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Evaluation of SURUS: a named entity
recognition NLP system to extract knowledge
from interventional study records

Casper Peeters'”, Koen Vijverberg', Marianne Pouwer', Bart Westerman?, Maikel Boot' and Suzan Verberne?

Abstract

Background Medical decision-making commonly is guided by evidence-based analyses from systematic literature
reviews (SLRs). These require large amounts of time and subject matter expertise to perform. Automated extraction of
key datapoints from clinical publications could speed up the process of systematic literature review assembly. To this
end, we built SURUS, a named entity recognition (NER) system comprised of a Bidirectional Encoder Representations
from Transformers (BERT) model trained on a fine-grained dataset. The aim of this study was to assess the quality of
SURUS classifications of PICO (patient, intervention, comparator and outcome) and study design elements of clinical
study abstracts.

Methods The PubMedBERT-based model was trained and evaluated using a dataset of 39,531 labels amongst 400
clinical abstracts, with an inter-annotator agreement of 0.81 (Cohen’s k) and 0.88 (F1). The labels were manually
annotated using a strict annotation guide. We evaluated quality of the dataset and tested the utility of the model
in the practise of systematic literature screening, by comparing SURUS predictions to expert PICO and design
classifications. Additionally, we tested out-of-domain quality of the model across 7 other therapeutic areas and
another study design.

Results The SURUS NER system achieved an overall F1 score of 0.95, with minor deviation between labels. In
addition, SURUS achieved a NER F1 of 0.90 and 0.84 for out-of-domain therapeutic area and observational study
abstracts, respectively. Finally, F1 of PICO and study design classifications was 0.89 with a recall of 0.96 compared to
expert classifications.

Conclusion The system reaches an F1 score of 0.95 across 25 contextually different medical named entities.

This high-quality in-domain medical entity prediction of a fine-tuned BERT-based model was the result of a strict
annotation guideline and high inter-annotator agreement. This prediction accuracy was largely preserved during
extensive out-of-domain evaluation, indicating its utility across other indication areas and study types. Current
approaches in the field lack in the fine-grained training data and versatility demonstrated here. We think that this
approach sets a new standard in medical literature analysis and paves the way for creating fine-grained datasets of
labelled entities that can be used for downstream analysis outside of traditional SLRs.
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Background

Interventional trials are an important source of scientific
data for medical decision-making. Unstructured data
from trials are carefully evaluated in systematic litera-
ture reviews (SLRs), which are typically accompanied by
meta-analyses. These efforts result in essential medical
documents that help drive decision making in the medi-
cal field. The key purpose of SLRs is to provide scientific
validity through the inclusion of the complete body of
evidence to answer a specific research question through
an evidence-based approach. As such, the generation of
SLRs is an intricate process, during which a broad selec-
tion of literature in the field of study is manually screened
for eligibility and evaluated for the quality of evidence.
It is paramount that an SLR represents an exhaustive
evaluation of an area within a scientific field, and it is of
high importance that the task of eligibility assessment is
scrutinized and performed with complete recall to avoid
incorrect exclusion of evidence. This assessment is par-
ticularly important in the context of the growing body of
scientific publications available; from 1960 onwards, the
number of PubMed records has grown exponentially [1,
2]. Nowadays, the initial screening process for SLRs in
active medical fields often includes more than 3000 sci-
entific abstracts. This means that assuming one would be
able to process abstracts at a pace of 1 per minute, this
task alone would take a human at least 50 h of reading
time. Given that the Cochrane Institute’s guidelines for
an SLR involve independent screening by two trained
experts, a modern, manual SLR process places a dispro-
portional workload on expensive medical experts, often
resulting in months of full-time work and costs easily
exceeding $100,000 per SLR [3, 4].

Clinical questions for evidence-based practice are typi-
cally structured according to elements of an established
framework called PICO. For a clinical SLR project, infor-
mation on the Patient, Intervention, Comparator, and
Outcome (PICO) are defined to determine the scope of
the work and the trials eligible for the project [5]. For
example, the PICOOFOFOF' framework of a trial could
comprise “acute coronary syndrome” (Patient), “rivaroxa-
ban” (Intervention), “placebo” (Comparison) and “systolic
blood pressure” (Outcome). Along with elements listed
in the PICO framework, study design characteristics
(“randomized”) provide additional valuable insights for
the selection of eligible studies [6, 7]. Hereafter, the com-
bination of PICO and study design characteristics will be
referred to as the PICOS framework or PICOS in short.

T https://www.cochranelibrary.com/about/pico-search

One of the challenges in the identification of elements
of PICOS is their dependence on textual context. For
example, “stroke” may refer to a criterium of study par-
ticipants for their inclusion into the study (i.e. part of
“Patient”) or to an endpoint that is measured during the
study (i.e. part of “Outcome”). It may also refer to related
research, in which case its identification is of no use to
the reviewer.

Over the past decades, the increasing popularity of
machine learning (ML) models has given rise to the
development of methods to speed up the SLR screening
process. Some ML approaches rank scientific publica-
tions according to their eligibility to a research question,
thus providing the reviewer with the option of a priority
cut-off for screening [8—10]. Alternatively, ML methods
can provide the reviewer with information on scientific
publications, which can be used to include or exclude
studies in further analyses. Specifically, ML-based natu-
ral language processing (NLP) methods may extract
elements of PICOS from unstructured medical text or
predict the eligibility of a study based on a set of eligible
studies initially selected by the reviewer. Ultimately, accu-
rate and complete extraction of study characteristics by
ML models could enable reviewers to base their eligibil-
ity decisions on the model outputs during the screening
process of an SLR. A subset of biomedical NLP methods
currently focuses on named entity recognition (NER)
classification techniques. Using NER, unstructured text
is processed and words, expressions or sentences are
labeled with pre-defined classes (e.g. diseases, drugs, etc.)
[2].

Several approaches have been proposed for the extrac-
tion of elements of PICOS from clinical publication texts
[11]. Despite their apparent advantages, these NLP tools
currently have a few limitations: (1) valuable study design
features are often not extracted (e.g. study duration and
study size); (2) PICO-focused ML-solutions typically
focus on prediction of relatively large text sequences,
resulting in coarse-grained extraction of limited use
to the reviewer; (3) the quality of current NER systems
are insufficient to approximate expert reviewer eligibil-
ity assessment performance [12]; and (4) there are only
few datasets available which are designed specifically for
PICO extraction [13—-16], but they are limited in terms of
size and granularity, and models trained on these datas-
ets lack performance required.

Another, more recent innovation that could add value
in SLR practice is the emergence of large language mod-
els (LLMs), which can be leveraged to interpret and sum-
marize large volumes of scientific texts. However, as high
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recall is of paramount importance in the field of system-
atic literature screening, the utility of LLMs in this scope
is limited due to the risk of hallucination and their medi-
ocre performance at high-complexity annotation tasks
[17-19].

In this paper, we provide an elaborate evaluation of
SURUS, a BERT-based classification model fine-tuned
on a fine-grained, manually annotated dataset of medi-
cal annotations. SURUS was designed for the extraction
of PICOS elements from clinical texts. SURUS (which
is not an acronym) was trained to classify 25 different
annotation labels in the abstracts of interventional stud-
ies. In addition to this, the SURUS NER method design
is intended to facilitate the extraction of the results of
clinical endpoints using relation extraction. Currently,
SURUS is being integrated into software for systematic
literature selection and analysis by medical professionals
and scientists. The purpose of the software is to identify
relevant literature through the recognition of medical
named entities and abstract sections.

Our primary aims are two-fold: first, to rigorously
validate the detailed annotation method underlying our
dataset, exploring how fine-grained annotations might
influence model performance; and second, to assess the
extent to which our system can recognize, interpret, and
classify a diverse range of clinically significant entities,
including elements of PICOS. As a secondary objective,
we compare SURUS performance with classification
accuracy of an LLM, instruction-tuned with the SURUS
annotation manual.

We ask: can a carefully tuned BERT model capture the
subtle contextual shifts of a wide range of medical enti-
ties in a way that is sufficiently reliable for practical appli-
cation? To our knowledge, this represents the first deep
learning-based system capable of extracting such a broad
spectrum of clinically relevant information from text
with accuracy suitable for practical clinical use.

Related work

Previously, data classification and categorization of sci-
entific study records were experimented with using Sup-
port Vector Machines), Conditional Random Fields, Long
Short-Term Memory or, more recently, Bidirectional
Encoder Representations from Transformers (BERT)
models. Examples of tools employing one or more of
these techniques were recently reviewed and evaluated in
a systematic review [11].

Whilst all of the models listed above have their advan-
tages and drawbacks, the consensus is that transformer-
based methods such as BERT combine high potential
with relatively small (annotation) effort compared to
alternatives [11]. BERT is a transformer encoder model,
pretrained on a vast dataset of books and Wikipedia
[20]. BERT models have shown superiority compared to
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BiLSTM models on several tasks including NER [21, 22].
Later on, BERT was expanded upon by adding biomedi-
cal scientific texts to its pretraining, including the spe-
cialized BERT-derivatives BioBERT [23], SciBERT [24]
and PubMedBERT ([25].

The most recent innovation in the field of NLP are
generative large language models (LLMs). LLMs, such
as GPT-4 and LLaMA, excel in summarization, contex-
tualization and extrapolation of information from a wide
range of scientific fields. In the medical field, contribu-
tions include summarization of medical texts, chat-bot
mediated diagnosis and medical education [17, 26]. How-
ever, the generative nature of these models make them
prone to hallucination and classification inaccuracy,
which is undesirable in a task demanding extensive clas-
sification recall [17, 18]. In the context of classification,
BERT-like models have still shown superiority over LLM
models [19] and tuning of LLMs for a task with complex
instructions has proven challenging [27]. For this reason,
we decided to use a variant of BERT as the classification
model of choice for validation of the quality of the dataset
presented here.

BERT-based models can be fine-tuned to perform well
in specialized supervised learning tasks. Manual, task-
specific labeling for fine-tuning a model is work-intensive
and requires expert knowledge of the task and domain. In
addition, currently available datasets for NER are often of
limited quality and consistency [28].

To our knowledge, there are currently 3 datasets pub-
licly available for recognition of PICO specifically. First,
Kim et al. created the NICTA-PIBOSO dataset, which
consists of 1000 abstracts with manually labeled sentence
annotations amongst 5 label classes [29]. Second, Jin et
al. presented the PubMed-PICO dataset,” consisting of
almost 25,000 abstracts of which relevant sentences were
automatically assigned to 1 of 7 labels using a rule-based
algorithm [30]. Third, Nye et al. [31] reported the EBM-
NLP corpus,® which consists of 5190 abstracts of scien-
tific publications, 190 of which are annotated by experts
and 5000 by laymen, using Population, Intervention and
Outcome labels. The EBM-NLP corpus was used to train
PICO-extracting systems on a sentence [32, 33] and span
level [34, 35].

For SURUS to be able to accurately and concisely pre-
dict elements of PICOS, we created a dataset that offers
the following advantages: (1) the annotation approach
is suitable for word-level extraction; (2) we distinguish
25 different labels allowing for fine-grained extraction
of PICOS characteristics; (3) the dataset presented here
consists exclusively of expert-annotated labels; (4) our

2https://paperswithcode.com/dataset/pubmed-pico-element-detection-dat
aset

3https://github.com/bepnye/EBM-NLP
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dataset is designed in a way that would facilitate extrac-
tion of detailed study results through relation extraction
in a later phase of SURUS development.

Methods

Dataset

For our dataset, we used a set of scientific articles
abstracts, publicly available in the PubMed database4F.*
PubMed is the most widely used source of clinical evi-
dence and consists of the Medline and PMC databases.
Our dataset consisted of abstracts of interventional
study reports. Interventional studies are characterized
by investigation of a medical intervention and group dis-
tinction is typically based on differences in therapeutic
regimen [36]. Though of similar study type, the style of
reporting may vary greatly between therapeutic areas and
interventional study subtypes. For this reason, abstracts
included in the SURUS dataset were of various interven-
tional study subtypes and therapeutic areas.

To ascertain high versatility, 4 of the most important
therapeutic areas as reported in WHO ICD-11° were
selected to be represented in the dataset: cardiovascular
diseases, endocrine diseases, neoplasms and respiratory
diseases. In total, 400 article abstracts of interventional
studies (100 for each therapeutic area) were randomly
selected from the PubMed database for in-domain
evaluation of the NER system. In addition, a set of 123
other article abstracts was randomly selected for out-of-
domain therapeutic area (90) and study type (33) evalu-
ation. During randomization, the aim was to achieve a
fitting representation of the real-world diversity of inter-
ventional publication abstracts in our dataset.

Expert annotations in the NER dataset

The abstracts of these selected publications were manu-
ally annotated. During annotation, entities were labeled
and assigned to one of 25 labels, amongst 7 label classes.
Label classes that were not relevant to extraction of
PICOS elements were designed for either extraction of
additional valuable information outside of PICOS or
extract entities of study results. In addition, an element
of PICOS may consist of multiple labels. For example,
“Population” may be composed of entities of the “Meth-
odology Inclusion Criteria” but also “Disease Indication”.
We chose this structure to clearly define the contextual
niche of every label class, and to add to the granularity
and the utility of the predictions made. All label classes
had distinct contextual dependencies and unique labels.
A full overview of annotations in the dataset is visualized
in Fig. 1, the mapping of labels to elements of PICOS and
more detailed descriptions of the label class are available

“https://pubmed.ncbi.nlm.nih.gov/
Shttps://icd.who.int/browsel1/l-m/en
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in Appendix table B. Correct labeling of text elements
is dependent on the context of the element and annota-
tions made in its vicinity. For example, when mentioned
in the methods section, “overall survival” was labeled as
an element of the label class ‘Methodology, whereas it
was labeled as an element of the ‘Parameter’ class in the
results section. However, when “overall survival” was
mentioned in the results section without any association
with annotations of the ‘Result’ class (so without associ-
ated results), it was not labeled at all. These nuances add
to the intricacy of the annotation process.

In total, the 400 scientific abstracts were labeled with
39,531 annotations, averaging 98.83 (+29.70) annota-
tions per abstract. The out-of-domain datasets consisted
of 8,131 and 1,876 for the out-of-domain indication and
study type datasets, respectively.

NER dataset annotation process

Master students with a pharmaceutical or biomedi-
cal background were tasked to annotate the scientific
abstracts. To warrant the quality and consistency of the
annotations made, we made four provisions: (1) a detailed
annotation manual was assembled by the first author to
guide the annotators; (2) all annotators followed a 2-day
course, during which they were instructed about the
annotation methodology and process; (3) all annotations
made were reviewed by one of two expert annotators; (4)
annotation consistency was manually monitored using
an extensive set of restrictive rules for annotation span
range and context.

The primary aims of the manual created was to facili-
tate complete extraction of PICOS elements and to pro-
mote consistency of annotations made between articles
in different fields and of different designs. Due to the high
diversity of contextual situations in medical articles, the
assembly of the manual was an iterative process featur-
ing regular ‘consensus sessions, during which the judg-
ment of one expert annotator was decisive. Figure 2
shows a fully annotated example of a study abstract. To
facilitate the annotation process, a comprehensive anno-
tation management system was developed, consisting of
integrated frontend, backend, and database components.
The frontend was implemented using Vue.js and Vuetify,
while the backend was built in Python using FastAPIL
Annotations were stored in a PostgreSQL database.

Inter-annotator agreement

To estimate the reliability of the data, we measured inter-
annotator agreement (IAA) between four annotators
(two expert annotators and two of the student annota-
tors) on a randomly determined subset of the scientific
abstracts. For IAA assessment, 35 scientific abstracts (5
for each therapeutic area in the annotated dataset) were
randomly selected to be separately annotated by the four
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Fig. 1 Sankey diagram of all 48,833 expert annotations in the NER dataset. From left to right, the distribution of annotations is illustrated between differ-
ent categories (nodes) of therapeutic area, annotation label class, annotation label and record domain. The width of the connections between nodes illus-
trate the number of overlapping annotations between nodes. Total number of annotations in nodes are listed between brackets behind the node name

annotators. Due to the abundance of unlabeled tokens in
the dataset (introducing a positive bias), F1 on a token
level was calculated in addition to Cohen’s k to approxi-
mate [AA, as unlabeled tokens may be left out of the
calculation with this method [37-40]. Token-level agree-
ment between annotators was a Kk of 0.81 (+0.05 between
articles, amounting to substantial to almost perfect
agreement [41]) and an F1 of 0.88 (+0.01).

Dataset split into test and train sets

After annotation, all (#=400) abstracts were split ran-
domly into 10 partitions, each consisting of 10 articles
from each therapeutic area (Appendix table C), which
were used for model quality evaluation through k-fold
cross-validation. Randomization of the abstracts was
stratified by the presence of headers in the abstract,
annotation-to-word ratio and the number of study arms.
The Randomice tool was used for unbiased randomized
stratification of records amongst the datasets [42].

Model

Input for the NER system

All abstracts of the NER dataset were tokenized using
the BERT tokenizer6F6F6F® and subword token embed-
ding tensors were assigned with the BERT base uncased
model.” It is common for clinical publication abstracts to
consist of more than 512 subword tokens. To resolve this
issue of exceeding the BERT input limit of 512 subword
tokens, we used a sliding window approach. Scientific
abstracts longer than 512 subword tokens were divided
into n batches of 512 subword tokens, with a 256 sub-
word stride. The number of batches (n) was determined

according to:
t
=|-— -1
" [256 w

Shttps://huggingface.co/transformers/model_doc/bert.html#berttokenizer

7https://huggingface.co/bert-base-uncased
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EEREVREIEPCEONTMBIARSSSEREENE. Duc to labelling restrictions, no second glargineowotecuie dose was allowed. Results [BaselineFoerrmination)
HbA(ICc)FeecT) [HecTreasedberemmnation) fronm BlEREASENE] to [:2RVALE and [ARVALE) 0gRuNT) ((INSTSEN#HeAEE)) with detemirowoiseue and glarginesmoisoue
respectively. FPGFERET improved from [OISREASENNE) t o [ZHRVALE) and [AORVALE FRFGI/IRGNT ( [NSREGNFReAEE ), respectively. With detemir pmotecuie |,
45rvaie % v, of [participantsroeremination] completed the study rerreer on once daily dosingeeeremmanon and B5rvai (%runtr on [twice daily |
[dGsifigrssRaton, with no difference in HbA(1c). Overall, [B2RVASE PRGN of [FaTtiCipanteroeemnaton achieved rosemination HEA(TS)<Er=1

[7.096 Peecr) BERVALE) 9gRUT) ( detemir omoiccuie ) and (BHRVALE 0N (glargineovowecue ) WithoUt hypoglycaemiarsememinaion). Within-participant

variability for self-monitored FPG and pre-dinner PG did not differ by insulinoetass treatment, nor did the relative risk of overall or nocturnal

hypoglycaemia. Modest fEdllictionsreeemmaton in Weight'gain et were seen with detemiromotecuie vs iglarginepmorecuie in

‘completers roeremmation ((3.0RvALE| vs (3.9 rvalte| [kgrunit , p =0.0Trsiewireavce|) and in the intention-to-treat population Poererwmarion (2.7 VAL vs
(BISIRVALE) (KRN , o EOIOSRSENHeAeH ), primarily related to completers on [BlCEcaINaBoHeenE detemir omotecuie . ([VISERROEERMNATON
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with low risk of ijpoglycaemiasmpieaion. Non-inferiority was demonstrated for detemir smotecuie using higher insulin eetass. doses (mainly

patients on [NICEIOEINEBEERENE dosing); weight gain was somewhat reduced with [EilCEIOaINEosERems insulin detemiromotecuie .

Fig.2 Anexample of a fully annotated interventional study abstract of the record with Pubmed identifier 18204830. Different types of labels are colored
according to their label class. The label class of different annotations is abbreviated in the image. For example, “P EFFECT" represents an ‘Effect’ label of

the ‘Parameter’ class

where ¢ was the total number of subword tokens. Any
decimal result of the formula must be rounded up to an
integer, as denoted by the ceiling symbols. For example,
a scientific abstract of 1200 subword tokens was divided
into 4 batches.

NER model training

The NER model was trained on all train set articles of
the NER dataset. 512 subword tokens at a time were fed
to BERT in the sliding-window approach. For training,
a learning rate of 5*10° (momentum 0.99) with Adam
optimization was used, training for 8 epochs using a
batch size of 1. The system was trained to assign a BILOU
tag and one of 25 labels, based on BERT prediction.
Compared to more conventional BIO tags, BILOU tags
(Beginning, Intermediate, Last, Outside, Unit) allow for
a more granular dataset by distinguishing between sin-
gle- and multiple-token chunks [43]. In the sliding win-
dow set-up, a BILOU tag and label of a subword could
be predicted up to 2 times (the label predicted may dif-
fer between predictions, due to the context difference
between strides). During post-processing, the average of
the probabilities for each label predicted between batches
was taken as the final prediction, and the label with the
highest probability was assigned to the token. Finally,
adjacent tokens with the same annotation label were
aggregated into a single annotation according to their
BILOU classification pattern.

Quality evaluation

Evaluation of the model quality was done by calculation
of the precision, recall and F1 (Eq. 1) of the model out-
put compared to annotations in the test set. NER eval-
uation was done on the entity level with only complete
matches as true positives. A complete match was defined
by a token start, token end and label match between pre-
dicted and true labels. As such, the corresponding label
class but different prediction onset or end compared to
the annotation was insufficient for a complete match.
For example, a span classified by NER as ‘Inclusion Cri-
teria’ and annotated as ‘Outcome’ did not yield a full
match, even though both are of the ‘Methodology’ label
class. Similarly, comparison of a prediction of “complete
remission” with an annotation of “remission’, both in the
‘Effect’ label, yielded a false positive.

Experiments

The system quality was evaluated in two settings: in-
domain and out-of-domain quality. All in-domain met-
rics reported were the result of tenfold cross-validation.
Quality assessment was based on the F1 mean and stan-
dard deviation over the different labels resulting from the
set of measurements. First, we present the experimental
setup of in-domain evaluation of the NER and section
prediction systems. Subsequently, we describe experi-
ments concerned with consistency and out-of-domain
quality. Finally, we describe the protocol of a utility study
comparing expert PICOS annotations with the system.
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Equation 1 — Equations describing calculations of pre-
cision (left), recall (middle) and F1 measure (right) using
true positives (tp), false positives (fp) and false negatives
(fn).

ip tp

207
= ‘r: =
tp+ fp tp+ fn

_p+r

P (1)

In-domain quality evaluation

For evaluation of in-domain system quality, the F1 mea-
sure of the system was evaluated on a test set of abstracts
describing a similar therapeutic area. Evaluation of in-
domain quality consisted of four phases: (1) the optimal
BERT model for the task was selected through experi-
ments; (2) the quality of the section prediction system
was measured; (3) its added value to the F1 of the NER
model was evaluated; and (4) using the optimal model,
the robustness of the dataset was evaluated.

First, the optimal BERT model to be used during fur-
ther experimentation was determined. NER quality of
four pretrained BERT models (BERT base and domain-
specific alternatives BioBERT [23], SciBERT [24] and
PubMedBERT [25]) was tested through tenfold cross-
validation, using the train-test splits of all 400 annotated
abstracts as specified in Sect. 2.1.4. Based on the result-
ing F1, the best performing model was selected to be
used in the remainder of the experiments. The selected
optimal model was the one with the highest mean F1
score between runs.

We assessed the effect of a smaller training set on the
in-domain NER prediction quality of the optimal NER
system. Prediction quality was compared between sys-
tems using 2, 3, 4, 5 and 7 batches as training set (each
batch consists of 10% of all dataset articles). This was
done using tenfold cross-validation, where each training
fold consisted of block number k as the testing set and
block numbers [k+ 1...k+n+ 1] as the training set where
k was the fold number and # was the number of batches
included in the training set.

Out-of-domain quality evaluation

We assessed the quality of the SURUS for abstracts
either on another subject or of a different type than the
ones included in the annotated training set. For this, we
tested the performance on two out-of-domain test sets:
one on out-of-domain therapeutic areas and another one
on out-of-domain observational study types. For each
out-of-domain NER experiment, the SURUS system was
tested on abstracts manually annotated by experts as
out-domain test sets, according to the annotation rules
applied during the annotation of the in-domain dataset.
In the out-of-domain therapeutic area test set, we ran-
domly included 10 article abstracts from 9 ICD-11 ther-
apeutic areas not included in the in-domain dataset. In
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the out-of-domain observational study type dataset, we
randomly included 33 abstracts of various observational
study types. Amongst the observational study types of
the included articles were cohort studies, case—con-
trol studies, diagnostic accuracy studies and case stud-
ies. Abstracts included in type out-of-domain quality
evaluation were of the same therapeutic area as the ones
included in the SURUS dataset. A detailed overview of
the composition of the out-of-domain NER datasets is
provided in Appendix table C.

Utility of SURUS
To determine the utility of the dataset in the workflow
of a systematic literature review specialist, we compared
SURUS predictions to expert-determined PICOS char-
acteristics of interventional studies. For this evaluation,
we worked with elements of PICOS from Cochrane pub-
lished in a systematic literature review. 8 study records (2
for each therapeutic area included in the dataset) were
randomly picked from 8 Cochrane systematic literature
reviews. The Cochrane-assigned elements of PICOS were
extracted from the “Characteristics of studies” section.
Any element of study design or patient eligibility of the
included studies mentioned in the methods section of the
Cochrane review was also added to the experiment. Ele-
ments of intervention and comparison were merged as
these show very limited contextual differences.

To appropriately compare Cochrane classifications to
SURUS predictions, two preparatory steps preceded the
comparison:

1. All Cochrane-determined elements were manually
screened for presence in the study abstract. Any
element not present in the abstract was excluded
from the experiment. This step was included because
Cochrane experts make use of the full record rather
than the abstract to determine elements of PICOS.

2. SURUS predictions were mapped manually to
Cochrane-assigned elements, as Cochrane-assigned
elements may use different wording compared to
the abstracts. The full mapping for the experiment is
documented in Appendix table D.

After these steps, the precision, recall and F1 of the
SURUS predictions were calculated. For these calcula-
tions, the metrics were defined as follows:

« True positives were unique predictions correctly
mapped towards the correct constituent of PICOS.

« False positives were unique predictions that are either
not mapped or mapped to the wrong element of
PICOS.

o False negatives were elements of PICOS to which
no prediction of SURUS was mapped or for which
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elements of SURUS inadequately describe the
content.

+ True negatives were not included in the calculation
of F1, which is designed to monitor the accuracy of
positive predictions.

LLM performance at NER task

We tested the performance of a state-of-the-art LLM
model at performing the NER task and compared it to
SURUS. For this, we presented GPT-40 with a textual ver-
sion of the annotation user manual, and we prompted the
model for annotation of a sample of 2 test abstracts for
every therapeutic area included in the in-domain dataset.
In total, 8 abstracts were included in the comparison.

Availability

The full code for NER training, the full NER dataset and
the detailed annotation guideline for reproduction efforts
are available at our git repository.®

Results

We report the results of experiments regarding the qual-
ity, robustness and out-of-domain viability of SURUS.
The experimental results are listed in the following order:
results of the in-domain evaluation (1); results of out-of-
domain evaluation (2); results of a utility case-study (3).
Recall, precision and support for all classes of all evalua-
tions are listed in Appendix table D.

PubMedBERT performs superior compared to other BERT
variants when fine-tuned on SURUS dataset

To determine the optimal BERT model for SURUS, we
compared the F1 using BERT, BioBERT and PubMed-
BERT on the full NER dataset. BioBERT and PubMed-
BERT showed similar prediction quality overall with an
F1 of 0.95, as well as for the predictions of entities from
different label classes. The results of the evaluations are
listed in Table 1 and more detailed result metrics are
listed in Appendix table A. Both models improved NER
F1 compared to BERT for all annotation classes and
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compared to SciBERT for most label classes. The fine-
tuned NER systems showed high prediction accuracy
for Drug and Methodology, the label classes most com-
monly featured in PICOS. BioBERT and PubMedBERT
performed superior compared to BERT and SciBERT. We
expected that the performance of a PubMedBERT-fine-
tuned model would extrapolate better for an out-domain
task compared to a BioBERT-fine-tuned model, consider-
ing its specialization on PubMed texts. For this reason,
we decided to use PubMedBERT for the remainder of the
dataset validation.

Prediction quality plateaus at training on 70% of dataset
items

To assess the rigidity of the annotation method, and the
feasibility of further improving F1 by adding more train-
ing data, we fine-tuned the SURUS model leaving out
varying percentages of the training set. High prediction
quality was reached using a small selection of train-
ing data (F1>90% using 20% of the dataset for train-
ing, Fig. 3). For all categories, F1 mean and variability
increased gradually with increasing dataset use, with the
highest F1 and lowest variability eventually reached using
the full train set (90% of the dataset).

Prediction quality was largely upheld testing out-of-
domain abstracts

To evaluate the feasibility of using the system on other
types of abstracts than the ones included in the dataset,
we assessed the F1 on abstracts of out-of-domain thera-
peutic areas and observational study type (Table 2). The
F1 of the fine-tuned model on the out-of-domain thera-
peutic area dataset was 0.90. Similar to the in-domain
evaluation, prediction of the Parameter label class
appeared to be most inconsistent in the observational
dataset relative to the other label classes (the out-of-
domain study type), the model scored an overall F1 of
0.84.

Table 1 F1 scores and standard deviations between folds of the 10-fold cross-validation of NER with BERT and 3 science domain-

specific derivatives BioBERT, SCiBERT and PubMedBERT

Label class BERT BioBERT SciBERT PubMedBERT
Disease 0.92 (£0.03) 0.95 (+0.02) 0.94 (£0.01) 0.95 (£0.02)
Drug 0.93 (£0.01) 0.95 (£0.02) 0.95 (£0.01) 0.95 (£0.01)
Identifier 0.95 (£0.02) 0.97 (£0.03) 0.97 (£0.02) 098 (£0.01)
Methodology 091 (£0.02) 0.94 (£0.01) 0.93 (£0.01) 0.94 (£0.01)
Parameter 0.81 (£0.04) 0.87 (£0.02) 0.86 (£0.03) 0.87 (£0.03)
Result 0.96 (£0.01) 0.98 (+0.00) 0.98 (+0.00) 0.98 (+0.00)
Therapy 0.90 (£0.03) 0.93 (£0.03) 0.93 (£0.03) 0.94 (£0.02)
Weighted Average 0.92 (+0.01) 0.95 (+0.01) 0.94 (+0.01) 0.95 (+0.01)

8 https://github.com/surus-ai/dataset
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Model quality with varying train volumes
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Fig. 3 Effect of limiting the volume of train data on the model quality. Weighted mean F1 does not dip below 0.9 even when 80 annotated abstracts are
used for finetuning. Mean F1 steadily increases up to 0.95 with full use of train corpus (90% of the dataset). Individual label classes show a similar trend,
with a relatively steep increase in context understanding for the Parameter label class, improving up to 0.05 in F1

Table 2 Out-of-domain evaluation metrics of PubMedBERT fine-tuned on the full SURUS dataset

Label class Interventional Observational

Precision Recall F1 Support Precision Recall F1 Support
Disease 0.99 0.90 0.94 664 0.95 0.87 0.91 302
Drug 0.91 0.85 0.87 4,759 0.81 0.74 0.76 338
Id 1.00 0.98 0.99 341 1.00 1.00 1.00 15
Methodology 0.96 0.89 0.92 3,851 091 0.77 0.82 1,627
Parameter 0.83 0.76 0.79 3,003 0.78 0.68 0.73 1,345
Result 0.96 0.96 0.96 5,164 0.93 091 0.92 1,976
Therapy 0.97 0.85 0.90 1,273 0.33 0.50 0.40 2
Weighted Mean 0.93 0.88 0.90 19,055 0.88 0.80 0.84 5,605
Table 3 Utility assessment metrics, matching SURUS predictions to mapped Cochrane extracts of elements of PICOS
PICOS label TP FP FN P R F1
Participants 26 4 1 0.87 0.96 091
Interventions/Comparisons 32 3 2 091 0.94 093
Outcomes 27 9 1 0.75 0.96 0.84
Study Design 16 5 0 0.76 1 0.86
Weighted Mean 101 21 4 0.83 0.96 0.89

Abbreviations: TP True Positive, FP False Positive, FN False Negative, P Precision; R: Recall

High recall on PICOS classification task shows utility of
SURUS

To assess the utility of SURUS in the practice of system-
atic literature screening, we compared SURUS predic-
tions to Cochrane-assigned PICOS labels for 8 randomly
chosen interventional abstracts for the relevant thera-
peutic area. The results of the experiment are shown
in Table 3. The overall F1 of SURUS during the util-
ity assessment was 0.89. Most false positive predictions
could be attributed to prediction of entities that made no
appearance in the Cochrane “Characteristics of Studies”
section. The high recall reflected a minimal risk of miss-
ing relevant elements of PICOS.

Low F1 and high deviation of state-of-the-art LLM on NER
task

The GPT-40 model performs worse than SURUS at the
NER classification task, with a character-level F1 of 0.35
compared to 0.95 by SURUS on the subset of 8 articles.
Evaluated on entity-level, the LLM performs worse with
an F1 of 0.1 compared to 0.94 by SURUS. Full results of
the comparison are listed in Appendix table E.

Discussion

In this paper, we evaluated a densely annotated and
fine-grained medical dataset for finetuning NLP text
classification models. We compared the quality of mul-
tiple BERT model variants, fine-tuned on this dataset to
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identify named entities from clinical abstracts. Our mea-
surements confirm that SURUS is capable of fine-grained
classification and extraction of 25 different medically
relevant categories, with a weighted mean F1 of 0.95 on
interventional abstracts across 4 key therapeutic areas.
The relatively high inter-annotator agreement (k of 0.81)
and the adequate out-of-domain performance of the fine-
tuned underline the quality of the dataset. The high recall
measured during the utility assessment demonstrate the
value of SURUS to systematic literature reviewers in the
screening process. The dataset and the annotation man-
ual are available for non-commercial use and allow for
expansion of the dataset for use in other domains.

To the best of our knowledge, of annotated medical
NLP corpora published, the SURUS annotated data-
set allows for the highest label prediction quality, for
the largest diversity of clinical entity types. In addition,
it shows the highest prediction quality of elements of
PICOS as extracted by experts. This metric provides the
key utility advantage of SURUS, granting high, time-sav-
ing opportunities to systematic literature reviewers with
low risk of missing relevant elements of PICOS.

Current classification model alternatives typically
focus on sentence or sentence clause classification, leav-
ing much of the interpretation to the scientist perform-
ing the screening. In addition, mapping such text strands
towards an ontology is laborious and inefficient. The
fine-grained extraction of 25 labels allows SURUS to pro-
vide the reviewer with more detailed information on the
PICOS element of studies in their selection. Important
study features, such as information on drugs and treat-
ments (0.95), elements of methodology (0.94) and disease
(0.95) are predicted with high reliability (likely due to
their contextual consistency throughout medical report-
ing), with limited variation between runs of the k-fold
validation and in-domain therapeutic areas. Prediction
quality in the current paper exceeds the current state-
of-the-art prediction quality on other datasets focused
on clinical studies such as EBM-PICO (0.73, Pubmed-
BERT [25]), NICTA-PIBOSO (0.57—0.91, BioBERT [44])
and comparable to PubMedPICO (0.85-0.99, BioBERT
[44]), recognizing more granular text spans and more
label classes in the process. In addition, SURUS is the
only PICOS classification system for which the utility is
assessed compared to mapped expert extractions, rather
than annotation span comparison, which typically intro-
duces a layer of subjectivity and inconsistency.

Out-of-domain therapeutic area evaluation of the
model shows a modest drop of prediction quality from
0.95 to 0.90, with most of the important label classes
retaining high prediction quality. This signifies the util-
ity of SURUS to systematic researchers specialized in
any therapeutic area. The prediction quality of SURUS
falls off slightly for abstracts of observational studies
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compared to out-domain therapeutic area prediction (F1
of 0.84 vs 0.90). The discrepancy is likely because of the
methodological and stylistic differences between study
types. For example, in some observational studies dis-
eases may be key study group differentiators, whereas in
interventional studies, study groups are defined based
on the therapeutic regimens received. In addition, there
is substantial variety in writing style between different
types of observational studies, which include study types
such as diagnostic accuracy studies, cohort studies and
case reports. Still, important NER class categories such
as Disease and Methodology can relatively reliably be
extracted from observational studies (F1 of 0.91 and 0.82,
respectively).

Limitations of the approach include the low diversity
of the train dataset, focusing on interventional stud-
ies on 4 of the most common therapeutic areas. Predic-
tion of named entity labels is less accurate outside these
domains, or the domain may require additional labels
which are not defined in our methodology (for example,
a designated label for animals used in animal studies).
Researchers may want to consider adding to the fine-tun-
ing dataset to improve SURUS performance on any other
therapeutic area of interest. Furthermore, the complex-
ity of the annotation process may represent a consider-
able hurdle to producing a significant contribution to the
dataset. The annotation manual may need to be adjusted
when processing other study types to reach similar pre-
diction quality levels as is shown here (for example, there
is no “intervention” in observational studies). Neverthe-
less, the current prediction quality offers perspective for
additional fine-tuning efforts to improve the prediction
quality of relevant medical labels in observational studies.

In our experiment, SURUS performs better than a
state-of-the-art, instruction-tuned LLM model in clas-
sification of NER labels in accordance with our annota-
tion manual. In general, it appears that the number of
different annotation labels was too high and the instruc-
tions for label span cut-off were too complex for the LLM
to approximate SURUS NER prediction accuracy. As
LLMs will likely continue to improve, it would be inter-
esting to see whether LLMs will, in the future, approxi-
mate SURUS classification accuracy through instruction
tuning.

Conclusion

Our findings show that the SURUS system is well-suited
to classify 25 different medically relevant entity labels in
interventional study abstracts with high prediction qual-
ity. Combined, its predictions can be used to extract
elements of PICOS from clinical abstracts with high
accuracy. Prediction quality is highest for articles on indi-
cations the system is trained on but remains considerable
when applying SURUS to other indications. In addition,
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SURUS shows considerable practical utility when used to
extract elements of PICOS from scientific abstracts, with
very limited risk of failing to identify elements of PICOS.
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