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MUSE: A Trustworthy Vertical Federated Feature
Selection Framework

Xinyuan Ji , Chenfei Wang , Olga Gadyatskaya , Fei Zhao , Zixiang Mao , and Wei Xi

Abstract—Vertical federated feature selection can select effec-
tive features and avoid overfitting in vertical federated learn-
ing. However, existing privacy-preserving techniques for vertical
federated feature selection are limited to selecting task-related
features and cannot reduce redundant features among clients,
resulting in performance loss. This article introduces a mutual
information-based federated feature selection (MUSE) frame-
work to address these issues. In the MUSE framework, the
correlation of cross-device feature–feature and feature–class is
estimated by our defined privacy-preserving mutual information,
called federated mutual information (FMI). To compute FMI,
we propose the anonymous bin matching (ABM) algorithm,
which only uses the intersection size of bins rather than bin
elements to avoid sample-IDs leakage. With FMI, MUSE can
support the minimized dependency feature selection criteria
for removing redundant features. Additionally, we propose the
local feature preselection to reduce the computation cost of
FMI. It is theoretically and experimentally proved as a close
approximation of the global optimum under certain constraints.
We evaluate the effectiveness of our MUSE framework on various
datasets. The experimental results demonstrate that our methods
consistently outperform the state-of-the-art federated feature
selection methods across most datasets. Moreover, our method
shows potential in multimodal data as well.

Index Terms—Anonymous bin matching (ABM), federated
mutual information (FMI), vertical federated feature selection.

I. INTRODUCTION

FEDERATED learning (FL) is a decentralized machine
learning technique that allows different clients to collab-

oratively train a model without sharing their raw data [1], [2],
[3], [4], [5], [6]. However, there are a lot of noisy and redundant
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Fig. 1. Flowchart for a two-client vertical FL process. It is a special case for
multiclients vertical FL. Vertical federated feature selection can be contained
in the vertical FL process. Encrypted entity alignment is needed to confirm
the common users of both clients before vertical federated feature selection.

features in the real-world datasets [7], which may result in a
decrease in the performance of federated learning models in the
case of insufficient sample size [8], [9], [10], [11], [12], [13].
As a solution, federated feature selection can collaboratively
select effective features and reduce the noisy features in a secure
manner [14], [15], [16].

As a type of federated feature selection, vertical federated
feature selection has strong application requirements, e.g., the
fields of text mining [17], [18], information retrieval [9], bioin-
formatics [19], and industrial applications [20], [21], [22], [23].
As shown in Fig. 1, the vertical federated feature selection
(encrypted feature selection) process is done after encrypted
entity alignment [24] to confirm the common users (or sam-
ple space) of different clients. It can choose effective features
from multiple clients with the same sample-IDs without raw
data sharing [25], [26], [27]. So far, several studies of vertical
federated feature selection have been conducted [25], [28], [29].

Nevertheless, the state-of-the-art vertical federated feature
selection methods show limitations. Specifically, they focus
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Fig. 2. Illustration of redundant features in vertical federated learning.
“Name” and “Age” are the redundant features among clients A and B.

on task-related features but cannot reduce redundant features
among clients due to privacy or confidentiality concerns when
measuring the relationship of cross-device features. As shown
in Fig. 2, there are redundant features on different clients,
such as “Name” and “Age.” These redundant features not only
increase computational complexity but can also negatively im-
pact the generalization ability of the model, resulting in over-
fitting of the FL model when dealing with a small number
of samples. Therefore, it is very challenging to select task-
related features and reduce the redundant features among clients
simultaneously.

In this article, we propose the MUSE framework, a privacy-
preserving vertical federated feature selection approach de-
signed to address the limitations of existing methods. MUSE
aims to select task-related features while minimizing redundant
features across clients. In the MUSE framework, anonymous
bin matching (ABM) is proposed to measure the correlation
of cross-device features without leaking the client’s data pri-
vacy. Specifically, ABM computes the mutual information of
cross-device features, referred to as federated mutual infor-
mation (FMI). Crucially, ABM only reveals the size of the
intersection between two bins, rather than the elements within
the intersection (i.e., sample-IDs). Based on ABM, existing
feature selection MI-based feature selection criteria such as
mRMR [30], MIFS [31], and diversity maximization distance
(DD) [32] can be instantiated into MUSE to further eliminate
redundant features. Compared to existing methods focused on
selecting task-related features with privacy preservation, MUSE
addresses the privacy of both selecting task-related and elimi-
nating redundant features. Unfortunately, frequent FMI compu-
tations during feature selection result in a high communication
and computation overhead. Therefore, we propose the local
feature preselection step to preliminarily select features in every

client, thereby avoiding unnecessary FMI computations among
different clients.

Our contributions can be summarized as follows:
1) We propose a trustworthy framework for vertical feder-

ated feature selection. It can select task-related features,
as well as reduce redundant features among clients to
efficiently improve the accuracy of the FL model.

2) MUSE achieves no sample-IDs leakage and lightweight
local feature preselection. ABM is proposed to compute
federated mutual information without sample-IDs leak-
age from bin sets. Moreover, we theoretically prove that
the proposed local feature preselection can achieve an
approximation of the global optimal solution with high
probability.

3) With an extensive empirical study of diverse datasets,
MUSE can effectively improve model accuracy in most
cases and reduce the redundancy degree compared to
state-of-the-art methods. In addition, local feature prese-
lection reduces the number of FMI computations by more
than 20×.

The rest of this article is structured as follows. We describe
the related works in Section II. Then, we defined the problem
of vertical federated feature selection and detailed the proposed
MUSE framework in Section III. In Section IV, we present
the performance analyses. Finally, we conclude and discuss the
article in Sections VI and V. For the symbols used in this paper,
see Table I.

II. RELATED WORK

FL is currently the dominant framework for distributed train-
ing of machine learning models under communication and pri-
vacy constraints [33], [34]. Many works in the literature focus
on the optimization of communication and performance of the
global model under the assumption that data is of high quality,
without noisy and redundant features in it [35], [36]. Different
from the above assumption, we consider the challenge in real
applications, when there might be a lot of noisy and redundant
features in the data. In this section, we introduce the background
of our work.

A. MI-Based Centralized Feature Selection Criteria

Different criteria J(.) are used for adding or removing fea-
tures when searching for a feature subset in centralized feature
selection. These criteria can assess the correlation between
candidate features and labels, or among features themselves.
Assume S denotes the currently selected feature set, which is
initially empty. Here, fj ∈ S denotes a selected feature within
S . L represents the vector of class labels. Generally, the feature
selection criteria J(.) can be defined as (1), where DIST(·, ·)
represents the correlation distance of two variables, and it varies
according to different criteria

J(fk) =
∑

fj∈S
DIST(fk, fj) + DIST(fk,L). (1)

The higher the value of J(fk), the more important the candidate
feature fk is. After computing the value of J(.) for all candidate
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TABLE I
NOTATION DESCRIPTION

Notation Description

J(·) Feature selection criterion used to score candidate features
JMIFS/mRMR/DD(·) MIFS/mRMR/DD feature selection criteria in the MUSE framework

S Selected feature subset, containing the set of all selected features
L Class label vector
K Total number of clients
N Total number of samples

D/Dk Total feature set/feature set on the kth client
dk Total number of features on the kth client

fk/fj The kth column feature fk or the jth column feature fj
R Number of selected features/feature selection round
T Candidate feature set

LMI Local mutual information
FMI Federated mutual information
M Global mutual information matrix

features, the features with the highest feature scores are chosen
and added to S . The process is repeated until the desired number
of selected features is obtained.

There are different feature selection criteria based on MI.
For example, Mutual Information Feature Selection (MIFS)
[31] and Minimal Redundancy Maximal Relevance (mRMR)
[30] have been proposed that consider the feature relevance and
redundancy at the same time, as shown in (2) and (3). I(.) is
the mutual information function

JMIFS (fk) = I (fk;L)− β
∑

fj∈S
I (fk; fj) (2)

JmRMR (fk) = I (fk;L)−
1
|S|

∑

fj∈S
I (fk; fj) . (3)

In addition, there is another feature selection criteria defined
in (4) used for the diversity maximization distance (DD) prob-
lem that considers redundancy and relevance [32]

JDD(fk)=
∑

fj∈S

(
λRed(fk,fj)+(1−λ)

Rel(fk,L)+Rel(fj ,L)
2

)

(4)
Red(fk, fj) = 1 − I(fk; fj)

H(fk, fj)
(5)

Rel(fk,L) =
I(fk;L)√
H(fk)H(L)

(6)

where Red and Rel are, respectively, the redundancy degree
between two features and the relevance of features fk or fj
with the class labels L, and λ is a regularization factor. The Red
and Rel are defined in (5) and (6), where H(.) is the entropy
function. The Red value is close to zero when two features are
similar.

Many other MI-based feature selection criteria can simulta-
neously consider the feature relevance and redundancy, such
as Normalized MIFS [37], MIFS-ND [38], and FCBF [39],
and others. Although these centralized feature selection criteria
based on mutual information support the effective removal of
redundant features, they often reveal the original data privacy
when measuring feature correlation through mutual informa-
tion calculation. Therefore, it is necessary to propose a mutual
information calculation method without revealing privacy.

The main purpose of this article is to instantiate these cen-
tralized feature selection criteria based on mutual information
computation into the privacy feature selection framework based
on mutual information proposed by us, so as to ensure the
mutual information computation among the features of some
data that do not want to be leaked. Focusing on achieving a
privacy-preserving federated feature selection framework, we
only instantiate the methods mRMR, MIFS, DD into MUSE as
MUSE (mRMR), MUSE (MIFS), and MUSE (DD), although
other MI-based feature selection methods also can be instanti-
ated into our framework.

B. Private Set Intersection

Private set intersection (PSI) is a secure multiparty computa-
tion technique that allows two parties holding sets to compare
encrypted versions of these sets to privately compute the set
intersection [40], [41]. One of the possible ways to implement
PSI is Oblivious Transfer (OT) [42]. It is a protocol between two
parties, in which the sending party transfers some data to the
receiving party, without knowing what data has been received
by the receiver (the sender is thus oblivious to the sent data).

A communication- and computation-efficient PSI based on
the multipoint oblivious pseudorandom function (multipoint
OPRF-PSI) protocol was proposed [43], [44], where the sender
learns a pseudorandom function (PRF) key k and the receiver
can obliviously evaluate the outputs from two parties. Moti-
vated by multipoint OPRF-PSI, we proposed the anonymous
bin matching (ABM) to compute federated mutual information
(FMI). Multipoint OPRF PSI aims to get intersections for two
parties, which leads to sample-IDs leakage from bin sets. Differ-
ent from multipoint OPRF-PSI, we propose ABM to compute
FMI without sample-IDs leakage (presented in Section III-B2).

III. METHODOLOGY

A. Problem Definition

In this section, we formulate the problem of vertical feder-
ated feature selection. Let D denote a collection of features
on all clients, where each feature is N -dimensional, such as
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Fig. 3. Overview of our MUSE framework. The first step for every client is to make a local feature preselection (Step 1). After that, every client computes:
(a) mutual information of local features; (b) federated mutual information, then sends them to the server (Step 2). The server collects all mutual information
from clients into a mutual information matrix (Step 3). Finally, the server will select the features according to the mutual information matrix (Step 4). In this
setting, the server can only learn which features will be selected, but not the values of features.

feature vector f = {ζ1, ζ2, . . . , ζN}. Here N denotes the num-
ber of samples. In the vertical FL setting, the data D and
class labels L= {y1, y2, . . . , yN} are not at a central loca-
tion but are distributed across K clients with no raw data
exchange, i.e. D =

⋃K
k=1 Dk. Here, Dk =

{
fk

1 , f
k
2 , . . . , f

k
dk

}
∈

R
N×dk , for k ∈ {1, . . . ,K}, where dk denotes the number of

features at the kth client. Besides, we assume that the class
label vector L is held at only one client. In real-world scenar-
ios, there are a large number of noisy features or redundant
features among clients. The vertical federated feature selec-
tion aims to select a feature subset S = {f1, f2, . . . , fR}⊂D.
R denotes the number of selected features. After that, the
vertical federated learning model w can be learned based
on the selected features. Specifically, we have the following
definition:

Definition 1 (Vertical Federated Feature Selection): The se-
lected feature subset S = {f1, f2, . . . , fR}⊂D is selected from
the features Dk =

{
fk

1 , f
k
2 , . . . , f

k
dk

}
∈ R

N×dk on client k, for
k ∈ {1, . . . ,K}, s.t. Acc(f(w;S))≥Acc(f(w;D)).

B. MUSE Framework

Our proposed MUSE framework is shown in Fig. 3. The
framework operates under the assumption that all parties in-
volved in the computation are semihonest (honest but curious).
An auxiliary server is required to compute federated mutual
information (FMI) values and select features. The framework
includes four main steps: Local Feature Preselection, Mutual In-
formation Computation, Mutual Information Matrix Collection,
and Global Feature Selection. Mutual Information Computation

includes Local Mutual Information Computation and Feder-
ated Mutual Information Computation, where Local Mutual
Information Computation aims to compute mutual informa-
tion of features on clients, and Federated Mutual Information
Computation aims to privately compute mutual information of
features across clients.

In the first step, every client k performs a “Local Feature
Preselection” (detailed in Section III-B3) from their local data
Dk. The selected feature index subset is denoted as Sk, where
|Sk|=R. In the second step, the clients compute the local and
federated mutual information corresponding to Sk and send
these values to the server. The computation methods for Local
Mutual Information (LMI) are described in Section III-B1,
and the FMI computation is outlined in Algorithm 2 in
Section III-B2.

In the third step, the server collects all the mutual information
of Sk, for k ∈ {1, . . . ,K} into a mutual information matrix M.
Finally, in the fourth step, the server selects the features based
on the mutual information matrix M. Specifically, the server
initializes the index set of global candidate features as T =⋃k

k=1 Sk and the index set of global selected features S = ∅.
Using a greedy search strategy, the server adds the feature with
the maximum value according to the criterion J(·). As men-
tioned in Section II, J(·) is the function of mutual information
of features. The complete pseudo-code of our framework is
given in Algorithm 1.

1) Local Mutual Information Computation: To compute
J(·) in the MUSE framework, it is necessary to compute the
mutual information of features on local clients, referred to as
local mutual information (LMI). Given two discrete random
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Algorithm 1: The MUSE framework

1 Input: the K clients are indexed by k; the number of
selected features or rounds R; the feature selection
criteria J(·).

2 Output: the index set of selected features S .

3 Client Executes: /* Run on client k */

4 if L in client k: then
5 IiLkk′ = LMI(fk

i ;L), ∀fk
i ∈ Dk, k

′ = k;
6 end
7 else
8 /*Call Algorithm 2*/

9 IiLkk′ = FMI(fk
i ;L), ∀fk

i ∈ Dk,L in client k′;
10 end
11 Iijkk′ = LMI(fk

i ; f
k′

j ), ∀fk
i , f

k′

j ∈ Dk, i < j, k = k′;
12 /* Sk ← pre-selects R features (if R>dk: R=dk) */

13 initializes Tk ←Dk;
14 initializes Sk = ∅;
15 for each local round rk = 1: R do
16 fi ← argmaxfi∈Tk

J(fi);
17 /*add fi to Sk*/

18 Sk ←Sk ∪ fi;
19 Tk ←Tk\fi;
20 end
21 /*Call Algorithm 2*/

22 Iijkk′ = FMI(fk
i ; f

k′

j ), ∀fk
i ∈ Sk, f

k′

j ∈ Sk′ , k < k′;
23 Server Executes:
24 M = (Iij)

|
K⋃

k=1
Sk|×|

K⋃

k=1
Sk

⋃
{L}|

, Iij =MI(fi, fj)

25 where fi, fj ∈ |
K⋃
k=1

Sk

⋃
{L} |, specifically, fj = L as

label vector.

26 initializes T ←
K⋃
k=1

Sk;

27 initializes S = ∅;
28 for each round r = 1: R do
29 fi ← argmaxfi∈T J(fi);
30 /*add fi to S*/

31 S ← S ∪ fi;
32 T ← T\fi;
33 end
34 returns S to clients;

variables x and y, their mutual information is defined based on
their probabilistic density functions p(x), p(y), and p(x, y) as
follows:

I(x; y) =
∑

xi∈x

∑

yj∈y

p (xi, yj) log
p (xi, yj)

p (xi) p (yj)
. (7)

It is straightforward to compute mutual information by estimat-
ing the probability distribution through counting the number of
samples that fall into the intersections of bins.

It means that mutual information computation is indepen-
dent of the specific values of features, but it depends on the
number of samples in the intersection of bins. For example,

Algorithm 2: Anonymous Bin Matching (ABM)

1 Input: Server S, f bin
1 and f bin

2 from clientsP1 andP2

2 Output: FMI(f bin
1 ; f bin

2 )

3 (1) Run Multi-Point OPRF

4 P1 ← Fkey(f
bin
1 ) =

{
Fkey(b

1
i )|i ∈ [n]

}
,

Fkey(b
1
i ) =

{
Fkey(idj)|(ζ1

j = i) ∧ (j ∈ [N ])
}

;
5 P2 ← secret key of PRF key;

6 (2) Evaluate the output of the PRF function

7 P2 ← Fkey(f
bin
2 ) =

{
Fkey(b

2
i )|i ∈ [n]

}
,

Fkey(b
2
i ) =

{
Fkey(idj)|(ζ1

j = i) ∧ (j ∈ [N ])
}

;

8 (3) Joint Probability Distribution Matrix Evaluation

9 P1, P2 sends Fkey(f
bin
1 ) and Fkey(f

bin
2 ) to S;

10 S gets a joint probability distribution matrix M
according to Eqn 8;

11 (4) Federated Mutual Information Output

12 S computes FMI(f 1
bin; f

2
bin) according to Eqn 9.

13 Return FMI(f 1
bin; f

2
bin)

assume that two feature vectors f1 =
{
ζ1

1 , ζ
1
2 , . . . , ζ

1
N

}
and f2 ={

ζ2
1 , ζ

2
2 , . . . , ζ

2
N

}
are discretized into n bins, where ζ1

i and ζ2
i

(∀i ∈ [N ]) separately take a value from the finite set [n] =
{1, . . . , n}. Besides, the N samples are identified by sample-
IDs = {id1, . . . , idN}, so f1 can be reconstructed as f bin

1 ={
b1
i | i ∈ [n]

}
, where b1

i =
{
idj | (ζ1

j = i) ∧ (j ∈ [N ])
}

(f2 can
be constructed in the same way as f bin

2 =
{
b2
i | i ∈ [n]

}
, where

b2
i =

{
idj | (ζ2

j = i) ∧ (j ∈ [N ])
}

). For two binned features, we
get a joint probability distribution matrix

P=

{
pij , pij =

∣∣b1
i

⋂
b2
j

∣∣
N

}
, i, j ∈ [n] (8)

in which
∑n

i=1|b1
i |=

∑n
j=1|b2

j |=N , where |.| denotes the size
of a set. Thus, p(b1

i ) =
∑n

j=1 pij , p(b1
i , b

2
j) = pij , and p(b2

j) =∑n
i=1 pij . So, formally, the mutual information of two feature

vectors f1 and f2 can be defined as

I(f1; f2) =

n∑

i=1

n∑

j=1

pij log

(
pij∑n

j=1 pij
∑n

i=1 pij

)

=

n∑

i=1

n∑

j=1

∣∣b1
i

⋂
b2
j

∣∣
N

log
N

∣∣b1
i

⋂
b2
j

∣∣
∑n

j=1

∣∣b1
i

⋂
b2
j

∣∣∑n
i=1

∣∣b1
i

⋂
b2
j

∣∣ .

(9)

2) Federated Mutual Information Computation: As de-
scribed in Section III-B1, the local mutual information between
two features can be computed according to (9). However, pri-
vate information may be leaked when computing the mutual
information of two features from different clients. For exam-
ple, the discretized features include the sample-IDs in bins. To
address this issue, we propose the ABM algorithm to compute
mutual information of cross-device features, referred to as FMI,
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Fig. 4. Multipoint OPRF protocol.

without potential information leakage. The proposed ABM al-
gorithm primarily relies on the multipoint oblivious pseudoran-
dom function (OPRF) protocol [44], where the detailed privacy
proof guarantees the effectiveness of privacy for ABM. As
shown in Fig. 4, a multipoint OPRF is a pseudorandom function
with the following properties.

a) Two parties compute: Output = Fkey(Input).
b) The first party knows the set of inputs {xi|i= 1, . . . ,m}

and learns the set of outputs {Fkey(xi)|i= 1, . . . ,m} but
does not learn the secret key key.

c) The second party, only knows the secret key, but does
not learn either inputs {xi|i= 1, . . . ,m}, nor the output
{Fkey(xi)|i= 1, . . . ,m}.

Based on the multipoint OPRF protocol, the PSI can be
achieved easily. The second party just needs to evaluate the PRF
function on every element {yi|i= 1, . . . ,m} in its set and send
all the PRF values {Fkey(yi)|i= 1, . . . ,m} to the first party. By
comparing these PRF values, the first party can easily figure out
the intersection of the two sets.

For two cross-device binned features f bin
1 =

{
b1
i |i ∈ [n]

}
and

f bin
2 =

{
b2
i |i ∈ [n]

}
, the FMI can be computed according to

following steps.
a) Two parties run a multipoint OPRF. Based on the mul-

tipoint OPRF protocol, Party 2 holds the key, and Party
1 holds the PRF values Fkey(f

bin
1 ) =

{
Fkey(b

1
i )|i ∈ [n]

}
,

Fkey(b
1
i ) =

{
Fkey(idj)|(ζ1

j = i) ∧ (j ∈ [N ])
}

.
b) Party 2 evaluates the PRF function on f bin

2 as the
PRF values Fkey(f

bin
2 ) =

{
Fkey(b

2
i )|i ∈ [n]

}
,Fkey(b

2
i ) ={

Fkey(idj)|(ζ1
j = i) ∧ (j ∈ [N ])

}
.

c) Two parties send all the PRF values to the server. By
comparing these PRF values, the server can compute a
joint probability distribution matrix as (8).

d) The FMI output of two cross-device features according
to (9).

The detail of ABM can refer to Algorithm 2. It can compute
the FMI for two cross-device discretized vectors without com-
mon elements leakage, which means that the server can only
get the cardinality of the intersection but knows nothing about
sample-IDs in the bin set of discretized vectors.

3) Local Feature Preselection: Excessive FMI computa-
tions within the MUSE framework can lead to substantial over-
heads in both communication and computation. Consequently,
we propose the local feature preselection method. This ap-
proach aims to curtail the quantity of FMI computations in-
volved in global feature selection, thereby mitigating the strain
on resources and enhancing efficiency.

Every client k should first calculate the feature-class FMI
(only if L is not in client k, otherwise calculate the feature-class

LMI) and feature–feature LMI to ready for the local feature pre-
selection (Line 4–Line 9 of Algorithm 1). Then client k greedily
selects the R features as the selected feature subset Sk based on
the feature selection criteria J(·). With the local feature prese-
lection step, there will only be up to C2

KR2 feature–feature FMI
computed for the global feature selection. However, without
local feature preselection, there will be

∑K
i=1

∑K
j=i+1 di × dj

feature–feature FMI computation. Therefore, the local feature
preselection step can remove unrelated and redundant features
in advance, and effectively reduce the number of FMI compu-
tations for the global feature selection process. We also prove
that the local feature preselection step ensures an acceptable
approximation of the global optimal solution.

Theorem 1: For any constant 0 < ε≤ (1/4), Algorithm 1
with local feature preselection is a (1 − ε/4)-approximation
algorithm for centralized feature selection problem with a
high probability (e.g., probability 1 − eΩ(−εR)) with K ≥ (6/ε)
clients.

Lemma 1: There are at most εR/3 features in OPTk for every
1 ≤ k ≤K with probability at least 1 − eΩ(−εR). �

Proof: Let OPT be the optimum set of R features. Let
OPTk be OPT ∩ Dk, the optimum solution features that are
sent to machine k. We expect R/K features in each set OPTk,
and |OPTk|=

∑
f∈OPT f =R. Then, according to Theorem

4 in [45], Pr [|OPTk|> (1 + δ)μ]< e−(δ2/2+δ)μ, where μ is
R/K and δ is set to (Kε/3)− 1, so we have (1 + δ)μ=
(εR/3). Since K is at least 6/ε, δ is at least 1. We conclude
that Pr [|OPTk|> (εR/3)]< e−(1+δ/6)μ = e−Rε/18, where the
Pr [|OPTk|> (εR/3)] converges to zero with R growth. So
Pr [|OPTk| ≤ (εR/3)]< 1 − e−Rε/18 = 1 − eΩ(−εR). �

Lemma 2: There exists a set A of R features among the
selected features ∪K

k=1Sk that represent the R features of OPT,
and the distance of each optimum feature and its representative
substitutions in A is upper bounded by (1 + ε)τ . �

Proof: We create a set A⊂ ∪K
k=1Sk of R features. We add

each feature f ∈ OPT ∩ (∪K
k=1Sk) to set A. For every feature

f ∈ OPT and
(
f /∈ ∪K

k=1Sk

)
, we will find a selected feature

close to it. Let Sk = {f1, . . . , fR} be the features that machine
k selected with the same order (f1 is selected first, and fR is
selected last). According to the greedy search strategy, we have
the following inequalities for any feature f ∈ (OPT ∩ Dk)\ Sk:

DIST (f, f1)≤ DIST (f2, f1)

DIST (f, f1) + DIST(f, f2)≤ DIST(f3, f1) + DIST(f3, f2)

· · ·
R−1∑

i=1

DIST (f, fi)≤
R−1∑

i=1

DIST (fR, fi) . (10)

Summing the above inequalities implies that

R−1∑

i=1

(R− i)DIST (f, fi)≤
R−1∑

i=1

R∑

j=i+1

DIST (fi, fj)

= DIV (Sk) (11)
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where DIV(S) (and DIV(Sk)) can be defined as follows:

DIV(S) = 1
2

∑

f∈S

∑

f ′∈S

DIST(f, f ′). (12)

On the left of (11), we have (R2 ) distances from f to fea-
tures in Sk, and on the right of (11), it is the diversity of
set Sk. Let τ be the maximum average distance of pairs of
features in selected sets, max1≤k≤K(Div (Sk)/(

R
2 )). Then we

can get (
∑R−1

i=1 (R− i)DIST (f, fi)(
R
2 ))≤ ((Div (Sk)(

R
2 )) =

τ), where τ is the upper bound. Furthermore, we aim to verify
that the distance of f to at least (ε|Sk|/3) features in Sk is upper
bounded by (1 + ε)τ . Otherwise, there are a > (1 − ε/3)R fea-
tures in Sk with distance more than (1 + ε)τ from f . In the left
part of (11), at least (a2 ) of the (R2 ) distances are greater (1 + ε)τ .
So we have the following lower bound on the left side of (11):

(R2 )(1 + ε)τ ≥
(
((1 − ε/3)R)((1 − ε/3)R− 1)

2
× (1 + ε)τ

= (R2 )τ × (1−ε/3)R
R

× (1−ε/3)R−1
R−1

× (1+ε)

≥ (R2 )τ × (1−ε/3)×
(

1−ε/3− ε/3
2

)
× (1+ε)

> (R2 )τ ≥ DIV (Sk)

)
(13)

where the first inequality holds by the lower bound on a, and
the second to the last inequality holds since ε≤ 1/4. Combin-
ing the above lower bound on

∑R−1
i=1 (R− i)DIST(f, fi) with

(11) implies a contradiction. So there should be at least εR/3
features in Sk with distance at most (1 + ε)τ from f . Since
there are at most εR/3 features in OPTk with high probability,
we can find one distinct representative feature f ′ ∈ Sk for each
feature f ∈OPTk \ Sk to add to A.

We conclude that there exists a set A of R features among the
selected features ∪K

k=1Sk that represent the R features of OPT,
and the distance of each optimum feature and its representative
in A is upper bounded by (1 + ε)τ . �

Now we are ready to prove Theorem 1.
Proof: Using the triangle inequality, we know that

(DIV(A) =
∑

p′,q′∈A DIST(p′, q′))≥
∑

p,q∈OPT DIST(p, q)−
DIST (p, p′) − DIST (q, q′) ≥ DIV(OPT) − 2(R2 ) (1 + ε)τ
where p′ and q′ are the representatives of p and q. We know
that the greedy algorithm is a centralized 1/2-approximation
for diversity maximization [46]. So we can find a set S
with diversity at least half of diversity of A on ∪K

k=1Sk,
1/2DIV(A)≤ 1/2(DIV(OPT)− 2(R2 )(1 + ε)τ). Finally, we
take the maximum diversity of this selected set and all m
selected sets {Sk}Kk=1, the diversity of the final output set will
be at least max

{
(R2 )τ, (DIV(OPT)/2)− (1 + ε)(R2 )τ

}
which

is at least (DIV(OPT)/4(1 + ε))≥ (1 − ε/4). �

IV. EXPERIMENTS

We experimentally evaluate MUSE with four goals in mind.
The first two goals of the experiments are to compare the perfor-
mance of MUSE with the state-of-the-art baselines, including
the prediction accuracy of models based on the selected features

TABLE II
SUMMARY OF THE DATASETS

# Dataset # Features # Instances # Classes

Colon 2000 62 2
Lung 3312 203 5
Lymphoma 4026 96 9
NCI9 9712 60 9
Pixraw10P 10 000 100 10
RELATHE 4322 1427 2
Srbct 2308 83 4
TOX-171 5748 171 4
USPS 256 9298 10
Yale 1024 165 15

and the redundancy of selected features. Our third goal is to
explore the effect of the bin number on MUSE. Our fourth goal
is to demonstrate the reduction in the number of FMI compu-
tations with the local feature preselection step. Note that we
show the effectiveness of the local feature preselection step by
the number of FMI computations but not the running time. The
key factor for overheads is the number of FMI computations.

A. Experimental Setup

Our experiments have been performed on a workstation using
an Apple M1 CPU with 8 cores at 3.2 GHz, 16 GB, and Matlab
R2021a.

1) Datasets and Models: We use ten benchmark datasets1

with different sample sizes and feature numbers from different
fields. These datasets include six biological datasets, two face
image datasets, one text dataset, and one handwritten image
dataset. Table II illustrates the information of these datasets.
To simulate the federated feature selection setting, we distribute
various number of features across K = 20 clients following a
log–normal distribution N (μ, σ) with μ= 4, σ = 2. The labels
are only located in the active party. Following this, we generate
overlapping features across clients by setting α= 0.5, β = 0.5,
where α is the rate of the clients we randomly select to generate
overlapping features, β is the ratio of the number of overlap-
ping features to the total number of features at the clients.
All experiments are performed with support vector machines
(SVM) and k nearest neighbors (KNN) as the classifiers, and
the tenfold cross-validation (CV) is used for different datasets.
The parameter defaults are the initial setting unless indicated
otherwise. We set k = 3 in the KNN classifier and we use the
LIBSVM package [47] with the regularization factor c= 1, and
the linear kernel function.

2) Our Method and Baselines: We instantiate the MI-based
feature selection criterion: mRMR, MIFS, DD to into MUSE.
Therefore, there are three corresponding instantiated methods
of MUSE. We consider the original feature set OFS (without
generated overlapped features), and all features participating
AFP (with generated overlapping features) as baselines. For

1All datasets are available at https://jundongl.github.io/scikit-feature/
datasets.html [9].
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TABLE III
PREDICTION ACCURACY OF VARIOUS METHODS EVALUATED BY SVM

Colon Lymphoma NCI9 Pixraw10P RELATHE Srbct TOX-171 USPS Yale W/T/L

OFS 35.00 36.67 13.33 90.00 53.80 97.50 93.53 94.90 71.88 4/0/5
AFP 56.67 53.33 21.67 86.00 53.80 96.25 66.47 91.44 16.88 6/1/2
SFFS 65.00 78.89 28.33 92.00 53.80 80.00 49.41 84.90 56.88 7/1/1
FATE-IV 63.33 70.00 28.33 43.00 62.46 83.75 51.18 59.76 41.88 9/0/0
FATE-Lasso 70.00 76.67 13.33 92.00 53.80 90.00 74.12 92.62 58.75 5/0/4
MUSE (mRMR) 65.00 88.89 33.33 86.00 68.80 95.00 71.76 91.31 66.25 –
MUSE (MIFS) 35.00 70.00 13.33 84.00 53.80 87.50 66.47 93.63 38.12 8/0/1
MUSE (DD) 35.00 82.22 13.33 87.00 53.80 85.00 68.24 94.41 61.25 7/0/2

Note: MUSE (mRMR), MUSE (MIFS), and MUSE (DD) are the vertical federated feature selection framework MUSE under mRMR, MIFS, and DD
criteria, respectively. The results with the highest accuracy are indicated in bold for each dataset (column).

reference, we also compare MUSE with three state-of-the-art
methods of vertical federated feature selection methods: SFFS
[25] and FATE-IV [48], and FATE-Lasso [48]. We summarized
our method and the baselines as follows.

a) MUSE(mRMR): instantiated mRMR criteria into MUSE.
b) MUSE(MIFS): instantiated MIFS criteria into MUSE. We

set hyperparameter β = 0.8.
c) MUSE(DD): instantiated DD criteria into MUSE. The

regularization factor of MUSE(DD) (λ) is set to be 0.5
in all of our experiments.

d) OFS: The model is trained on the original feature set, and
there are no overlapping features in it.

e) AFP: The model is trained on the generated feature set,
where the generated overlapping features are included.

f) SFFS: A federated feature selection algorithm based on
secure multiparty computation. It is designed for verti-
cal FL to reduce the ineffective features with privacy
protection.

g) FATE-IV: A information value (IV) [49] based feature
selection method in the FATE framework. The IV values
related to the label vector are calculated for each feature,
and the top-k IV value features are selected.

h) FATE-Lasso: Every feature will get a coefficient to repre-
sent the degree of importance when the Lasso regression
model is trained in FATE, and the features are sorted with
absolute values of coefficients. We set hyperparameter
λ= 10−2.

We discretize continuous variables to bins with n= 15 in
MUSE and FATE-IV.

3) Metrics: In this article, we use test accuracy and redun-
dancy as the evaluation metric to measure the performance of
our proposed MUSE framework. The higher accuracy denotes
the better performance of the selected features. The lower re-
dundancy denotes the more compact is the selected features.
We need to explain some indicators in detail as follows.

The test accuracy to evaluate the performance is by
constructing a classifier on the training dataset with se-
lected features and finally getting predicted performance on
the test dataset, where Accuracy = (# of correct predictions
Precision/# of test dataset).

To quantify thfe degree of redundancy, we begin by com-
puting the Spearman correlation matrix S [50] for the selected
features. Each element of S is determined according to the
below equation, where “cov” represents the covariance of two
features, and “σ” denotes the standard deviation

sij =
cov(fi, fj)
σfiσfj

. (14)

Subsequently, we can measure redundancy by calculating the
squared Euclidean distance between the Spearman correlation
matrix S and the Identity matrix E, as depicted in the below
equation

d(S,E) =

√√√√
n∑

i=1

n∑

j=1

(sij − eij)
2
. (15)

The identity matrix E signifies the optimal scenario where the
selected features exhibit no redundancy. A greater distance be-
tween S and E indicates higher redundancy among the selected
features, whereas a closer distance implies lower redundancy.

B. Performance Comparison

We compare the accuracy of MUSE with the baseline meth-
ods on all datasets. We report the average cross-validation clas-
sification accuracy of each method with the number of selected
features |S|= 50. Table III shows the results evaluated by the
SVM classifier, and Table IV shows the evaluated results by the
KNN classifier.

The results with the highest accuracy are indicated in bold
for each dataset (column). In the last column of Tables III
and IV, the performance of each method is compared with
MUSE (mRMR) in the number of datasets that MUSE (mRMR)
has won, tied, or lost (W/T/L), respectively. OFS represents
the approach where the model is trained on raw data, while
AFP serves as a method trained on vertically federated data
with numerous overlapping features. From Tables III and IV,
we observe that in most cases, the performance of AFP is
significantly lower than that of OFS, except on datasets colon,
lymphoma, and NCI9 trained by SVM. This suggests that over-
lapping features may adversely affect the model’s performance,
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TABLE IV
PREDICTION ACCURACY OF VARIOUS METHODS EVALUATED BY KNN

Colon Lymphoma NCI9 Pixraw10P RELATHE Srbct TOX-171 USPS Yale W/T/L

OFS 71.67 90.00 33.33 91.00 75.35 78.75 79.41 96.35 52.50 5/0/4
AFP 58.33 52.22 25.00 90.00 56.76 77.50 72.35 91.28 18.75 7/0/2
SFFS 68.33 71.11 26.67 89.00 56.76 73.75 50.00 80.47 45.62 8/0/1
FATE-IV 68.33 64.44 40.00 41.00 65.49 86.25 57.06 55.36 43.75 8/1/0
FATE-Lasso 70.00 74.44 18.33 90.00 61.41 78.75 74.71 91.16 45.00 6/0/3
MUSE (mRMR) 80.00 86.67 40.00 87.00 79.08 92.50 73.53 90.85 53.12 –
MUSE (MIFS) 71.67 72.22 23.33 77.00 79.01 86.25 68.82 94.43 36.25 8/0/1
MUSE (DD) 70.00 77.78 23.33 88.00 74.44 71.25 62.94 95.59 50.00 7/0/2

Note: MUSE (mRMR), MUSE (MIFS), and MUSE (DD) are the vertical federated feature selection framework MUSE under mRMR, MIFS, and DD
criteria, respectively. The results with the highest accuracy are indicated in bold for each dataset (column).

TABLE V
REDUNDANCY COMPARISON

Colon Lymphoma NCI9 Pixraw10P RELATHE Srbct TOX-171 USPS Yale W/T/L

SFFS 2.16 1.83 1.70 6.89 2.65 4.78 4.35 7.58 4.27 7/0/2
FATE-IV 4.09 11.71 5.83 19.78 2.93 14.49 20.08 10.82 21.73 9/0/0
FATE-Lasso 2.17 1.89 1.86 10.76 2.86 5.26 4.38 4.43 4.42 7/1/1
MUSE (mRMR) 1.91 1.89 1.90 5.31 2.41 4.71 4.27 4.01 4.16 –
MUSE (MIFS) 2.59 2.82 2.31 23.93 1.98 20.16 14.61 9.31 14.11 8/0/1
MUSE (DD) 1.83 1.91 1.82 15.04 2.27 19.33 13.37 8.23 8.21 6/0/3

Note: The results with the highest accuracy are indicated in bold for each dataset (column).

emphasizing the importance of reducing both overlapping and
redundant features. However, there are instances where AFP
outperformed OFS. This could be attributed to factors such as
the beneficial combination of overlapping features for training
SVM. Furthermore, the best performance of all the feature
selection methods on each dataset is not consistently superior
to that of OFS, as observed in cases such as Srbct, TOX-171,
USPS, and Yale.

This suggests that the number of selected features may not
be sufficient to adequately represent all features. To address
this issue, one potential solution is to increase the threshold
for the number of selected features to |S|> 50. Additionally,
not all MUSE methods outperform other baseline methods. For
instance, while MUSE (mRMR) generally exhibits better per-
formance than the baselines, MUSE (MIFS) and MUSE (DD)
demonstrate comparable performance. This can be attributed to
the fact that MUSE primarily serves as a framework for mutual
information-based feature selection, enabling such methods to
conduct feature selection in the vertical federated setting with-
out privacy leakage. Nevertheless, the feature selection criterion
remains pivotal in the performance of selected features.

C. Redundancy Comparison

We analyze the redundancy of selected features across all
methods, focusing on the top 10 features selected by each
method. Table V presents the redundancy scores computed by
(15) for all methods on different datasets. The lowest redun-
dancy scores are highlighted in bold for each dataset. In the
last column of Table V, the performance of each method is
compared with MUSE (mRMR) in the number of datasets that

MUSE (mRMR) has won, tied, or lost (W/T/L), respectively.
MUSE (mRMR) consistently demonstrates lower redundancy
across most datasets, likely contributing to its superior perfor-
mance compared to other methods. Conversely, MUSE (DD)
and MUSE (MIFS) exhibit higher redundancy levels, possi-
bly due to suboptimal hyperparameters for mitigating redun-
dancy in this dataset. Among the baseline methods, FATE-IV
stands out for its high redundancy, attributed to its neglect of
feature interactions or redundant features, notably evident in
Colon, Lymphoma, NCI9, TOX-171, USPS, RELATHE, and
Yale datasets. In contrast, FATE-Lasso and SFFS show lower
redundancy, indicating a more balanced selection of features
with consideration for both feature correlation and task effec-
tiveness. To illustrate the relationship of selected features, we
visualize the Spearman correlation matrix S of selected features
on the USPS dataset, as shown in Fig. 5. The darker the color in
the heat map, the stronger the redundancy among the selected
features.

D. Effect of the Bin Number

In this section, we test how the bin number n in our al-
gorithm influences the performance of MUSE. We run this
part of the experiments on the Lung dataset to observe how
changing n affects the classification results of selected features.
We test all MUSE methods by cross-validation with the SVM
and KNN classifiers. We change the selected features |S| from
0 to 50 at intervals of 5 with a fixed value n= 2, 5, 20,
50. Fig. 6 shows the results evaluated by the SVM classifier
and Fig. 7 shows the evaluated results evaluated by the KNN
classifier.
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Fig. 5. Heat-map for different methods in the USPS dataset. It shows the redundancy of different feature selection methods. The darker the color in the
heat map, the stronger the redundancy among the selected features. (a) SFFS. (b) FATE-Lasso. (c) MUSE (mRMR). (d) FATE-IV.

Fig. 6. Effect of bin number n to MUSE evaluated by SVM in the lung dataset. (a) MUSE (MIFS). (b) MUSE (mRMR). (c) MUSE (DD).

Fig. 7. Effect of bin number n to MUSE evaluated by KNN in the lung dataset. (a) MUSE (MIFS). (b) MUSE (mRMR). (c) MUSE (DD).

The analysis from Figs. 6 and 7 suggest that, for most feature
selection methods within the MUSE framework, setting the
parameter number of bins n= 2 yields superior performance
when evaluated using both KNN and SVM classifiers compared
to other values. This observation indicates that n= 2 is the
preferred choice for the dataset under consideration over larger
or smaller values of n. However, MUSE (mRMR) deviates
from this trend. It demonstrates optimal performance when
the number of bins is set to n= 5, outperforming other bin
numbers. Interestingly, the performance of MUSE (mRMR)
seems less sensitive to changes in the number of bins com-
pared to MUSE (DD) and MUSE (MIFS). This suggests a

higher level of stability for MUSE (mRMR) across different bin
numbers. On the other hand, MUSE (MIFS) and MUSE (DD)
consistently demonstrate similar performance across different
bin numbers. This uniformity in results may be attributed to
the utilization of fixed hyperparameters (i.e. λ, β) aimed at bal-
ancing redundancy and relevance within their feature selection
criteria.

In summary, the analysis highlights the significance of pa-
rameter tuning, particularly the choice of the number of bins,
to the effectiveness of the MUSE framework. For example,
with an appropriate parameter n, the prediction performance
for selected features will increase significantly.
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TABLE VI
ABLATION STUDY RESULTS OF MUSE EVALUATED BY SVM

Colon Lymphoma NCI9 Pixraw10P RELATHE Srbct TOX-171 USPS Yale

MUSE (mRMR) 65.00 88.89 33.33 86.00 68.80 95.00 71.76 91.31 66.25
MUSE (mRMR) w/o LFP 65.00 88.89 33.33 60.00 68.80 95.00 72.94 91.41 67.50
MUSE (MIFS) 35.00 70.00 13.33 84.00 53.80 87.50 66.47 93.63 38.12
MUSE (MIFS) w/o LFP 70.00 80.00 43.33 58.00 53.80 93.75 74.71 93.71 64.38
MUSE (DD) 35.00 82.22 13.33 87.00 53.80 85.00 68.24 94.41 61.25
MUSE_DD w/o LFP 41.67 80.00 18.33 61.00 53.80 96.25 77.65 94.37 59.38

Note: MUSE and MUSE without local feature selection (MUSE w/o LFP) are compared.

TABLE VII
ABLATION STUDY RESULTS OF MUSE EVALUATED BY KNN

Colon Lymphoma NCI9 Pixraw10P RELATHE Srbct TOX-171 USPS Yale

MUSE (mRMR) 80.00 86.67 40.00 87.00 79.08 92.50 73.53 90.85 53.12
MUSE (mRMR) w/o LFP 80.00 88.89 40.00 60.00 79.08 92.50 72.94 90.99 53.12
MUSE (MIFS) 71.67 72.22 23.33 77.00 79.01 86.25 68.82 94.43 36.25
MUSE (MIFS) w/o LFP 71.67 87.78 41.67 62.00 79.08 91.25 78.24 94.52 46.88
MUSE (DD) 70.00 77.78 23.33 88.00 74.44 71.25 62.94 95.59 50.00
MUSE_DD w/o LFP 73.33 90.00 20.00 57.00 78.03 93.75 81.18 95.64 52.50

Note: MUSE and MUSE without local feature selection (MUSE w/o LFP) are compared.

Fig. 8. Number of FMI computations in MUSE with local feature preselection (w/ LFP) and without local feature preselection (w/o LFP) in different
settings. (a) With parameter of clients. (b) Selected features.

E. Ablation Study

In this section, we run an ablation study to prove the effec-
tiveness of local feature preselection (LFP) from two sides. The
first side is to validate the effects of LFP on the performance
of MUSE. The second side is to validate the effect of LFP on
communication reduction.

1) Effects of LFP on Performance: We compare the
performance of MUSE “with LFP” and “without LFP” on
different datasets, as shown in Table VI. The results indicate
that, compared with MUSE (MIFS) and MUSE (DD), “with
LFP” achieves a prediction accuracy more similar to “without
LFP” in MUSE (mRMR), except on the Pixraw10P dataset. The
significant performance difference between “with LFP” and
“without LFP” in MUSE on Pixraw10P clearly demonstrates
that LFP is not suitable for this particular dataset. Furthermore,
there is a notable performance gap between “with LFP” and

“without LFP” in both MUSE (MIFS) and MUSE (DD), indi-
cating that LFP’s effectiveness varies across different feature
selection methods in MUSE and datasets.

2) Effects of LFP on Communication Efficiency: To
assess the impact of LFP on communication efficiency in
MUSE, we compare the total number of FMI computations
with/without LFP on the NCI9 dataset. Note that the amounts
of FMI computations of each method in MUSE are the same
because the amounts of FMI computations are not related to
feature criteria. We analyze some possible factors affecting
the number of FMI computations: the number of clients and
the number of selected features. We show the number of FMI
computations with/without LFP based on these factors in Fig. 8.
Specifically, we analyze the number of FMI computations in
MUSE with or without LFP while varying the number of clients
and the number of selected features.
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Fig. 8 shows that LFP can achieve significantly fewer FMI
computations. Moreover, both “with LFP” and “without LFP”
exhibit a similar trend in the number of FMI computations as the
number of selected features or the number of clients increases.
Specifically, Fig. 8(a) shows that the number of FMI computa-
tions increases linearly with the number of clients. In contrast,
Fig. 8(b) demonstrates that the number of FMI computations
does not increase linearly with the number of clients. This is
because the number of FMI computations is also influenced by
the distribution of features across clients. From Fig. 8, we can
conclude that the communication and computational overhead
of MUSE without LFP could become significant as the number
of clients or the number of features increases. However, LFP can
improve the scalability of MUSE to handle large-scale federated
learning environments.

V. DISCUSSION

In summary, our experimental results demonstrate that
MUSE outperforms the state-of-the-art methods in the Accu-
racy of most datasets. Moreover, MUSE can select less redun-
dant features, compared with other state-of-the-art methods.
To enhance the practical deployment of MUSE, this section
provides insights into real-world applications and limitations
of MUSE.

A. Applications

The MUSE framework is particularly well-suited for vertical
federated learning (VFL) scenarios where data is distributed
across different parties with distinct feature sets but shared user
IDs. These scenarios are common in industries such as finance,
healthcare, and telecommunications. For instance:

1) Finance: Multiple financial institutions may wish to col-
laborate to improve fraud detection algorithms. Each
institution holds different types of data (e.g., transac-
tion history, credit scores, and personal information) for
the same set of customers. Using MUSE, these insti-
tutions can securely compute mutual information and
select relevant features without exposing sensitive cus-
tomer data, thereby enhancing the overall fraud detection
model.

2) Healthcare: Hospitals and research institutions often
hold diverse patient data (e.g., medical history, genetic
information, and treatment plans). By using MUSE,
these entities can collaborate to identify key predic-
tors of diseases or treatment outcomes, while preserv-
ing patient privacy and complying with regulations such
as health insurance portability and accountability act
(HIPAA).

3) Telecommunications: Telecom companies can benefit
from MUSE to improve customer service and predict
churn by combining their proprietary feature data selected
by MUSE (e.g., call records, internet usage, and service
requests) with feature data selected by MUSE from other
sources without risking customer data privacy.

B. Limitations

In this study, we have demonstrated the effectiveness of our
methods across various datasets. However, MUSE does have
some limitations, including two aspects.

1) Given the rising importance of multimodal data, which
integrates information from multiple sources such as text,
images, and audio, there is significant potential for MUSE
in this area. However, handling multimodal data intro-
duces complexity in feature selection and redundancy
reduction across different modalities. While our methods
have shown strong performance in selecting task-related
features and reducing redundant features, extending our
approach to multimodal datasets will require addressing
these complexities and optimizing our techniques for het-
erogeneous data sources.

2) MUSE utilizes a mutual information (MI)-based mea-
surement to support various MI feature selection crite-
ria. There are performance differences between these MI
feature selection criteria. From the experimental results
of mRMR, MIFS, and DD, the performance of MUSE
under the mRMR criterion is best, which can be seen in
the experiments why FATE-Lasso shows competitive per-
formance and even outperforms MUSE (DD) and MUSE
(MIFS) in both metrics in our experiments. This high-
lights criteria such as minimum redundancy maximum
relevance are effective. In contrast, others may not yield
the same improvements.

VI. CONCLUSION AND FUTURE WORK

This article reveals that noisy and redundant features could
affect the performance of models in vertical FL. To address
this issue, we propose a privacy-preserving vertical federated
feature selection framework named MUSE, which selects a
compact and effective feature set to enhance the accuracy of
FL models. MUSE can identify high task-related features and
eliminate redundant ones without causing data leakage.

This is achieved by estimating the correlation of cross-device
feature–feature and feature-class relationships using our defined
privacy-preserving mutual information metric, called FMI. In
detail, the ABM algorithm is first proposed to compute FMI
while avoiding sample-IDs leakage. Second, the LFP is pro-
posed to reduce the number of FMI computations, thereby
improving the efficiency of MUSE.

MUSE is evaluated on ten different types of datasets and
compared with five baseline methods. The experimental results
demonstrate that MUSE exhibits a significant improvement in
the classification performance of the model compared to state-
of-the-art methods in most cases and effectively reduces the
redundant features as well. Moreover, experimental results in-
dicate that LFP in MUSE is an effective strategy for reducing
the number of FMI computations.

Our work assumes clean labels for the classification task.
However, noisy or missing labels are common in real-world data
due to various factors such as human error, data corruption, and
incomplete data collection processes. In the future, we aim to
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address these issues to improve the robustness of the MUSE
framework.
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