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Abstract

Integrins mediate adhesive interactions between cells and their environment, in-
cluding neighboring cells and extracellular matrix (ECM). These heterodimeric
transmembrane receptors bind extracellular ligands with their globular head do-
mains and connect to the cytoskeleton through multi-protein interactions at their
cytoplasmic tails. Integrin containing cell-matrix adhesions are dynamic force-re-
sponsive protein complexes that allow bidirectional mechanical coupling of cells
with their environment. This allows cells to sense and modulate tissue mechanics
and regulates intracellular signaling impacting on cell faith, survival, proliferation,
and differentiation programs. Dysregulation of these functions has been extensively
reported in cancer and associated with tumor growth, invasion, angiogenesis, me-
tastasis, and therapy resistance. This central role in multiple hallmarks of cancer and
their localization on the cell surface make integrins attractive targets for cancer ther-
apy. However, despite a wealth of highly encouraging preclinical data, targeting in-
tegrin adhesion complexes in clinical trials has thus far failed to meet expectations.
Contributing factors to therapeutic failure are 1) variable integrin expression, 2) re-
dundancy in integrin function, 3) distinct roles of integrins at various disease stages,
and 4) sequestering of therapeutics by integrin-containing tumor-derived extracel-
lular vesicles. Despite disappointing clinical results, new promising approaches are
being investigated that highlight the potential of integrins as targets or prognostic
biomarkers. Improvement of therapeutic delivery at the tumor site via integrin bind-
ing ligands is emerging as another successful approach that may enhance both effi-
cacy and safety of conventional therapeutics. In this review we provide an overview
of recent encouraging preclinical findings, we discuss the apparent disagreement
between preclinical and clinical results, and we consider new opportunities to ex-
ploit the potential of integrin adhesion complexes as targets for cancer therapy.
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Targeting Integrins for Cancer Therapy

Introduction
Integrin Structure

Integrins represent a family of transmembrane adhesion receptors, facilitating the
adhesive connection between cells and their surrounding extracellular matrix (ECM)
or neighboring cells ¥3. They comprise a group of heterodimeric proteins generated
by non-covalent association of an a- and a 3-subunit %. Both subunits are classified
as type 1 transmembrane proteins, composed of a rather large extracellular domain
and a relatively small transmembrane and intracellular region *°. The globular head
domain creates a binding site for extracellular ligands while the short cytoplasmic
tails interact with a cluster of associated proteins that ultimately connects to the
cytoskeleton. In total there are 18 a- and eight 8-subunits, generating 24 different
heterodimers, known to be expressed in humans °. This variety in combinations al-
lows integrins to interact with—and respond to a broad range of ligands, including
insoluble ECM proteins, matricellular proteins, cell surface proteins, and soluble
proteins®. Several recognition motifs for integrin-binding have been identified. The
Arg-Gly-Asp (RGD) motif is recognized by eight different integrins and has been
found in a plethora of molecules ranging from ECM proteins to growth factors to
coats of microorganisms.

Integrin Function

Integrin transmembrane receptors execute two core functions: they mediate adhe-
sion of cells to the ECM or neighboring cells, and they engage in transduction of
signals received from the microenvironment. Integrin-mediated cell adhesion is dy-
namic: flexibility in integrin conformation allows a balance between active (open;
high affinity) and inactive (closed; low affinity) states. The active state is regulated
by interaction of the intracellular adaptor proteins talin and kindlin with the 8- sub-
unit cytoplasmic tail and is further stabilized by interaction with ligand at the extra-
cellular integrin head domain >”. Moreover, firm cell adhesion requires integrins to
cluster in cell adhesion complexes that connect to the cytoskeleton.

Integrin-mediated cell adhesion controls many aspects of cell behavior including
survival, proliferation, metabolism, differentiation, as well as cell shape and motility
8, Several mechanisms of such outside-in signaling have been proposed. First, integ-
rins allow cells to interact with the ECM in which soluble growth factors such as
VEGF, TGFB and many others are concentrated, modified, and presented to cells °.
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Second, integrins can directly bind and activate growth factors such that they can
stimulate their cognate receptors, a process currently established for activation of
TGFB by avB6 and avB8 . Third, integrin engagement and clustering can lead to
local activation of receptors for soluble ligands such as EGF, PDGF, and others, often
involving receptor crosstalk via Src family kinases 2. Fourth, the dynamic intracel-
lular complex of adaptor and signaling proteins that couples integrins to the cyto-
skeleton allows 1) local signaling through GTPases and kinases and 2) sensing of-
and responding to mechanical aspects of the microenvironment by mecha-

noresponsive interactions &13,

Integrins in Cancer

Dysregulation of integrin expression on cancer cells has been extensively studied in
cell culture and animal models and shown to provide therapeutic opportunities for
arresting tumor growth reducing resistance to chemo- or radiotherapy, or attenuat-
ing invasion and metastasis. Studies using genetically engineered mouse models or
using human tumor cells transplanted in immune deficient mice have extensively
shown that deletion of integrins in cancer cells or preventing integrin function with
blocking antibodies or peptides could interfere with tumor growth, metastasis, and
resistance to chemo- or radiotherapy* 8. For the large family of B1 integrins, dual
roles have been identified in growth versus metastasis, indicating that caution is
warranted for their application as therapeutic targets °22. Integrins such as avp3,
avB5, and a5B1, are not only expressed on tumor cells but are also induced on en-
dothelial cells during the process of angiogenesis 2>?*. These integrins have indeed
been shown to serve as targets for anti-angiogenic therapies in cancer, although the

mode of action of anti-angiogenic drugs targeting integrins remains enigmatic 23726,

Recent studies have added a range of novel emerging cancer-related processes that
require the participation of integrins, including the establishment of a pre-meta-
static niche, epithelial-to-mesenchymal transition (EMT), metabolic rewiring, can-
cer cell stemness and dormancy 273*,. The involvement of integrin avpB6 in activation
of TGFP was recently connected to SOX4 mediated cancer immune evasion: av6
blocking antibodies could inhibit SOX4 expression and sensitize mouse models for
triple negative breast cancer to T cell mediated killing in response to immune check-
point inhibitors %. Integrin avB8, which can also activate TGFB, represents a target
expressed on immune cells for modulating anti-tumor immunity. l.e., av8 blocking
antibodies or specific depletion of integrin avB8 from the surface of CD4°CD25"
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regulatory T cells could attenuate TGFP mediated inhibition of CD8* T cells and
thereby restore tumor killing capacity of CD8" T cells and synergize with radio- or
immune therapy 3°.

The expression of integrins on the cell-surface and their apparent role in several
cancer related processes makes them appealing targets for the development of can-
cer therapies. However, despite the abundance of promising preclinical data, integ-
rin targeting therapies in clinical studies have thus far largely failed to deliver. Nota-
bly, although not within the scope of this review, components of the integrin signal-
ing complexes represent additional targets in cancer. For example, focal adhesion
kinase (FAK) is overexpressed or activated in multiple cancers and supports tumor
cell proliferation, migration, and therapy resistance. Small molecule inhibitors tar-
geting FAK, such as defactinib, GSK2256098, VS-6063, and Bl 853520, are currently
being investigated in several clinical trials, mostly in combination with other agents
3738 Src is another interesting target associated with integrin signaling. Dasatinib, a
Src inhibitor, showed efficacy when combined with docetaxel in castration-resistant
prostate cancer patients*® (NCT00439270), and was more effective than imatinib in
Pediatric Philadelphia Chromosome—Positive Acute Lymphoblastic Leukemia . On
the other hand, dasatinib monotherapy failed to meet expectations in patients with
recurrent glioblastoma ** or in patients with locally advanced or stage IV mucosal,
acral, or vulvovaginal melanoma *2. The challenges of targeting Src family proteins
were recently reviewed by Martellucci and others *3. Integrins interact with many
other cytoplasmic proteins, which are being investigated for their potential as ther-
apeutic targets, however these have not yet been translated to the clinic ***°.

In this review we focus on integrins as drug targets in cancer and discuss the appar-
ent disagreement between preclinical and clinical results, we provide an overview
of new encouraging preclinical findings and consider new opportunities to exploit
the potential of integrin adhesion complexes in the effective treatment of cancer.

Finalized clinical trials exploring integrin therapeutics

Monoclonal antibodies and synthetic RGD peptides have been used in clinical trials
to target integrins “. These drugs typically block integrin function by occupying the
ligand binding site. Integrin blocking antibodies previously showed efficacy in differ-
ent diseases, such as multiple sclerosis, thrombosis prevention after percutaneous
coronary intervention, ulcerative colitis and Chron’s disease *’. Moreover, in multi-
ple preclinical studies, inhibition of avp3, avB5 or B1 integrins prevented tumor
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angiogenesis, reduced tumor growth and limited metastatic spread, supporting the
translation of these antibodies and blocking peptides into the clinic for cancer ther-
apy 81, Despite promising preclinical results, such therapeutics did not make it to
the market. Therapeutic safety was often not the bottleneck for integrin targeting
therapeutics. The major drawback was their lack of efficacy (Table 1).

The majority of integrin directed therapeutics in clinical trials involve antibodies or
peptides targeting av-integrins and these have thus far failed to show benefit for
cancer patients. The integrin av antibody abituzumab was used in a phase Il trial to
treat patients with metastatic castration-resistant prostate cancer>?
(NCT01360840). Even though a reduction in prostate cancer associated-bone lesion
development was observed in the antibody treated group of patients, the primary
endpoint of progression free survival (PFS) was not significantly extended. Interest-
ingly, the addition of abituzumab to the standard of care did show some beneficial
effect on the overall survival of a subset of metastatic colorectal carcinoma patients
5354 (NCT01008475).
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Clinical Ph | Name Type Target Combi- Condition Result Mode
trial identi- | as thera- thera- integ- nation of ac-
fier e peutic peutic rin therapy tion
with
NCT013608 | Il Abituzum | Antibody | aV - Metastatic PFS not Blocks
40 ab Castration- signifi- cell ad-
(EMD525 Resistant cantly dif- | hesion
797) Prostate can- | ferent
cer
NCT010084 | I/Il | Abituzum | Antibody aV Cetuxi- Metastatic PFS not Blocks
75 ab mab Iri- colorectal signifi- cell ad-
(EMD525 notecan cancer cantly dif- | hesion
797) ferent
NCT002460 | Il Inte- Antibody | aV Dacarba- | Stage IV Mel- | PFSnot Blocks
12 tumuma zine anoma signifi- ligand
b (CNTO cantly dif- | binding
95) ferent site
NCT005373 | Il Inte- Antibody | aV Docet- Metastatic All effi- Blocks
81 tumuma axel Hormone Re- | cacyend- | ligand
b (CNTO Predni- fractory Pros- | points binding
95) sone tate Cancer better in site
placebo
1l Vitaxin Antibody aVp3 — Metastatic No tumor | Blocks
(MEDI- cancers regres- ligand
523) sion binding
site
1l Etara- Antibody aVp3 Dacarba- Stage IV met- PFS not Blocks
cizumab zine astatic mela- signifi- ligand
(MEDI- noma cantly dif- | binding
522, Abe- ferent site
grin)
NCT008427 | Il Cilen- Inhibitory | aVB3/ Multiple Multiple can- | No bene- Blocks
12 gitide peptide aVB5 combina- | cers fits com- ligand
NCT001212 (EMD tions pared to binding
38 121974) standard site
NCT007050 of care
16
NCT006892 | Il Cilen- Inhibitory | aVB3/ Te- Newly Diag- Median Blocks
21 gitide peptide aVpSs mozolom | nosed Glio- OS not ligand
(EMD121 ide + Ra- blastoma signifi- binding
974) diother- cantly dif- | site
apy ferent
NCT004015 | I/Il | Volocixi- Antibody | aVp1 Alone or Metastatic Partial or Blocks
70 mab in combi- | Pancreatic no signifi- | ligand
NCT006547 (M200) nation Cancer, Non- cant ef- binding
58 with Small Cell fects site
NCT005168 standard Lung Cancer,
41 of care Ovarian and
NCT006351 Peritoneal
93 cancer, Renal
NCT003693 cell carci-
95 noma
NCT001006
85

115




Chapter 5

NCT006754 | Il Natali- Antibody | VLA-4, — Multiple my- Termi- Allo-
28 zumab (ad) eloma nated due | steric
to low en- | inhibi-
rollment tion
NCT001316 | I/Il | ATN-161 Small a5p1 Alone or Glioma, renal No thera- Blocks
51 peptide in combi- | cancer and peutic ligand
NCT003523 antago- nations other solid benefits binding
13 nist tumors site;
pre-
vents
interac-
tion
with fi-
bron-
ectin
synergy
site
NCT013135 | | GLPG018 | Non-pep- | Arg- - Solid tumors No effect Blocks
98 7 tide In- Gly- ligand
tegrinan- | Asp binding
tagonist (RGD)- site
binding
integ-
rins

Table 1. Overview of failed or terminated major clinical trials for the assessment of integrin
targeting therapeutics in cancer.

Another phase Il av targeting study illustrated that a combination treatment of
dacarbazine with the monoclonal av-antibody intetumumab did not enhance treat-
ment efficacy over monotreatment in patients with stage IV melanoma®
(NCT00246012). Testing this antibody in a phase Il trial with prostate cancer patients
did not improve outcome either *® (NCT00537381). Antibodies specific for avp3 in-
tegrin have been extensively evaluated in clinical trials as well %6, In a phase | trial,
the avp3-antibody vitaxin failed to show benefit for patients with metastatic solid
tumors *’. The additional effect of the avB3-antibody etaracizumab was assessed
on top of dacarbazine treatment in stage IV melanoma patients *%, however no sig-
nificant differences in the time to progression (TTP) or PFS were observed. Several
phase Il trials have explored efficacy of the avB3/avB5-selective function blocking
peptide cilengitide for treatment of solid tumors alone or in combination with other
therapies, but results were not encouraging ®*°®}(NCT00842712, NCT00121238,
NCT00705016). Likewise, cilengitide failed to improve therapeutic efficacy in com-
bination with standard of care for patients with newly diagnosed glioblastoma in a
phase Ill trial 2 (NCT00689221).
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Other integrins that have been targeted include a5B1. Unfortunately, phase | and Il
trials using the small peptide antagonist of integrin a5B81 ATN-161 have thus far not
shown benefit for glioma patients or in other solid tumors ®3(NCT00131651,
NCT00352313). Similarly, the combination treatment of gemcitabine with the a5p1
chimeric monoclonal antibody volociximab did not show any additional treatment
efficacy over gemcitabine monotreatment in metastatic pancreatic cancer patients
in a phase Il trial ®* (NCT00401570). Moreover, volociximab efficacy was not encour-
aging in peritoneal, ovarian, non-small cell lung cancer or melanoma 57
(NCT00401570, NCT00654758, NCT00516841, NCT00635193, NCT00369395,
NCT00100685). Natalizumab, an antibody targeting a4p1 (VLA-4) has shown prom-
ising clinical results in autoimmune related diseases such as multiple sclerosis and
Crohn’s disease "%’!. However, a phase 1/2, two-arm dose-finding study of natali-
zumab for relapsed or refractory Multiple Myeloma, was unfortunately terminated
due to insufficient patient enrolment (NCT00675428). Among the therapeutics dis-
cussed so far, natalizumab is the only one not targeting the ligand binding site. In-
stead, it acts through allosteric interactions 7. Further exploring such alternative
forms of integrin receptor pharmacology may lead to new and more effective treat-
ments 3.

Ongoing clinical trials exploring integrin therapeutics

As discussed, clinical trials of av-integrin inhibitors or drugs targeting other integrins
have thus far not been encouraging. Other approaches are now being explored in
new clinical trials (Table 2).

A phase | trial aims to treat patients with previously treated pancreatic cancer or
other solid tumors with the anti-avp3 protein, ProAgio (NCT05085548). ProAgio
binds avf33 outside the classical ligand-binding site. Instead of blocking ligand bind-
ing, it triggers recruitment and activation of caspase 8, resembling a mechanism
previously associated with unligated integrins 47>, This may lead to apoptosis in
tumor cells, endothelial cells, and cancer-associated fibroblasts (CAF) with in-
creased expression of avp3. Subsequently, this can result in a reduction of the
stroma density of pancreatic cancer patients increasing access of conventional anti-
cancer therapeutics to the tumor.

In a planned phase | trial, the safety, tolerability and efficacy of the integrin B6 tar-
geting antibody-drug conjugate SGN-B6A will be studied in patients with advanced
solid tumors. SGN-B6A consists of an antibody targeting integrin B6 conjugated with
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monomethyl auristatin E, an antimitotic agent that induces apoptosis by binding to
tubulin 7®(NCT04389632). A randomized phase Il trial, planned at the end of 2021
will study efficacy of a tumor penetrating iRGD peptide, CEND-1, in combination
with gemcitabine and nab-paclitaxel in patients with metastatic pancreatic cancer.
The first-in-class agent CEND-1 binds tumor cells and enhances delivery of co-ad-
ministered anti-cancer agents. In a recently completed phase | clinical trial the
safety and efficacy of CEND-1 was already explored 7778, Based on the trial data, the
combination treatment was regarded as safe. Importantly, efficacy of this treatment
exceeded the efficacy of the mono-treatments, with ongoing progression free sur-
vival of some patients.
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N
Clinical trial Phas ame Type thera- Target Combination

. g therapeu- . . . . Condition Result
identifier tic peutic integrin therapy with
NCT05085548 | ProAgio  Cytotoxic aVvp3l — Pancreatic Recruiting
Protein cancer/Solid
tumors
NCT04389632 | SGN-B6A Antibody- B6 — Solid tumors  Recruiting
Drug Conju-
gate
NCT04608812 | 0S2966  First-in-class B1 — High-grade Recruiting
monoclonal Glioma
Ab
NCT04508179 | 7HP349  Allosteric In-alB2/a4B1— Healthy sub- Recruiting
tegrin activa- jects
tion
NCT03517176 | CEND-1 First-in-class aV Gemcita- Pancreatic PFS
iRGD bine/Nab-  cancer
Paclitaxel

Table 2. Overview of planned or ongoing clinical trials for the assessment of integrin target-
ing therapeutics in cancer.

A first-in-class humanized and de-immunized monoclonal antibody, 052966, that
targets the PB1 integrin subunit is tested in patients with high-grade glioma
’9(NCT04608812). Considering that 052966 targets the entire family of B1 contain-
ing integrins, toxicity may be an issue. Interestingly, this trial will make use of real
time imaging. By adding gadolinium contrast to the 0S2966 antibody, therapeutic
distribution can be visualized using MRI. The additional collection of tissue speci-
mens planned before and after treatment will provide better knowledge on the
presence of any predictive biomarkers. In October 2021 a phase | trial finished, in
which the safety, tolerability and pharmacokinetics (PK) of the allosteric integrin ac-
tivator 7HP349 was studied in healthy male subjects (NCT04508179). Interestingly,
in contrast to most integrin targeting therapeutics, this small molecule is designed
to enhance integrin activity. Binding of 7HP349 should cause the activation of the
alLB2 and a4B1 integrins on immune cells, thereby enhancing an immune response.
Results of this study remain to be published.

Why have integrin targeted therapeutics failed to achieve clinical efficacy thus far?

Despite promising preclinical in vitro and in vivo results that indicate that integrins
can be targeted with good efficacy alone, or in combination with radio-, chemo-, or
immune therapies, clinical results thus far do not seem encouraging®4¢8%81, As with
all experimental therapies, recruitment of sufficient numbers of patients fitting the
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trial design is a challenge. As described above, for one trial this has led to early ter-
mination. In addition, testing is often done in the context of advanced disease
stages and in cases where earlier therapies have failed. Patients enrolled in the clin-
ical trials described in Table 1 typically have extensive treatment history with the
exception of cilengitide that was explored in newly diagnosed glioblastoma pa-
tients. This may well explain the discrepancy between clinical trials and results ob-
tained in more acute preclinical models. There are several other factors that may
have negatively impacted the clinical testing of anti-integrin therapeutics in cancer.
These include variable integrin expression in tumors, redundancy in integrin func-
tion, the fact that integrins can have very different roles at distinct disease stages
and sequestering of therapeutics by integrin-containing tumor-derived extracellular
vesicles (TEVs) (Figure 1).

Variable Integrin Expression and Poor Pharmacology

Thus far, antibodies have been the major type of anti-integrin therapeutics tested
in clinical trials (Table 1). The exquisitely high specificity and corresponding low tox-
icity of these antibodies are most likely responsible for this high prevalence. A major
limitation is a lack of knowledge with respect to expression of the target integrin in
the tumor of the patient. Prior treatments may have affected integrin expression
patterns in the tumor tissue. In addition, data on antibody pharmacology is gener-
ally lacking in the clinical studies. It is well known that targeting of therapeutics to
the tumor tissue can be difficult due to poor vascularization®? and this may be a
significant problem for the relatively large antibody drugs. Hence, it is important to
determine expression of the target integrin and establish actual reach of the integ-
rin-targeting antibodies to the tumor tissue to relate these aspects to response rates
in individual patients.

Redundancy and Different Roles of Integrins at Distinct Disease Stages

Many integrins show overlap in their ligand binding spectrum. l.e., key ECM proteins
present in cancer tissues such as fibronectin, laminins and collagens can be recog-
nized by more than one integrin'®. Hence, the effect of blocking one integrin may
be compensated for by another integrin binding the same ligand. Patients entering
experimental trials often present with a mix of primary and metastatic lesions at
different stages. Integrin expression has been observed to differ between primary
and metastatic lesions indicating that therapies may affect one but not the other
stage. e.g., expression of integrin a2f1 was shown to promote tumor growth of a
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breast cancer cell line whereas a2B1 expression was attenuated once the breast
cancer cells colonized the bone??. In fact, integrins have been shown in some cases
to have opposing roles at different stages and repress rather than support disease
progression and metastasis. While depletion of B1 integrins led to reduced out-
growth of primary tumors, it enhanced metastatic capacity in an orthotopic model
using triple negative breast cancer cells?!. Deletion of B1 integrins also increased
prostate cancer progression in a genetic mouse model %°. Likewise, specific deletion
of one of the B1 integrins, a2B1, was demonstrated to inhibit tumor metastasis in
mouse models for breast or prostate cancer %22, Although similar examples are not
described for the av integrins targeted in clinical trials thus far, these findings sug-
gest that therapeutic targeting of integrins may lead to complex responses in pa-
tients that may vary for individual patients.

Contributing factors to reduced therapeutic efficacy in patients

A Sequestration by tumor-derived extracellular

vesicles (TEVs) B. Different integrin expression at different stages

{ @
®
. = e9® s .‘.‘.
®
v v \

Integrin antibody

4

@3 Opposing roles of integrins D. Integrins redundancy

Promoting tumorigenesis  Suppressing tumor metastasis

N A

A \

Figure 1. Schematic overview illustrating four factors that could contribute to the lack of
clinical efficacy for integrin targeting therapeutics. These include (A) sequestration by tu-
mor-derived extracellular vesicles (TEVs): integrin therapeutics bind integrins on TEVs in-
stead of the tumor itself; (B) Different integrin expression at different stages: integrin ex-
pression can change as the tumor progresses and thereby influence target availability; (C)
Opposing roles of integrins: Integrins exert tumor promoting effects but may also drive, as
yet poorly understood, metastasis suppressing signals. Inhibition of integrins could there-
fore potentially be disadvantageous; (D). Integrins redundancy: inhibition of one integrin
can be compensated by expression of other integrins.
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Sequestration of Therapeutics by Integrin-Containing Extracellular Vesicles

Another mechanism that may underlie failure of anti-integrin drugs involves TEVs
that have been implicated in tumor angiogenesis, immune evasion, and metastasis
8 Tumors produce more EVs with a different cargo composition (proteins, lipids and
nucleic acids) as compared to normal tissues and these EVs can be derived from the
tumor cells as well as other cell types in the tumor microenvironment. Integrins are
expressed on TEVs, thus guiding their preference for organ colonization 8. As integ-
rin expressing TEVs are released by various cancer types they may represent a com-
mon obstacle by sequestering integrin-targeting antibodies or peptides before
these can reach their tumor target 8%, This concept has also been demonstrated
for patients with inflammatory bowel disease where EVs expressing integrin a4p7
prevented vedolizumab from reaching a4B7 expressed on T cells, which may affect
therapeutic efficacy®.

Integrins as biomarkers of cancer progression

A major challenge for some of the most aggressive tumor types is providing an ac-
curate diagnosis and prognosis for patients suffering from cancer. Integrins may
serve as biomarkers in cancer, due to their aberrant expression on tumor cells and
cells in the tumor microenvironment!*8, Recent studies reinforce the idea that
some integrins may serve as predictive cancer biomarkers.

Integrins avB63, av85, and avB6

Integrin avB3 expression has been extensively associated with melanoma progres-
sion from an early radial growth phase to an invasive vertical growth and metasta-
sis'>1, Recently, differential expression of the integrins avB3 and avB6 has been
observed in two subtypes of prostate cancer. Using patient derived tumor tissue
and tumor bearing murine models, avB3 was found to be largely absent in prostate
adenocarcinoma ADPrCa but significantly upregulated in the more malignant pri-
mary neuroendocrine prostatic cancer (NEPrCa) and its metastatic lesions in the
lung ®. Combined with previous findings on the role of avpB3 in the differentiation
of ADPrCa to the aggressive NEPrCa, aVB3 could have potential as a biomarker in
the early detection of this malignant transition in prostate cancer 8!, The expres-
sion of integrin avB5 has been suggested to represent a predictive biomarker for
several cancer types amongst which, breast, hepatic, and gastric carcinomas 9%,
Recently, elevated levels of avPB5 have been detected in patients suffering from
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either glioblastoma or colorectal carcinoma®®, For both types of cancer, the over-
expression of avB5 was correlated with an unfavorable overall survival °*%. Integrin
avB6 has been shown to represent an unfavorable prognostic marker in pancreatic
cancer patients®. This integrin was recently found to be a promising serum bi-
omarker for patients with pancreatic cancer. Based on the identification of avp6 in
serum, chronic pancreatitis (cP) patients could be distinguished from patients with
pancreatic adenocarcinoma (PAC) and high serum levels of avB6 were associated
with poor survival . Up to now, Carbohydrate antigen CA19-9 has been the only
biomarker in use for PAC, yet its sensitivity and specificity failed to meet the expec-
tations for use as conclusive diagnostic tool %. A study with a larger patient cohort
will be needed to further assess the potential of avp6 alone or in combination with
CA19-9 as a prognostic serum biomarker for PAC.

Integrin a561

Metastasis in the bones is often lethal in patients with mammary tumors %1%,

Therefore, finding a predictive biomarker is essential for the early recognition of
potentially metastasizing tumors. Integrin a5B1 is known for its participation in tu-
mor promoting processes like angiogenesis, proliferation and metastasis /1, In
early-stage breast cancer patients, a5B1 expression in the primary tumor was re-
cently associated with the presence of disseminated tumor cells in bone marrow
aspirates and poor metastasis-free survival 2. The same study showed that a5 gene
silencing or pharmacological inhibition of a5B1 with volociximab attenuated bone
colonization following intravenous injection of tumor cells in mice. Hence, stratifi-
cation of breast cancer patients based on a5B1 expression may represent a way to
exploit the potential of a5B1 antibodies, which have thus far not shown clinical ben-
efit. Integrin a5B1 was also found to be upregulated in several gastrointestinal tu-
mors where enhanced expression of ITGAS corresponded with a poor prognosis 1%,
Again, these findings warrant larger scale patient studies to explore the potential of
a5B1 as a prognostic biomarker in solid tumors.

Integrin mediated drug delivery

In the area of drug delivery, integrin avB3 has been extensively pursued. It repre-
sents an attractive target because of its absence from most normal tissues versus
expression in tumor tissue, including tumor cells and cells in the tumor microenvi-
ronment such as endothelial cells stimulated to undergo angiogenesis %1%, |nteg-
rin binding peptide motifs such as RGD, which binds avp3 as well as other integrins,
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have been incorporated on the surface of drug carrying vesicles'®. Cyclic RGD pep-
tides (cRGD) have gained interest in recent years given their high binding affinity for
avp3 1,

Liposomal (Like) Drug Carriers

Liposomal vesicles have been used extensively to reduce the toxicity of conven-
tional anti-cancer therapeutics in healthy tissues 1%. Low treatment efficacy with
this approach is caused by ineffective reach of the tumor. The introduction of RGD
peptides on the surface of liposomal like vesicles has generally enhanced both drug
accumulation in the tumor and anti-tumor efficacy of the drug in mouse models!%-
112 pAdditional adjustments were made to the vesicles to further improve their drug
transporting characteristics (Figure 2). Sustained drug release of the liposomes was
enhanced, making use of PEGylated positively charged lipids 1%. The cationic lipo-
somes decorated with the cRGD peptide were then able to deliver negatively
charged siRNA into melanoma cells and effectively induce cell death!®. Alterna-
tively, Gao et al. developed a double membrane vesicle (DMV), presenting not only
the RGD peptide, but also lipopolysaccharides (LPS)!!!. The association of LPS (nor-
mally exposed in the outer membrane of Gram-negative bacteria) with immune
cells facilitated the transit of the vesicles from the vasculature into the tumor mi-
croenvironment where it could target melanoma cells and deliver therapeutics.
Other avp3 targeting liposomal like formulations have shown a promising reduction
in tumor growth for lung and hepatocellular carcinoma in in vivo models 11112, Lip-
osomes targeting other integrins are slowly emerging, although selective expression
of these integrins in tumor tissue is less evident. Modification of the liposomal
membrane with the a5B1 binding peptide PR_b, elevated the tumor specificity of
the vesicle for pancreatic cancer cells 13, The addition of a thermosensitive and bi-
odegradable hydrogel in the formulation enabled sustained release of the combi-
nation treatment paclitaxel and gemcitabine and attenuated pancreatic tumor
growth. Other liposomes presenting the integrin a2B1 binding ligand DGEA, were
used to target breast cancer and effectively reduced tumor growth in vivo and en-
hanced the overall survival of the mice!'%.
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Alternative Therapy Delivery Approaches

The use of integrins to direct anti-cancer therapeutics has not been restricted to
their application in liposomal drug transport. Integrins may represent targets for the
development of novel tumor selective immunotherapies (Figure 3A, B). In mouse
models for breast cancer and head and neck squamous cell carcinoma, it was shown
that a6B4 is preferentially expressed on cancer stem cells (CSCs) and represents a
target for immunotherapies. Vaccination with dendritic cells pulsed with B4 peptide
or adoptive transfer of T cells incubated with B4-CD3 bispecific antibodies, could
induce T cell anti- tumor activity and inhibition of tumor growth and metastasis for-
mation in the lungs of tumor bearing mouse models!?®. The application of covalent
linking between an integrin binding peptide (mostly RGD) and an established anti-
cancer therapeutic has also been explored (Figure 3D). This approach has led to re-
duced therapeutic- associated toxicity in healthy tissues?®®.

It will be interesting to compare toxicity profiles for this approach with those of lip-
osomal encapsulations. Lastly, RGD peptides have also been incorporated in poly-
dopamine (PDA) coatings to target photosensitizing agents such as gold nanostars
leading to tumor specific cell death and limited adverse effects after near infrared
activation of the drug®’(Figure 3C).

Conclusions and future perspectives

Thus far, the majority of clinical trials investigating the efficacy of therapeutics tar-
geting integrins in cancer have failed. There are several reasons for these disap-
pointing results, including insufficient insight into the changes in expression of in-
tegrins during cancer progression in patients and a lack of knowledge concerning
the pharmacological properties and accumulation at the target site of antibodies or
peptides. Analysis of these aspects would have to be included in the trial design to
understand reasons for failure or success. Other difficulties include the redundancy
between different integrins, the different roles that integrins have been found to
play at distinct disease stages and sequestration of therapeutic antibodies or pep-
tides by integrins present on TEVs.

We envision that 1) further understanding of these hurdles and development of ap-
proaches to combat them and 2) incorporation in the trial design of analyses of in-
tegrin expression levels and drug accumulation in the tumor tissue should provide
avenues for improving therapeutic strategies targeting integrins.
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Figure 2. Schematic overview of novel integrin targeting liposomal like drug delivery ap-
proaches. (A) cRGD decorated cationic liposomes; (B) Liposomes decorated with a combi-
nation of LPS and RGD peptides; (C) DGEA decorated liposomes; (D) Gel coated liposomes
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their role in distinguishing early-stage low risk-from advanced- stage high risk, met-
astatic disease.

Also, their role as therapeutic targets continues to be investigated. Results thus far
do not to point to toxicity as a major issue for drugs targeting avB3 and other av
integrins. It will be interesting to monitor the currently ongoing trials exploring a5p1
and av integrins as targets in various cancers. The recent studies pointing to integ-
rins as targets to attack CSCs, to activate anti-tumor immunity, or to synergize with
drugs targeting immune checkpoints suggest exciting new possibilities in this field
that await clinical translation. In addition, new strategies exploring integrins as tar-
gets for delivery of (liposomes containing) existing anticancer drugs are promising
and may contribute to improved targeting of therapeutics and reduced toxicity. In-
deed, several exciting possibilities await clinical testing and may well lead to a revis-
iting of integrins as therapeutic targets.
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| Alternative therapy delivery approaches
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