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ABSTRACT

Drainage, agricultural conversion, and climate change threaten wetlands and their unique biodiversity. Species distribution
models (SDMs) can help to identify effective conservation measures. However, existing SDMs for wetland plants are often geo-
graphically limited, miss variables representing hydrological conditions, and neglect moss species, essential to many wetlands.
Here, we developed and validated SDMs for 265 vascular plant and moss species characteristic of European wetlands, using
environmental variables representing climate, soil, hydrology, and anthropogenic pressures. We validated the spatial predictions
of the SDMs through cross-validation and against independent data from the Global Biodiversity Information Facility (GBIF).
Further, we validated the niche optima of the species, as obtained from the modelled species response curves, with empirical
niche optima. The spatial validation revealed good predictive power of the SDMs, especially for diagnostic mosses, for which
we obtained median cross-validated values of the area under the curve (AUC) and true skill statistic (TSS) of 0.93 and 0.73, re-
spectively, and a median true positive rate (TPR) based on GBIF records of 0.77. SDMs of diagnostic vascular plants performed
well, too, with median AUC, TSS, and TPR of 0.91, 0.69, and 0.67, respectively. SDMs of non-diagnostic plants had the lowest
performance, with median AUC, TSS, and TPR values of 0.84, 0.53, and 0.62, respectively. Correlations between modelled and
empirical niche optima were typically in the expected direction. Climate variables, particularly the mean temperature of the
coldest month, were the strongest predictors of species occurrence. At the same time, groundwater table depth was a significant
predictor for diagnostic vascular plants but not for mosses. We concluded that our SDMs are suitable for predicting broad-scale
patterns of wetland plant species distributions as governed by climatic conditions. Alternative or additional variables or a differ-
ent modelling approach might be needed to represent better the local heterogeneity in the hydrological conditions of wetlands.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is
properly cited.
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1 | Introduction

Wetlands are biodiversity hotspots that provide essential eco-
system services, such as flood protection, carbon sequestra-
tion, and storage (Janse et al. 2019; Zedler and Kercher 2005).
Approximately 5%-8% of the global land surface is categorized
aswetlands, which comprise 20%-30% of the world's carbon pool
(Salimi et al. 2021). However, wetlands are disproportionately
threatened due to increasing demands for resources. Many wet-
lands have been drained and converted into arable land to meet
the needs of the world's growing population (Fluet-Chouinard
et al. 2023). It is estimated that 3.4 million km? of inland wet-
lands have been lost since 1700, corresponding with 21% of the
world's wetlands (Fluet-Chouinard et al. 2023). Further losses
and degradation are expected as a result of further conversion to
agricultural land, direct human impacts such as drainage, and
changes in hydrological conditions due to climate change (Janse
etal. 2019; Salimi et al. 2021). Climate change poses a significant
threat to wetland ecosystems (Erwin 2009; Salimi et al. 2021).
Climate change leads to higher temperatures and, thus, higher
evapotranspiration, rainfall intensity, and frequency changes,
and more frequent extreme climatic events such as droughts,
flooding, and storms. These changes can modify wetland hy-
drology and biogeochemical processes so that vital ecosystem
services may degrade or even transform into disservices. For in-
stance, warmer conditions can enhance microbial activity, lead-
ing to increased emissions of nitrous oxide due to accelerated
nitrification and denitrification processes (Huang et al. 2013;
Salimi et al. 2021). Policymakers, scientists, and conservation-
ists recognize the urgency to halt the loss of wetlands and their
unique biodiversity (Janse et al. 2019), as reflected by various
(inter)national agreements and targets related to biodiversity
and sustainable development (Seifollahi-Aghmiuni et al. 2019).

Spatially explicit modelling tools are key for evaluating and
predicting the impacts of climate change, land use change, and
other human impacts on biodiversity and identifying potential
conservation and restoration measures (Backus et al. 2023;
Rodrigues et al. 2015). Thanks to the increasing availability of
data and computing power, species-level modelling is increas-
ingly being used to assess the impacts of human interventions
on biodiversity (Aratjo and New 2007). Species distribution
models (SDMs) are extensively used to evaluate, for example,
potential range shifts or declines in response to projected cli-
mate change (e.g., Kermavnar et al. 2023; Porfirio et al. 2014).
However, SDMs representative of the unique biodiversity of wet-
lands are still in their infancy, and existing SDMs of wetland
species typically have a limited geographic extent and miss
out on moss species (Cao et al. 2020; Dang et al. 2021; Janse
et al. 2019; Lou et al. 2018; Zhong et al. 2021). The latter is a key
gap given the current lack of knowledge about the distributions
of mosses and their key role in shaping wetland ecosystems, es-
pecially peatlands (Ferretto et al. 2023; Ma et al. 2022; Poncet
et al. 2015). Further, wetlands are characterised by distinct hy-
drological conditions different from their surroundings regard-
ing water levels and contributions of different water sources
(surface water, groundwater, precipitation). These hydrological
conditions play a key role in shaping plant distributions, yet hy-
drological variables are frequently missing from wetlands SDMs
(Araya et al. 2010; Gardner et al. 2019). With climate change,
profound impacts on wetlands are anticipated due to impacts on

hydrological regimes (Zhong et al. 2021). Hence, including vari-
ables representing hydroclimatic conditions in wetland SDMs is
essential. For example, Cao et al. (2020) found that precipitation-
related environmental factors mainly determined the predicted
shifts in distribution ranges of six endangered wetland plant
species in China. Similarly, Dang et al. (2021) showed that the
habitat suitability of three wetland-characteristic tree species in
the Mekong Delta was governed by seasonal variation in precip-
itation, temperature, and sea level rise. These studies highlight
the need to develop and improve SDMs of wetland species with
environmental variables representative of wetlands.

In this study, we develop and validate SDMs for European wet-
land plants. We created SDMs for 265 vascular plant and moss
species characteristic of European wetlands, using environ-
mental variables representative of climate, soil, hydrology, and
anthropogenic pressures. Specifically, we included three hy-
drological variables indicative of water availability and water
level fluctuations. We evaluated the model fit based on cross-
validation and quantified the importance of each variable. We
then validated the models' ability to accurately predict species
occurrence by comparing the SDM predictions with indepen-
dent occurrence data from the Global Biodiversity Information
Facility (GBIF) database. In addition, we compared the niche
optima obtained from the modelled response curves of the
SDMs with empirical niche optima, thus testing the ecological
realism of the modelled species’' responses to the environmental
conditions (Hellegers et al. 2020). For this purpose, we obtained
ecological indicator values from the ecological indicator value
in Europe (EIVEL.0) 1.0 database (Dengler et al. 2023). We per-
formed the analysis for three distinct groups: moss species diag-
nostic of wetland vegetation, vascular plant species diagnostic of
wetland vegetation, and non-diagnostic plants (including mosses
and vascular plants). Diagnostic species are more strongly asso-
ciated with a particular habitat, absent or rare in other habitats,
thus serving as indicators for distinguishing a habitat from oth-
ers (Chytry et al. 2020; Whittaker 1962). Given that our SDMs
include wetland-specific environmental variables, we expect the
models of diagnostic species to perform better than those of non-
diagnostic species.

2 | Methodology
2.1 | Vegetation Plot and Species Selection

For this study, we obtained a total of 1,652,563 vegetation
plots from the European Vegetation Archive (EVA) (Chytry
et al. 2016). Following Hellegers et al. (2020), we excluded plots
recorded before 1990 and after 2018, plots with a known spa-
tial uncertainty larger than 1km, and plots with missing values
for one or more environmental variables (see next section). We
also excluded plots that were classified as marine habitat types
(MA), inland waters (P), and vegetated man-made habitat types
(V) according to the EUNIS (European Nature Information
System) habitat type classification (Chytry et al. 2020). Thus, we
retained 533,254 vegetation plots, which equates to about 32% of
the initial EVA vegetation plots (Figure Al).

Next, we selected vascular plant and moss species characteris-
tic of wetlands based on the EUNIS habitat type classification
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(Chytry et al. 2020). We selected species of the following wet-
lands habitat types: Ql—raised and blanket bogs, Q2—valley
mires, poor fens, and transition mires, Q3—palsa and poly-
gon mires, Q4—base-rich fens and calcareous spring mires,
Q5—helophyte beds, and Q6—periodically exposed shores
(Chytry et al. 2021). Raised and blanket bogs (Q1) rely mainly
on rainfall for moisture and nutrients, forming highly acidic
peat in cool climates with high rainfall. Valley mires (Q2)
have peat-forming vegetation that depends on water draining
from the surrounding landscape. Poor fens are fed by acidic,
nutrient-poor groundwater, while transition mires support
peat-forming vegetation in areas with acidic groundwater or
acidic pool and lake water, often forming floating vegetation
rafts. Palsa and polygon mires (Q3) develop when thick peat
is subject to sporadic permafrost, with low precipitation and
an annual mean temperature below —1°C. Base-rich fens and
calcareous spring mires (Q4) are found in river valleys, allu-
vial plains, or hillsides. They depend on calcareous or gen-
eral cation-rich groundwater, with the water level at or near
the surface. Peat forms here due to a permanently high water
table. Helophyte beds (Q5) are related to nutrient-rich waters
of riverine or lake origin and can be both peat-forming or re-
lated to non-peaty substrates. Characteristic conditions are
shallow to moderately deep mesotrophic to eutrophic fresh or
slightly brackish waters along the banks of rivers and lakes.
Periodically exposed shores (Q6) include riverbanks, sediment
islets, drying oxbows, shallow water bodies like lakes and
fishponds, and ditches. These areas share nutrient-rich muddy
or sandy-muddy soils from natural sedimentation or human
input. Among the listed habitat types, we excluded species
of saline habitats (Q54; Q63). Chytry et al. (2021) classify the
characteristic species of EUNIS habitat types as diagnostic,
dominant, and constant species. Our selection resulted in
364 plant species: 81 diagnostic moss species, 223 diagnostic
vascular plant species, and 60 non-diagnostic species, that is,
dominant or constant vascular plants and mosses.

2.2 | Environmental Variables

As a starting point for selecting environmental variables for the
SDMs for wetland plant species across Europe, we used the cli-
mate, soil, and atmospheric nitrogen deposition variables from
Hellegers et al. (2020), who used these variables to establish SDMs
of terrestrial vascular plants across Europe. We supplemented this
set with additional environmental variables that we expected to
be relevant for wetland plants (Table 1). Temperature and precipi-
tation are the most critical factors driving the large-scale distribu-
tions of species (Gutiérrez-Hernandez and Garcia 2021). Following
Hellegers et al. (2020), we included four climatic variables that
pose physiological limitations on large-scale plant species distri-
butions, namely total annual precipitation, mean temperature
of the coldest month, annual growing degree days, and a water
balance variable (Aratjo et al. 2011; Lindborg et al. 2021; Wang
et al. 2020). We calculated the annual growing degree days as the
annual sum of daily temperature values above 5°C. We derived
the daily temperature values from linear interpolation of mean
monthly temperature values. We calculated water balance as
the sum of the monthly differences in precipitation and potential
evapotranspiration. We calculated the potential evapotranspira-
tion (PET) per month as (Lugo et al. 1999):

PET,, =0 if T,, <0°C D
PET,, = 58.93 x T, if 0°C < T,;, < 30'C ®)
PET,, = 58.93 x 30if T, > 30°C 3)

PET_, is the monthly potential evapotranspiration (mm), and
T, is the monthly mean temperature (°C). We quantified
all climate variables using mean monthly temperature and
monthly precipitation from the CHELSA dataset version 2.1,
as CHELSA data is adjusted for the effects of elevation and
aspect, and we averaged the values over the period 1990-
2018 to match the time frame of the vegetation plots (Karger
et al. 2017, 2021). Following Hellegers et al. (2020), we also
included various soil properties that are relevant for plant
growth via water and nutrient retention capacity (Figueiredo
et al. 2018; Trettin et al. 2020), collected from the SoilGrids
dataset (Hengl et al. 2017). The physical and chemical prop-
erties of soil strongly affect the hydrology and hydrochemis-
try in wetlands and thus influence wetland formation and
functioning (Kolka and Thompson 2006). We aimed to select
soil variables directly influencing hydrological conductivity,
water storage, and availability, which depend on soil texture,
soil structure, bulk density, porosity, and pore size distribution
(Kolka and Thompson 2006). To represent these physical prop-
erties, we selected the variables clay content, volume of coarse
fragments, silt content, organic carbon content, sand content,
and bulk density. Chemical soil properties important for plant
growth include soil acidity and buffer capacity, which influ-
ence the solubility of various elements in the soil, particularly
plant nutrients (Kolka and Thompson 2006). We, therefore,
also included the variables soil pH and cation exchange capac-
ity. We selected the values from the top 5cm of the soil.

Because excess water is an important prerequisite for the occur-
rence of wetland ecosystems and their characteristic vegetation,
we included groundwater table depth (GWTD), topographic
wetness index (TWI) and water, and wetness probability index
(WWPI) (Choi et al. 2019; Fan et al. 2013; Guntenspergen
et al. 1989; Raulings et al. 2010). These variables represent the
groundwater levels, propensity to moisture accumulation, and
inundation probability, respectively. We obtained the GWTD
from Fan et al. (2013) and retrieved the TWI from Marthews
et al. (2015). The TWI is based on the local downstream slope
of a grid cell and its upstream catchment area. It is an indicator
of the tendency of a site to accumulate water, given its topo-
graphic position. We obtained the WWPI from the Copernicus
land monitoring service over the years 2009-2015 (European
Environment Agency 2020). This index specifies the number
of times that a grid cell is inundated or wet relative to the total
number of valid observations, as follows:

WWPI = (n'water +0.75 % n'wet) / Reorar X 100 @)

where n, .
represents the number of wet occurrences, and n,,,
the total number of water, wet, and dry occurrences.

represents the number of water occurrences, n,,

1 represents

Finally, we included the potential influence of salt, nitrogen depo-
sition, and anthropogenic land cover in the upstream catchment;
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TABLE1 | Environmental variables selected for the SDMs for wetland-characteristic vascular plant and moss species.

Native
Environmental spatial
variable Short name Unit Source resolution Reference
Climate
Mean temperature of the MinTemp °C Chelsa 30arcsec Karger et al. (2017)
coldest month
Total annual Precipitation mm Chelsa 30arcsec
precipitation
Annual growing degree TempSum °C Chelsa 30arcsec
days
Water balance WB mm Chelsa 30arcsec
Soil
Clay content Clay weight % Soil grids 1km Hengl et al. (2017)
Soil pHX 10 in H,O pH pH Soil grids 1km
Volume of coarse Coarse volumetric % Soil grids 1km
fragments
Silt content Silt weight % Soil grids 1km
Organic carbon content Carbon gkg™ Soil grids 1km
Cation exchange CEC cmolc kg! Soil grids 1km
capacity of soil
Sand content Sand weight % Soil grids 1km
Bulk density Bulk kgm™3 Soil grids 1km
Hydrology
Groundwater table depth GWTD m Fan et al. (2013) 30arcsec Fan et al. (2013)
Water and Wetness WWPI dimensionless Copernicus land 10m European
Probability Index monitoring service Environment
(WWPI) Agency (2020)
Topographic wetness TWI dimensionless ~ Marthews et al. (2015) 1km Marthews
index et al. (2015)
Others
Nitrogen deposition Ndp mgm™2 EMEP 0.1° Fagerli et al. (2019)
Anthropogenic land ALC km? this study 1km Coordination
cover in upstream Centre for Effects
catchment (Gebhardt 2023)
Saltwater affected area Salt Yes/No this study 1km Not applicable; see

method description

the last two variables indicate anthropogenic pressure on wet-
land plants. We calculated the potential influence of salt spray,
salt-water inundation, or salt-water intrusion as a binary variable
(0-1) reflecting whether a location is within 3km of the nearest
coastline (Du and Hesp 2020). We obtained nitrogen deposition
in the year 2013 from (Fagerli et al. 2019) as an indicator of eu-
trophication because eutrophication is one of the threats to the
wetland ecosystem and can significantly impact wetland vege-
tation (Borgstrom et al. 2024; Gustafson and Wang 2002; Yousaf
et al. 2021). Lastly, we included the total area of anthropogenic
land cover in the upstream catchment of each cell as a proxy of

various human pressures affecting wetlands and their vegetation,
including the inflow of nutrients and pollutants. To this end, we
retrieved an EUNIS level 3 land cover map from the Coordination
Centre for Effects (Gebhardt 2023). We derived an anthropogenic
land cover map from this map by clustering all grid cells allocated
to habitat types of class V1, that is, arable land and market gardens,
and class J, that is, constructed, industrial, and other artificial hab-
itats. Then, we resampled this layer to 30arcsec to match the spa-
tial extent of the hydrography layer from HydroSHEDS (Lehner
et al. 2008). We used the anthropogenic land cover map and the
hydrography layer to quantify the total area of anthropogenic land
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cover in the upstream catchment area of each grid cell using the
AreaD8 function of the TauDEM toolbox from ArcGIS (version
10.8.1). We reprojected all the environmental variable layers to the
ETRS89 Lambert azimuthal equal-area coordinate system and re-
sampled them to a 1km resolution.

2.3 | Fitting Species Distribution Models

We established an SDM for each selected species following the
methodology described by Hellegers et al. (2020). Before fitting
the SDMs, we performed a variance inflation factor (VIF) analysis
to detect collinearity between the environmental variables, using
the VIF function from the ‘used’ package (Naimi et al. 2014).
Using a VIF threshold of 10 (Chatterjee and Hadi 2013), we ex-
cluded sand content, bulk density, and water balance, thus keep-
ing 15 environmental variables for model fitting. We established
the SDMs in R version 2024.04-2+764 (R Core Team 2018) ac-
cording to an ensemble modelling approach based on a gener-
alised linear model (GLM), a generalised additive model (GAM)
and boosted regression trees (BRT) using the ‘biomod2’ package
(ver. 3.5.1) with the default settings (Thuiller et al. 2024). We ad-
opted a random sampling approach to reduce spatial bias and
pseudo-replication, selecting only one vegetation plot per 1km
grid cell where the species was present. We selected species with
a minimum of 94 presence points, ensuring five presences per
environmental variable for model fitting, after setting aside 20%
of the observations for cross-validation, leaving 274 of the 364
species (Araujo et al. 2011; Hellegers et al. 2020). We selected
absence records for each species by randomly sampling one plot
per 1km grid cell where the species was not recorded. Because of
the large number of vegetation plots, we used a further subset of
the absence records to reduce the computation time. For GAM
and GLM, we selected a minimum of 10,000 absences, while for
BRT, we selected a minimum of 1000 absences (Barbet-Massin
et al. 2012). If the count of presence records exceeded either 1000
or 10,000, we selected a number of absence records matching the
number of presence records (Barbet-Massin et al. 2012; Hellegers
et al. 2020). We calibrated the models using a single random
sample comprising 80% of the data and used the remaining 20%
for evaluation. We established an ensemble model for each spe-
cies using the three modelling techniques, each weighted with
their cross-validated true skill statistic (TSS) value (Hellegers
et al. 2020). We quantified the performance of the ensemble
model based on the evaluation data using the TSS and area under
the receiver operating characteristic curve (AUC) (Allouche
et al. 2006). Next, we selected species with an ensemble model
with a cross-validated TSS value >0.3 and a cross-validated AUC
>0.7 to remove species with a poorly performing model (Aradjo
et al. 2011), removing six species. Thereafter, we fitted the SDMs
with 100% of the data. We discarded three species for which not
all models converged. Thus, we obtained SDMs for 265 wetland
plant species, of which 48 diagnostic moss species, 159 diagnos-
tic vascular plant species, and 58 non-diagnostic plant species
(Supporting Information S1; Table Al). For each of the 265 spe-
cies, we calculated the variable importance of each environmen-
tal variable as a weighted average of the variable importance
values for individual modelling techniques, obtained with the
‘get_variables_importance’ tool from the ‘biomod2’ package (ver.
3.3-7) (Thuiller et al. 2024), using the cross-validated TSS values
for each of the three models as weights.

2.4 | Validation of the SDMs

We validated the SDMs using independent data using two distinct
validation methods. First, we compared the predicted distribution
of each species with independent occurrence data from the GBIF,
which contains occurrence data for a wide range of species world-
wide (GBIF 2023). To that end, we first transformed the proba-
bilities of occurrence (PoO) of each species as predicted by the
ensemble model to a binary distribution map (present or absent)
using a PoO threshold that maximised the TSS value (Aratjo and
Guisan 2006; Liu et al. 2005). We then compared the binarised
output with GBIF occurrence records using the true positive rate
(TPR), that is, the proportion of GBIF records corresponding with
a predicted presence, as a performance measure. We retrieved
species’ presence records from 1990 to 2021 from GBIF using the
‘rgbif’ package in R (Chamberlain and Boettiger 2017). We could
not retrieve GBIF records for three species because the taxonomic
backbone did not match any records found in the GBIF database,
leaving us with 262 species for validation. From GBIF, we excluded
records with a known geospatial issue, a location uncertainty of
more than 1km, and records outside the study area. Further, we
selected a random single GBIF presence value per 1km grid cell to
avoid pseudo-replication. After these filters, there were 14 species
without any occurrence records. This left 248 species for valida-
tion, of which 44 were diagnostic mosses, 148 diagnostic vascular
plants, and 56 non-diagnostic plants. Across all the species, we
obtained a median of 14,966 records, with a minimum of four
records for Cirsium appendiculatum and a maximum of 451,869
records for Festuca rubra.

Second, we tested the ecological realism of the modelled species
responses to the environmental variables by comparing niche
optima retrieved from the SDMs with independent empirical
data on niche optima, using the method developed by Hellegers
et al. (2020). For the empirical niche optima, we used ecolog-
ical indicator values (EIVs), which indicate the preferred niche
conditions of plant species for various environmental variables
based on field observations of species co-occurrence patterns,
in situ measurements of environmental variables, and occasional
experiments (Ellenberg 1974). EIVs are widely employed in veg-
etation science because they enable the assessment of environ-
mental variables without direct measurements (Bartelheimer and
Poschlod 2016). The comparison with EIVs was limited to vascular
plant species due to a lack of data for moss species at the European
scale. We collected EIVs for 208 vascular plant species, of which
158 were diagnostic and 50 non-diagnostic, for soil moisture, soil
nitrogen, soil acidity (pH), light and temperature, from ecological
indicator values for Europe (EIVE1.0) 1.0, which represents the
most extensive ecological indicator value database available for
European vascular plants to date (Dengler et al. 2023). EIVE1.0
is a comprehensive database consisting of 31 EIV systems dating
from 1956 to 2022, where in the case of multiple EIV systems
available for a region, the latest and most comprehensive one
was used (Dengler et al. 2023). Dengler et al. (2023) validated the
EIVs against bioclimatic variables from Chelsa version 2.1, where
they found a good correlation between the temperature variables
in CHELSA and the temperature variable from EIVEL.0, indicat-
ing that the values are comparable. We extracted species-specific
modelled niche optima from the SDMs, from here on referred to
as modelled indicator values (MIVs), as the values of the environ-
mental variables corresponding to the highest PoO of the species
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FIGURE1 | Boxplots of the cross-validated AUC (area under the receiver operating characteristic curve) and TSS (true skill statistic) of the en-

semble models fitted for diagnostic mosses (DM; n =48), diagnostic vascular plants (DP; n=159), and non-diagnostic species (ND; n = 58). The boxes

show the medians, the 25 and 75 percentiles, and the whiskers represent 1.5 times the interquartile distance.

(Hellegers et al. 2020). We extracted MIVs for each species for
variables with a variable importance of at least 0.05 (Hellegers
et al. 2020) (Table A2). To extract MIVs, we implemented the
evaluation strip method proposed by Elith et al. (2005), using the
‘response.plot2’ tool from the ‘biomod2’ package (ver. 3.3-7) to
obtain response curves (Thuiller et al. 2024). We obtained a re-
sponse curve for each modelling technique by varying the envi-
ronmental variable of interest across its range while keeping the
other variables at their mean values across the plots of observed
species. Next, we calculated species-specific ensemble response
curves for each variable by averaging the response curves across
the modelling techniques, with each curve weighted by the
cross-validated TSS value of the corresponding model (Hellegers
et al. 2020). From the ensemble response curves, we retrieved the
MIV for each environmental variable and each species as the vari-
able value corresponding to the highest PoO. We computed their
median in cases where multiple values were linked to the maxi-
mum occurrence probability. Finally, we performed a Spearman’s
rank correlation analysis between each pair of MIV-EIV across
the species, using the ‘corr.test’ function from the ‘psych’ package
in R (v.2.3.9) (Revelle 2022; Wu et al. 2024).

3 | Results
3.1 | Cross-Validation and Variable Importance

Based on the cross-validation, the overall model performance
was moderate to high; that is, for 97% of the modelled species,
we obtained an ensemble model with AUC >0.7 and TSS >0.4
(Figure 1). We found the highest model performance for the
diagnostic mosses, with median AUC and TSS values of 0.93

and 0.73 and ranges of 0.84-0.99 and 0.51-0.99, respectively
(Figure 1; Table A3). The model performance for the diagnostic
vascular plants was slightly lower (median AUC and TSS val-
ues of 0.91 and 0.69, respectively), while it was the lowest for
the non-diagnostic species (median AUC and TSS values of 0.84
and 0.53, respectively). For all three species groups and based
on the median variable importance values, the most important
environmental variable was the mean temperature of the coldest
month (Figure 2; Table A2). The second most important variable
for the diagnostic mosses was clay content, followed by annual
growing degree days and precipitation, while GWTD was less
important. For diagnostic vascular plants, annual growing de-
gree days were the second most important variable, followed
by precipitation, clay content, GWTD, and atmospheric nitro-
gen deposition. For the non-diagnostic plants, annual growing
degree days were the second most important variable, followed
by GTWD.

3.2 | Validation Against Independent Data

The comparison of the SDM outputs with independent occur-
rence data revealed that models fitted for diagnostic mosses
aligned most closely with observed presences, yielding a me-
dian TPR of 0.77; that is, 77% of the presences obtained from
GBIF are correctly predicted. We found a TPR > 0.5 for 81% of
the diagnostic mosses (Figure 3). For diagnostic vascular plants
and non-diagnostic plants, the median TPR was 0.67 and 0.62,
respectively. Overall, 63% of the diagnostic vascular plants and
64% of the non-diagnostic plants had SDMs with a TPR >0.5.
We found no relation between the TPR and the number of GBIF
presences (Figure A2).
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FIGURE 3 | Proportion of GBIF observations correctly predict-
ed by the SDMs (true positive rate; TPR) for diagnostic moss species
(DM; n=48), diagnostic vascular plant species (DP; n=159), and non-
diagnostic species (ND; n=58). The boxes show the medians, the 25 and
75 percentiles, and the whiskers represent 1.5 times the interquartile
distance.

We found weak primarily (0.1 < rho <0.3) to moderate (0.3 <
rho <0.7) relationships between MIVs and EIVs of vascular
plants (Figure 4; Table 2). We found the most substantial MIV-
EIV relationship for diagnostic vascular plants’ soil pH-soil
acidity pair. This was followed by the relationship between the
MIV-EIV pairs of mean temperature of the coldest month and
temperature and atmospheric nitrogen deposition and nitrogen
(Table 2). For non-diagnostic vascular plants, we found the most
substantial relationship for the MIV-EIV pair of soil pH and soil
acidity, followed by water and wetness probability index and soil
moisture. The MIV-EIV pair of nitrogen deposition and nitrogen
had a moderate rho value (0.45), but it was not a significant rela-
tionship (p=0.09).

4 | Discussion

In this study, we developed and validated SDMs for 265 vascular
plant and moss species characteristic of wetland vegetation across
Europe. These models were based on the framework established
by Hellegers et al. (2020). We go beyond existing studies that have
fitted SDMs for wetland species by including moss species and
variables representative of the unique hydrological conditions of
wetlands. The performance of the SDMs was generally moderate
to high with cross-validated AUC >0.7 and cross-validated TSS
> 0.4 for 48 out of 48 diagnostic mosses, 158 out of 159 diagnostic
vascular plants, and 52 out of 58 non-diagnostic plants (Table A3).
The SDMs for diagnostic mosses exhibited the highest perfor-
mance both in cross-validation and based on a comparison with
independent observations from GBIF, followed by the diagnostic
vascular plants and the non-diagnostic species. This difference in
performance may reflect that SDMs, in general, are likely to have
more discriminatory power for specialist species than for gener-
alists, as the distributions of the former are more tightly bound to
specific environmental conditions (Morelli et al. 2024). Mosses,
for example, are especially prevalent in relatively cold and wet
environments because, unlike vascular plants, they are unable
to regulate their internal water content (Mohanasundaram and
Pandey 2022). Consequently, temperature and precipitation are
important determinants of the occurrence of moss species at a
European scale (Figure 2); hence, SDMs, including these envi-
ronmental variables, can be expected to perform well.

Despite the crucial role of moisture for moss species (Choi
et al. 2019; Riihimaéki et al. 2021), we found that none of the hy-
drological variables, namely, groundwater table depth (GWTD),
inundation probability (WWPI), and moisture accumulation
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The explanation of the variable abbreviations can be found in Table 1.

(TWI), were important predictors of occurrence in the SDMs of
diagnostic moss species (Figure 2). Most mosses absorb water
and nutrients directly through their surfaces and depend highly
on moisture from their immediate environment (Hodgetts
et al. 2019). Despite this dependency, mosses have developed
adaptations that enable them to endure complete desicca-
tion (Zhou et al. 2021). They can suspend physiological activ-
ities during droughts, enabling them to survive without water
for extended periods. When rehydration occurs, mosses can
quickly reactivate their metabolic processes and resume growth
(Hodgetts et al. 2019; Zhou et al. 2021). While groundwater can
provide essential moisture when water tables are high, a drop

in the groundwater table leaves precipitation as the primary
water source (Liu et al. 2005; Utstel-Klein et al. 2015; Zhong
et al. 2020; Zhou et al. 2021). Recent studies have demonstrated
that even minimal precipitation (<1mm) can significantly in-
crease water content and boost the productivity of moss species
like Sphagnum, underscoring the importance of precipitation for
moss survival (Bengtsson et al. 2021; Nijp et al. 2014; Thompson
and Waddington 2008).

Compared to mosses, groundwater table depth was a more im-
portant variable for both diagnostic vascular plants and non-
diagnostic wetland plants (Figure 2) likely due to their ability to
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TABLE 2 | Spearman's rank correlations (rtho) between ecological indicator values (EIVs) and modelled indicator values (MIVs) for diagnostic
and non-diagnostic vascular plants. n represents the number of species included in the analysis. Correlations of rho >0.3 with p <0.05 are depicted

in bold.
Species group
Diagnostic Non-diagnostic
vascular plants vascular plants
EIV MIV rho p n rho P n

Soil moisture Precipitation

Groundwater table depth

—0.10 0.29 109 -0.19 0.39 23
-0.21 0.03 101 -0.27 0.10 38

Water and wetness probability index -0.20 0.25 34 0.84 0.03 6

Nitrogen Nitrogen deposition 0.36 0.00 75 0.45 0.09 15
Anthropogenic land cover in upstream catchment area 0.21 0.39 20 NA NA NA

Soil acidity pH 0.61 <0.001 86 0.71 <0.001 26
Temperature Mean temperature of the coldest month 0.42 <0.001 140 0.06 0.68 47
Annual growing degree days 0.19 0.02 144 0.33 0.02 44

extend roots below the water table (Carlson Mazur et al. 2020).
However, we found the other two hydrological variables of lim-
ited importance for vascular plants. Although inundation prob-
ability is generally a good indicator of potential wetland areas
(Ludwig et al. 2019), WWPI was not a significant predictor in the
SDMs for wetland vascular plants in our analyses. Further, we
observed a strong relationship between modelled and empirical
niche optima for soil moisture only for the relatively small sub-
set of non-diagnostic species. The rho-values from the correla-
tion analyses between all three hydrological variables and soil
moisture were low for other species. Climatic variables emerged
as the most important predictors for the European distributions
of wetland vascular plants and mosses. This aligns with find-
ings from other studies on wetland plant distributions (Cerrejon
et al. 2020; Dang et al. 2021; Samal et al. 2022). Furthermore, our
results highlight the importance of soil pH, for which modelled
niche optima correlated strongly with ecological indicator values
for soil acidity. The important role of soil properties, such as pH,
in determining wetland species distributions is also confirmed by
previous research (Clough 2014; Dang et al. 2021; Hossain and
Nuruddin 2016).

In our study, we found nitrogen deposition to be a relatively im-
portant factor for predicting the occurrence of vascular plants.
Nitrogen deposition can alter plant competition dynamics, par-
ticularly by enhancing the ability of certain species to compete
for light and by disrupting physiological processes through soil
acidification (Midolo et al. 2019). It can have direct toxic impacts
on plants and increase their vulnerability to secondary stress
and disturbance (Yuan et al. 2020). Despite the importance of
nitrogen, we found only relatively weak relationships between
the modelled and empirical niche optima for nitrogen deposi-
tion and nitrogen. This suggests that other variables, such as
soil characteristics, properties of the surrounding land use, and
management practices, also influence the soil nitrogen content
(Kooijman et al. 1998; Nissinen and Hari 1998). Moreover, nitro-
gen availability in wetlands, especially peatlands, is reduced due
to limited decomposition rates.

Anthropogenic land cover in the upstream catchment area
(ALC) did not emerge as a significant predictor for the occur-
rence of wetland species in our study despite studies showing
the impact of neighbouring land use on wetland conditions and
species richness (Houlahan et al. 2006; Im et al. 2020; Stapanian
et al. 2018; Vordsmarty et al. 2010). Our findings suggest that the
ALC variable used here may not adequately capture the flow of
nutrients and pollutants from upstream land to wetlands, high-
lighting an important area for further detailed field research.
Moreover, the resolution of the ALC variable may have been
too coarse to reflect finer-scale land use impacts (Houlahan
et al. 2006). Including more refined land use variables in SDMs,
specifically variables representing land use and intensity in
areas directly adjacent to wetlands, may offer deeper insights
into how surrounding land use influences wetland plant species
distributions.

Despite the reasonable to excellent performance of our SDMs,
we acknowledge that our study has several limitations.
Although hydrology plays a crucial role in wetland ecosystems,
the selected hydrological variables had a relatively modest im-
pact on the predictions. The relatively low predictive power of
the hydrological variables in our SDMs might be attributed to
the fine-scale spatial and temporal heterogeneity of hydrolog-
ical conditions in wetlands, which can be challenging to cap-
ture in large-scale SDMs (Hellegers et al. 2020). For example,
the global groundwater table depth map from Fan et al. (2013)
does not incorporate groundwater dynamics or fine-grain spa-
tial variability in surface elevation, making it challenging to
capture fine-grain heterogeneity in groundwater depth. Using
region-specific and more detailed hydrological databases with
a better representation of fine-scale spatial and temporal hy-
drological conditions may improve predictive power. Further,
our assessment of the ecological relevance of the modelled
responses yielded promising results for some environmental
variables but not for others. While some pairs of modelled
indicator values (MIV) and ecological indicator values (EIV)
demonstrated strong relationships—such as the correlation
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between EIVEL.0 temperature values and mean temperature
of the coldest month from CHELSA (version 2.1), similar to
findings from Dengler et al. (2023)—others exhibited weaker
relations (e.g., atmospheric nitrogen deposition and soil nitro-
gen EIV). We acknowledge that comparing the modelled and
empirical indicator values is associated with uncertainties.
EIVs are ordinal scores that describe a plant species’ environ-
mental preferences concerning specific conditions. However,
these values do not necessarily reflect a species’ physiological
optimum for the variable of concern but rather its realised
niche, which persists under competition (Bartelheimer and
Poschlod 2016; Kermavnar et al. 2023). Moreover, the EIV
values obtained from the EIVE1.0 database originate from
various sources, regions, and times. This may result in het-
erogeneity in the EIV data and a potential mismatch with the
environmental data used in our SDMs. Further, there might be
intrinsic differences between the variables represented by the
EIVs and those underlying our MIVs. For example, Schaffers
and Sykora (2000) found that EIVs of soil moisture correlate
most strongly with the lowest moisture content during sum-
mer. Hence, EIVs may have stronger associations with some
specific environmental conditions than others, meaning EIVs
may represent specific conditions in the environment that the
MIVs might not capture. Finally, our method of calculating the
MIV focuses solely on the specific environmental conditions
corresponding to the modelled niche optima of species with-
out accounting for other niche-related factors, such as niche
breadth or the potential of multiple optima per species. Future
studies could refine our validation approach by incorporating
additional relevant aspects, including niche width and multi-
ple favourable conditions.

Our study demonstrates that the SDMs fitted here successfully
capture the large-scale potential distributions of wetland vascu-
lar plants and mosses, with climatic variables emerging as key
predictors. This underscores the potential of our models to as-
sess how wetland biodiversity might respond to future climate
change, offering valuable insights for informing large-scale
climate change mitigation strategies. While the selected hydro-
logical and anthropogenic variables showed weaker predictive
power, our models performed well in predicting the potential
distribution of species diagnostic of wetlands, as validated by in-
dependent datasets. The results of the variable importance analy-
sis and the relatively weak relationships in the MIV-EIV analysis
suggest opportunities for refinement. Importantly, our study
highlights the need to explore alternative variables that better re-
flect local conditions, particularly those related to hydrology and
anthropogenic pressures or to adopt a different model structure.
A hierarchical approach, where coarse-grain and fine-grain en-
vironmental predictors are used in subsequent modelling steps,
might be better able to capture fine-grain heterogeneity in hy-
drology and land cover (Mateo et al. 2019). These improvements
will further enhance the accuracy of wetland SDMs, ultimately
contributing to more robust tools for wetland conservation and
management.

5 | Conclusions

Wetlands and their biodiversity face significant threats
from drainage, agricultural conversion, and climate change,

necessitating effective conservation measures. We developed
and validated SDMs for wetland vegetation across Europe, in-
cluding vascular plants and moss species, which are often over-
looked in existing wetland models. The SDMs performed well in
predicting large-scale distribution patterns, particularly for di-
agnostic mosses, with strong cross-validation results and align-
ment with GBIF occurrence data. Climate variables, especially
the mean temperature of the coldest month, emerged as the most
important predictors of species occurrence. The weak correla-
tion between the modelled niche optima of the hydrological vari-
ables and the empirical niche optima of soil moisture indicates a
need for an improved representation of local hydrological con-
ditions in the models. Addressing the gaps can further enhance
the robustness and utility of wetland SDMs for guiding wetland
conservation and restoration efforts, for example, in the context
of international conventions such as the Ramsar Convention and
the Convention on Biological Diversity (CBD).
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FIGURE Al | Map of the 533,254 vegetation plots used in the analyses, as obtained from the European vegetation archive.

TABLE A1 | List of wetland species for which species distribution models were fitted in this study.

Diagnostic mosses
Aneura pinguis
Aulacomnium palustre
Breutelia chrysocoma
Bryum pseudotriquetrum
Calliergon giganteum
Calypogeia muelleriana
Campylium stellatum
Campylopus flexuosus
Cephalozia bicuspidata
Cephalozia connivens

Dicranum elongatum

Odontoschisma sphagni
Paludella squarrosa
Palustriella decipiens
Philonotis calcarea
Philonotis fontana
Philonotis seriata
Polytrichum commune
Polytrichum strictum
Pseudocalliergon trifarium
Racomitrium lanuginosum

Scapania irrigua

Sphagnum fuscum
Sphagnum magellanicum
Sphagnum papillosum
Sphagnum platyphyllum
Sphagnum rubellum
Sphagnum russowii
Sphagnum subnitens
Sphagnum subsecundum
Sphagnum tenellum
Sphagnum teres

Sphagnum warnstorfii

(Continues)
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TABLE A1 | (Continued)

Diplophyllum albicans
Fissidens adianthoides
Hamatocaulis vernicosus
Mpylia anomala

Mpylia taylorii
Diagnostic vascular plants
Acorus calamus

Agrostis canina
Alchemilla glabra
Allium schoenoprasum
Alopecurus aequalis
Andromeda polifolia
Arctostaphylos alpinus
Bartsia alpina

Bellis annua

Berula erecta

Bistorta vivipara
Blysmus compressus

Bruckenthalia spiculifolia

Scapania undulata
Scorpidium scorpioides
Sphagnum compactum

Sphagnum contortum

Sphagnum cuspidatum

Eleocharis ovata
Eleocharis palustris
Eleocharis quinqueflora
Epipactis palustris
Equisetum fluviatile
Equisetum palustre
Equisetum variegatum
Erica cinerea
Erica tetralix
Eriophorum angustifolium
Eriophorum latifolium
Eriophorum vaginatum

Festuca rubra

Sphenolobus minutus
Straminergon stramineum
Tomentypnum nitens
Warnstorfia exannulata

Warnstorfia fluitans

Phalaroides arundinacea
Pinguicula alpina
Pinguicula balcanica
Pinguicula vulgaris
Plantago maritima
Polygala amarella
Polygala serpyllifolia
Polygonum aviculare
Potamogeton polygonifolius
Potentilla erecta
Potentilla supina
Primula farinosa

Radiola linoides

Callitriche palustris Galium uliginosum Ranunculus sceleratus

Calluna vulgaris Gentiana pyrenaica Rhododendron tomentosum

Carex acuta Gentianella bulgarica Rhynchospora alba

Carex bohemica Geum coccineum Rorippa amphibia

Carex canescens Glyceria declinata Rorippa palustris

Carex capillaris Glyceria maxima Rubus chamaemorus

Carex chordorrhiza Gnaphalium uliginosum Rumex hydrolapathum

Carex davalliana Illecebrum verticillatum Rumex maritimus

Carex diandra Isolepis cernua Sagittaria sagittifolia

Carex dioica Isolepis setacea Salix reticulata

Carex distans Juncus alpinoarticulatus Saxifraga aizoides

Carex disticha Juncus bulbosus Saxifraga stellaris

Carex echinata Juncus capitatus Scheuchzeria palustris

Carex flava Juncus filiformis Schoenoplectus lacustris

Carex frigida Juncus subnodulosus Schoenoplectus lacustris glaucus

Carex hostiana Lemna minor Schoenus ferrugineus

Carex lasiocarpa Ligusticum mutellina Schoenus nigricans

Carex lepidocarpa Limosella aquatica Selaginella selaginoides

Carex limosa Lipandra polysperma Sesleria comosa

Carex nigra Lythrum hyssopifolia Sparganium emersum

Carex panicea Lythrum portula Spergularia rubra

Carex pauciflora Lythrum salicaria Succisa pratensis
(Continues)
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TABLE A1 | (Continued)

Carex riparia

Carex rostrata
Carexvesicaria

Cirsium appendiculatum
Cladium mariscus
Coleanthus subtilis
Comarum palustre
Corrigiola litoralis
Cyperus fuscus

Cyperus michelianus
Dactylorhiza cordigera
Dactylorhiza incarnata
Dactylorhiza majalis
Drosera longifolia
Drosera rotundifolia
Elatine hydropiper
Elatine triandra
Eleocharis acicularis
Non-diagnostic plants
Achillea millefolium
Agrostis stolonifera
Angelica sylvestris
Anthoxanthum odoratum
Atriplex prostrata
Bellidiastrum michelii
Betula pubescens

Briza media
Calamagrostis canescens
Calliergonella cuspidata
Caltha palustris

Calystegia sepium

Mentha pulegium
Menyanthes trifoliata
Myosotis scorpioides
Myosoton aquaticum

Nardus stricta

Narthecium ossifragum

Oenanthe aquatica
Oxybasis glauca
Oxybasis rubra
Parnassia palustris
Pedicularis oederi
Pedicularis palustris
Pedicularis sylvatica
Persicaria amphibia
Persicaria dubia
Persicaria hydropiper
Persicaria lapathifolia

Peucedanum palustre

Chenopodium album
Cirsium palustre
Crepis paludosa

Ctenidium molluscum

Dicranum scoparium

Epilobium palustre

Filipendula ulmaria
Frangula alnus
Galium palustre
Glaux maritima
Iris pseudacorus

Juncus bufonius

Taraxacum Weber
Taraxacum apenninum
Thalictrum alpinum
Tofieldia calyculata

Trichophorum alpinum

Trichophorum cespitosum

Triglochin maritima
Triglochin palustris
Typha latifolia
Utricularia intermedia
Utricularia minor
Vaccinium microcarpum
Vaccinium oxycoccos
Vaccinium uliginosum
Valeriana dioica
Veratrum lobelianum
Viola palustris

Willemetia stipitata

Lysimachia vulgaris
Mentha aquatica
Molinia caerulea

Mpyrica gale
Persicaria maculosa
Phragmites australis

Pinus sylvestris

Plagiomnium affine

Pleurozium schreberi

Poa alpina

Ptilidium ciliare

Ranunculus flammula

Cardamine pratensis Juncus effusus Ranunculus repens
Carex L Juncus squarrosus Rorippa sylvestris
Carex acutiformis Leontodon hispidus Salix repens
Carex elata Leucobryum glaucum Sesleria caerulea
Carex flacca Linum catharticum Solanum dulcamara
Carex paniculata Lotus tenuis Typha angustifolia
Carex sempervirens Lycopus europaeus Vaccinium myrtillus
Carexvaginata
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FIGURE A2 | True positive rate in relation to the number of observations per species as obtained from GBIF (Global Biodiversity Information
Facility) for three species groups: DM, diagnostic mosses; DV, diagnostic vascular plants; ND, non-diagnostic plants.
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TABLEA2 | Numberofmodelled species per environmental variable
with an importance value of >0.05. The explanations of abbreviations
for the variables can be found in Table 1. DM, diagnostic mosses; DV,

diagnostic vascular plants; ND, non-diagnostic plants.

Species group

Variable DM DP ND
Precipitation 48 159 53
MinTemp 48 159 58
TempSum 48 159 58
Clay 48 158 58
Silt 48 158 57
CEC 42 121 38
pH 48 156 58
Carbon 46 137 45
Coarse 48 152 55
Salt 25 96 35
Ndp 47 159 54
TWI 44 126 38
GWTD 48 154 57
WWPI 44 128 39
ALC 48 139 37
Total number of species modelled 48 159 58

TABLE A3 | Distributions of area under the receiver operating
characteristic curve (AUC), true skill statistic (TSS), and true positive
rate based on comparison with GBIF data (TPR) of the fitted SDMs for
265 species across three species groups. Numbers of species per AUC or

TSS range are also provided.

Species group

Diagnostic Non-
Diagnostic vascular diagnostic
mosses plants species
AUC
Minimum 0.84 0.74 0.73
25th percentile 0.90 0.86 0.78
Median 0.93 0.91 0.84
75th percentile 0.97 0.96 0.92
Maximum 0.99 0.99 0.99
Number of species
<0.3 0 0 0
0.3-0.7 0 0 0
>0.7 48 159 58
TSS
Minimum 0.51 0.35 0.34
25th percentile 0.67 0.57 0.42
Median 0.73 0.69 0.53
75th percentile 0.86 0.83 0.70
Maximum 0.99 0.99 0.95
Number of species
<0.4 0 1 6
0.4-0.6 6 49 32
>0.6 42 109 20
TPR
Minimum 0.005 0.03 0.03
25th percentile 0.65 0.40 0.42
Median 0.76 0.66 0.62
75th percentile 0.84 0.82 0.76
Maximum 0.94 0.95 0.99
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