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ABSTRACT
Drainage, agricultural conversion, and climate change threaten wetlands and their unique biodiversity. Species distribution 
models (SDMs) can help to identify effective conservation measures. However, existing SDMs for wetland plants are often geo-
graphically limited, miss variables representing hydrological conditions, and neglect moss species, essential to many wetlands. 
Here, we developed and validated SDMs for 265 vascular plant and moss species characteristic of European wetlands, using 
environmental variables representing climate, soil, hydrology, and anthropogenic pressures. We validated the spatial predictions 
of the SDMs through cross-validation and against independent data from the Global Biodiversity Information Facility (GBIF). 
Further, we validated the niche optima of the species, as obtained from the modelled species response curves, with empirical 
niche optima. The spatial validation revealed good predictive power of the SDMs, especially for diagnostic mosses, for which 
we obtained median cross-validated values of the area under the curve (AUC) and true skill statistic (TSS) of 0.93 and 0.73, re-
spectively, and a median true positive rate (TPR) based on GBIF records of 0.77. SDMs of diagnostic vascular plants performed 
well, too, with median AUC, TSS, and TPR of 0.91, 0.69, and 0.67, respectively. SDMs of non-diagnostic plants had the lowest 
performance, with median AUC, TSS, and TPR values of 0.84, 0.53, and 0.62, respectively. Correlations between modelled and 
empirical niche optima were typically in the expected direction. Climate variables, particularly the mean temperature of the 
coldest month, were the strongest predictors of species occurrence. At the same time, groundwater table depth was a significant 
predictor for diagnostic vascular plants but not for mosses. We concluded that our SDMs are suitable for predicting broad-scale 
patterns of wetland plant species distributions as governed by climatic conditions. Alternative or additional variables or a differ-
ent modelling approach might be needed to represent better the local heterogeneity in the hydrological conditions of wetlands.
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1   |   Introduction

Wetlands are biodiversity hotspots that provide essential eco-
system services, such as flood protection, carbon sequestra-
tion, and storage (Janse et al. 2019; Zedler and Kercher 2005). 
Approximately 5%–8% of the global land surface is categorized 
as wetlands, which comprise 20%–30% of the world's carbon pool 
(Salimi et  al.  2021). However, wetlands are disproportionately 
threatened due to increasing demands for resources. Many wet-
lands have been drained and converted into arable land to meet 
the needs of the world's growing population (Fluet-Chouinard 
et al. 2023). It is estimated that 3.4 million km2 of inland wet-
lands have been lost since 1700, corresponding with 21% of the 
world's wetlands (Fluet-Chouinard et al. 2023). Further losses 
and degradation are expected as a result of further conversion to 
agricultural land, direct human impacts such as drainage, and 
changes in hydrological conditions due to climate change (Janse 
et al. 2019; Salimi et al. 2021). Climate change poses a significant 
threat to wetland ecosystems (Erwin 2009; Salimi et al. 2021). 
Climate change leads to higher temperatures and, thus, higher 
evapotranspiration, rainfall intensity, and frequency changes, 
and more frequent extreme climatic events such as droughts, 
flooding, and storms. These changes can modify wetland hy-
drology and biogeochemical processes so that vital ecosystem 
services may degrade or even transform into disservices. For in-
stance, warmer conditions can enhance microbial activity, lead-
ing to increased emissions of nitrous oxide due to accelerated 
nitrification and denitrification processes (Huang et  al.  2013; 
Salimi et al. 2021). Policymakers, scientists, and conservation-
ists recognize the urgency to halt the loss of wetlands and their 
unique biodiversity (Janse et  al.  2019), as reflected by various 
(inter)national agreements and targets related to biodiversity 
and sustainable development (Seifollahi-Aghmiuni et al. 2019).

Spatially explicit modelling tools are key for evaluating and 
predicting the impacts of climate change, land use change, and 
other human impacts on biodiversity and identifying potential 
conservation and restoration measures (Backus et  al.  2023; 
Rodrigues et al. 2015). Thanks to the increasing availability of 
data and computing power, species-level modelling is increas-
ingly being used to assess the impacts of human interventions 
on biodiversity (Araújo and New  2007). Species distribution 
models (SDMs) are extensively used to evaluate, for example, 
potential range shifts or declines in response to projected cli-
mate change (e.g., Kermavnar et al. 2023; Porfirio et al. 2014). 
However, SDMs representative of the unique biodiversity of wet-
lands are still in their infancy, and existing SDMs of wetland 
species typically have a limited geographic extent and miss 
out on moss species (Cao et  al.  2020; Dang et  al.  2021; Janse 
et al. 2019; Lou et al. 2018; Zhong et al. 2021). The latter is a key 
gap given the current lack of knowledge about the distributions 
of mosses and their key role in shaping wetland ecosystems, es-
pecially peatlands (Ferretto et al. 2023; Ma et al. 2022; Poncet 
et al. 2015). Further, wetlands are characterised by distinct hy-
drological conditions different from their surroundings regard-
ing water levels and contributions of different water sources 
(surface water, groundwater, precipitation). These hydrological 
conditions play a key role in shaping plant distributions, yet hy-
drological variables are frequently missing from wetlands SDMs 
(Araya et  al.  2010; Gardner et  al.  2019). With climate change, 
profound impacts on wetlands are anticipated due to impacts on 

hydrological regimes (Zhong et al. 2021). Hence, including vari-
ables representing hydroclimatic conditions in wetland SDMs is 
essential. For example, Cao et al. (2020) found that precipitation-
related environmental factors mainly determined the predicted 
shifts in distribution ranges of six endangered wetland plant 
species in China. Similarly, Dang et al. (2021) showed that the 
habitat suitability of three wetland-characteristic tree species in 
the Mekong Delta was governed by seasonal variation in precip-
itation, temperature, and sea level rise. These studies highlight 
the need to develop and improve SDMs of wetland species with 
environmental variables representative of wetlands.

In this study, we develop and validate SDMs for European wet-
land plants. We created SDMs for 265 vascular plant and moss 
species characteristic of European wetlands, using environ-
mental variables representative of climate, soil, hydrology, and 
anthropogenic pressures. Specifically, we included three hy-
drological variables indicative of water availability and water 
level fluctuations. We evaluated the model fit based on cross-
validation and quantified the importance of each variable. We 
then validated the models' ability to accurately predict species 
occurrence by comparing the SDM predictions with indepen-
dent occurrence data from the Global Biodiversity Information 
Facility (GBIF) database. In addition, we compared the niche 
optima obtained from the modelled response curves of the 
SDMs with empirical niche optima, thus testing the ecological 
realism of the modelled species' responses to the environmental 
conditions (Hellegers et al. 2020). For this purpose, we obtained 
ecological indicator values from the ecological indicator value 
in Europe (EIVE1.0) 1.0 database (Dengler et al. 2023). We per-
formed the analysis for three distinct groups: moss species diag-
nostic of wetland vegetation, vascular plant species diagnostic of 
wetland vegetation, and non-diagnostic plants (including mosses 
and vascular plants). Diagnostic species are more strongly asso-
ciated with a particular habitat, absent or rare in other habitats, 
thus serving as indicators for distinguishing a habitat from oth-
ers (Chytrý et al. 2020; Whittaker 1962). Given that our SDMs 
include wetland-specific environmental variables, we expect the 
models of diagnostic species to perform better than those of non-
diagnostic species.

2   |   Methodology

2.1   |   Vegetation Plot and Species Selection

For this study, we obtained a total of 1,652,563 vegetation 
plots from the European Vegetation Archive (EVA) (Chytrý 
et al. 2016). Following Hellegers et al. (2020), we excluded plots 
recorded before 1990 and after 2018, plots with a known spa-
tial uncertainty larger than 1 km, and plots with missing values 
for one or more environmental variables (see next section). We 
also excluded plots that were classified as marine habitat types 
(MA), inland waters (P), and vegetated man-made habitat types 
(V) according to the EUNIS (European Nature Information 
System) habitat type classification (Chytrý et al. 2020). Thus, we 
retained 533,254 vegetation plots, which equates to about 32% of 
the initial EVA vegetation plots (Figure A1).

Next, we selected vascular plant and moss species characteris-
tic of wetlands based on the EUNIS habitat type classification 
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(Chytrý et al. 2020). We selected species of the following wet-
lands habitat types: Q1—raised and blanket bogs, Q2—valley 
mires, poor fens, and transition mires, Q3—palsa and poly-
gon mires, Q4—base-rich fens and calcareous spring mires, 
Q5—helophyte beds, and Q6—periodically exposed shores 
(Chytrý et al. 2021). Raised and blanket bogs (Q1) rely mainly 
on rainfall for moisture and nutrients, forming highly acidic 
peat in cool climates with high rainfall. Valley mires (Q2) 
have peat-forming vegetation that depends on water draining 
from the surrounding landscape. Poor fens are fed by acidic, 
nutrient-poor groundwater, while transition mires support 
peat-forming vegetation in areas with acidic groundwater or 
acidic pool and lake water, often forming floating vegetation 
rafts. Palsa and polygon mires (Q3) develop when thick peat 
is subject to sporadic permafrost, with low precipitation and 
an annual mean temperature below −1°C. Base-rich fens and 
calcareous spring mires (Q4) are found in river valleys, allu-
vial plains, or hillsides. They depend on calcareous or gen-
eral cation-rich groundwater, with the water level at or near 
the surface. Peat forms here due to a permanently high water 
table. Helophyte beds (Q5) are related to nutrient-rich waters 
of riverine or lake origin and can be both peat-forming or re-
lated to non-peaty substrates. Characteristic conditions are 
shallow to moderately deep mesotrophic to eutrophic fresh or 
slightly brackish waters along the banks of rivers and lakes. 
Periodically exposed shores (Q6) include riverbanks, sediment 
islets, drying oxbows, shallow water bodies like lakes and 
fishponds, and ditches. These areas share nutrient-rich muddy 
or sandy-muddy soils from natural sedimentation or human 
input. Among the listed habitat types, we excluded species 
of saline habitats (Q54; Q63). Chytrý et al. (2021) classify the 
characteristic species of EUNIS habitat types as diagnostic, 
dominant, and constant species. Our selection resulted in 
364 plant species: 81 diagnostic moss species, 223 diagnostic 
vascular plant species, and 60 non-diagnostic species, that is, 
dominant or constant vascular plants and mosses.

2.2   |   Environmental Variables

As a starting point for selecting environmental variables for the 
SDMs for wetland plant species across Europe, we used the cli-
mate, soil, and atmospheric nitrogen deposition variables from 
Hellegers et al. (2020), who used these variables to establish SDMs 
of terrestrial vascular plants across Europe. We supplemented this 
set with additional environmental variables that we expected to 
be relevant for wetland plants (Table 1). Temperature and precipi-
tation are the most critical factors driving the large-scale distribu-
tions of species (Gutiérrez-Hernández and García 2021). Following 
Hellegers et  al.  (2020), we included four climatic variables that 
pose physiological limitations on large-scale plant species distri-
butions, namely total annual precipitation, mean temperature 
of the coldest month, annual growing degree days, and a water 
balance variable (Araújo et al. 2011; Lindborg et al. 2021; Wang 
et al. 2020). We calculated the annual growing degree days as the 
annual sum of daily temperature values above 5°C. We derived 
the daily temperature values from linear interpolation of mean 
monthly temperature values. We calculated water balance as 
the sum of the monthly differences in precipitation and potential 
evapotranspiration. We calculated the potential evapotranspira-
tion (PET) per month as (Lugo et al. 1999):

PETm is the monthly potential evapotranspiration (mm), and 
Tm is the monthly mean temperature (°C). We quantified 
all climate variables using mean monthly temperature and 
monthly precipitation from the CHELSA dataset version 2.1, 
as CHELSA data is adjusted for the effects of elevation and 
aspect, and we averaged the values over the period 1990–
2018 to match the time frame of the vegetation plots (Karger 
et  al.  2017, 2021). Following Hellegers et  al.  (2020), we also 
included various soil properties that are relevant for plant 
growth via water and nutrient retention capacity (Figueiredo 
et  al.  2018; Trettin et  al.  2020), collected from the SoilGrids 
dataset (Hengl et  al.  2017). The physical and chemical prop-
erties of soil strongly affect the hydrology and hydrochemis-
try in wetlands and thus influence wetland formation and 
functioning (Kolka and Thompson 2006). We aimed to select 
soil variables directly influencing hydrological conductivity, 
water storage, and availability, which depend on soil texture, 
soil structure, bulk density, porosity, and pore size distribution 
(Kolka and Thompson 2006). To represent these physical prop-
erties, we selected the variables clay content, volume of coarse 
fragments, silt content, organic carbon content, sand content, 
and bulk density. Chemical soil properties important for plant 
growth include soil acidity and buffer capacity, which influ-
ence the solubility of various elements in the soil, particularly 
plant nutrients (Kolka and Thompson  2006). We, therefore, 
also included the variables soil pH and cation exchange capac-
ity. We selected the values from the top 5 cm of the soil.

Because excess water is an important prerequisite for the occur-
rence of wetland ecosystems and their characteristic vegetation, 
we included groundwater table depth (GWTD), topographic 
wetness index (TWI) and water, and wetness probability index 
(WWPI) (Choi et  al.  2019; Fan et  al.  2013; Guntenspergen 
et al. 1989; Raulings et al. 2010). These variables represent the 
groundwater levels, propensity to moisture accumulation, and 
inundation probability, respectively. We obtained the GWTD 
from Fan et al.  (2013) and retrieved the TWI from Marthews 
et al. (2015). The TWI is based on the local downstream slope 
of a grid cell and its upstream catchment area. It is an indicator 
of the tendency of a site to accumulate water, given its topo-
graphic position. We obtained the WWPI from the Copernicus 
land monitoring service over the years 2009–2015 (European 
Environment Agency  2020). This index specifies the number 
of times that a grid cell is inundated or wet relative to the total 
number of valid observations, as follows:

where nwater represents the number of water occurrences, nwet 
represents the number of wet occurrences, and ntotal represents 
the total number of water, wet, and dry occurrences.

Finally, we included the potential influence of salt, nitrogen depo-
sition, and anthropogenic land cover in the upstream catchment; 

(1)PETm = 0 if Tm ≤ 0
◦

C

(2)PETm = 58.93 × Tm if 0
◦

C < Tm < 30
◦

C

(3)PETm = 58.93 × 30 if Tm ≥ 30
◦

C

(4)WWPI =
(

nwater + 0.75 × nwet
)

∕ntotal × 100
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the last two variables indicate anthropogenic pressure on wet-
land plants. We calculated the potential influence of salt spray, 
salt-water inundation, or salt-water intrusion as a binary variable 
(0–1) reflecting whether a location is within 3 km of the nearest 
coastline (Du and Hesp 2020). We obtained nitrogen deposition 
in the year 2013 from (Fagerli et al. 2019) as an indicator of eu-
trophication because eutrophication is one of the threats to the 
wetland ecosystem and can significantly impact wetland vege-
tation (Borgström et al. 2024; Gustafson and Wang 2002; Yousaf 
et al. 2021). Lastly, we included the total area of anthropogenic 
land cover in the upstream catchment of each cell as a proxy of 

various human pressures affecting wetlands and their vegetation, 
including the inflow of nutrients and pollutants. To this end, we 
retrieved an EUNIS level 3 land cover map from the Coordination 
Centre for Effects (Gebhardt 2023). We derived an anthropogenic 
land cover map from this map by clustering all grid cells allocated 
to habitat types of class V1, that is, arable land and market gardens, 
and class J, that is, constructed, industrial, and other artificial hab-
itats. Then, we resampled this layer to 30 arcsec to match the spa-
tial extent of the hydrography layer from HydroSHEDS (Lehner 
et al. 2008). We used the anthropogenic land cover map and the 
hydrography layer to quantify the total area of anthropogenic land 

TABLE 1    |    Environmental variables selected for the SDMs for wetland-characteristic vascular plant and moss species.

Environmental 
variable Short name Unit Source

Native 
spatial 

resolution Reference

Climate

Mean temperature of the 
coldest month

MinTemp °C Chelsa 30 arcsec Karger et al. (2017)

Total annual 
precipitation

Precipitation mm Chelsa 30 arcsec

Annual growing degree 
days

TempSum °C Chelsa 30 arcsec

Water balance WB mm Chelsa 30 arcsec

Soil

Clay content Clay weight % Soil grids 1 km Hengl et al. (2017)

Soil pH × 10 in H2O pH pH Soil grids 1 km

Volume of coarse 
fragments

Coarse volumetric % Soil grids 1 km

Silt content Silt weight % Soil grids 1 km

Organic carbon content Carbon g kg−1 Soil grids 1 km

Cation exchange 
capacity of soil

CEC cmolc kg−1 Soil grids 1 km

Sand content Sand weight % Soil grids 1 km

Bulk density Bulk kg m−3 Soil grids 1 km

Hydrology

Groundwater table depth GWTD m Fan et al. (2013) 30 arcsec Fan et al. (2013)

Water and Wetness 
Probability Index 
(WWPI)

WWPI dimensionless Copernicus land 
monitoring service

10 m European 
Environment 
Agency (2020)

Topographic wetness 
index

TWI dimensionless Marthews et al. (2015) 1 km Marthews 
et al. (2015)

Others

Nitrogen deposition Ndp mg m−2 EMEP 0.1° Fagerli et al. (2019)

Anthropogenic land 
cover in upstream 
catchment

ALC km2 this study 1 km Coordination 
Centre for Effects 
(Gebhardt 2023)

Saltwater affected area Salt Yes/No this study 1 km Not applicable; see 
method description
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cover in the upstream catchment area of each grid cell using the 
AreaD8 function of the TauDEM toolbox from ArcGIS (version 
10.8.1). We reprojected all the environmental variable layers to the 
ETRS89 Lambert azimuthal equal-area coordinate system and re-
sampled them to a 1 km resolution.

2.3   |   Fitting Species Distribution Models

We established an SDM for each selected species following the 
methodology described by Hellegers et al.  (2020). Before fitting 
the SDMs, we performed a variance inflation factor (VIF) analysis 
to detect collinearity between the environmental variables, using 
the VIF function from the ‘used’ package (Naimi et  al.  2014). 
Using a VIF threshold of 10 (Chatterjee and Hadi 2013), we ex-
cluded sand content, bulk density, and water balance, thus keep-
ing 15 environmental variables for model fitting. We established 
the SDMs in R version 2024.04-2+764 (R Core Team  2018) ac-
cording to an ensemble modelling approach based on a gener-
alised linear model (GLM), a generalised additive model (GAM) 
and boosted regression trees (BRT) using the ‘biomod2’ package 
(ver. 3.5.1) with the default settings (Thuiller et al. 2024). We ad-
opted a random sampling approach to reduce spatial bias and 
pseudo-replication, selecting only one vegetation plot per 1 km 
grid cell where the species was present. We selected species with 
a minimum of 94 presence points, ensuring five presences per 
environmental variable for model fitting, after setting aside 20% 
of the observations for cross-validation, leaving 274 of the 364 
species (Araújo et  al.  2011; Hellegers et  al.  2020). We selected 
absence records for each species by randomly sampling one plot 
per 1 km grid cell where the species was not recorded. Because of 
the large number of vegetation plots, we used a further subset of 
the absence records to reduce the computation time. For GAM 
and GLM, we selected a minimum of 10,000 absences, while for 
BRT, we selected a minimum of 1000 absences (Barbet-Massin 
et al. 2012). If the count of presence records exceeded either 1000 
or 10,000, we selected a number of absence records matching the 
number of presence records (Barbet-Massin et al. 2012; Hellegers 
et  al.  2020). We calibrated the models using a single random 
sample comprising 80% of the data and used the remaining 20% 
for evaluation. We established an ensemble model for each spe-
cies using the three modelling techniques, each weighted with 
their cross-validated true skill statistic (TSS) value (Hellegers 
et  al.  2020). We quantified the performance of the ensemble 
model based on the evaluation data using the TSS and area under 
the receiver operating characteristic curve (AUC) (Allouche 
et al. 2006). Next, we selected species with an ensemble model 
with a cross-validated TSS value ≥ 0.3 and a cross-validated AUC 
≥ 0.7 to remove species with a poorly performing model (Araújo 
et al. 2011), removing six species. Thereafter, we fitted the SDMs 
with 100% of the data. We discarded three species for which not 
all models converged. Thus, we obtained SDMs for 265 wetland 
plant species, of which 48 diagnostic moss species, 159 diagnos-
tic vascular plant species, and 58 non-diagnostic plant species 
(Supporting Information S1; Table A1). For each of the 265 spe-
cies, we calculated the variable importance of each environmen-
tal variable as a weighted average of the variable importance 
values for individual modelling techniques, obtained with the 
‘get_variables_importance’ tool from the ‘biomod2’ package (ver. 
3.3–7) (Thuiller et al. 2024), using the cross-validated TSS values 
for each of the three models as weights.

2.4   |   Validation of the SDMs

We validated the SDMs using independent data using two distinct 
validation methods. First, we compared the predicted distribution 
of each species with independent occurrence data from the GBIF, 
which contains occurrence data for a wide range of species world-
wide (GBIF 2023). To that end, we first transformed the proba-
bilities of occurrence (PoO) of each species as predicted by the 
ensemble model to a binary distribution map (present or absent) 
using a PoO threshold that maximised the TSS value (Araújo and 
Guisan  2006; Liu et  al.  2005). We then compared the binarised 
output with GBIF occurrence records using the true positive rate 
(TPR), that is, the proportion of GBIF records corresponding with 
a predicted presence, as a performance measure. We retrieved 
species' presence records from 1990 to 2021 from GBIF using the 
‘rgbif’ package in R (Chamberlain and Boettiger 2017). We could 
not retrieve GBIF records for three species because the taxonomic 
backbone did not match any records found in the GBIF database, 
leaving us with 262 species for validation. From GBIF, we excluded 
records with a known geospatial issue, a location uncertainty of 
more than 1 km, and records outside the study area. Further, we 
selected a random single GBIF presence value per 1 km grid cell to 
avoid pseudo-replication. After these filters, there were 14 species 
without any occurrence records. This left 248 species for valida-
tion, of which 44 were diagnostic mosses, 148 diagnostic vascular 
plants, and 56 non-diagnostic plants. Across all the species, we 
obtained a median of 14,966 records, with a minimum of four 
records for Cirsium appendiculatum and a maximum of 451,869 
records for Festuca rubra.

Second, we tested the ecological realism of the modelled species 
responses to the environmental variables by comparing niche 
optima retrieved from the SDMs with independent empirical 
data on niche optima, using the method developed by Hellegers 
et  al.  (2020). For the empirical niche optima, we used ecolog-
ical indicator values (EIVs), which indicate the preferred niche 
conditions of plant species for various environmental variables 
based on field observations of species co-occurrence patterns, 
in situ measurements of environmental variables, and occasional 
experiments (Ellenberg 1974). EIVs are widely employed in veg-
etation science because they enable the assessment of environ-
mental variables without direct measurements (Bartelheimer and 
Poschlod 2016). The comparison with EIVs was limited to vascular 
plant species due to a lack of data for moss species at the European 
scale. We collected EIVs for 208 vascular plant species, of which 
158 were diagnostic and 50 non-diagnostic, for soil moisture, soil 
nitrogen, soil acidity (pH), light and temperature, from ecological 
indicator values for Europe (EIVE1.0) 1.0, which represents the 
most extensive ecological indicator value database available for 
European vascular plants to date (Dengler et al. 2023). EIVE1.0 
is a comprehensive database consisting of 31 EIV systems dating 
from 1956 to 2022, where in the case of multiple EIV systems 
available for a region, the latest and most comprehensive one 
was used (Dengler et al. 2023). Dengler et al. (2023) validated the 
EIVs against bioclimatic variables from Chelsa version 2.1, where 
they found a good correlation between the temperature variables 
in CHELSA and the temperature variable from EIVE1.0, indicat-
ing that the values are comparable. We extracted species-specific 
modelled niche optima from the SDMs, from here on referred to 
as modelled indicator values (MIVs), as the values of the environ-
mental variables corresponding to the highest PoO of the species 
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(Hellegers et  al.  2020). We extracted MIVs for each species for 
variables with a variable importance of at least 0.05 (Hellegers 
et  al.  2020) (Table  A2). To extract MIVs, we implemented the 
evaluation strip method proposed by Elith et al. (2005), using the 
‘response.plot2’ tool from the ‘biomod2’ package (ver. 3.3–7) to 
obtain response curves (Thuiller et al. 2024). We obtained a re-
sponse curve for each modelling technique by varying the envi-
ronmental variable of interest across its range while keeping the 
other variables at their mean values across the plots of observed 
species. Next, we calculated species-specific ensemble response 
curves for each variable by averaging the response curves across 
the modelling techniques, with each curve weighted by the 
cross-validated TSS value of the corresponding model (Hellegers 
et al. 2020). From the ensemble response curves, we retrieved the 
MIV for each environmental variable and each species as the vari-
able value corresponding to the highest PoO. We computed their 
median in cases where multiple values were linked to the maxi-
mum occurrence probability. Finally, we performed a Spearman's 
rank correlation analysis between each pair of MIV-EIV across 
the species, using the ‘corr.test’ function from the ‘psych’ package 
in R (v.2.3.9) (Revelle 2022; Wu et al. 2024).

3   |   Results

3.1   |   Cross-Validation and Variable Importance

Based on the cross-validation, the overall model performance 
was moderate to high; that is, for 97% of the modelled species, 
we obtained an ensemble model with AUC > 0.7 and TSS > 0.4 
(Figure  1). We found the highest model performance for the 
diagnostic mosses, with median AUC and TSS values of 0.93 

and 0.73 and ranges of 0.84–0.99 and 0.51–0.99, respectively 
(Figure 1; Table A3). The model performance for the diagnostic 
vascular plants was slightly lower (median AUC and TSS val-
ues of 0.91 and 0.69, respectively), while it was the lowest for 
the non-diagnostic species (median AUC and TSS values of 0.84 
and 0.53, respectively). For all three species groups and based 
on the median variable importance values, the most important 
environmental variable was the mean temperature of the coldest 
month (Figure 2; Table A2). The second most important variable 
for the diagnostic mosses was clay content, followed by annual 
growing degree days and precipitation, while GWTD was less 
important. For diagnostic vascular plants, annual growing de-
gree days were the second most important variable, followed 
by precipitation, clay content, GWTD, and atmospheric nitro-
gen deposition. For the non-diagnostic plants, annual growing 
degree days were the second most important variable, followed 
by GTWD.

3.2   |   Validation Against Independent Data

The comparison of the SDM outputs with independent occur-
rence data revealed that models fitted for diagnostic mosses 
aligned most closely with observed presences, yielding a me-
dian TPR of 0.77; that is, 77% of the presences obtained from 
GBIF are correctly predicted. We found a TPR > 0.5 for 81% of 
the diagnostic mosses (Figure 3). For diagnostic vascular plants 
and non-diagnostic plants, the median TPR was 0.67 and 0.62, 
respectively. Overall, 63% of the diagnostic vascular plants and 
64% of the non-diagnostic plants had SDMs with a TPR > 0.5. 
We found no relation between the TPR and the number of GBIF 
presences (Figure A2).

FIGURE 1    |    Boxplots of the cross-validated AUC (area under the receiver operating characteristic curve) and TSS (true skill statistic) of the en-
semble models fitted for diagnostic mosses (DM; n = 48), diagnostic vascular plants (DP; n = 159), and non-diagnostic species (ND; n = 58). The boxes 
show the medians, the 25 and 75 percentiles, and the whiskers represent 1.5 times the interquartile distance.
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We found weak primarily (0.1 ≤ rho ≤ 0.3) to moderate (0.3 ≤ 
rho ≤ 0.7) relationships between MIVs and EIVs of vascular 
plants (Figure 4; Table 2). We found the most substantial MIV-
EIV relationship for diagnostic vascular plants' soil pH–soil 
acidity pair. This was followed by the relationship between the 
MIV-EIV pairs of mean temperature of the coldest month and 
temperature and atmospheric nitrogen deposition and nitrogen 
(Table 2). For non-diagnostic vascular plants, we found the most 
substantial relationship for the MIV-EIV pair of soil pH and soil 
acidity, followed by water and wetness probability index and soil 
moisture. The MIV-EIV pair of nitrogen deposition and nitrogen 
had a moderate rho value (0.45), but it was not a significant rela-
tionship (p = 0.09).

4   |   Discussion

In this study, we developed and validated SDMs for 265 vascular 
plant and moss species characteristic of wetland vegetation across 
Europe. These models were based on the framework established 
by Hellegers et al. (2020). We go beyond existing studies that have 
fitted SDMs for wetland species by including moss species and 
variables representative of the unique hydrological conditions of 
wetlands. The performance of the SDMs was generally moderate 
to high with cross-validated AUC > 0.7 and cross-validated TSS 
> 0.4 for 48 out of 48 diagnostic mosses, 158 out of 159 diagnostic 
vascular plants, and 52 out of 58 non-diagnostic plants (Table A3). 
The SDMs for diagnostic mosses exhibited the highest perfor-
mance both in cross-validation and based on a comparison with 
independent observations from GBIF, followed by the diagnostic 
vascular plants and the non-diagnostic species. This difference in 
performance may reflect that SDMs, in general, are likely to have 
more discriminatory power for specialist species than for gener-
alists, as the distributions of the former are more tightly bound to 
specific environmental conditions (Morelli et al. 2024). Mosses, 
for example, are especially prevalent in relatively cold and wet 
environments because, unlike vascular plants, they are unable 
to regulate their internal water content (Mohanasundaram and 
Pandey 2022). Consequently, temperature and precipitation are 
important determinants of the occurrence of moss species at a 
European scale (Figure  2); hence, SDMs, including these envi-
ronmental variables, can be expected to perform well.

Despite the crucial role of moisture for moss species (Choi 
et al. 2019; Riihimäki et al. 2021), we found that none of the hy-
drological variables, namely, groundwater table depth (GWTD), 
inundation probability (WWPI), and moisture accumulation 

FIGURE 2    |    Variable importance of all variables used to fit the SDMs for the three species groups (diagnostic moss species, diagnostic vascular 
plant species, and non-diagnostic species). The boxes show the medians, the 25 and 75 percentiles, and the whiskers represent 1.5 times the inter-
quartile distance. The explanations of the variable abbreviations can be found in Table 1.

FIGURE 3    |    Proportion of GBIF observations correctly predict-
ed by the SDMs (true positive rate; TPR) for diagnostic moss species 
(DM; n = 48), diagnostic vascular plant species (DP; n = 159), and non-
diagnostic species (ND; n = 58). The boxes show the medians, the 25 and 
75 percentiles, and the whiskers represent 1.5 times the interquartile 
distance.
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(TWI), were important predictors of occurrence in the SDMs of 
diagnostic moss species (Figure  2). Most mosses absorb water 
and nutrients directly through their surfaces and depend highly 
on moisture from their immediate environment (Hodgetts 
et  al.  2019). Despite this dependency, mosses have developed 
adaptations that enable them to endure complete desicca-
tion (Zhou et  al.  2021). They can suspend physiological activ-
ities during droughts, enabling them to survive without water 
for extended periods. When rehydration occurs, mosses can 
quickly reactivate their metabolic processes and resume growth 
(Hodgetts et al. 2019; Zhou et al. 2021). While groundwater can 
provide essential moisture when water tables are high, a drop 

in the groundwater table leaves precipitation as the primary 
water source (Liu et  al.  2005; Utstøl-Klein et  al.  2015; Zhong 
et al. 2020; Zhou et al. 2021). Recent studies have demonstrated 
that even minimal precipitation (< 1 mm) can significantly in-
crease water content and boost the productivity of moss species 
like Sphagnum, underscoring the importance of precipitation for 
moss survival (Bengtsson et al. 2021; Nijp et al. 2014; Thompson 
and Waddington 2008).

Compared to mosses, groundwater table depth was a more im-
portant variable for both diagnostic vascular plants and non-
diagnostic wetland plants (Figure 2) likely due to their ability to 

FIGURE 4    |    Modelled indicator values (MIV) in relation to ecological indicator values (EIV) for diagnostic and non-diagnostic vascular plants. 
Corresponding correlation coefficients (Spearman's rho), p-values, and number of species included per pairwise comparison can be found in Table 2. 
The explanation of the variable abbreviations can be found in Table 1.
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extend roots below the water table (Carlson Mazur et al. 2020). 
However, we found the other two hydrological variables of lim-
ited importance for vascular plants. Although inundation prob-
ability is generally a good indicator of potential wetland areas 
(Ludwig et al. 2019), WWPI was not a significant predictor in the 
SDMs for wetland vascular plants in our analyses. Further, we 
observed a strong relationship between modelled and empirical 
niche optima for soil moisture only for the relatively small sub-
set of non-diagnostic species. The rho-values from the correla-
tion analyses between all three hydrological variables and soil 
moisture were low for other species. Climatic variables emerged 
as the most important predictors for the European distributions 
of wetland vascular plants and mosses. This aligns with find-
ings from other studies on wetland plant distributions (Cerrejón 
et al. 2020; Dang et al. 2021; Samal et al. 2022). Furthermore, our 
results highlight the importance of soil pH, for which modelled 
niche optima correlated strongly with ecological indicator values 
for soil acidity. The important role of soil properties, such as pH, 
in determining wetland species distributions is also confirmed by 
previous research (Clough 2014; Dang et al. 2021; Hossain and 
Nuruddin 2016).

In our study, we found nitrogen deposition to be a relatively im-
portant factor for predicting the occurrence of vascular plants. 
Nitrogen deposition can alter plant competition dynamics, par-
ticularly by enhancing the ability of certain species to compete 
for light and by disrupting physiological processes through soil 
acidification (Midolo et al. 2019). It can have direct toxic impacts 
on plants and increase their vulnerability to secondary stress 
and disturbance (Yuan et al. 2020). Despite the importance of 
nitrogen, we found only relatively weak relationships between 
the modelled and empirical niche optima for nitrogen deposi-
tion and nitrogen. This suggests that other variables, such as 
soil characteristics, properties of the surrounding land use, and 
management practices, also influence the soil nitrogen content 
(Kooijman et al. 1998; Nissinen and Hari 1998). Moreover, nitro-
gen availability in wetlands, especially peatlands, is reduced due 
to limited decomposition rates.

Anthropogenic land cover in the upstream catchment area 
(ALC) did not emerge as a significant predictor for the occur-
rence of wetland species in our study despite studies showing 
the impact of neighbouring land use on wetland conditions and 
species richness (Houlahan et al. 2006; Im et al. 2020; Stapanian 
et al. 2018; Vörösmarty et al. 2010). Our findings suggest that the 
ALC variable used here may not adequately capture the flow of 
nutrients and pollutants from upstream land to wetlands, high-
lighting an important area for further detailed field research. 
Moreover, the resolution of the ALC variable may have been 
too coarse to reflect finer-scale land use impacts (Houlahan 
et al. 2006). Including more refined land use variables in SDMs, 
specifically variables representing land use and intensity in 
areas directly adjacent to wetlands, may offer deeper insights 
into how surrounding land use influences wetland plant species 
distributions.

Despite the reasonable to excellent performance of our SDMs, 
we acknowledge that our study has several limitations. 
Although hydrology plays a crucial role in wetland ecosystems, 
the selected hydrological variables had a relatively modest im-
pact on the predictions. The relatively low predictive power of 
the hydrological variables in our SDMs might be attributed to 
the fine-scale spatial and temporal heterogeneity of hydrolog-
ical conditions in wetlands, which can be challenging to cap-
ture in large-scale SDMs (Hellegers et al. 2020). For example, 
the global groundwater table depth map from Fan et al. (2013) 
does not incorporate groundwater dynamics or fine-grain spa-
tial variability in surface elevation, making it challenging to 
capture fine-grain heterogeneity in groundwater depth. Using 
region-specific and more detailed hydrological databases with 
a better representation of fine-scale spatial and temporal hy-
drological conditions may improve predictive power. Further, 
our assessment of the ecological relevance of the modelled 
responses yielded promising results for some environmental 
variables but not for others. While some pairs of modelled 
indicator values (MIV) and ecological indicator values (EIV) 
demonstrated strong relationships—such as the correlation 

TABLE 2    |    Spearman's rank correlations (rho) between ecological indicator values (EIVs) and modelled indicator values (MIVs) for diagnostic 
and non-diagnostic vascular plants. n represents the number of species included in the analysis. Correlations of rho ≥ 0.3 with p < 0.05 are depicted 
in bold.

EIV MIV

Species group

Diagnostic 
vascular plants

Non-diagnostic 
vascular plants

rho p n rho p n

Soil moisture Precipitation −0.10 0.29 109 −0.19 0.39 23

Groundwater table depth −0.21 0.03 101 −0.27 0.10 38

Water and wetness probability index −0.20 0.25 34 0.84 0.03 6

Nitrogen Nitrogen deposition 0.36 0.00 75 0.45 0.09 15

Anthropogenic land cover in upstream catchment area 0.21 0.39 20 NA NA NA

Soil acidity pH 0.61 < 0.001 86 0.71 < 0.001 26

Temperature Mean temperature of the coldest month 0.42 < 0.001 140 0.06 0.68 47

Annual growing degree days 0.19 0.02 144 0.33 0.02 44
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between EIVE1.0 temperature values and mean temperature 
of the coldest month from CHELSA (version 2.1), similar to 
findings from Dengler et al. (2023)—others exhibited weaker 
relations (e.g., atmospheric nitrogen deposition and soil nitro-
gen EIV). We acknowledge that comparing the modelled and 
empirical indicator values is associated with uncertainties. 
EIVs are ordinal scores that describe a plant species' environ-
mental preferences concerning specific conditions. However, 
these values do not necessarily reflect a species' physiological 
optimum for the variable of concern but rather its realised 
niche, which persists under competition (Bartelheimer and 
Poschlod  2016; Kermavnar et  al.  2023). Moreover, the EIV 
values obtained from the EIVE1.0 database originate from 
various sources, regions, and times. This may result in het-
erogeneity in the EIV data and a potential mismatch with the 
environmental data used in our SDMs. Further, there might be 
intrinsic differences between the variables represented by the 
EIVs and those underlying our MIVs. For example, Schaffers 
and Sýkora (2000) found that EIVs of soil moisture correlate 
most strongly with the lowest moisture content during sum-
mer. Hence, EIVs may have stronger associations with some 
specific environmental conditions than others, meaning EIVs 
may represent specific conditions in the environment that the 
MIVs might not capture. Finally, our method of calculating the 
MIV focuses solely on the specific environmental conditions 
corresponding to the modelled niche optima of species with-
out accounting for other niche-related factors, such as niche 
breadth or the potential of multiple optima per species. Future 
studies could refine our validation approach by incorporating 
additional relevant aspects, including niche width and multi-
ple favourable conditions.

Our study demonstrates that the SDMs fitted here successfully 
capture the large-scale potential distributions of wetland vascu-
lar plants and mosses, with climatic variables emerging as key 
predictors. This underscores the potential of our models to as-
sess how wetland biodiversity might respond to future climate 
change, offering valuable insights for informing large-scale 
climate change mitigation strategies. While the selected hydro-
logical and anthropogenic variables showed weaker predictive 
power, our models performed well in predicting the potential 
distribution of species diagnostic of wetlands, as validated by in-
dependent datasets. The results of the variable importance analy-
sis and the relatively weak relationships in the MIV–EIV analysis 
suggest opportunities for refinement. Importantly, our study 
highlights the need to explore alternative variables that better re-
flect local conditions, particularly those related to hydrology and 
anthropogenic pressures or to adopt a different model structure. 
A hierarchical approach, where coarse-grain and fine-grain en-
vironmental predictors are used in subsequent modelling steps, 
might be better able to capture fine-grain heterogeneity in hy-
drology and land cover (Mateo et al. 2019). These improvements 
will further enhance the accuracy of wetland SDMs, ultimately 
contributing to more robust tools for wetland conservation and 
management.

5   |   Conclusions

Wetlands and their biodiversity face significant threats 
from drainage, agricultural conversion, and climate change, 

necessitating effective conservation measures. We developed 
and validated SDMs for wetland vegetation across Europe, in-
cluding vascular plants and moss species, which are often over-
looked in existing wetland models. The SDMs performed well in 
predicting large-scale distribution patterns, particularly for di-
agnostic mosses, with strong cross-validation results and align-
ment with GBIF occurrence data. Climate variables, especially 
the mean temperature of the coldest month, emerged as the most 
important predictors of species occurrence. The weak correla-
tion between the modelled niche optima of the hydrological vari-
ables and the empirical niche optima of soil moisture indicates a 
need for an improved representation of local hydrological con-
ditions in the models. Addressing the gaps can further enhance 
the robustness and utility of wetland SDMs for guiding wetland 
conservation and restoration efforts, for example, in the context 
of international conventions such as the Ramsar Convention and 
the Convention on Biological Diversity (CBD).
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Appendix A

FIGURE A1    |    Map of the 533,254 vegetation plots used in the analyses, as obtained from the European vegetation archive.

TABLE A1    |    List of wetland species for which species distribution models were fitted in this study.

Diagnostic mosses

Aneura pinguis Odontoschisma sphagni Sphagnum fuscum

Aulacomnium palustre Paludella squarrosa Sphagnum magellanicum

Breutelia chrysocoma Palustriella decipiens Sphagnum papillosum

Bryum pseudotriquetrum Philonotis calcarea Sphagnum platyphyllum

Calliergon giganteum Philonotis fontana Sphagnum rubellum

Calypogeia muelleriana Philonotis seriata Sphagnum russowii

Campylium stellatum Polytrichum commune Sphagnum subnitens

Campylopus flexuosus Polytrichum strictum Sphagnum subsecundum

Cephalozia bicuspidata Pseudocalliergon trifarium Sphagnum tenellum

Cephalozia connivens Racomitrium lanuginosum Sphagnum teres

Dicranum elongatum Scapania irrigua Sphagnum warnstorfii

(Continues)
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Diplophyllum albicans Scapania undulata Sphenolobus minutus

Fissidens adianthoides Scorpidium scorpioides Straminergon stramineum

Hamatocaulis vernicosus Sphagnum compactum Tomentypnum nitens

Mylia anomala Sphagnum contortum Warnstorfia exannulata

Mylia taylorii Sphagnum cuspidatum Warnstorfia fluitans

Diagnostic vascular plants

Acorus calamus Eleocharis ovata Phalaroides arundinacea

Agrostis canina Eleocharis palustris Pinguicula alpina

Alchemilla glabra Eleocharis quinqueflora Pinguicula balcanica

Allium schoenoprasum Epipactis palustris Pinguicula vulgaris

Alopecurus aequalis Equisetum fluviatile Plantago maritima

Andromeda polifolia Equisetum palustre Polygala amarella

Arctostaphylos alpinus Equisetum variegatum Polygala serpyllifolia

Bartsia alpina Erica cinerea Polygonum aviculare

Bellis annua Erica tetralix Potamogeton polygonifolius

Berula erecta Eriophorum angustifolium Potentilla erecta

Bistorta vivipara Eriophorum latifolium Potentilla supina

Blysmus compressus Eriophorum vaginatum Primula farinosa

Bruckenthalia spiculifolia Festuca rubra Radiola linoides

Callitriche palustris Galium uliginosum Ranunculus sceleratus

Calluna vulgaris Gentiana pyrenaica Rhododendron tomentosum

Carex acuta Gentianella bulgarica Rhynchospora alba

Carex bohemica Geum coccineum Rorippa amphibia

Carex canescens Glyceria declinata Rorippa palustris

Carex capillaris Glyceria maxima Rubus chamaemorus

Carex chordorrhiza Gnaphalium uliginosum Rumex hydrolapathum

Carex davalliana Illecebrum verticillatum Rumex maritimus

Carex diandra Isolepis cernua Sagittaria sagittifolia

Carex dioica Isolepis setacea Salix reticulata

Carex distans Juncus alpinoarticulatus Saxifraga aizoides

Carex disticha Juncus bulbosus Saxifraga stellaris

Carex echinata Juncus capitatus Scheuchzeria palustris

Carex flava Juncus filiformis Schoenoplectus lacustris

Carex frigida Juncus subnodulosus Schoenoplectus lacustris glaucus

Carex hostiana Lemna minor Schoenus ferrugineus

Carex lasiocarpa Ligusticum mutellina Schoenus nigricans

Carex lepidocarpa Limosella aquatica Selaginella selaginoides

Carex limosa Lipandra polysperma Sesleria comosa

Carex nigra Lythrum hyssopifolia Sparganium emersum

Carex panicea Lythrum portula Spergularia rubra

Carex pauciflora Lythrum salicaria Succisa pratensis

(Continues)

TABLE A1    |    (Continued)
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Carex riparia Mentha pulegium Taraxacum Weber

Carex rostrata Menyanthes trifoliata Taraxacum apenninum

Carex vesicaria Myosotis scorpioides Thalictrum alpinum

Cirsium appendiculatum Myosoton aquaticum Tofieldia calyculata

Cladium mariscus Nardus stricta Trichophorum alpinum

Coleanthus subtilis Narthecium ossifragum Trichophorum cespitosum

Comarum palustre Oenanthe aquatica Triglochin maritima

Corrigiola litoralis Oxybasis glauca Triglochin palustris

Cyperus fuscus Oxybasis rubra Typha latifolia

Cyperus michelianus Parnassia palustris Utricularia intermedia

Dactylorhiza cordigera Pedicularis oederi Utricularia minor

Dactylorhiza incarnata Pedicularis palustris Vaccinium microcarpum

Dactylorhiza majalis Pedicularis sylvatica Vaccinium oxycoccos

Drosera longifolia Persicaria amphibia Vaccinium uliginosum

Drosera rotundifolia Persicaria dubia Valeriana dioica

Elatine hydropiper Persicaria hydropiper Veratrum lobelianum

Elatine triandra Persicaria lapathifolia Viola palustris

Eleocharis acicularis Peucedanum palustre Willemetia stipitata

Non-diagnostic plants

Achillea millefolium Chenopodium album Lysimachia vulgaris

Agrostis stolonifera Cirsium palustre Mentha aquatica

Angelica sylvestris Crepis paludosa Molinia caerulea

Anthoxanthum odoratum Ctenidium molluscum Myrica gale

Atriplex prostrata Dicranum scoparium Persicaria maculosa

Bellidiastrum michelii Epilobium palustre Phragmites australis

Betula pubescens Filipendula ulmaria Pinus sylvestris

Briza media Frangula alnus Plagiomnium affine

Calamagrostis canescens Galium palustre Pleurozium schreberi

Calliergonella cuspidata Glaux maritima Poa alpina

Caltha palustris Iris pseudacorus Ptilidium ciliare

Calystegia sepium Juncus bufonius Ranunculus flammula

Cardamine pratensis Juncus effusus Ranunculus repens

Carex L Juncus squarrosus Rorippa sylvestris

Carex acutiformis Leontodon hispidus Salix repens

Carex elata Leucobryum glaucum Sesleria caerulea

Carex flacca Linum catharticum Solanum dulcamara

Carex paniculata Lotus tenuis Typha angustifolia

Carex sempervirens Lycopus europaeus Vaccinium myrtillus

Carex vaginata

TABLE A1    |    (Continued)
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FIGURE A2    |    True positive rate in relation to the number of observations per species as obtained from GBIF (Global Biodiversity Information 
Facility) for three species groups: DM, diagnostic mosses; DV, diagnostic vascular plants; ND, non-diagnostic plants.
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TABLE A2    |    Number of modelled species per environmental variable 
with an importance value of > 0.05. The explanations of abbreviations 
for the variables can be found in Table 1. DM, diagnostic mosses; DV, 
diagnostic vascular plants; ND, non-diagnostic plants.

Variable

Species group

DM DP ND

Precipitation 48 159 53

MinTemp 48 159 58

TempSum 48 159 58

Clay 48 158 58

Silt 48 158 57

CEC 42 121 38

pH 48 156 58

Carbon 46 137 45

Coarse 48 152 55

Salt 25 96 35

Ndp 47 159 54

TWI 44 126 38

GWTD 48 154 57

WWPI 44 128 39

ALC 48 139 37

Total number of species modelled 48 159 58

TABLE A3    |    Distributions of area under the receiver operating 
characteristic curve (AUC), true skill statistic (TSS), and true positive 
rate based on comparison with GBIF data (TPR) of the fitted SDMs for 
265 species across three species groups. Numbers of species per AUC or 
TSS range are also provided.

Species group

Diagnostic 
mosses

Diagnostic 
vascular 

plants

Non-
diagnostic 

species

AUC

Minimum 0.84 0.74 0.73

25th percentile 0.90 0.86 0.78

Median 0.93 0.91 0.84

75th percentile 0.97 0.96 0.92

Maximum 0.99 0.99 0.99

Number of species

< 0.3 0 0 0

0.3–0.7 0 0 0

> 0.7 48 159 58

TSS

Minimum 0.51 0.35 0.34

25th percentile 0.67 0.57 0.42

Median 0.73 0.69 0.53

75th percentile 0.86 0.83 0.70

Maximum 0.99 0.99 0.95

Number of species

< 0.4 0 1 6

0.4–0.6 6 49 32

> 0.6 42 109 20

TPR

Minimum 0.005 0.03 0.03

25th percentile 0.65 0.40 0.42

Median 0.76 0.66 0.62

75th percentile 0.84 0.82 0.76

Maximum 0.94 0.95 0.99
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