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A B S T R A C T

The waste management sector requires specialized systems analysis tools to facilitate decision-making and make 
waste management sustainable and efficient. While integrated systemic approaches exist for assessing conven
tional waste management systems, the integration of emerging technologies such as gasification, pyrolysis, and 
methane dry reforming remains largely overlooked. In this work, these three technologies have been integrated 
into a conventional regional waste management model by abstracting rigorous simulation models into machine- 
learning surrogate models. The resulting technology-rich waste management model incorporates material flow 
analysis and life-cycle assessment as tools for supporting policy and decision-making. The model was tested by 
assessing the environmental impacts and landfill rates for three technology implementation scenarios. Overall, 
the inclusion of these emerging technologies led to an environmental performance improvement compared to a 
reference system. For example, a 116.5 % reduction of the carbon footprint in the most optimistic scenario. 
Nevertheless, the mere addition of these technologies was not enough to achieve landfill rates below 10 %, 
reaching 37.6 % in the most optimistic scenario. Therefore, properly sizing capacity was found to be a key factor 
in minimizing both environmental impact and landfill rate.

1. Introduction

Over 2.2 billion tons of waste are generated every year in the Eu
ropean Union. Municipalities have to deal with 27 % of the total waste, 
mainly generated by households, but also commercial activity and street 
waste collection (EU Monitor, 2023). Economic growth coupled with an 
increasing population that is expected to live mainly in urban areas (70 
% globally by 2050) emphasizes the need to find sustainable solutions to 
the associated waste generation (Abubakar et al., 2022; Hoornweg and 
Bhada-Tata, 2012). Inadequate waste management, ranging from absent 
collection systems to inefficient disposal methods, leads to a loss of 
valuable resources as well as greenhouse gas (GHG) emissions, air 
pollution, water contamination, and soil degradation, amongst other 
impacts (UN Environment Programme, 2017).

Over the years, the waste management sector has transitioned from 
regulation-driven end-of-pipe solutions like landfilling to high-value 
operations involving materials and energy recovery (Aid et al., 2017). 
The European Commission’s Directive 2018/850 on the landfill of waste 
aims to prevent or reduce adverse environmental effects from waste 

landfilling and sets a target for municipalities for 2035, when the landfill 
rate should not exceed 10 % (European Commission, 2018; European 
Environment Agency, 2024). European countries that already have a 
landfill rate well below the limit such as Germany, Austria, Denmark and 
Belgium rely heavily on recycling to do so, while others accomplish it by 
using incinerators such as Norway, Sweden and Finland (European 
Environment Agency, 2023, 2024). Even though incineration is recog
nized as a way to prevent waste from reaching landfills while generating 
electricity and/or heat (Istrate et al., 2021a), it was excluded from Eu
ropean funding instruments such as the Recovery and Resilience Facility 
in 2021 (European Commission, 2021). This instrument declared that 
the construction of new incinerators was an example of non-compliance 
with the Do No Significant Harm (DNSH) principle (European Com
mission, 2023) as they are carbon-intensive processes that undermine 
the efforts to decrease GHG emissions and harm business models that 
could improve circularity (Oliveira, 2021). However, phasing out 
incineration without any alternative treatment leads to a direct increase 
in the landfill rate and the subsequent environmental impacts, even if 
source separation of waste is increased (Istrate et al., 2021a).
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As waste management systems (WMSs) have progressed with the 
introduction of advanced technologies and the establishment of various 
markets for recovered products (i.e., materials, energy, and nutrients), 
waste management planning has turned increasingly complex (Eriksson 
and Bisaillon, 2011). Notably, the development of emerging technolo
gies such as gasification, pyrolysis, and dry reforming of methane cre
ates opportunities for obtaining high-value products from waste, 
including methanol, hydrogen, and synthetic diesel and gasoline 
(Abdelsadek et al., 2023; Cheng et al., 2023; Ouedraogo et al., 2021). 
Consequently, managers face uncertainty as these emerging waste 
valorization technologies come into play, especially to replace in
cinerators. On the one side, their implementation might become 
imperative to meet regulation. On the other side, very little information 
on their integration into WMSs is available to make informed decisions 
regarding their technical or environmental impacts.

Systems analysis tools for WMSs can help close the gap between 
waste managers, technology developers, researchers and policy-makers 
by supporting the decision-making process and providing realistic per
formance expectations. Systemic approaches based on material flow 
analysis (MFA) have proven useful in providing a comprehensive model 
of the flow of materials and substances through a WMS (Di Nola et al., 
2018; Istrate et al., 2021a, 2021c). The aforementioned model has to 
consider the interactions between the physico-chemical composition of 
the managed waste, the performance of the technologies used to deal 
with it, and the required inputs (energy, raw materials, natural re
sources, etc.) and outputs (emissions, products, etc.). Thus, the 
MFA-based model needs to be improved upon by incorporating life-cycle 
assessment (LCA). In this regard, LCA has gained traction in supporting 
policy and decision-making as it evaluates the potential environmental 
impacts of the system as a whole (Hunsager et al., 2014; Liu et al., 2016; 
Margallo et al., 2019; Pryshlakivsky and Searcy, 2021; Thushari et al., 
2020).

Nevertheless, while individual studies covering the environmental 
impacts of emerging technologies like gasification, pyrolysis and dry 
reforming can be found in the literature (Azam et al., 2022; Ouedraogo 
et al., 2021; Zaman, 2013; Zhu et al., 2022), none of them offers a system 
perspective on their integration into a complete WMS. This knowledge 
gap poses a challenge as waste managers seek to improve the perfor
mance of the entire system rather than just individual technologies or 
waste streams. Therefore, it is crucial to uncover the potential 
system-wide benefits of integrating emerging technologies to attract 
investment attention (Thyberg and Tonjes, 2015). The lack of a systemic 
approach in the literature is largely attributed to the complexity of 
developing reliable models that can seamlessly integrate into 
MFA-based WMS superstructures. Traditional MFA approaches rely on 
static transfer coefficients for input materials, whereas this study in
troduces an innovative approach by employing machine learning-based 
surrogate models. These models correlate the variability in technical and 
environmental performance of emerging technologies with operational 
parameters and waste input characteristics, addressing limitations in 
conventional modeling approaches.

Previous modeling efforts have focused on rigorous simulations at 
the individual technology level (Azam et al., 2022; Mehdi et al., 2023), 
whose complexity prevents their integration into a generic MFA and LCA 
model of a WMS. In this sense, surrogate or substitute models were 
found to be used in literature for abstracting these complex simulations 
into black box machine-learning surrogate models (Cheng et al., 2023; 
Ishitsuka and Lin, 2023). This abstraction involves deriving meaning 
from descriptive datasets. The advantage of using machine-learning 
substitute models is that they are computationally light to run and 
capable of retaining the responsiveness of a rigorous simulation. How
ever, to the best of the authors’ knowledge, black box surrogate models 
for emerging waste treatment technologies and their subsequent inte
gration into a system-level WMS model have not been explored so far. 
Yet, it constitutes an innovative methodological approach for estimating 
the technical and environmental performance of emerging technologies 

while helping waste managers make sustainability-oriented decisions.
Within this context, the present work aims to fill the gap of a systemic 

approach by developing an integrated MFA and LCA model for a WMS 
capable of quantitatively evaluating the integration of emerging waste 
treatment technologies. To achieve this, the following specific objectives 
had to be accomplished: 

– To prepare individual simulation models for waste gasification, 
waste pyrolysis, and biogas dry reforming.

– To prepare machine-learning surrogate models and integrate them 
into an MFA and LCA model of a WMS.

– To evaluate a set of three technology integration scenarios from a 
technical and environmental perspective to illustrate the decision- 
making value of the generated model.

2. Methodology

2.1. Conceptualization

In order to fill the above-mentioned gap, this work builds on top of 
the waste management model developed by Istrate et al. (2021b). This is 
an integrated MFA and LCA model for tracking the flow of substances 
and materials throughout the WMS and quantifying the associated 
environmental impacts. The core structure is formed by all blocks and 
streams colored in black in Fig. 1. The key aspect of this model is its 
capability to predict the performance of waste management processes 
according to changes in the composition and characteristics of the input 
waste stream. This is achieved by mathematically linking process inputs 
and outputs to the mass and biological and chemical properties of the 
treated waste stream through transfer coefficients or simplified process 
models (e.g., CO2 emissions from incineration are linked to the carbon 
content of the input waste).

In addition to process mass and energy balances, the model imple
ments capacity constraints, limiting the amount of waste that could be 
treated by each process within the WMS. Specific details on the 
configuration and modeling of conventional waste management pro
cesses can be found in Istrate et al. (2021b). In terms of waste genera
tion, the model deals with the following materials: food waste, green 
waste, mixed paper, cardboard, polyethylene terephthalate (PET), 
high-density polyethylene (HDPE), low-density polyethylene (LDPE), 
mixed plastic, cartons and alike, glass, ferrous metal, non-ferrous metal, 
textile, wood, and other. They are all characterized in detail in terms of 
ultimate composition and other physico-chemical properties such as 
lower heating value.

The conventional WMS modeled by Istrate et al. (2021b) was found 
to rely heavily on incineration to avoid landfilling. To achieve a low 
landfill rate, additional measures such as the implementation of new 
waste management processes need to be implemented, in particular 
waste gasification and pyrolysis. Even though these technologies are 
well known to the scientific community, they are only now starting to be 
considered by waste managers for field-scale operations. Other tech
nologies such as dry reforming are also in the development phase to 
generate syngas from the biogas produced in the anaerobic digester. 
Fig. 1 presents a modified version of the conventional WMS, in which 
the three mentioned technologies have been introduced in the system. 
Gasification (green in the upper part of the figure) and pyrolysis (yellow) 
aim to help in phasing out incineration and produce syngas (in the case 
of gasification) and pyr-oil and char (in the case of pyrolysis), while dry 
reforming of methane (green in the bottom part of the figure) arises as a 
biogas utilization pathway to produce also syngas.

Fig. 2 presents the methodological framework to model and assess 
the mass and energy flows within the WMS. Two different levels can be 
distinguished: process level and system level. The process level involves 
process simulation itself, the generation of machine-learning substitute 
models, and the life-cycle inventory (LCI) models for each process. The 
system level refers to the integration of these models into the WMS and 
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Fig. 1. Updated WMS structure considering the integration of emerging treatment technologies. Solid lines represent mass flows, whereas dashed lines represent 
energy-relevant flows. ICE: internal combustion engine. Adapted from Istrate et al. (2021b).

Fig. 2. Methodological approach followed in this work for the assessment of a regional waste management system (WMS).
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the LCA-based decision-making that follows.
At the process level, mass and energy balances of conventional 

blocks such as material recovery facilities (MRFs), anaerobic digestion 
or incineration were modeled in Istrate et al. (2021b) primarily through 
transfer coefficients. In contrast, in the case of the new technologies, 
transfer coefficients are not readily available due to the lack of 
industrial-scale facilities. Therefore, these technologies were imple
mented as black-box models coming from the abstraction of Aspen Plus 
(AspenTech, 2025) simulations using machine learning. To do so, the 
first step was to prepare and consolidate individual simulation models in 
Aspen Plus for each of the new technologies (Section 2.2).

Afterward, synthetic data was generated through sensitivity analysis 
and used to train the corresponding machine-learning surrogate model. 
This innovative approach incorporates the embedded thermodynamic 
responsiveness from the rigorous simulation into the MFA model, which 
is especially important as gasification and pyrolysis are very dependent 
on operating conditions and composition of the feedstock (Shah et al., 
2023). Once these simpler models were integrated into a new iteration 
of the WMS model (Section 2.3), this new configuration of the WMS was 
used to produce LCI data for the complete system (Section 2.4), enabling 
the system-level analysis of different scenarios (Section 2.5). The 
required ecoinvent v3.10 cut-off datasets were used for local calcula
tions within the model to perform the LCA and obtain the corresponding 
life-cycle profiles.

2.2. Modeling of new technologies

This section delves into the specifics of the process simulation 
required for the first methodological step.

2.2.1. Gasification
The gasification process consists of four internal steps, drying, py

rolysis, combustion (oxidation), and gasification (reduction), which 
occur differently depending on process configuration, as shown in 
Fig. 3a. This process leads to the formation of simple molecules, pri
marily syngas (mainly composed of hydrogen and carbon monoxide), 
which can be further utilized for electricity generation or converted into 
synthetic fuels or hydrogen (Tan et al., 2024).

In the gasifier, drying happens within the temperature range of 100 
◦C to 150 ◦C, pyrolysis takes place between 200 ◦C and 700 ◦C, com
bustion occurs within the range of 700 ◦C to 1500 ◦C, and gasification 
happens between 800 ◦C and 1100 ◦C. Typically, municipal waste 
contains moisture levels ranging from 5 % to 35 %, reaching values 
below 5 % during the drying process. During pyrolysis, municipal waste 
undergoes heating in the absence of oxygen, causing its volatile com
ponents to vaporize. These volatile vapors constitute a mixture of 
hydrogen, carbon monoxide, carbon dioxide, methane, hydrocarbon 
gases, tar, and water vapor (Kivisaari et al., 2004; Shah et al., 2023). In 
the combustion step, oxygen supplied to the gasifier interacts with the 
combustible substances, leading to the formation of carbon dioxide 
(CO2) and water (H2O). These compounds then undergo reduction upon 
contact with the char produced from pyrolysis (Safarian et al., 2019a; 
Shah et al., 2023). Reduction processes yield syngas, a mix of combus
tible gases such as hydrogen, carbon monoxide, and methane (Safarian 
et al., 2019b). Regarding configurations for the gasification process, 
downdraft, updraft, fluidized bed, and circulating fluidized bed gasifier 
simulation models were prepared (Shah et al., 2023). The studied con
figurations were reflected in an Aspen Plus specific gasification hierar
chy block, detailed in the Supplementary Information, and then 
integrated into the gasification general simulation shown in Fig. 3a.

All four gasification models followed the same general structure. 
First, an input selector was configured through an Excel subroutine 
using a calculator, enabling the option to simulate variating feedstocks 
using their ultimate composition. In this way, combinations of different 
types of waste can be calculated and fed to the model as long as their 
ultimate composition is known. The external drying step follows the 

input selector, reducing moisture to at least 12 %. In the next step, the 
feed is taken to the gasification process itself. In this case, the gasifica
tion block is different for every simulation depending on the studied 
configuration. Each specific configuration is implemented in the block 
A200. The simulation of each configuration can be found in the Sup
plementary Information. They all consist of a drying step followed by an 
RYield block, the Aspen Plus yield reactor, which was used to simulate 
feedstock decomposition. In this section, the feedstock is transformed 
from a non-conventional solid to volatile materials (VMs) and char. The 
VMs include hydrocarbons, oxygen, hydrogen, carbon monoxide, and 
non-combustible gases, while char is transformed into ash and carbon. 
VM yield is equal to the volatile content in the waste feedstock deter
mined by the proximate analysis (Safarian et al., 2022). After the 
decomposition step, the VMs are sent to the oxidation and reduction 
steps modeled with an RGibbs block. The order depends on the specific 
configuration and each of them can be explored in detail in the Sup
plementary Information. In all cases, industrially relevant parameters 
such as steam-to-biomass ratio or the equivalence ratio can be individ
ually configured.

2.2.2. Pyrolysis
In comparison to incineration, pyrolysis decomposes waste at lower 

temperatures, typically ranging between 350 and 900 ◦C, within an 
oxygen-deficient environment or, in specific instances, with very low 
oxygen concentrations to enhance the heating rate and yield a greater 
amount of gas. The resulting pyrolysis oil product can be refined into 
diesel and other petrochemical materials.

Modeling the pyrolysis of waste is a challenging task. Equilibrium 
models have trouble predicting the product composition, especially in 
the liquid phase, where they tend to overestimate the presence of water. 
On the other hand, other types of models such as kinetic ones produce 
valid results for a limited number of feedstocks and reactors. For these 
reasons, a novel approach was selected in the modeling of this process, 
based on the combination of an artificial neural network with Aspen Plus 
(Martínez-Ramón et al., 2024a). For pyrolysis, the proportion of gas, oil, 
and char is strongly dependent on the reaction temperature, residence 
time, and, especially, waste composition. The artificial neural network 
was trained in MATLAB to predict the yield for the gas, liquid, and solid 
phases and their approximate composition based on the experimental 
results from different plastic pyrolysis experiments gathered from 
literature by Cheng et al. (2023). The resulting MATLAB function was 
then called from an Excel calculator in Aspen Plus and run under the 
operating conditions of the simulation. The yields for representative 
components of the three resulting phases estimated by the neural 
network were exported onto the RYield reaction block (NN-PYR in 
Fig. 3b) representative of the pyrolysis reactor. Following the reactor, 
the solid char was separated from the gases with a cyclone and the 
resulting gas mix cooled to 50◦C, obtaining the main product (pyrolysis 
oil) together with a mix of pyrolysis gases that were subsequently 
burned to supply the required heat to the pyrolysis reactor (Fig. 3b).

2.2.3. Dry reforming of methane
Dry reforming of methane (DRM) is widely studied as one of the 

potential routes for syngas production from biogas. In this work, a 
chemical looping configuration of this process was considered, which is 
expected to increase the yield of syngas and optimize CO2 activation, 
additionally avoiding side reactions and the need for complex catalyst 
regeneration systems. The DRM unit consists of a fixed bed reactor that 
operates in two different modes: reaction and regeneration. In the re
action step, the biogas is fed to the fixed bed reactor operating at 900 ◦C 
to generate syngas, used to preheat the biogas feed. The system con
templates using three different catalysts (cerium, ferrite, and zinc 
oxide), which are regenerated through calcination. This system was 
implemented in Aspen Plus according to Martínez-Ramón et al. (2023, 
2024b). The sensitivity analysis results obtained from the simulation are 
illustrated in the process-level results section of this work (Section 3.1).
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Fig. 3. (a) General gasification simulation, where each specific configuration is implemented in the block A200, and (b) Aspen Plus simulation diagram for 
waste pyrolysis.

N. Martínez-Ramón et al.                                                                                                                                                                                                                     Resources, Conservation & Recycling Advances 26 (2025) 200253 

5 



2.3. Generation and integration of machine-learning surrogate models

Connecting an Aspen Plus simulation model to the WMS model built 
in MATLAB can be complicated. Furthermore, executing all three sim
ulations every time the WMS model is run is a computationally 
demanding task. To address this, machine-learning surrogate models 
were trained to substitute the Aspen Plus rigorous models. For this 
strategy to be valid, the surrogate models have to retain the physical 
meaning of the Aspen Plus simulations. To that end, the Aspen Plus 
models were used to produce synthetic data through process-level 
sensitivity analysis by examining how changes in model parameters or 
variables affect process performance or output variables. Consequently, 
descriptive variables for each of the three technologies had to be 
selected and varied within specific ranges. The composition of the 
feedstock, either waste or biogas, and the temperature and the pressure 
in the reactors were the main variables. Additionally, each process has 
some intrinsic characteristics (e.g., the used catalyst for the dry 
reforming or the type of gasifier used in the gasification simulations) 
which were saved as categoric variables in the datasets. Table 1 presents 
the range of operating conditions for each descriptive variable, the 
number of points used to describe that range, and the tracked responses 
(results from the simulation) which will be the outputs from the 
machine-learning surrogate models.

Once obtained, each of the three datasets (available as Supplemen
tary Information) was used to train a machine-learning regression 
model. Simulation runs that returned an error during the sensitivity 
analysis were removed from the dataset. Artificial neural networks were 
selected as machine-learning algorithms given their capacity for 
handling complex and nonlinear relationships in multivariate systems 
(Montesinos López et al., 2022). A key step in the formulation of a valid 
machine-learning model is the training process, taking special care to 
avoid overfitting (Manashgoswami, 2023). In order to ensure a model 
with high generalization capacity, all datasets were first randomized. 
Additionally, Bayesian regularization was selected as the training al
gorithm as it improves generalization (MathWorks, 2025). However, for 
this type of algorithm to work best, network inputs and targets should 
fall in the range of − 1 to 1. Subsequently, these values were normalized 
to have zero as the mean and unity as the standard deviation 
(MathWorks, 2023). Different architectures were used for each of the 
surrogate neural networks. The neural network used in the case of the 
gasification process used 2 layers of 42 and 21 neurons each. In the case 
of DRM, one layer with 20 neurons was used; in the pyrolysis surrogate, 
two layers of 25 and 13 neurons each were used.

The generated models were deployed in the WMS model. To do so, 
they were called as MATLAB functions and fed all the necessary infor
mation to be run (column “Input” in Table 1). The operational param
eters such as configuration, temperature, pressure, or vapor residence 
time were set up manually for each scenario, however the ultimate 
composition of the feedstock was read from the feed stream going into 
the process. Once run, the models return the outputs (column “Output” 
in Table 1) that compile the necessary variables to estimate the LCI for 
these newly integrated processes. In parallel, major inventory variables 
for the rest of the processes in the model are calculated according to the 
technical characterization established in Istrate et al. (2021b). These 
variables are depicted in Fig. 1 as “System products and requirements”.

2.4. Life-cycle assessment

LCA is spread across both process and system level. At the process 
level, LCIs were calculated for every process in the WMS. At the system 
level, the use of these LCIs together with the ecoinvent database (Wernet 
et al., 2016) enabled the assessment of the potential environmental 
impacts of the complete WMS. The functional unit of the study was 
defined as the yearly amount of waste generated in the city of Madrid as 
it is a large city with an established waste management system that 
discloses activity reports yearly. Waste was considered as the sum of 

household, commercial, and street cleaning waste and it adds up to 
1394,105 tons per year according to local activity reports (Municipality 
of Madrid, 2025).

The system boundary included waste management processes (MRFs, 
incineration, biological treatments, gasification, etc.), recycling, final 
disposal in landfills, and the downstream utilization of the energy and 
materials supplied by the WMS, as depicted in Fig. 1.

A total of 15 categories were evaluated using Environmental Foot
print 3.1 as the impact assessment method: global warming (100-year 
time horizon), acidification, terrestrial eutrophication, freshwater 
eutrophication, marine eutrophication, photochemical ozone formation, 
ozone depletion, human toxicity – cancer effects, human toxicity – 
noncancer effects, eco-toxicity, ionizing radiation, land use, water use, 
depletion of abiotic resources – fossil fuels, and depletion of abiotic 

Table 1 
Parametric description of the sensitivity analysis.

Input Units Range Number 
of points

Output

Dry reforming of 
methane

​ ​

Temperature ◦C 650 - 1000 12 CO2 in syngas [kmol/ 
year], CH4 in syngas 
[kmol/year], H2 in 
syngas [kmol/year], 
CO in syngas [kmol/ 
year], water in syngas 
[kmol/year], heat 
requirement [kW], 
electricity 
requirement [kW], 
cooling water [kg/h]

Pressure bar 0.1 - 0.99 and 1 
- 8

12×2

Methane 
composition 
in biogas

% 35 - 75 12

Catalyst used - Cerium, ferrite 
and zinc oxide

3

Gasification ​ ​ ​
Type of 

gasifier
– Circulating, 

downdraft, 
fluidized, and 
updraft

4 Syngas production 
[kg/h], syngas 
composition (water, 
H2, CO, CO2, CH4), 
higher heating values 
for dry and wet 
syngas [MJ/kg], 
higher heating value 
of feedstock [MJ/kg], 
ash [kg/year], water 
input and output [kg/ 
year], SO2 emissions 
[kg/year], H2S 
emissions [kg/year], 
NO emissions [kg/ 
year], NH3 emissions 
[kg/year]

Temperature ◦C 800 - 1000 8
Pressure bar 1 - 3 8
Steam-to- 

biomass 
ratio

kg 
/kg

0.05 - 0.8 8

Moisture % 
mass

5.24 - 68.07 20

Carbon 
content

% 
mass

40.46 - 84.98

Hydrogen 
content

% 
mass

5.19 - 14.59

Oxygen 
content

% 
mass

1.89 - 46.22

Nitrogen 
content

% 
mass

0.16 - 3.21

Chlorine 
content

% 
mass

0.06 - 1.05

Sulfur content % 
mass

0.03 - 0.62

Pyrolysis ​ ​ ​
Temperature ◦C 400 - 750 10 Electricity 

consumption [kW], 
heat consumption 
[MJ], char 
production [kg/h], 
gas production [kg/ 
h], oil production 
[kg/h], gasoline 
fraction, diesel 
fraction, wax 
fraction, C1 in gas, C2 

in gas, C3 in gas, C4 in 
gas, CO2 emissions 
[kg/h], CO emissions 
[kg/h], NO emissions 
[kg/h], NO2 

emissions [kg/h]

Vapor 
residence 
time

s 0.05 - 20.00 12

Carbon 
content

% 
mass

65.86 - 84.98 18

Hydrogen 
content

% 
mass

5.19 - 14.59

Oxygen 
content

% 
mass

1.89 - 28.48

Nitrogen 
content

% 
mass

0.16 - 1.65

Chlorine 
content

% 
mass

0.05 - 1.05
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resources – minerals and metals. Biogenic CO2 emissions were not 
accounted for in the calculation of global warming.

2.5. Description of scenarios

A set of three scenarios was proposed in this study to demonstrate the 
applicability of the model for a system-level assessment. The scenarios 
represent the WMS of Madrid as an example of a large city making ef
forts in the collection and management of waste to meet legislation 
targets, comparable to many others across, and outside, the European 
Union (European Environment Agency, 2022). 

– Reference scenario. The reference scenario represents a relatively 
modern WMS adapted with data from Madrid operating with the 
waste allocation factors described in Table 2. A key aspect of this 
system is that incineration is used to handle rejects and prevent a 
high landfill rate. In this scenario, the system generates energy- 
related products (electricity and biomethane) and materials (sec
ondary materials and compost). The multifunctionality of the system 
was solved through the substitution approach, considering that each 
of the recovered products substitutes the corresponding market 
equivalents and the WMS was credited for the avoided environ
mental burdens. Electricity supplied to the grid was presumed to 
replace an equal amount of electricity generated by the Spanish 
electricity mix. Biomethane injected into the natural gas network 
replaces the production, distribution, and consumption of an equal 
volume of natural gas. Secondary materials were assumed to replace 
primary materials based on a substitution ratio. Additionally, the use 

of compost on land substitutes the production and application of 
mineral fertilizers, following a nutrient equivalence approach. This 
technology scenario corresponds to all processes connected by black 
lines in Fig. 1.

– Realistic scenario. Gasification and pyrolysis are implemented in 
the system with realistic expected capacities while incineration is 
removed from the system. Rejects are split evenly between these two 
technologies (i.e., 50 % of rejects go to each process). A downdraft 
gasifier operating at 900◦C, 1.5 bar, and an equivalence ratio of 0.3 
was selected for the assessment. The capacity of the unit was 
established at 116,000 tons of waste per year (Seo et al., 2018). 
Regarding the pyrolysis unit, the capacity was established at 100,000 
tons per year. The pyrolysis reactor was set to operate at 500◦C with 
1 s vapor residence time. Biogas from the anaerobic digestor is 
directed to the DRM unit, where it is transformed into syngas and 
used for electricity production. The capacity of the DRM unit is also 
realistic, set at 15,341,632 Nm3 of biogas per year. For the assess
ment, the DRM unit was configured to operate with cerium oxide as a 
catalyst at 900◦C and 1 bar in the reactor. The syngas generated 
during the gasification and dry reforming processes was transformed 
into electricity to substitute electricity from the grid and the gener
ated oil and char from pyrolysis were used to replace an equivalent 
amount of heavy fuel oil and charcoal based on the lower heating 
value. In this scenario, the technologies connected by colored lines in 
Fig. 1 were considered, and incineration was disregarded. Specific 
details on stream allocation can be consulted in Table 2, where the 
main differences in scenarios appear in the “Rejects from MRFs” and 
“Biogas” rows.

– Unrestricted scenario. All three new technologies (gasification, 
pyrolysis, and DRM) were implemented and distributed across the 
system in the same way as in the realistic scenario, but no capacity 
restrictions were set for the newly implemented processes. Details on 
stream allocation can be consulted in Table 2. Gasification and py
rolysis then have the necessary combined capacity to manage all 
rejects. In the same way as the previous scenario, the technologies 
connected by colored lines in Fig. 1 were considered, and incinera
tion was disregarded. The main difference with the previous scenario 
is the capacity of the considered processes.

Additionally, the above-mentioned scenarios were further divided 
into three source separation sub-scenarios (Low, Mid, High) to evaluate 
the combined impact of new technologies and increased waste separa
tion on reducing landfill rates. For household waste, separation rates 
increase across Low, Mid, and High scenarios for each waste type: 
packaging waste (79.5 %, 80.0 %, 85.0 %), paper and cardboard (35.2 
%, 70.0 %, 85.0 %), glass (60.2 %, 80.0 %, 90.0 %), and organic waste 
(42.3 %, 70.0 %, 85.0 %). In commercial waste, packaging waste, paper 
and cardboard, and glass remain at 0.0 % separation across all scenarios, 
while organic waste increases from 74.9 % in Low to 80.0 % in Mid and 
85.0 % in High. Separation rates were selected using trend projections 
starting with data of 2019 (low separation) to meet separation targets 
for 2040 (high separation scenario) (Municipality of Madrid, 2019).

3. Results and discussion

The proposed methodology, which combines machine-learning sur
rogate models with MFA and LCA, constitutes an innovative result in 
itself. Beyond the methodological approach, the results derived from 
this study have been divided into two categories: process-level results, 
regarding the outcomes from process simulation for data generation and 
surrogate model training; and system-level results, regarding the out
comes from implementation and analysis of the WMS scenarios defined 
in Section 2.5.

Table 2 
Distribution of waste streams, biogas, and landfill gas across the individual 
processes (SS: source separated, MRFs: material recovery facilities; AD: anaer
obic digestion; ICE: internal combustion engine). The values represent the per
centage of the total stream allocated to each process.

Stream Process Reference Realistic Unrestricted

Packaging 
waste, SS

MRFs 100 100 100

Paper/ 
cardboard, 
SS

MRFs 100 100 100

Glass, SS Transfer + MRFs 100 100 100
Organic 

waste, SS
AD 100 100 100

Residual 
waste, SS

MRFs / landfill 79/21 79/21 79/21

Recyclable 
materials

Recycling 100 100 100

Rejects from 
MRFs a

Incineration / 
gasification / 
pyrolysis / landfill

72/0/0/28 0/50 e

/50 e /0
0/50/50/0

Organic 
waste, 
residual b

AD / composting / 
landfill

29/39/31 29/39/31 29/39/31

Rejects from 
AD

Landfill 100 100 100

Digestate c Composting – – –
Digestate 

(other)
Composting / 
landfill

64/36 64/36 64/36

Stabilized 
material

Landfill 100 100 100

Biogas d Flare / upgrading 
/ boiler / ICE / 
DRM

10/46.5/ 
1.7/41.8/0

10/0/1.7/ 
0/88.3

10/0/1.7/0/ 
88.3

Landfill gas Flare / ICE 98/2 98/2 98/2

a Rejects from sorting residual and packaging waste at MRFs.
b Organic waste separated from residual waste at MRFs.
c Digestate produced from source-separated organic waste.
d The allocation of biogas is calculated by the model as a function of capacity.
e The allocation of rejects going to gasification and pyrolysis in the realistic 

scenario is calculated by the model as a function of capacity.
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3.1. Process-level results

As the interest of simulating does not lie in one particular case but in 
generating a wide range of valid data for the training of the surrogate 
model, pairplots of key process parameters were selected to illustrate the 
results. In Fig. 4, the triangle below the diagonal shows a scatter plot of 
all the resulting data points and the diagonal itself presents a histogram 
plot showing the frequency distribution of responses. The upper triangle 
depicts the probability density function of the dataset. As the datasets 
come directly from successful simulations runs in Aspen Plus, the data 
visualization in Fig. 4 represents intrinsic thermodynamic behavior that 
the machine-learning models have to incorporate.

Fig. 4a shows how the composition of the syngas varies across a 
sample of 6000 simulation runs dissagregated by type of gasifier. A set of 
two behaviors can be distinguished from the figure: the first one com
piles all fluidized, updraft, and downdraft gasifiers (blue, pink, and or
ange points), while the second one englobes the circulating bed gasifiers. 
The first one presents relatively linear responses within similar numer
ical ranges. For instance, in the CO2–CO scatter plot, a clear inverse 
linear relationship can be observed. The corresponding probability 
density function shows that, among all the gasifiers that present a linear 
trend, the updraft gasifier produces syngas with higher content in CO 
and CO2. Similarly, H2 and CH4 also present clear correlation but more 
variables seem to be necessary to fully explain the behavior. Regarding 
the second behavior, circulating gasifiers show a much more dispersed 

response behavior around the sampled sensitivity area. For the CO2–CO 
plot, this type of gasifier exhibits a nonlinear behavior. As the other 
variables were varied equally across the other gasifiers, this nonlinearity 
was directly attributed to the internal (more complex) recirculation of 
the fluidized bed present in this configuration and not in the others. In 
the case of gasification, other variables such as temperature or pressure 
in the gasifier also influence the response behavior, but only the type of 
gasifier was selected for simplicity in the visualization.

Fig. 4b shows the response behavior for the three produced phases 
(gas/oil/char) obtained from the pyrolysis process simulation for waste 
sources of varied carbon content at different temperatures. In this case, it 
can be observed that the higher the temperature, the higher the gas 
generation, compensated with lower generation of the liquid and solid 
products. Differentiated behaviors are a positive feature as they are 
more easily identified by the machine-learning models during the 
training procedure.

A similar plot corresponding to the process-level visualization for the 
dry reforming process can be found in the Supplementary Information. 
This includes a pairplot representing the response behavior of the pro
duced syngas for the dry reforming process in three cases based on 
different catalysts. It shows a similar distribution across catalysts, thus 
making the composition of the generated syngas similar. Carbon mon
oxide exhibited a direct linear response behavior with hydrogen, an 
inverse linear response with methane, and a dispersed response with 
carbon dioxide.

Fig. 4. Pairplots representing response behavior for (a) the composition of the generated syngas in the gasification process, and (b) the different product generations 
in the pyrolysis process for a range of operating temperatures.
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These results are shown as an example of the trends and behaviors 
that are embedded in the trained machine-learning surrogate models. 
The waste management model is then capable to consider different 
operating conditions for the newly integrated processes. Furthermore, 
the model is capable of reflecting these changes in the generation of the 
LCIs used in the system-level LCA calculations.

3.2. System-level results

3.2.1. Life-cycle profile of the system
The global warming impact potentially generated by the WMS of 

Madrid over a year under the three assessed scenarios is presented in 
Fig. 5a. Results are shown for the lowest source separation rate sub- 
scenario, as it is the closest one to the current context in Madrid. Posi
tive values indicate impacts generated by the system, while negative 
values represent avoided impacts from the generated products because 
of the substitution approach. The net value represents the difference 
between the generated and the avoided impacts.

In the reference scenario, the net global warming impact is 359.7 kt 
CO2-eq. The main contributions at the process level came from landfilling 
and incineration: 267.3 kt CO2-eq and 194.3 kt CO2-eq, respectively. The 
realistic scenario considers the replacement of the incinerator for a 
gasification unit and a pyrolysis unit with realistic capacities. In this 
case, the combined capacity of the units was not enough to manage all 
rejects, so a fraction of them were diverted to landfilling, thus increasing 
the global warming impact of this process. However, the net impact 
decreased compared to the reference scenario since both gasification 
and pyrolysis reversed their impacts by avoiding conventional market 
products (net impact of − 10.6 and − 83.2 kt CO2-eq, respectively). The 
implementation of dry reforming decreased the total impact of anaer
obic digestion, but its relative contribution to the system remained low. 
The unrestricted scenario shows the implementation of all of these 
emerging technologies without capacity restrictions, thus being able to 

manage all the rejects of the system and reducing the environmental 
impact of the landfill to a minimum of 235.4 kt CO2-eq. As more rejects 
reach the pyrolysis and gasification units for processing, a greater sub
stitution of products (electricity, pyrolysis char, and pyrolysis oil) oc
curs, which subsequently reduces the net global warming impact even 
further. The net impact becomes negative thanks to the implementation 
of these technologies, especially pyrolysis. A very slight improvement in 
the net impact could be associated with the unrestricted dry reforming 
unit compared to the second scenario.

The environmental characterization of the three assessed scenarios 
for a broader range of environmental indicators is presented in Fig. 5b. 
For each indicator in the figure, the impact for each scenario was rela
tivized to the maximum absolute value in the category. Overall, the 
results show that implementing the emerging technologies entails an 
environmental performance improvement across all the studied in
dicators compared to the reference scenario. In addition to the global 
warming impact, terrestrial eutrophication, fresh water eutrophication, 
human toxicity – noncancer effects, ecotoxicity, and ionizing radiation 
impacts also became negative, indicating large co-benefits associated 
with emerging technologies. Other impact categories, including marine 
eutrophication and photochemical ozone formation, decreased by 75 % 
and 95 %.

The impact reduction is mainly associated with avoiding landfill and 
recovering products like oil and char from pyrolysis and electricity from 
gasification. However, the capacity of the new process units proved to be 
a relevant factor when enhancing environmental performance. The ab
solute values supporting Fig. 5 are provided in the Supplementary 
Information.

3.2.2. Landfill rate assessment
Fig. 6 illustrates the landfill rate results for each of the three analyzed 

scenarios and compares them to the 10 % target established in the 
Directive 2018/850 on the landfill of waste (European Commission, 

Fig. 5. (a) Annual global warming impact of the complete waste management system for the three assessed scenarios (black dots correspond to net global warming 
impacts), and (b) environmental comparison of the three scenarios for all studied impact categories (GWP: global warming; AP: acidification; ET: terrestrial 
eutrophication; EF: freshwater eutrophication; EM: marine eutrophication; POFP: photochemical ozone formation; ODP: ozone depletion; HTC: human toxicity – 
cancer effects; HTNC: human toxicity – noncancer effects; ECOTOX: eco-toxicity; IR: ionizing radiation; LAND: land use; WATER: water use: FOSS: depletion of 
abiotic resources – fossil fuels; ADP: depletion of abiotic resources – minerals and metals).
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2018). Additionally, results from each scenario were contextualized 
considering three source separation rates (low, mid, and high, as spec
ified in Section 2.5). The main factor affecting landfill rate is the ca
pacity of the technology used to deal with rejects. The WMS generates 
394,251 tons of rejects per year for the lowest source separation rate 
scenario. In the conventional scenario, incineration is used to manage 
these rejects while reaching the maximum capacity of the incinerator 
(328,000 tons of waste per year). The excess amount of waste is sent to 
landfill, leading to a landfill rate around 57 % for a system with low 
source separation (40 % for one with high source separation).

The realistic scenario contemplates the integration of both pyrolysis 
and gasification with realistic capacities (100,000 and 116,800 tons of 
waste, respectively). In this case, the total capacity to deal with rejects is 
decreased compared to the first scenario as these technologies are not 
yet found on the scale of large waste management incinerators. Conse
quently, the landfill rate for the second scenario with high source sep
aration increased to 47 % as the untreated rejects would be diverted to 
landfill.

For the unrestricted scenario, no capacity limit was set for the py
rolysis and gasification processes, thus being able to deal with all rejects 
allocated to them. This led to a reduced landfill rate of 37.6 %, still far 
from the landfill target set by the European Commission. It should be 
noted that an equivalent landfill rate could be achieved with an equiv
alently sized incineration facility capable of managing all of the 
incoming rejects, although that would entail lower environmental 
benefits.

Adequate sizing of the technology used to deal with rejects from 
MRFs is key to reducing waste reaching landfills. For WMSs that have 
already achieved the landfill target through intense incineration and 
recycling, substituting the incinerator for a combination of pyrolysis and 
gasification could decrease the environmental impact, as shown in 
Section 3.2.1. However, in the case of systems that are still in efforts to 
reduce landfills, such as the one in Madrid, the mere implementation of 
these technologies might not be enough, even if source separation rates 
were increased.

The model can help identify the technological limits for landfill 
waste reduction, providing valuable insights for decision-making. 
Consequently, it can support claims demanding special efforts to in
crease social and business engagement to reduce waste generation. 
Additionally, when the operational management contract or the lifespan 

for an incineration plant nears termination, this model can help mu
nicipalities estimate the technical and environmental impacts of inte
grating emerging technologies into their system. Finally, a model like 
the one developed in this study would help estimate the required ca
pacity of these new technologies for a given system. In the case study of 
Madrid, capacities of 197,125 tons per year would be required for both 
of these units, assuming each one deals with half of the generated rejects 
as in the studied scenarios.

In its reference configuration, the model represents a regional system 
with conventional technologies found in many WMSs across the globe. 
General findings regarding the substitution of an incineration plant for 
an emerging technology such as gasification or pyrolysis are applicable 
to systems relying on incineration to achieve a lower landfill rate.

4. Conclusions

In this study, emerging waste management technologies (pyrolysis, 
gasification, and dry reforming of methane) were integrated into an 
MFA and LCA model of a regional WMS. At the process level, machine- 
learning surrogate models were used instead of former approaches based 
on transfer coefficients. This approach enabled the simplified process 
models to retain the thermodynamic responsiveness of rigorous models. 
At the system level, the waste management model was useful in 
assessing the environmental impact of the illustrative system of Madrid 
under three different scenarios. Overall, the implementation of the 
above-mentioned technologies was concluded to involve a favorable 
impact on the environmental performance of the system. Gasification 
and pyrolysis were found especially interesting as their integration 
enabled the phase-out of the incineration unit. The assessment of the 
landfill rate of each scenario under different source separation rates 
showed that, despite the expected environmental benefits, the landfill 
rate reduction capacity of these emerging technologies was as limited as 
the one from incineration since all of them depend on their corre
sponding treatment capacities. The most optimistic scenario, with high 
source separation and no capacity restrictions for the new plants, ach
ieved a landfill rate of 37.6 %. In this sense, if a system already has an 
acceptable landfill rate thanks to incineration, the substitution of an 
incineration unit for these new technologies would be environmentally 
beneficial while maintaining a low landfill rate. On the other hand, 
systems with incineration that do not achieve a low landfill rate would 

Fig. 6. Landfill (LF) rate for every scenario under different source separation rates (all scenarios are compared to the 10 % European target).
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not reverse the situation by implementing these new technologies even 
though environmental impacts would generally be reduced. The most 
optimistic scenario showed a reduction of 116.5 % in terms of global 
warming potential and 10–193 % for other impact categories. In 
essence, optimizing the capacity of the existing and emerging facilities 
was concluded to be a key factor in minimizing both landfill rate and 
environmental impact. Finally, the economic analysis of the newly in
tegrated processes and system optimization under environmental and 
economic criteria are proposed as future work toward a new generation 
of decision-making support models in the field of waste management.
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Kahhat, R., 2019. Enhancing waste management strategies in Latin America under a 
holistic environmental assessment perspective: a review for policy support. Sci. Total 
Environ. 689, 1255–1275. https://doi.org/10.1016/j.scitotenv.2019.06.393.

Martínez-Ramón, N., Istrate, I.-R., Gálvez-Martos, J.-L., Guerra, S., Cruz, P.L., Dufour, J., 
2023. Analysis of the role of dry reforming of methane within a waste management 
and valorization system from an LCIA and energy performance perspective. In: 
European Biomass Conference and Exhibition Proceedings, pp. 86–96.

Martínez-Ramón, N., Calvo-Rodríguez, F., Iribarren, D., Dufour, J., 2024a. Frameworks 
for the application of machine learning in life cycle assessment for process modeling. 
Clean. Environ. Syst. 14, 100221. https://doi.org/10.1016/j.cesys.2024.100221.

Martínez-Ramón, N., Romay, M., Iribarren, D., Dufour, J., 2024b. Life-cycle assessment 
of hydrogen produced through chemical looping dry reforming of biogas. Int. J. 
Hydrogen Energy 78, 373–381. https://doi.org/10.1016/j.ijhydene.2024.06.288.

MathWorks, 2023. Process matrices by mapping each row’s means to 0 and deviations to 
1 - MATLAB mapstd - MathWorks España [WWW Document]. URL https://es.math 
works.com/help/deeplearning/ref/mapstd.html (accessed 2.14.24).

MathWorks, 2025. Bayesian regularization backpropagation - trainbr [WWW 
Document]. URL https://www.mathworks.com/help/deeplearning/ref/trainbr.html
(accessed 2.4.25).

Mehdi, M., Ammar Taqvi, S.A., Shaikh, A.A., Khan, S., Naqvi, S.R., Shahbaz, M., 
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