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Abstract
Background  Medical decision-making commonly is guided by evidence-based analyses from systematic literature 
reviews (SLRs). These require large amounts of time and subject matter expertise to perform. Automated extraction of 
key datapoints from clinical publications could speed up the process of systematic literature review assembly. To this 
end, we built SURUS, a named entity recognition (NER) system comprised of a Bidirectional Encoder Representations 
from Transformers (BERT) model trained on a fine-grained dataset. The aim of this study was to assess the quality of 
SURUS classifications of PICO (patient, intervention, comparator and outcome) and study design elements of clinical 
study abstracts.

Methods  The PubMedBERT-based model was trained and evaluated using a dataset of 39,531 labels amongst 400 
clinical abstracts, with an inter-annotator agreement of 0.81 (Cohen’s κ) and 0.88 (F1). The labels were manually 
annotated using a strict annotation guide. We evaluated quality of the dataset and tested the utility of the model 
in the practise of systematic literature screening, by comparing SURUS predictions to expert PICO and design 
classifications. Additionally, we tested out-of-domain quality of the model across 7 other therapeutic areas and 
another study design.

Results  The SURUS NER system achieved an overall F1 score of 0.95, with minor deviation between labels. In 
addition, SURUS achieved a NER F1 of 0.90 and 0.84 for out-of-domain therapeutic area and observational study 
abstracts, respectively. Finally, F1 of PICO and study design classifications was 0.89 with a recall of 0.96 compared to 
expert classifications.

Conclusion  The system reaches an F1 score of 0.95 across 25 contextually different medical named entities. 
This high-quality in-domain medical entity prediction of a fine-tuned BERT-based model was the result of a strict 
annotation guideline and high inter-annotator agreement. This prediction accuracy was largely preserved during 
extensive out-of-domain evaluation, indicating its utility across other indication areas and study types. Current 
approaches in the field lack in the fine-grained training data and versatility demonstrated here. We think that this 
approach sets a new standard in medical literature analysis and paves the way for creating fine-grained datasets of 
labelled entities that can be used for downstream analysis outside of traditional SLRs.
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Background
Interventional trials are an important source of scientific 
data for medical decision-making. Unstructured data 
from trials are carefully evaluated in systematic litera-
ture reviews (SLRs), which are typically accompanied by 
meta-analyses. These efforts result in essential medical 
documents that help drive decision making in the medi-
cal field. The key purpose of SLRs is to provide scientific 
validity through the inclusion of the complete body of 
evidence to answer a specific research question through 
an evidence-based approach. As such, the generation of 
SLRs is an intricate process, during which a broad selec-
tion of literature in the field of study is manually screened 
for eligibility and evaluated for the quality of evidence. 
It is paramount that an SLR represents an exhaustive 
evaluation of an area within a scientific field, and it is of 
high importance that the task of eligibility assessment is 
scrutinized and performed with complete recall to avoid 
incorrect exclusion of evidence. This assessment is par-
ticularly important in the context of the growing body of 
scientific publications available; from 1960 onwards, the 
number of PubMed records has grown exponentially [1, 
2]. Nowadays, the initial screening process for SLRs in 
active medical fields often includes more than 3000 sci-
entific abstracts. This means that assuming one would be 
able to process abstracts at a pace of 1 per minute, this 
task alone would take a human at least 50  h of reading 
time. Given that the Cochrane Institute’s guidelines for 
an SLR involve independent screening by two trained 
experts, a modern, manual SLR process places a dispro-
portional workload on expensive medical experts, often 
resulting in months of full-time work and costs easily 
exceeding $100,000 per SLR [3, 4].

Clinical questions for evidence-based practice are typi-
cally structured according to elements of an established 
framework called PICO. For a clinical SLR project, infor-
mation on the Patient, Intervention, Comparator, and 
Outcome (PICO) are defined to determine the scope of 
the work and the trials eligible for the project [5]. For 
example, the PICO0F0F0F1 framework of a trial could 
comprise “acute coronary syndrome” (Patient), “rivaroxa-
ban” (Intervention), “placebo” (Comparison) and “systolic 
blood pressure” (Outcome). Along with elements listed 
in the PICO framework, study design characteristics 
(“randomized”) provide additional valuable insights for 
the selection of eligible studies [6, 7]. Hereafter, the com-
bination of PICO and study design characteristics will be 
referred to as the PICOS framework or PICOS in short.

1 ​h​t​t​p​​s​:​/​​/​w​w​w​​.​c​​o​c​h​​r​a​n​​e​l​i​b​​r​a​​r​y​.​​c​o​m​​/​a​b​o​​u​t​​/​p​i​c​o​-​s​e​a​r​c​h

One of the challenges in the identification of elements 
of PICOS is their dependence on textual context. For 
example, “stroke” may refer to a criterium of study par-
ticipants for their inclusion into the study (i.e. part of 
“Patient”) or to an endpoint that is measured during the 
study (i.e. part of “Outcome”). It may also refer to related 
research, in which case its identification is of no use to 
the reviewer.

Over the past decades, the increasing popularity of 
machine learning (ML) models has given rise to the 
development of methods to speed up the SLR screening 
process. Some ML approaches rank scientific publica-
tions according to their eligibility to a research question, 
thus providing the reviewer with the option of a priority 
cut-off for screening [8–10]. Alternatively, ML methods 
can provide the reviewer with information on scientific 
publications, which can be used to include or exclude 
studies in further analyses. Specifically, ML-based natu-
ral language processing (NLP) methods may extract 
elements of PICOS from unstructured medical text or 
predict the eligibility of a study based on a set of eligible 
studies initially selected by the reviewer. Ultimately, accu-
rate and complete extraction of study characteristics by 
ML models could enable reviewers to base their eligibil-
ity decisions on the model outputs during the screening 
process of an SLR. A subset of biomedical NLP methods 
currently focuses on named entity recognition (NER) 
classification techniques. Using NER, unstructured text 
is processed and words, expressions or sentences are 
labeled with pre-defined classes (e.g. diseases, drugs, etc.) 
[2].

Several approaches have been proposed for the extrac-
tion of elements of PICOS from clinical publication texts 
[11]. Despite their apparent advantages, these NLP tools 
currently have a few limitations: (1) valuable study design 
features are often not extracted (e.g. study duration and 
study size); (2) PICO-focused ML-solutions typically 
focus on prediction of relatively large text sequences, 
resulting in coarse-grained extraction of limited use 
to the reviewer; (3) the quality of current NER systems 
are insufficient to approximate expert reviewer eligibil-
ity assessment performance [12]; and (4) there are only 
few datasets available which are designed specifically for 
PICO extraction [13–16], but they are limited in terms of 
size and granularity, and models trained on these datas-
ets lack performance required.

Another, more recent innovation that could add value 
in SLR practice is the emergence of large language mod-
els (LLMs), which can be leveraged to interpret and sum-
marize large volumes of scientific texts. However, as high 

Keywords  Language model, Evidence-based medicine, PICO, Systematic literature review, Natural language 
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recall is of paramount importance in the field of system-
atic literature screening, the utility of LLMs in this scope 
is limited due to the risk of hallucination and their medi-
ocre performance at high-complexity annotation tasks 
[17–19].

In this paper, we provide an elaborate evaluation of 
SURUS, a BERT-based classification model fine-tuned 
on a fine-grained, manually annotated dataset of medi-
cal annotations. SURUS was designed for the extraction 
of PICOS elements from clinical texts. SURUS (which 
is not an acronym) was trained to classify 25 different 
annotation labels in the abstracts of interventional stud-
ies. In addition to this, the SURUS NER method design 
is intended to facilitate the extraction of the results of 
clinical endpoints using relation extraction. Currently, 
SURUS is being integrated into software for systematic 
literature selection and analysis by medical professionals 
and scientists. The purpose of the software is to identify 
relevant literature through the recognition of medical 
named entities and abstract sections.

Our primary aims are two-fold: first, to rigorously 
validate the detailed annotation method underlying our 
dataset, exploring how fine-grained annotations might 
influence model performance; and second, to assess the 
extent to which our system can recognize, interpret, and 
classify a diverse range of clinically significant entities, 
including elements of PICOS. As a secondary objective, 
we compare SURUS performance with classification 
accuracy of an LLM, instruction-tuned with the SURUS 
annotation manual.

We ask: can a carefully tuned BERT model capture the 
subtle contextual shifts of a wide range of medical enti-
ties in a way that is sufficiently reliable for practical appli-
cation? To our knowledge, this represents the first deep 
learning-based system capable of extracting such a broad 
spectrum of clinically relevant information from text 
with accuracy suitable for practical clinical use.

Related work
Previously, data classification and categorization of sci-
entific study records were experimented with using Sup-
port Vector Machines), Conditional Random Fields, Long 
Short-Term Memory or, more recently, Bidirectional 
Encoder Representations from Transformers (BERT) 
models. Examples of tools employing one or more of 
these techniques were recently reviewed and evaluated in 
a systematic review [11].

Whilst all of the models listed above have their advan-
tages and drawbacks, the consensus is that transformer-
based methods such as BERT combine high potential 
with relatively small (annotation) effort compared to 
alternatives [11]. BERT is a transformer encoder model, 
pretrained on a vast dataset of books and Wikipedia 
[20]. BERT models have shown superiority compared to 

BiLSTM models on several tasks including NER [21, 22]. 
Later on, BERT was expanded upon by adding biomedi-
cal scientific texts to its pretraining, including the spe-
cialized BERT-derivatives BioBERT [23], SciBERT [24] 
and PubMedBERT [25].

The most recent innovation in the field of NLP are 
generative large language models (LLMs). LLMs, such 
as GPT-4 and LLaMA, excel in summarization, contex-
tualization and extrapolation of information from a wide 
range of scientific fields. In the medical field, contribu-
tions include summarization of medical texts, chat-bot 
mediated diagnosis and medical education [17, 26]. How-
ever, the generative nature of these models make them 
prone to hallucination and classification inaccuracy, 
which is undesirable in a task demanding extensive clas-
sification recall [17, 18]. In the context of classification, 
BERT-like models have still shown superiority over LLM 
models [19] and tuning of LLMs for a task with complex 
instructions has proven challenging [27]. For this reason, 
we decided to use a variant of BERT as the classification 
model of choice for validation of the quality of the dataset 
presented here.

BERT-based models can be fine-tuned to perform well 
in specialized supervised learning tasks. Manual, task-
specific labeling for fine-tuning a model is work-intensive 
and requires expert knowledge of the task and domain. In 
addition, currently available datasets for NER are often of 
limited quality and consistency [28].

To our knowledge, there are currently 3 datasets pub-
licly available for recognition of PICO specifically. First, 
Kim et al. created the NICTA-PIBOSO dataset, which 
consists of 1000 abstracts with manually labeled sentence 
annotations amongst 5 label classes [29]. Second, Jin et 
al. presented the PubMed-PICO dataset,2 consisting of 
almost 25,000 abstracts of which relevant sentences were 
automatically assigned to 1 of 7 labels using a rule-based 
algorithm [30]. Third, Nye et al. [31] reported the EBM-
NLP corpus,3 which consists of 5190 abstracts of scien-
tific publications, 190 of which are annotated by experts 
and 5000 by laymen, using Population, Intervention and 
Outcome labels. The EBM-NLP corpus was used to train 
PICO-extracting systems on a sentence [32, 33] and span 
level [34, 35].

For SURUS to be able to accurately and concisely pre-
dict elements of PICOS, we created a dataset that offers 
the following advantages: (1) the annotation approach 
is suitable for word-level extraction; (2) we distinguish 
25 different labels allowing for fine-grained extraction 
of PICOS characteristics; (3) the dataset presented here 
consists exclusively of expert-annotated labels; (4) our 

2 ​h​t​t​p​​s​:​/​​/​p​a​p​​e​r​​s​w​i​​t​h​c​​o​d​e​.​​c​o​​m​/​d​​a​t​a​​s​e​t​/​​p​u​​b​m​e​​d​-​p​​i​c​o​-​​e​l​​e​m​e​​n​t​-​​d​e​t​e​​c​t​​i​o​n​-​d​a​t​
a​s​e​t
3 ​h​t​t​p​​s​:​/​​/​g​i​t​​h​u​​b​.​c​​o​m​/​​b​e​p​n​​y​e​​/​E​B​M​-​N​L​P

https://paperswithcode.com/dataset/pubmed-pico-element-detection-dataset
https://paperswithcode.com/dataset/pubmed-pico-element-detection-dataset
https://github.com/bepnye/EBM-NLP
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dataset is designed in a way that would facilitate extrac-
tion of detailed study results through relation extraction 
in a later phase of SURUS development.

Methods
Dataset
For our dataset, we used a set of scientific articles 
abstracts, publicly available in the PubMed database4F.4 
PubMed is the most widely used source of clinical evi-
dence and consists of the Medline and PMC databases. 
Our dataset consisted of abstracts of interventional 
study reports. Interventional studies are characterized 
by investigation of a medical intervention and group dis-
tinction is typically based on differences in therapeutic 
regimen [36]. Though of similar study type, the style of 
reporting may vary greatly between therapeutic areas and 
interventional study subtypes. For this reason, abstracts 
included in the SURUS dataset were of various interven-
tional study subtypes and therapeutic areas.

To ascertain high versatility, 4 of the most important 
therapeutic areas as reported in WHO ICD-115 were 
selected to be represented in the dataset: cardiovascular 
diseases, endocrine diseases, neoplasms and respiratory 
diseases. In total, 400 article abstracts of interventional 
studies (100 for each therapeutic area) were randomly 
selected from the PubMed database for in-domain 
evaluation of the NER system. In addition, a set of 123 
other article abstracts was randomly selected for out-of-
domain therapeutic area (90) and study type (33) evalu-
ation. During randomization, the aim was to achieve a 
fitting representation of the real-world diversity of inter-
ventional publication abstracts in our dataset.

Expert annotations in the NER dataset
The abstracts of these selected publications were manu-
ally annotated. During annotation, entities were labeled 
and assigned to one of 25 labels, amongst 7 label classes. 
Label classes that were not relevant to extraction of 
PICOS elements were designed for either extraction of 
additional valuable information outside of PICOS or 
extract entities of study results. In addition, an element 
of PICOS may consist of multiple labels. For example, 
“Population” may be composed of entities of the “Meth-
odology Inclusion Criteria” but also “Disease Indication”. 
We chose this structure to clearly define the contextual 
niche of every label class, and to add to the granularity 
and the utility of the predictions made. All label classes 
had distinct contextual dependencies and unique labels. 
A full overview of annotations in the dataset is visualized 
in Fig. 1, the mapping of labels to elements of PICOS and 
more detailed descriptions of the label class are available 

4 ​h​t​t​p​​s​:​/​​/​p​u​b​​m​e​​d​.​n​​c​b​i​​.​n​l​m​​.​n​​i​h​.​g​o​v​/
5 ​h​t​t​p​​s​:​/​​/​i​c​d​​.​w​​h​o​.​​i​n​t​​/​b​r​o​​w​s​​e​1​1​/​l​-​m​/​e​n

in Appendix table B. Correct labeling of text elements 
is dependent on the context of the element and annota-
tions made in its vicinity. For example, when mentioned 
in the methods section, “overall survival” was labeled as 
an element of the label class ‘Methodology’, whereas it 
was labeled as an element of the ‘Parameter’ class in the 
results section. However, when “overall survival” was 
mentioned in the results section without any association 
with annotations of the ‘Result’ class (so without associ-
ated results), it was not labeled at all. These nuances add 
to the intricacy of the annotation process.

In total, the 400 scientific abstracts were labeled with 
39,531 annotations, averaging 98.83 (± 29.70) annota-
tions per abstract. The out-of-domain datasets consisted 
of 8,131 and 1,876 for the out-of-domain indication and 
study type datasets, respectively.

NER dataset annotation process
Master students with a pharmaceutical or biomedi-
cal background were tasked to annotate the scientific 
abstracts. To warrant the quality and consistency of the 
annotations made, we made four provisions: (1) a detailed 
annotation manual was assembled by the first author to 
guide the annotators; (2) all annotators followed a 2-day 
course, during which they were instructed about the 
annotation methodology and process; (3) all annotations 
made were reviewed by one of two expert annotators; (4) 
annotation consistency was manually monitored using 
an extensive set of restrictive rules for annotation span 
range and context.

The primary aims of the manual created was to facili-
tate complete extraction of PICOS elements and to pro-
mote consistency of annotations made between articles 
in different fields and of different designs. Due to the high 
diversity of contextual situations in medical articles, the 
assembly of the manual was an iterative process featur-
ing regular ‘consensus sessions’, during which the judg-
ment of one expert annotator was decisive. Figure  2 
shows a fully annotated example of a study abstract. To 
facilitate the annotation process, a comprehensive anno-
tation management system was developed, consisting of 
integrated frontend, backend, and database components. 
The frontend was implemented using Vue.js and Vuetify, 
while the backend was built in Python using FastAPI. 
Annotations were stored in a PostgreSQL database.

Inter-annotator agreement
To estimate the reliability of the data, we measured inter-
annotator agreement (IAA) between four annotators 
(two expert annotators and two of the student annota-
tors) on a randomly determined subset of the scientific 
abstracts. For IAA assessment, 35 scientific abstracts (5 
for each therapeutic area in the annotated dataset) were 
randomly selected to be separately annotated by the four 

https://pubmed.ncbi.nlm.nih.gov/
https://icd.who.int/browse11/l-m/en
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annotators. Due to the abundance of unlabeled tokens in 
the dataset (introducing a positive bias), F1 on a token 
level was calculated in addition to Cohen’s κ to approxi-
mate IAA, as unlabeled tokens may be left out of the 
calculation with this method [37–40]. Token-level agree-
ment between annotators was a κ of 0.81 (± 0.05 between 
articles, amounting to substantial to almost perfect 
agreement [41]) and an F1 of 0.88 (± 0.01).

Dataset split into test and train sets
After annotation, all (n = 400) abstracts were split ran-
domly into 10 partitions, each consisting of 10 articles 
from each therapeutic area (Appendix table C), which 
were used for model quality evaluation through k-fold 
cross-validation. Randomization of the abstracts was 
stratified by the presence of headers in the abstract, 
annotation-to-word ratio and the number of study arms. 
The Randomice tool was used for unbiased randomized 
stratification of records amongst the datasets [42].

Model
Input for the NER system
All abstracts of the NER dataset were tokenized using 
the BERT tokenizer6F6F6F6 and subword token embed-
ding tensors were assigned with the BERT base uncased 
model.7 It is common for clinical publication abstracts to 
consist of more than 512 subword tokens. To resolve this 
issue of exceeding the BERT input limit of 512 subword 
tokens, we used a sliding window approach. Scientific 
abstracts longer than 512 subword tokens were divided 
into n batches of 512 subword tokens, with a 256 sub-
word stride. The number of batches (n) was determined 
according to:

	
n =

⌈
t

256
− 1

⌉

6 ​h​t​t​p​​s​:​/​​/​h​u​g​​g​i​​n​g​f​​a​c​e​​.​c​o​/​​t​r​​a​n​s​​f​o​r​​m​e​r​s​​/​m​​o​d​e​​l​_​d​​o​c​/​b​​e​r​​t​.​h​t​m​l​#​b​e​r​t​t​o​k​e​n​i​z​e​r
7 ​h​t​t​p​​s​:​/​​/​h​u​g​​g​i​​n​g​f​​a​c​e​​.​c​o​/​​b​e​​r​t​-​b​a​s​e​-​u​n​c​a​s​e​d

Fig. 1  Sankey diagram of all 48,833 expert annotations in the NER dataset. From left to right, the distribution of annotations is illustrated between differ-
ent categories (nodes) of therapeutic area, annotation label class, annotation label and record domain. The width of the connections between nodes illus-
trate the number of overlapping annotations between nodes. Total number of annotations in nodes are listed between brackets behind the node name

 

https://huggingface.co/transformers/model_doc/bert.html#berttokenizer
https://huggingface.co/bert-base-uncased
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where t was the total number of subword tokens. Any 
decimal result of the formula must be rounded up to an 
integer, as denoted by the ceiling symbols. For example, 
a scientific abstract of 1200 subword tokens was divided 
into 4 batches.

NER model training
The NER model was trained on all train set articles of 
the NER dataset. 512 subword tokens at a time were fed 
to BERT in the sliding-window approach. For training, 
a learning rate of 5*10–5 (momentum 0.99) with Adam 
optimization was used, training for 8 epochs using a 
batch size of 1. The system was trained to assign a BILOU 
tag and one of 25 labels, based on BERT prediction. 
Compared to more conventional BIO tags, BILOU tags 
(Beginning, Intermediate, Last, Outside, Unit) allow for 
a more granular dataset by distinguishing between sin-
gle- and multiple-token chunks [43]. In the sliding win-
dow set-up, a BILOU tag and label of a subword could 
be predicted up to 2 times (the label predicted may dif-
fer between predictions, due to the context difference 
between strides). During post-processing, the average of 
the probabilities for each label predicted between batches 
was taken as the final prediction, and the label with the 
highest probability was assigned to the token. Finally, 
adjacent tokens with the same annotation label were 
aggregated into a single annotation according to their 
BILOU classification pattern.

Quality evaluation
Evaluation of the model quality was done by calculation 
of the precision, recall and F1 (Eq. 1) of the model out-
put compared to annotations in the test set. NER eval-
uation was done on the entity level with only complete 
matches as true positives. A complete match was defined 
by a token start, token end and label match between pre-
dicted and true labels. As such, the corresponding label 
class but different prediction onset or end compared to 
the annotation was insufficient for a complete match. 
For example, a span classified by NER as ‘Inclusion Cri-
teria’ and annotated as ‘Outcome’ did not yield a full 
match, even though both are of the ‘Methodology’ label 
class. Similarly, comparison of a prediction of “complete 
remission” with an annotation of “remission”, both in the 
‘Effect’ label, yielded a false positive.

Experiments
The system quality was evaluated in two settings: in-
domain and out-of-domain quality. All in-domain met-
rics reported were the result of tenfold cross-validation. 
Quality assessment was based on the F1 mean and stan-
dard deviation over the different labels resulting from the 
set of measurements. First, we present the experimental 
setup of in-domain evaluation of the NER and section 
prediction systems. Subsequently, we describe experi-
ments concerned with consistency and out-of-domain 
quality. Finally, we describe the protocol of a utility study 
comparing expert PICOS annotations with the system.

Fig. 2  An example of a fully annotated interventional study abstract of the record with Pubmed identifier 18204830. Different types of labels are colored 
according to their label class. The label class of different annotations is abbreviated in the image. For example, “P EFFECT” represents an ‘Effect’ label of 
the ‘Parameter’ class
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Equation 1 — Equations describing calculations of pre-
cision (left), recall (middle) and F1 measure (right) using 
true positives (tp), false positives (fp) and false negatives 
(fn).

	
p = tp

tp + fp
r = tp

tp + fn
F1 = 2p · r

p + r
� (1)

In-domain quality evaluation
For evaluation of in-domain system quality, the F1 mea-
sure of the system was evaluated on a test set of abstracts 
describing a similar therapeutic area. Evaluation of in-
domain quality consisted of four phases: (1) the optimal 
BERT model for the task was selected through experi-
ments; (2) the quality of the section prediction system 
was measured; (3) its added value to the F1 of the NER 
model was evaluated; and (4) using the optimal model, 
the robustness of the dataset was evaluated.

First, the optimal BERT model to be used during fur-
ther experimentation was determined. NER quality of 
four pretrained BERT models (BERT base and domain-
specific alternatives BioBERT [23], SciBERT [24] and 
PubMedBERT [25]) was tested through tenfold cross-
validation, using the train-test splits of all 400 annotated 
abstracts as specified in Sect. 2.1.4. Based on the result-
ing F1, the best performing model was selected to be 
used in the remainder of the experiments. The selected 
optimal model was the one with the highest mean F1 
score between runs.

We assessed the effect of a smaller training set on the 
in-domain NER prediction quality of the optimal NER 
system. Prediction quality was compared between sys-
tems using 2, 3, 4, 5 and 7 batches as training set (each 
batch consists of 10% of all dataset articles). This was 
done using tenfold cross-validation, where each training 
fold consisted of block number k as the testing set and 
block numbers [k + 1…k + n + 1] as the training set where 
k was the fold number and n was the number of batches 
included in the training set.

Out-of-domain quality evaluation
We assessed the quality of the SURUS for abstracts 
either on another subject or of a different type than the 
ones included in the annotated training set. For this, we 
tested the performance on two out-of-domain test sets: 
one on out-of-domain therapeutic areas and another one 
on out-of-domain observational study types. For each 
out-of-domain NER experiment, the SURUS system was 
tested on abstracts manually annotated by experts as 
out-domain test sets, according to the annotation rules 
applied during the annotation of the in-domain dataset. 
In the out-of-domain therapeutic area test set, we ran-
domly included 10 article abstracts from 9 ICD-11 ther-
apeutic areas not included in the in-domain dataset. In 

the out-of-domain observational study type dataset, we 
randomly included 33 abstracts of various observational 
study types. Amongst the observational study types of 
the included articles were cohort studies, case–con-
trol studies, diagnostic accuracy studies and case stud-
ies. Abstracts included in type out-of-domain quality 
evaluation were of the same therapeutic area as the ones 
included in the SURUS dataset. A detailed overview of 
the composition of the out-of-domain NER datasets is 
provided in Appendix table C.

Utility of SURUS
To determine the utility of the dataset in the workflow 
of a systematic literature review specialist, we compared 
SURUS predictions to expert-determined PICOS char-
acteristics of interventional studies. For this evaluation, 
we worked with elements of PICOS from Cochrane pub-
lished in a systematic literature review. 8 study records (2 
for each therapeutic area included in the dataset) were 
randomly picked from 8 Cochrane systematic literature 
reviews. The Cochrane-assigned elements of PICOS were 
extracted from the “Characteristics of studies” section. 
Any element of study design or patient eligibility of the 
included studies mentioned in the methods section of the 
Cochrane review was also added to the experiment. Ele-
ments of intervention and comparison were merged as 
these show very limited contextual differences.

To appropriately compare Cochrane classifications to 
SURUS predictions, two preparatory steps preceded the 
comparison:

1.	 All Cochrane-determined elements were manually 
screened for presence in the study abstract. Any 
element not present in the abstract was excluded 
from the experiment. This step was included because 
Cochrane experts make use of the full record rather 
than the abstract to determine elements of PICOS.

2.	 SURUS predictions were mapped manually to 
Cochrane-assigned elements, as Cochrane-assigned 
elements may use different wording compared to 
the abstracts. The full mapping for the experiment is 
documented in Appendix table D.

After these steps, the precision, recall and F1 of the 
SURUS predictions were calculated. For these calcula-
tions, the metrics were defined as follows:

 	• True positives were unique predictions correctly 
mapped towards the correct constituent of PICOS.

 	• False positives were unique predictions that are either 
not mapped or mapped to the wrong element of 
PICOS.

 	• False negatives were elements of PICOS to which 
no prediction of SURUS was mapped or for which 



Page 8 of 12Peeters et al. BMC Medical Research Methodology          (2025) 25:184 

elements of SURUS inadequately describe the 
content.

 	• True negatives were not included in the calculation 
of F1, which is designed to monitor the accuracy of 
positive predictions.

LLM performance at NER task
We tested the performance of a state-of-the-art LLM 
model at performing the NER task and compared it to 
SURUS. For this, we presented GPT-4o with a textual ver-
sion of the annotation user manual, and we prompted the 
model for annotation of a sample of 2 test abstracts for 
every therapeutic area included in the in-domain dataset. 
In total, 8 abstracts were included in the comparison.

Availability
The full code for NER training, the full NER dataset and 
the detailed annotation guideline for reproduction efforts 
are available at our git repository.8  

Results
We report the results of experiments regarding the qual-
ity, robustness and out-of-domain viability of SURUS. 
The experimental results are listed in the following order: 
results of the in-domain evaluation (1); results of out-of-
domain evaluation (2); results of a utility case-study (3). 
Recall, precision and support for all classes of all evalua-
tions are listed in Appendix table D.

PubMedBERT performs superior compared to other BERT 
variants when fine-tuned on SURUS dataset
To determine the optimal BERT model for SURUS, we 
compared the F1 using BERT, BioBERT and PubMed-
BERT on the full NER dataset. BioBERT and PubMed-
BERT showed similar prediction quality overall with an 
F1 of 0.95, as well as for the predictions of entities from 
different label classes. The results of the evaluations are 
listed in Table  1 and more detailed result metrics are 
listed in Appendix table A. Both models improved NER 
F1 compared to BERT for all annotation classes and 

8 ​h​t​t​p​s​:​​​/​​/​g​i​t​h​u​​​b​.​​c​o​​m​​/​s​u​r​​​u​​s​-​​a​i​/​d​a​t​a​s​e​t

compared to SciBERT for most label classes. The fine-
tuned NER systems showed high prediction accuracy 
for Drug and Methodology, the label classes most com-
monly featured in PICOS. BioBERT and PubMedBERT 
performed superior compared to BERT and SciBERT. We 
expected that the performance of a PubMedBERT-fine-
tuned model would extrapolate better for an out-domain 
task compared to a BioBERT-fine-tuned model, consider-
ing its specialization on PubMed texts. For this reason, 
we decided to use PubMedBERT for the remainder of the 
dataset validation.

Prediction quality plateaus at training on 70% of dataset 
items
To assess the rigidity of the annotation method, and the 
feasibility of further improving F1 by adding more train-
ing data, we fine-tuned the SURUS model leaving out 
varying percentages of the training set. High prediction 
quality was reached using a small selection of train-
ing data (F1 > 90% using 20% of the dataset for train-
ing, Fig.  3). For all categories, F1 mean and variability 
increased gradually with increasing dataset use, with the 
highest F1 and lowest variability eventually reached using 
the full train set (90% of the dataset).

Prediction quality was largely upheld testing out-of-
domain abstracts
To evaluate the feasibility of using the system on other 
types of abstracts than the ones included in the dataset, 
we assessed the F1 on abstracts of out-of-domain thera-
peutic areas and observational study type (Table 2). The 
F1 of the fine-tuned model on the out-of-domain thera-
peutic area dataset was 0.90. Similar to the in-domain 
evaluation, prediction of the Parameter label class 
appeared to be most inconsistent in the observational 
dataset relative to the other label classes (the out-of-
domain study type), the model scored an overall F1 of 
0.84.

Table 1  F1 scores and standard deviations between folds of the 10-fold cross-validation of NER with BERT and 3 science domain-
specific derivatives BioBERT, SciBERT and PubMedBERT
Label class BERT BioBERT SciBERT PubMedBERT
Disease 0.92 (± 0.03) 0.95 (± 0.02) 0.94 (± 0.01) 0.95 (± 0.02)
Drug 0.93 (± 0.01) 0.95 (± 0.02) 0.95 (± 0.01) 0.95 (± 0.01)
Identifier 0.95 (± 0.02) 0.97 (± 0.03) 0.97 (± 0.02) 0.98 (± 0.01)
Methodology 0.91 (± 0.02) 0.94 (± 0.01) 0.93 (± 0.01) 0.94 (± 0.01)
Parameter 0.81 (± 0.04) 0.87 (± 0.02) 0.86 (± 0.03) 0.87 (± 0.03)
Result 0.96 (± 0.01) 0.98 (± 0.00) 0.98 (± 0.00) 0.98 (± 0.00)
Therapy 0.90 (± 0.03) 0.93 (± 0.03) 0.93 (± 0.03) 0.94 (± 0.02)
Weighted Average 0.92 (± 0.01) 0.95 (± 0.01) 0.94 (± 0.01) 0.95 (± 0.01)

https://github.com/surus-ai/dataset
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High recall on PICOS classification task shows utility of 
SURUS
To assess the utility of SURUS in the practice of system-
atic literature screening, we compared SURUS predic-
tions to Cochrane-assigned PICOS labels for 8 randomly 
chosen interventional abstracts for the relevant thera-
peutic area. The results of the experiment are shown 
in Table  3. The overall F1 of SURUS during the util-
ity assessment was 0.89. Most false positive predictions 
could be attributed to prediction of entities that made no 
appearance in the Cochrane “Characteristics of Studies” 
section. The high recall reflected a minimal risk of miss-
ing relevant elements of PICOS.

Low F1 and high deviation of state-of-the-art LLM on NER 
task
The GPT-4o model performs worse than SURUS at the 
NER classification task, with a character-level F1 of 0.35 
compared to 0.95 by SURUS on the subset of 8 articles. 
Evaluated on entity-level, the LLM performs worse with 
an F1 of 0.1 compared to 0.94 by SURUS. Full results of 
the comparison are listed in Appendix table E.

Discussion
In this paper, we evaluated a densely annotated and 
fine-grained medical dataset for finetuning NLP text 
classification models. We compared the quality of mul-
tiple BERT model variants, fine-tuned on this dataset to 

Table 2  Out-of-domain evaluation metrics of PubMedBERT fine-tuned on the full SURUS dataset
Label class Interventional Observational

Precision Recall F1 Support Precision Recall F1 Support
Disease 0.99 0.90 0.94 664 0.95 0.87 0.91 302
Drug 0.91 0.85 0.87 4,759 0.81 0.74 0.76 338
Id 1.00 0.98 0.99 341 1.00 1.00 1.00 15
Methodology 0.96 0.89 0.92 3,851 0.91 0.77 0.82 1,627
Parameter 0.83 0.76 0.79 3,003 0.78 0.68 0.73 1,345
Result 0.96 0.96 0.96 5,164 0.93 0.91 0.92 1,976
Therapy 0.97 0.85 0.90 1,273 0.33 0.50 0.40 2
Weighted Mean 0.93 0.88 0.90 19,055 0.88 0.80 0.84 5,605

Table 3  Utility assessment metrics, matching SURUS predictions to mapped Cochrane extracts of elements of PICOS
PICOS label TP FP FN P R F1
Participants 26 4 1 0.87 0.96 0.91
Interventions/Comparisons 32 3 2 0.91 0.94 0.93
Outcomes 27 9 1 0.75 0.96 0.84
Study Design 16 5 0 0.76 1 0.86
Weighted Mean 101 21 4 0.83 0.96 0.89
Abbreviations: TP True Positive, FP False Positive, FN False Negative, P Precision; R: Recall

Fig. 3  Effect of limiting the volume of train data on the model quality. Weighted mean F1 does not dip below 0.9 even when 80 annotated abstracts are 
used for finetuning. Mean F1 steadily increases up to 0.95 with full use of train corpus (90% of the dataset). Individual label classes show a similar trend, 
with a relatively steep increase in context understanding for the Parameter label class, improving up to 0.05 in F1
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identify named entities from clinical abstracts. Our mea-
surements confirm that SURUS is capable of fine-grained 
classification and extraction of 25 different medically 
relevant categories, with a weighted mean F1 of 0.95 on 
interventional abstracts across 4 key therapeutic areas. 
The relatively high inter-annotator agreement (κ of 0.81) 
and the adequate out-of-domain performance of the fine-
tuned underline the quality of the dataset. The high recall 
measured during the utility assessment demonstrate the 
value of SURUS to systematic literature reviewers in the 
screening process. The dataset and the annotation man-
ual are available for non-commercial use and allow for 
expansion of the dataset for use in other domains.

To the best of our knowledge, of annotated medical 
NLP corpora published, the SURUS annotated data-
set allows for the highest label prediction quality, for 
the largest diversity of clinical entity types. In addition, 
it shows the highest prediction quality of elements of 
PICOS as extracted by experts. This metric provides the 
key utility advantage of SURUS, granting high, time-sav-
ing opportunities to systematic literature reviewers with 
low risk of missing relevant elements of PICOS.

Current classification model alternatives typically 
focus on sentence or sentence clause classification, leav-
ing much of the interpretation to the scientist perform-
ing the screening. In addition, mapping such text strands 
towards an ontology is laborious and inefficient. The 
fine-grained extraction of 25 labels allows SURUS to pro-
vide the reviewer with more detailed information on the 
PICOS element of studies in their selection. Important 
study features, such as information on drugs and treat-
ments (0.95), elements of methodology (0.94) and disease 
(0.95) are predicted with high reliability (likely due to 
their contextual consistency throughout medical report-
ing), with limited variation between runs of the k-fold 
validation and in-domain therapeutic areas. Prediction 
quality in the current paper exceeds the current state-
of-the-art prediction quality on other datasets focused 
on clinical studies such as EBM-PICO (0.73, Pubmed-
BERT [25]), NICTA-PIBOSO (0.57–0.91, BioBERT [44]) 
and comparable to PubMedPICO (0.85–0.99, BioBERT 
[44]), recognizing more granular text spans and more 
label classes in the process. In addition, SURUS is the 
only PICOS classification system for which the utility is 
assessed compared to mapped expert extractions, rather 
than annotation span comparison, which typically intro-
duces a layer of subjectivity and inconsistency.

Out-of-domain therapeutic area evaluation of the 
model shows a modest drop of prediction quality from 
0.95 to 0.90, with most of the important label classes 
retaining high prediction quality. This signifies the util-
ity of SURUS to systematic researchers specialized in 
any therapeutic area. The prediction quality of SURUS 
falls off slightly for abstracts of observational studies 

compared to out-domain therapeutic area prediction (F1 
of 0.84 vs 0.90). The discrepancy is likely because of the 
methodological and stylistic differences between study 
types. For example, in some observational studies dis-
eases may be key study group differentiators, whereas in 
interventional studies, study groups are defined based 
on the therapeutic regimens received. In addition, there 
is substantial variety in writing style between different 
types of observational studies, which include study types 
such as diagnostic accuracy studies, cohort studies and 
case reports. Still, important NER class categories such 
as Disease and Methodology can relatively reliably be 
extracted from observational studies (F1 of 0.91 and 0.82, 
respectively).

Limitations of the approach include the low diversity 
of the train dataset, focusing on interventional stud-
ies on 4 of the most common therapeutic areas. Predic-
tion of named entity labels is less accurate outside these 
domains, or the domain may require additional labels 
which are not defined in our methodology (for example, 
a designated label for animals used in animal studies). 
Researchers may want to consider adding to the fine-tun-
ing dataset to improve SURUS performance on any other 
therapeutic area of interest. Furthermore, the complex-
ity of the annotation process may represent a consider-
able hurdle to producing a significant contribution to the 
dataset. The annotation manual may need to be adjusted 
when processing other study types to reach similar pre-
diction quality levels as is shown here (for example, there 
is no “intervention” in observational studies). Neverthe-
less, the current prediction quality offers perspective for 
additional fine-tuning efforts to improve the prediction 
quality of relevant medical labels in observational studies.

In our experiment, SURUS performs better than a 
state-of-the-art, instruction-tuned LLM model in clas-
sification of NER labels in accordance with our annota-
tion manual. In general, it appears that the number of 
different annotation labels was too high and the instruc-
tions for label span cut-off were too complex for the LLM 
to approximate SURUS NER prediction accuracy. As 
LLMs will likely continue to improve, it would be inter-
esting to see whether LLMs will, in the future, approxi-
mate SURUS classification accuracy through instruction 
tuning.

Conclusion
Our findings show that the SURUS system is well-suited 
to classify 25 different medically relevant entity labels in 
interventional study abstracts with high prediction qual-
ity. Combined, its predictions can be used to extract 
elements of PICOS from clinical abstracts with high 
accuracy. Prediction quality is highest for articles on indi-
cations the system is trained on but remains considerable 
when applying SURUS to other indications. In addition, 
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SURUS shows considerable practical utility when used to 
extract elements of PICOS from scientific abstracts, with 
very limited risk of failing to identify elements of PICOS.
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