we examined
isosurfaces where |B|/B,s = 3 at the time of peak B (?).

According to Bouya & Dormy (2012), the isosurfaces of B should
form diagonal ‘magnetic field cigars’ with opposing magnetic field
directions. For the 643 DI run, this cigar-like structure is indeed
observed, as shown in Fig. 10 (for R, = 100). The same structure
also appears in VP runs (not shown).

4 RESOLUTION AND OVERWINDING
PROBLEM

Having established that the MHD implementation in the SWIFT code
can reproduce known results on kinematic dynamos, we now turn our
attention to the link between resolution and resistivity. The discussion
below follows Charbonneau (2012) with application to the finite
resolution scale introduced in simulations.

MNRAS 541, 3427-3444 (2025)

Table 1. Overwinding resistivity for vmms =1 and magnetic Reynolds
number for the Roberts flow I test.

Resolution h Nmin Rmax
163 0.54 8 x 1072 12
323 0.27 2x 1072 50
643 0.13 5% 1073 200

4.1 Roberts flow I minimal resistivity

The magnetic field pattern breakdown the ideal MHD limit (n —
0, Ry, — o0) and its dependence on resolution (Fig. 5) suggest a
connection between the simulation resolution scale, (in our case, the
smoothing length, /) and the resistivity. In the Roberts flow I test, we
have four vortices winding up and resistivity diffusing the magnetic
field. To form a steady pattern the resistivity should thus balance the
induction term in MHD equations.

To understand why the pattern breakdown appears, let us consider
a simpler version of the problem, where there is one single vortex
with v, = 0 and a magnetic field confined to the plane. The fluid
movement in the vortex of size L, and with root mean square
velocity vy, Will drag and wind the magnetic field thus increasing
the magnetic field gradients. This process is characterized by a
circulation time-scale

L (45)

te ~

Urms
If the magnetic field gradients have typical scale of /g the diffusion
will act on characteristic times
I3
0

A steady magnetic field pattern can form if the balance occurs,
i.e.t; ~ tq. This is possible when the characteristic scale of the
gradient is

tqg ~ (46)

nLy

lg ~ (47)

vrms '
Since our SPH simulation can not resolve gradients smaller than
(or of order of) the smoothing length , the time-scale balance is
absent for such gradient. In this situation, the resistivity can thus, in
principle, not counteract the winding, leading to the magnetic field
pattern breakdown. Alternatively, this balance can also be thought as
a magnetic field cascade that can or cannot be countered by cut in the
spectrum from the action of the physical (Ohmic) resistivity term.
Estimates for the minimal resistivity and the maximal magnetic
Reynolds number that can reached within the simulation are thus:

LZ

2
o g g Vms Ly 43
Nmin ) m P ( )
Lv Nmin * kf wh
where k; ~ 2 is flow wave vector was used. This expression relates

= 2L,
R to how well vortices are resolved in terms of our resolution scale

h. We call the limiting resistivity the overwinding resistivity.
Applying this framework to the Roberts flow I case, we can
compute the minimal resistivity that our method can correctly evolve.
The values for the runs at different resolutions are given in Table 1.
‘We expect for the pattern to be only slightly affected when n > nmin
and destroyed if 1 < nmin. On Fig. 5, we showed the magnetic
field patterns for the runs with n = 0.01. At the lowest resolution
(N = 163, left) the pattern is highly distorted. When the resolution
is increased to N = 323 and N = 643, the pattern becomes more
symmetric and develops thinner features. As expected from the
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analysis above, at zero resistivity (right-most panel) the balance
cannot take place in principle at any resolution. The magnetic field
gradients thus reach the resolution scale and the pattern disappears.

Similarly, the analysis of the growth rate as a function of resistivity
(Fig. 2) confirms that for the runs at a resolution N = 643, the large
deviations of the growth rate and increase in growth rate fluctuations
happen around i ~ 2 — 5 x 1073, This value is in good agreement
with the predicted overwinding resistivity value from Table 1.

4.2 The overwinding trigger

For arbitrary types of flows present in astrophysical and cosmological
applications the defining a minimal resolvable resistivity or Reynolds
number is a challenging problem. We attempt to construct such a
trigger here based on the considerations exposed above.

The magnetic field gradients are governed by source terms in
induction equation, which can increase them

Sind = S-Zstr + S-ZDedner (49)
Diffusion sources decrease the gradients:
Saitt = Qohm + Lar- (50)

The gradients in the SPH simulations are bound due to the
resolution scale. This rough estimate of the maximal gradient that
can be resolved typically holds:
|AB| < 28| (51)

=

Therefore, there exists a limit on the diffusive source term in
the induction equation, which in turn sets an upper bound on the
achievable magnetic Reynolds number when magnetic field gradients
reach resolution scale.

If the induction source term, S;,4, counteracts the diffusion
(i.e. Sgir - Sing < 0) and |Sind| > |S::3X| ~ W, then in the
presence of magnetic field cascade the magnetic fields will inevitably
reach resolution scales, or |AB| =~ %. This will result in overwind-
ing issues similar to what was found in the Roberts flow 1.

To monitor this issue we define an overwinding trigger as follows:

Sinal 1
= |' S;?:'I 5 (1= cos(Sing. i)
where Sgir includes all diffusive sources in the simulation (physical
and artificial).> We expect the trigger value to be large, OW 2 10,
if there is significant overwinding and OW < 107! if the resistivity
manages to counteract the winding locally and thus separate the
cascade from the resolution scale.

The observed behaviour for the magnetic fields on Fig. 5 can now
be reinterpreted in terms of this O W metric. When the resolution
is increased, the OW trigger will decrease too since the magnetic
field gradients can reach a smaller scales and thus result in a
much larger nAB. In the highest resolution case (N = 643), this
is enough to separate the magnetic field from the resolution limit.
And, as expected, for the case of zero resistivity nothing prevents the
magnetic fields from reaching the resolution scales resulting in the
vortex pattern destruction.

We conclude this section with a visual example of the behaviour
of the overwinding trigger. If the trigger values are large, OW 2 10,

h2|AB|

ow —_
2|B|

(52)

3Note that for this study we choose to include the Dedner cleaning term into
the induction source in the trigger (equation 52).
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Figure 11. B, /B with magnetic field streamlines (left) and overwinding
trigger maps (right) for the Roberts flow I test in xy plane at t = 75, with
heights adjusted to show the same feature. The top set of plots show the
unresolved regime with large OW trigger values ((OW) 2 10). There are
two ways to enter the properly resolved regime (where (OW) < 1071): with
resistivity increase (middle set of plot) or with resolution increase (bottom
plot). Note also that the O W metric tends to have higher values inside shear
zones and inside vortices.

the resistivity plays only a small role in the overall evolution of the
field. For this regime, O W follows the scaling

ow ~n*n~',  ow ~ NPyt (53)

h=const

where the second equation holds for a fixed resolution case (i.e.
where there is a direct link between N and h). This scaling can be
used to estimate the required resolution or resistivity needed in a
simulation to prevent overwinding (OW < 1).

Such a use case is depicted in Fig. 11 for the Roberts flow test. The
left panels show the B, /B,,,; magnetic field configuration in the xy
plane attime r = 75 with slice heights adjusted to see the same feature
whilst the right panels show the corresponding value of the O W. The
top row corresponds to a set-up where the field configuration cannot
be properly resolved with 16* particles and this value of the resistivity.
Either a resistivity increase from 7 = 0.0125 to n = 0.2 (first to
second panel) or a resolution increase from 16° to 643 particles (first
to third panel) are sufficient to decrease the trigger value to the regime
where the vortices are fully resolved by the simulation. Of course,
changing the value of the physical resistivity is not always a practical
option as its value can be set by physical considerations. Increasing
the resolution is then the sole option to obtained a well-behaved field
with resolved kinematic dynamo growth.

The computational cost incurred then increasing resolution can be
estimated as ~ N T/ At, with Ty, the final time of the simulation
and At the time-step size. This latter quantity is itself Az ~ i, where
cp, is signal propagation speed (sound speed typically or Alfven wave
speed for MHD scenarios). Assuming a constant propagation speed,

MNRAS 541, 3427-3444 (2025)
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Figure 12. Magnetic field in micro-Gauss with field streamlines (left), gas overdensity (centre) and ratio of velocity to root mean square velocity of the
gas with flow streamlines (right) for adiabatic cosmological run with zero resistivity at redshift z = 0 with 1283 particles using the direct induction SPMHD
implementation in the SWIFT code. The density map shows, as expected, the formation of voids and filaments, while the velocity profile shows the flow of gas
from voids into filaments and high density nodes. The magnetic field amplitude distribution mostly follows the density.

4
the full cost is then ~ N ~ n~2 OW~2. Thus, targeting a decrease
of the OW value by an order of magnitude will cost 2 orders of
magnitude more computational costs. On the other hand, an order of
magnitude increase in the resistivity constant value will lead to the
same magnitude change in OW.

Therefore, the most effective way to prevent overwinding and
avoid excessive damping of relevant physical features at a given
resolution is to adjust the resistivity such that OW =~ 1.

5 COSMOLOGICAL MHD SIMULATIONS

Having demonstrated, that the MHD implementation in SWIFT code
reproduced the features of the Roberts flow and ABC flow kinematic
dynamo tests within the resolution-dependent Reynolds number
window, we now want to demonstrate its capability to capture
the basic amplification processes associated with dynamo action.
In this section, we explore simulations solving cosmological MHD
equations, with a focus on the dynamics without considering sub-grid
physics models (i.e. so-called adiabatic simulations).

Cosmological MHD simulations involve various flow types during
structure formation, which can lead to magnetic field amplification
through gravitational collapse and the stretching of magnetic field
lines. Cosmological runs without resistivity can suffer from the
‘overwinding’ problem discussed in the last section, where the
magnetic field becomes excessively stretched. To mitigate this,
we perform additional simulations with non-zero constant physical
resistivities: first, with a typical value found in galaxy clusters,
n~6x 10 cm?s™!, and then with higher resistivity values to
further minimize overwinding.

5.1 Simulation set-up

Cosmological simulations with a side length of 150 Mpc were
conducted using MHD and adiabatic gas evolution, that is without
including feedback or cooling physics. We perform simulations
with 2 x 64 and 2 x 128 particles. This leads to a gas particles
mass of mgs =8 x 101°Mg and 1 x 10!°Mg, respectively. The
initial conditions for baryons and dark matter were generated using
MONOFONIC code (Hahn, Rampf & Uhlemann 2020) at a starting
redshift of 63. We adopt the same cosmology as the FLAMINGO

MNRAS 541, 3427-3444 (2025)

project (Schaye et al. 2023).* The initial magnetic field was generated
as a Beltrami field (equation 39), with 10 waves along one axis
of the box, and a root mean square code-comoving magnetic field
strength of B{oTV(zy) = 10~° G, which corresponds to B ps(zo) =
2.97 x 107214G in physical magnetic field. This field is uncorrelated
with the density structure in the ICs and does not represent a physical
scenario. Note that the Beltrami field configuration was chosen to
make initial conditions reproducible for runs using a vector potential

scheme, which we will explore in future studies.

5.2 Ideal MHD cosmological runs

We start out analysis by an overview of the general properties of the
gas distribution at z = 0 for our higher-resolution run.

In Fig. 12, we show the spatial distribution of an infinitely thin
slice in the xy-plane, depicting the magnetic flux density (in uG,
left panel), the matter overdensity (middle panel), and the ratio of
local velocity to the root mean square velocity across the simulation
box (right panel). Streamlines in the magnetic flux density plot
illustrate the geometry of the magnetic field in the xy-plane, while
streamlines in the velocity plot represent the gas flow. The magnitude
of the magnetic field strength largely follows the gas density, with
denser regions exhibiting stronger magnetic fields. Gas density and
velocity profiles follow the usual pattern expected from such cos-
mological simulations: gas forms voids and filaments, with velocity
profile showing the gas flux from low density regions into dense
filaments. The low-density areas display a smoother magnetic field.
In the filaments, the magnetic field strength is non-uniform, both
in amplitude and direction. Additionally, the velocity streamlines
reveal stagnation-point-like flows, similar to those observed between
vortices in the Roberts flow 1. These flows, found in and along the
filaments, suggest that magnetic field amplification may occur not
only due to gravitational collapse but also as a result of stretching
within these flows.

We now turn out attention to the value of the three error metrics
we introduced in Section 2.4. On Fig. 13, we show the spatial
distribution, in the same plane as for the previous figure, of Ry, R,
and R, (equations 33-35). The SPH noise cut discussed in Section

4Qcepm = 0.2574, Qp = 0.0486, Q4 = 0.693922, h = 0.681, ny = 0.967,
Ay =2.099 x 107°.
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Figure 13. Divergence error metrics (equations 33-35) for our adiabatic cosmological run with zero resistivity at redshift z = 0 and 128> particles using the
direct induction SPMHD implementation in SWIFT. The Ry metric indicates that there are regions with large divergence errors, however, the R, error metric
lights up less showing that at some places with large Ry the physical field is more significant and thus the divergence error may not influence the dynamics
of the field. Therefore, there are large magnetic field gradients at resolution scale. Since the R; is below our noise cut everywhere, we expect no unphysical
(monopole) force acting on the matter evolution. The Ry errors have large volume filling fraction and concentrate at density gradients.

2.4 has been applied using the noise estimates from equation (37).
We show the error in the range R; € [1072, 10°].

As can be seen, a significant fraction of the simulation volume
exhibits large divergence errors (Ry). However, when compared
to the density and magnetic field distributions in Fig. 12, both the
centres of low-density regions and the areas within filaments show
lower error levels than the regions at the borders between low and
high-density areas, where large density gradients are found. This
indicates that the error is possibly driven by poorer quality gradient
operators in such regions. The other divergence error metrics show
much lower of error. The R; metric is below the noise cut across the
entire simulation, indicating that there are no significant magnetic
monopole forces acting on the particles in this set-up. The R,
metric, which estimates the monopole component of the magnetic
field relative to the physical current, shows significantly fewer
errors than R, overall, typically at a level smaller than R, < 107,
This, by design, also suggests the presence of large gradients in
both the physical and monopole components of the magnetic fields
at the resolution scale, with only some regions (indicated by R,)
exhibiting a significant monopole component.

5.3 Non-ideal MHD cosmological runs

We now consider the case of cosmological simulations with Ohmic
resistivity. We run the same set-up as explored above but start at 8 x
lower mass resolution and using a a constant physical resistivity n =
6 x 10%” cm?s™!; a value typical for galaxy clusters (Bonafede et al.
2011). For such a simulation, we found that the the OW (equation
52)is very high everywhere. Its mean value was found to be (O W) ~
10*, indicating that magnetic field gradients are underresolved.

Since we expect the overwinding metric to follow the scaling from
equation (53), two approaches can mitigate this issue and achieve a
better resolved kinematic dynamo for the fields (i.e. (OW) < 1): (1)
increasing the resistivity to n > 6 x 10*! cm?s™! or (2) increasing
the number of particles.

However, it is worth noting that, in a typical cosmological set-up,
increasing the number of particles may introduce new substructures,
which could again be underresolved, but on smaller scales. In regions
where a mostly uniform density is expected, such as voids, reducing
the trigger values from 10* requires increasing the particle count

sufficiently to decrease /Ly by at least a factor of 100, a challenging
demand.

We showed the effect of changing resolution or the value of
resistivity on the Roberts flow I test in Section 4.2. We now perform
the same type of experiments in our cosmological set-up, in order
to demonstrate the importance of monitoring OW also in SPMHD
applications beyond tests.

To this end, we conducted three more simulations at the same
resolution (64° particles) but with three different resistivity values:
n=3x10"°71n=3x10%,and n =9 x 10> cm?s~!, correspond-
ing to, respectively, the first, second, and last rows of Fig. 14. The
figure presents the spatial distribution of an infinitely thin slice in
the xy-plane at redshift zero, showing the magnetic flux density
(in uG, left), the divergence error R, (including our noise cut,
middle column), and the overwinding trigger values (right column).
Streamlines in the magnetic flux density plot illustrate the field
geometry. From top to bottom, both resolution and resistivity vary
across the panels, as indicated on the right of the figure.

At the lowest resistivity, n ~ 3 x 10°® cm? s™! (top row), the Ry
profile reveals significant volume-filling errors, while the overwind-
ing trigger remains high at (O W) >~ 6.95.

With a 10-fold increase in resistivity (second row of Fig. 14), the
overwinding trigger decreases to (O W) =~ 0.56, which is close to
the expected value of 0.69 from the OW resistivity scaling (equation
53). The OW trigger maps are non-uniform, showing higher values in
low-density regions compared to high-density regions. The volume-
filling fraction of Ry errors is also reduced, though some regions still
exhibit Ry > 1. Additionally, a significant decrease in magnetic field
magnitude is observed, while its overall morphology remains largely
preserved.

With a further three-fold increase in resistivity (bottom row of
Fig. 14), the overwinding trigger (O W) deviates from the expected
scaling, decreasing more rapidly to (O W) ~ 0.01. However, regions
with OW = 1 persist near the filament edges. The global error levels
are significantly reduced, remaining within an acceptable range of
Ry < 107! throughout. Comparing the second and bottom rows of
Fig. 14, the magnetic field amplitude shows different trends: it is
dampened in some regions along the filaments, while inside the
filaments and at the nodes, it becomes amplified.

Finally, we increased the resolution of the simulation with n =
3 x 103! ecm?s™! from 64% to 1283 particles in order to locally

MNRAS 541, 3427-3444 (2025)

920z Arenuer gz uo 1sanb Aq Z195028/221E/v/L ¥S/aI0IME/SeIuwW/Wwod"dno-olWapeo.//:sd)y WOy papeojumod



3442  N. Shchutskyi et al.

150

10!
tla
L")
R
100 &% o
T} —
a R .
E 10 m
> I
50 c
"
<
O
0 10-!
150 10!
ol
]
m
100 o
(T —
=1 " .
E 10° m
> I
50 c
-
<t
(=]
0 10!
150 10!
Tl
(]
—
S
_ 100 -
a .
= 10° m
g I
50 =
%
@
o~
-
0 10!
150 10!
L,
v
=
. 100 o
) —
=% o .
E 10 o
> I
50 | —y
-
<
(=]

50 100 50 100
x [Mpc] x [Mpc] x [Mpc]

Figure 14. Maps of the magnetic field B (in uG), error metric Ry, and OW trigger values in our adiabatic cosmological simulations at z = 0 run with the
direct induction SPMHD implementation in SWIFT for a 643 particles run with n = 3 x 1030 cm?2s~! (top row), n = 3 x 103" cm2s~! (second row), a run with
the same resistivity but with 128> particles (third row), and a run with 643 particles but n = 9 x 10°! cm?s~! (bottom row). Increasing the resistivity (first to
second row) leads to a decrease in the O W trigger values and a reduction in the volume-filling fraction of divergence errors, while also significantly decreasing
the magnetic field magnitude. Increasing the resolution from the second to the third row further reduces the O W trigger, though the overall Ry filling fraction
remains similar. From the second to the bottom row, a further increase in resistivity significantly reduces the OW trigger while bringing divergence error
levels to an acceptable range (Rg < 107!). At the same time, the magnetic field structure changes slightly: some filament regions experience damping, while
high-density regions exhibit increased magnetic field strength.
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Figure 15. Root mean square magnetic field versus scale factors for the adi-
abatic cosmological runs with 643 particles with n = 0; 3 x 1031 3 x 10%;
9 x 103'cm?s™!; (corresponding to the z = O slices shown in Figs 13 and 14).
A large constant physical resistivity strongly dampens the initial magnetic
field amplitude. The evolution is consistent with cosmological expansion
around z ~~ 10, followed by amplification near z =~ 0.

reduce the smoothing length and mitigate overwinding. The results
from this higher-resolution simulation are shown on the third row
of Fig. 14. The resolution change led to a global reduction of
the overwinding trigger in both high- and low-density regions, as
expected from the scaling of the metric. However, some areas near
the filament edges still exhibit large overwinding. Meanwhile, the
volume-filling fraction of R, remains largely unchanged with only a
small reduction. Recall though that we found to the large divergence
error to not be dynamically relevant in our analysis of the ideal-MHD
case.

5.4 Discussion

As we just demonstrated, our SWIFT-based SPMHD adiabatic cosmo-
logical simulations (i.e. without additional sub-grid physics) produce
reasonable magnetic field, density distributions, and velocity slices,
thus demonstrating the general reliability of the implemented MHD
model. However, the accuracy of the results is affected by large
errors, which are primarily attributed to unresolved gradients in both
the physical and monopole components of the magnetic field. These
errors tend to concentrate around density gradients, suggesting a
need for additional numerical techniques to mitigate their impact.

While the addition of constant physical resistivity helps reduce
both Ry and O W, it also significantly dampens the magnetic fields.
This is, thus, an undesirable solution in many cases.

To illustrate this, we show on Fig. 15 the evolution of the root mean
square magnetic field strength, By, (in £G), as a function of redshift
for our simulations with 643 particles with zero physical resistivity,
as well as for the simulations corresponding to the first, second,
and last rows of Fig. 14. The dashed line indicates the cosmological
dilution of the initial magnetic field if no MHD forces were present.

The expected solution is that of cosmological expansion line
(black dashed) for z > 10, followed by amplification from structure
formation.

A significant magnetic field damping is observed at high redshifts
(z > 10) for non-zero resistivity. This occurs because, at earlier
times, when the universe is smaller and magnetic field gradients
are on smaller scales, the constant resistivity term has a stronger
effect. As a result, a substantial initial damping occurs.
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Nevertheless, after the initial damping at z < 10, all runs with
resistivity exhibit a similar evolution. Initially, they follow the same
tilt as the evolution driven by cosmological expansion, followed then
by amplification near z = 0.

A potential solution is to implement an adaptive artificial resistivity
that dynamically responds to the overwinding metric, maintaining it
around OW =~ 1. In the case for runs above this approach could
reduce excessive damping at high redshifts while still effectively
controlling overwinding at z = 0. However, any such implementation
should be designed to not violate astrophysics considerations. Future
work should explore this adaptive method to balance error correction
with physical accuracy in evolving magnetic fields.

6 CONCLUSIONS

In this paper, we presented the results of new SWIFT SPH MHD
implementations using DI and VP methods for kinematic dynamo
tests. Both implementations successfully reproduce the expected
qualitative and quantitative features when compared to other codes.

For Roberts flow I, growth rates (Fig. 2) and the spatial distribution
of the magnetic field (Fig. 1) closely match PENCIL CODE results,
demonstrating numerical convergence (Fig. 4). Additionally, we
examined ABC flow, where magnetic field structures (Fig. 10),
growth rates, and oscillation frequencies (Fig. 9) were also well
reproduced compared to reference results.

Regarding divergence errors, VP maintains error levels below 20
per cent across all resistivities. For DI, however, divergence errors
increase at low resistivity unless Dedner cleaning is applied (Fig.
6). With cleaning, the errors remain within an acceptable range.
Additionally, we assessed the stability of DI with divergence cleaning
by introducing a significant initial monopole component in the
magnetic field in the Roberts flow I set-up. In this scenario, Dedner
cleaning effectively removed the errors, which did not significantly
impact growth rates (Fig. 8).

To better track spatial divergence errors, we introduced additional
monitoring quantities, which, in the low-resistivity regime, revealed
regions not captured by conventional diagnostics (Fig. 7). We also
established and tested the overwinding metric — a criterion for the
onset of a numerically unresolved dynamo regime in Roberts flow I
(equation 52).

Furthermore, we performed several adiabatic cosmological runs
(without sub-grid modelling) with zero resistivity. These runs pro-
duced reasonable magnetic field, density, and velocity distributions
(Fig. 12) but exhibited large divergence errors, particularly near
density gradients (Fig. 13). By introducing a constant resistivity
term based on the overwinding metric, we significantly reduced
divergence errors while largely preserving the magnetic field struc-
ture (Fig. 14). However, a notable drawback of using constant
resistivity is the initial overdamping of the magnetic field magnitude
(Fig. 15). This issue could potentially be mitigated by an adaptive
resistivity approach, which future work should explore to balance
error correction with the preservation of physical dynamics.

In conclusion, both the DI and VP SPMHD implementations in
SWIFT successfully reproduce the action of kinematic dynamo in
controlled environments such as in the Roberts flow I and ABC
flows. We demonstrated that poor numerical behaviour at high
Reynolds numbers can be identified using the overwinding trigger
and divergence error metrics. Additionally, the code qualitatively re-
produces cosmological simulations, solving the MHD equations in an
expanding universe without sub-grid physics. Introducing a constant
resistivity term based on the overwinding metric effectively reduced
divergence errors over the course of the cosmological simulation. To
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further improve the implementations, an adaptive artificial resistivity
scheme, dynamically adjusted based on local overwinding, could be
implemented. This approach would better control divergence errors
and enhance the field’s smoothness while minimizing the risk of
excessive magnetic field damping.

DATA AVAILABILITY

The SWIFT simulation code is entirely public, including the examples
presented in this work. It can be found alongside an extensive
documentation on the website of the project: www.swiftsim.com.
The PENCIL CODE (Pencil Code Collaboration 2021), is freely
available on https://github.com/pencil-code. The simulation set-ups
and corresponding input and reduced output data for the PENCIL CODE
runs are freely available on http://norlx65.nordita.org/~brandenb/pr
ojects/Roberts-Flow- Test.
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