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ARTICLE INFO ABSTRACT

Keywords: The waste management sector requires specialized systems analysis tools to facilitate decision-making and make

Was_te management waste management sustainable and efficient. While integrated systemic approaches exist for assessing conven-

gaSI?C?“on tional waste management systems, the integration of emerging technologies such as gasification, pyrolysis, and
yrolysis

methane dry reforming remains largely overlooked. In this work, these three technologies have been integrated
into a conventional regional waste management model by abstracting rigorous simulation models into machine-
learning surrogate models. The resulting technology-rich waste management model incorporates material flow
analysis and life-cycle assessment as tools for supporting policy and decision-making. The model was tested by
assessing the environmental impacts and landfill rates for three technology implementation scenarios. Overall,
the inclusion of these emerging technologies led to an environmental performance improvement compared to a
reference system. For example, a 116.5 % reduction of the carbon footprint in the most optimistic scenario.
Nevertheless, the mere addition of these technologies was not enough to achieve landfill rates below 10 %,
reaching 37.6 % in the most optimistic scenario. Therefore, properly sizing capacity was found to be a key factor
in minimizing both environmental impact and landfill rate.

Machine learning
Life-cycle assessment

1. Introduction

Over 2.2 billion tons of waste are generated every year in the Eu-
ropean Union. Municipalities have to deal with 27 % of the total waste,
mainly generated by households, but also commercial activity and street
waste collection (EU Monitor, 2023). Economic growth coupled with an
increasing population that is expected to live mainly in urban areas (70
% globally by 2050) emphasizes the need to find sustainable solutions to
the associated waste generation (Abubakar et al., 2022; Hoornweg and
Bhada-Tata, 2012). Inadequate waste management, ranging from absent
collection systems to inefficient disposal methods, leads to a loss of
valuable resources as well as greenhouse gas (GHG) emissions, air
pollution, water contamination, and soil degradation, amongst other
impacts (UN Environment Programme, 2017).

Over the years, the waste management sector has transitioned from
regulation-driven end-of-pipe solutions like landfilling to high-value
operations involving materials and energy recovery (Aid et al., 2017).
The European Commission’s Directive 2018/850 on the landfill of waste
aims to prevent or reduce adverse environmental effects from waste
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landfilling and sets a target for municipalities for 2035, when the landfill
rate should not exceed 10 % (European Commission, 2018; European
Environment Agency, 2024). European countries that already have a
landfill rate well below the limit such as Germany, Austria, Denmark and
Belgium rely heavily on recycling to do so, while others accomplish it by
using incinerators such as Norway, Sweden and Finland (European
Environment Agency, 2023, 2024). Even though incineration is recog-
nized as a way to prevent waste from reaching landfills while generating
electricity and/or heat (Istrate et al., 2021a), it was excluded from Eu-
ropean funding instruments such as the Recovery and Resilience Facility
in 2021 (European Commission, 2021). This instrument declared that
the construction of new incinerators was an example of non-compliance
with the Do No Significant Harm (DNSH) principle (European Com-
mission, 2023) as they are carbon-intensive processes that undermine
the efforts to decrease GHG emissions and harm business models that
could improve circularity (Oliveira, 2021). However, phasing out
incineration without any alternative treatment leads to a direct increase
in the landfill rate and the subsequent environmental impacts, even if
source separation of waste is increased (Istrate et al., 2021a).
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As waste management systems (WMSs) have progressed with the
introduction of advanced technologies and the establishment of various
markets for recovered products (i.e., materials, energy, and nutrients),
waste management planning has turned increasingly complex (Eriksson
and Bisaillon, 2011). Notably, the development of emerging technolo-
gies such as gasification, pyrolysis, and dry reforming of methane cre-
ates opportunities for obtaining high-value products from waste,
including methanol, hydrogen, and synthetic diesel and gasoline
(Abdelsadek et al., 2023; Cheng et al., 2023; Ouedraogo et al., 2021).
Consequently, managers face uncertainty as these emerging waste
valorization technologies come into play, especially to replace in-
cinerators. On the one side, their implementation might become
imperative to meet regulation. On the other side, very little information
on their integration into WMSs is available to make informed decisions
regarding their technical or environmental impacts.

Systems analysis tools for WMSs can help close the gap between
waste managers, technology developers, researchers and policy-makers
by supporting the decision-making process and providing realistic per-
formance expectations. Systemic approaches based on material flow
analysis (MFA) have proven useful in providing a comprehensive model
of the flow of materials and substances through a WMS (Di Nola et al.,
2018; Istrate et al., 2021a, 2021c¢). The aforementioned model has to
consider the interactions between the physico-chemical composition of
the managed waste, the performance of the technologies used to deal
with it, and the required inputs (energy, raw materials, natural re-
sources, etc.) and outputs (emissions, products, etc.). Thus, the
MFA-based model needs to be improved upon by incorporating life-cycle
assessment (LCA). In this regard, LCA has gained traction in supporting
policy and decision-making as it evaluates the potential environmental
impacts of the system as a whole (Hunsager et al., 2014; Liu et al., 2016;
Margallo et al., 2019; Pryshlakivsky and Searcy, 2021; Thushari et al.,
2020).

Nevertheless, while individual studies covering the environmental
impacts of emerging technologies like gasification, pyrolysis and dry
reforming can be found in the literature (Azam et al., 2022; Ouedraogo
etal., 2021; Zaman, 2013; Zhu et al., 2022), none of them offers a system
perspective on their integration into a complete WMS. This knowledge
gap poses a challenge as waste managers seek to improve the perfor-
mance of the entire system rather than just individual technologies or
waste streams. Therefore, it is crucial to uncover the potential
system-wide benefits of integrating emerging technologies to attract
investment attention (Thyberg and Tonjes, 2015). The lack of a systemic
approach in the literature is largely attributed to the complexity of
developing reliable models that can seamlessly integrate into
MFA-based WMS superstructures. Traditional MFA approaches rely on
static transfer coefficients for input materials, whereas this study in-
troduces an innovative approach by employing machine learning-based
surrogate models. These models correlate the variability in technical and
environmental performance of emerging technologies with operational
parameters and waste input characteristics, addressing limitations in
conventional modeling approaches.

Previous modeling efforts have focused on rigorous simulations at
the individual technology level (Azam et al., 2022; Mehdi et al., 2023),
whose complexity prevents their integration into a generic MFA and LCA
model of a WMS. In this sense, surrogate or substitute models were
found to be used in literature for abstracting these complex simulations
into black box machine-learning surrogate models (Cheng et al., 2023;
Ishitsuka and Lin, 2023). This abstraction involves deriving meaning
from descriptive datasets. The advantage of using machine-learning
substitute models is that they are computationally light to run and
capable of retaining the responsiveness of a rigorous simulation. How-
ever, to the best of the authors’ knowledge, black box surrogate models
for emerging waste treatment technologies and their subsequent inte-
gration into a system-level WMS model have not been explored so far.
Yet, it constitutes an innovative methodological approach for estimating
the technical and environmental performance of emerging technologies
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while helping waste managers make sustainability-oriented decisions.

Within this context, the present work aims to fill the gap of a systemic
approach by developing an integrated MFA and LCA model for a WMS
capable of quantitatively evaluating the integration of emerging waste
treatment technologies. To achieve this, the following specific objectives
had to be accomplished:

— To prepare individual simulation models for waste gasification,
waste pyrolysis, and biogas dry reforming.

— To prepare machine-learning surrogate models and integrate them
into an MFA and LCA model of a WMS.

- To evaluate a set of three technology integration scenarios from a
technical and environmental perspective to illustrate the decision-
making value of the generated model.

2. Methodology
2.1. Conceptualization

In order to fill the above-mentioned gap, this work builds on top of
the waste management model developed by Istrate et al. (2021b). This is
an integrated MFA and LCA model for tracking the flow of substances
and materials throughout the WMS and quantifying the associated
environmental impacts. The core structure is formed by all blocks and
streams colored in black in Fig. 1. The key aspect of this model is its
capability to predict the performance of waste management processes
according to changes in the composition and characteristics of the input
waste stream. This is achieved by mathematically linking process inputs
and outputs to the mass and biological and chemical properties of the
treated waste stream through transfer coefficients or simplified process
models (e.g., CO5 emissions from incineration are linked to the carbon
content of the input waste).

In addition to process mass and energy balances, the model imple-
ments capacity constraints, limiting the amount of waste that could be
treated by each process within the WMS. Specific details on the
configuration and modeling of conventional waste management pro-
cesses can be found in Istrate et al. (2021b). In terms of waste genera-
tion, the model deals with the following materials: food waste, green
waste, mixed paper, cardboard, polyethylene terephthalate (PET),
high-density polyethylene (HDPE), low-density polyethylene (LDPE),
mixed plastic, cartons and alike, glass, ferrous metal, non-ferrous metal,
textile, wood, and other. They are all characterized in detail in terms of
ultimate composition and other physico-chemical properties such as
lower heating value.

The conventional WMS modeled by Istrate et al. (2021b) was found
to rely heavily on incineration to avoid landfilling. To achieve a low
landfill rate, additional measures such as the implementation of new
waste management processes need to be implemented, in particular
waste gasification and pyrolysis. Even though these technologies are
well known to the scientific community, they are only now starting to be
considered by waste managers for field-scale operations. Other tech-
nologies such as dry reforming are also in the development phase to
generate syngas from the biogas produced in the anaerobic digester.
Fig. 1 presents a modified version of the conventional WMS, in which
the three mentioned technologies have been introduced in the system.
Gasification (green in the upper part of the figure) and pyrolysis (yellow)
aim to help in phasing out incineration and produce syngas (in the case
of gasification) and pyr-oil and char (in the case of pyrolysis), while dry
reforming of methane (green in the bottom part of the figure) arises as a
biogas utilization pathway to produce also syngas.

Fig. 2 presents the methodological framework to model and assess
the mass and energy flows within the WMS. Two different levels can be
distinguished: process level and system level. The process level involves
process simulation itself, the generation of machine-learning substitute
models, and the life-cycle inventory (LCI) models for each process. The
system level refers to the integration of these models into the WMS and
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the LCA-based decision-making that follows.

At the process level, mass and energy balances of conventional
blocks such as material recovery facilities (MRFs), anaerobic digestion
or incineration were modeled in Istrate et al. (2021b) primarily through
transfer coefficients. In contrast, in the case of the new technologies,
transfer coefficients are not readily available due to the lack of
industrial-scale facilities. Therefore, these technologies were imple-
mented as black-box models coming from the abstraction of Aspen Plus
(AspenTech, 2025) simulations using machine learning. To do so, the
first step was to prepare and consolidate individual simulation models in
Aspen Plus for each of the new technologies (Section 2.2).

Afterward, synthetic data was generated through sensitivity analysis
and used to train the corresponding machine-learning surrogate model.
This innovative approach incorporates the embedded thermodynamic
responsiveness from the rigorous simulation into the MFA model, which
is especially important as gasification and pyrolysis are very dependent
on operating conditions and composition of the feedstock (Shah et al.,
2023). Once these simpler models were integrated into a new iteration
of the WMS model (Section 2.3), this new configuration of the WMS was
used to produce LCI data for the complete system (Section 2.4), enabling
the system-level analysis of different scenarios (Section 2.5). The
required ecoinvent v3.10 cut-off datasets were used for local calcula-
tions within the model to perform the LCA and obtain the corresponding
life-cycle profiles.

2.2. Modeling of new technologies

This section delves into the specifics of the process simulation
required for the first methodological step.

2.2.1. Gasification

The gasification process consists of four internal steps, drying, py-
rolysis, combustion (oxidation), and gasification (reduction), which
occur differently depending on process configuration, as shown in
Fig. 3a. This process leads to the formation of simple molecules, pri-
marily syngas (mainly composed of hydrogen and carbon monoxide),
which can be further utilized for electricity generation or converted into
synthetic fuels or hydrogen (Tan et al., 2024).

In the gasifier, drying happens within the temperature range of 100
°C to 150 °C, pyrolysis takes place between 200 °C and 700 °C, com-
bustion occurs within the range of 700 °C to 1500 °C, and gasification
happens between 800 °C and 1100 °C. Typically, municipal waste
contains moisture levels ranging from 5 % to 35 %, reaching values
below 5 % during the drying process. During pyrolysis, municipal waste
undergoes heating in the absence of oxygen, causing its volatile com-
ponents to vaporize. These volatile vapors constitute a mixture of
hydrogen, carbon monoxide, carbon dioxide, methane, hydrocarbon
gases, tar, and water vapor (Kivisaari et al., 2004; Shah et al., 2023). In
the combustion step, oxygen supplied to the gasifier interacts with the
combustible substances, leading to the formation of carbon dioxide
(CO2) and water (H30). These compounds then undergo reduction upon
contact with the char produced from pyrolysis (Safarian et al., 2019a;
Shah et al., 2023). Reduction processes yield syngas, a mix of combus-
tible gases such as hydrogen, carbon monoxide, and methane (Safarian
et al., 2019b). Regarding configurations for the gasification process,
downdraft, updraft, fluidized bed, and circulating fluidized bed gasifier
simulation models were prepared (Shah et al., 2023). The studied con-
figurations were reflected in an Aspen Plus specific gasification hierar-
chy block, detailed in the Supplementary Information, and then
integrated into the gasification general simulation shown in Fig. 3a.

All four gasification models followed the same general structure.
First, an input selector was configured through an Excel subroutine
using a calculator, enabling the option to simulate variating feedstocks
using their ultimate composition. In this way, combinations of different
types of waste can be calculated and fed to the model as long as their
ultimate composition is known. The external drying step follows the
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input selector, reducing moisture to at least 12 %. In the next step, the
feed is taken to the gasification process itself. In this case, the gasifica-
tion block is different for every simulation depending on the studied
configuration. Each specific configuration is implemented in the block
A200. The simulation of each configuration can be found in the Sup-
plementary Information. They all consist of a drying step followed by an
RYield block, the Aspen Plus yield reactor, which was used to simulate
feedstock decomposition. In this section, the feedstock is transformed
from a non-conventional solid to volatile materials (VMs) and char. The
VMs include hydrocarbons, oxygen, hydrogen, carbon monoxide, and
non-combustible gases, while char is transformed into ash and carbon.
VM yield is equal to the volatile content in the waste feedstock deter-
mined by the proximate analysis (Safarian et al., 2022). After the
decomposition step, the VMs are sent to the oxidation and reduction
steps modeled with an RGibbs block. The order depends on the specific
configuration and each of them can be explored in detail in the Sup-
plementary Information. In all cases, industrially relevant parameters
such as steam-to-biomass ratio or the equivalence ratio can be individ-
ually configured.

2.2.2. Pyrolysis

In comparison to incineration, pyrolysis decomposes waste at lower
temperatures, typically ranging between 350 and 900 °C, within an
oxygen-deficient environment or, in specific instances, with very low
oxygen concentrations to enhance the heating rate and yield a greater
amount of gas. The resulting pyrolysis oil product can be refined into
diesel and other petrochemical materials.

Modeling the pyrolysis of waste is a challenging task. Equilibrium
models have trouble predicting the product composition, especially in
the liquid phase, where they tend to overestimate the presence of water.
On the other hand, other types of models such as kinetic ones produce
valid results for a limited number of feedstocks and reactors. For these
reasons, a novel approach was selected in the modeling of this process,
based on the combination of an artificial neural network with Aspen Plus
(Martinez-Ramon et al., 2024a). For pyrolysis, the proportion of gas, oil,
and char is strongly dependent on the reaction temperature, residence
time, and, especially, waste composition. The artificial neural network
was trained in MATLAB to predict the yield for the gas, liquid, and solid
phases and their approximate composition based on the experimental
results from different plastic pyrolysis experiments gathered from
literature by Cheng et al. (2023). The resulting MATLAB function was
then called from an Excel calculator in Aspen Plus and run under the
operating conditions of the simulation. The yields for representative
components of the three resulting phases estimated by the neural
network were exported onto the RYield reaction block (NN-PYR in
Fig. 3b) representative of the pyrolysis reactor. Following the reactor,
the solid char was separated from the gases with a cyclone and the
resulting gas mix cooled to 50°C, obtaining the main product (pyrolysis
oil) together with a mix of pyrolysis gases that were subsequently
burned to supply the required heat to the pyrolysis reactor (Fig. 3b).

2.2.3. Dry reforming of methane

Dry reforming of methane (DRM) is widely studied as one of the
potential routes for syngas production from biogas. In this work, a
chemical looping configuration of this process was considered, which is
expected to increase the yield of syngas and optimize CO, activation,
additionally avoiding side reactions and the need for complex catalyst
regeneration systems. The DRM unit consists of a fixed bed reactor that
operates in two different modes: reaction and regeneration. In the re-
action step, the biogas is fed to the fixed bed reactor operating at 900 °C
to generate syngas, used to preheat the biogas feed. The system con-
templates using three different catalysts (cerium, ferrite, and zinc
oxide), which are regenerated through calcination. This system was
implemented in Aspen Plus according to Martinez-Ramon et al. (2023,
2024b). The sensitivity analysis results obtained from the simulation are
illustrated in the process-level results section of this work (Section 3.1).
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2.3. Generation and integration of machine-learning surrogate models

Connecting an Aspen Plus simulation model to the WMS model built
in MATLAB can be complicated. Furthermore, executing all three sim-
ulations every time the WMS model is run is a computationally
demanding task. To address this, machine-learning surrogate models
were trained to substitute the Aspen Plus rigorous models. For this
strategy to be valid, the surrogate models have to retain the physical
meaning of the Aspen Plus simulations. To that end, the Aspen Plus
models were used to produce synthetic data through process-level
sensitivity analysis by examining how changes in model parameters or
variables affect process performance or output variables. Consequently,
descriptive variables for each of the three technologies had to be
selected and varied within specific ranges. The composition of the
feedstock, either waste or biogas, and the temperature and the pressure
in the reactors were the main variables. Additionally, each process has
some intrinsic characteristics (e.g., the used catalyst for the dry
reforming or the type of gasifier used in the gasification simulations)
which were saved as categoric variables in the datasets. Table 1 presents
the range of operating conditions for each descriptive variable, the
number of points used to describe that range, and the tracked responses
(results from the simulation) which will be the outputs from the
machine-learning surrogate models.

Once obtained, each of the three datasets (available as Supplemen-
tary Information) was used to train a machine-learning regression
model. Simulation runs that returned an error during the sensitivity
analysis were removed from the dataset. Artificial neural networks were
selected as machine-learning algorithms given their capacity for
handling complex and nonlinear relationships in multivariate systems
(Montesinos Lopez et al., 2022). A key step in the formulation of a valid
machine-learning model is the training process, taking special care to
avoid overfitting (Manashgoswami, 2023). In order to ensure a model
with high generalization capacity, all datasets were first randomized.
Additionally, Bayesian regularization was selected as the training al-
gorithm as it improves generalization (MathWorks, 2025). However, for
this type of algorithm to work best, network inputs and targets should
fall in the range of —1 to 1. Subsequently, these values were normalized
to have zero as the mean and unity as the standard deviation
(MathWorks, 2023). Different architectures were used for each of the
surrogate neural networks. The neural network used in the case of the
gasification process used 2 layers of 42 and 21 neurons each. In the case
of DRM, one layer with 20 neurons was used; in the pyrolysis surrogate,
two layers of 25 and 13 neurons each were used.

The generated models were deployed in the WMS model. To do so,
they were called as MATLAB functions and fed all the necessary infor-
mation to be run (column “Input” in Table 1). The operational param-
eters such as configuration, temperature, pressure, or vapor residence
time were set up manually for each scenario, however the ultimate
composition of the feedstock was read from the feed stream going into
the process. Once run, the models return the outputs (column “Output”
in Table 1) that compile the necessary variables to estimate the LCI for
these newly integrated processes. In parallel, major inventory variables
for the rest of the processes in the model are calculated according to the
technical characterization established in Istrate et al. (2021b). These
variables are depicted in Fig. 1 as “System products and requirements”.

2.4. Life-cycle assessment

LCA is spread across both process and system level. At the process
level, LCIs were calculated for every process in the WMS. At the system
level, the use of these LCIs together with the ecoinvent database (Wernet
et al.,, 2016) enabled the assessment of the potential environmental
impacts of the complete WMS. The functional unit of the study was
defined as the yearly amount of waste generated in the city of Madrid as
it is a large city with an established waste management system that
discloses activity reports yearly. Waste was considered as the sum of
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Table 1
Parametric description of the sensitivity analysis.
Input Units  Range Number Output
of points
Dry reforming of
methane
Temperature °C 650 - 1000 12 CO,, in syngas [kmol/
Pressure bar 0.1-0.99 and 1 12x2 year], CH, in syngas
-8 [kmol/year], Hy in
Methane % 35-75 12 syngas [kmol/year],
composition CO in syngas [kmol/
in biogas year], water in syngas
Catalyst used - Cerium, ferrite 3 [kmol/year], heat
and zinc oxide requirement [kW],
electricity
requirement [KW],
cooling water [kg/h]
Gasification
Type of - Circulating, 4 Syngas production
gasifier downdraft, [kg/h], syngas
fluidized, and composition (water,
updraft H,, CO, CO,, CHy),
Temperature °C 800 - 1000 8 higher heating values
Pressure bar 1-3 8 for dry and wet
Steam-to- kg 0.05 - 0.8 8 syngas [MJ/kg],
biomass /kg higher heating value
ratio of feedstock [MJ/kg],
Moisture % 5.24 - 68.07 20 ash [kg/year], water
mass input and output [kg/
Carbon % 40.46 - 84.98 year], SO, emissions
content mass [kg/year], HoS
Hydrogen % 5.19 - 14.59 emissions [kg/year],
content mass NO emissions [kg/
Oxygen % 1.89 - 46.22 year], NH; emissions
content mass [kg/year]
Nitrogen % 0.16 - 3.21
content mass
Chlorine % 0.06 - 1.05
content mass
Sulfur content % 0.03 - 0.62
mass
Pyrolysis
Temperature °C 400 - 750 10 Electricity
Vapor s 0.05 - 20.00 12 consumption [kW],
residence heat consumption
time [MJ], char
Carbon % 65.86 - 84.98 18 production [kg/h],
content mass gas production [kg/
Hydrogen % 5.19 - 14.59 h], oil production
content mass [kg/h], gasoline
Oxygen % 1.89 - 28.48 fraction, diesel
content mass fraction, wax
Nitrogen % 0.16 - 1.65 fraction, C; in gas, Cx
content mass in gas, C3 in gas, C4 in
Chlorine % 0.05 - 1.05 gas, CO, emissions
content mass [kg/h], CO emissions

[kg/h], NO emissions
[kg/h], NO,
emissions [kg/h]

household, commercial, and street cleaning waste and it adds up to
1394,105 tons per year according to local activity reports (Municipality
of Madrid, 2025).

The system boundary included waste management processes (MRFs,
incineration, biological treatments, gasification, etc.), recycling, final
disposal in landfills, and the downstream utilization of the energy and
materials supplied by the WMS, as depicted in Fig. 1.

A total of 15 categories were evaluated using Environmental Foot-
print 3.1 as the impact assessment method: global warming (100-year
time horizon), acidification, terrestrial eutrophication, freshwater
eutrophication, marine eutrophication, photochemical ozone formation,
ozone depletion, human toxicity — cancer effects, human toxicity —
noncancer effects, eco-toxicity, ionizing radiation, land use, water use,
depletion of abiotic resources — fossil fuels, and depletion of abiotic
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resources — minerals and metals. Biogenic CO5 emissions were not
accounted for in the calculation of global warming.

2.5. Description of scenarios

A set of three scenarios was proposed in this study to demonstrate the
applicability of the model for a system-level assessment. The scenarios
represent the WMS of Madrid as an example of a large city making ef-
forts in the collection and management of waste to meet legislation
targets, comparable to many others across, and outside, the European
Union (European Environment Agency, 2022).

— Reference scenario. The reference scenario represents a relatively
modern WMS adapted with data from Madrid operating with the
waste allocation factors described in Table 2. A key aspect of this
system is that incineration is used to handle rejects and prevent a
high landfill rate. In this scenario, the system generates energy-
related products (electricity and biomethane) and materials (sec-
ondary materials and compost). The multifunctionality of the system
was solved through the substitution approach, considering that each
of the recovered products substitutes the corresponding market
equivalents and the WMS was credited for the avoided environ-
mental burdens. Electricity supplied to the grid was presumed to
replace an equal amount of electricity generated by the Spanish
electricity mix. Biomethane injected into the natural gas network
replaces the production, distribution, and consumption of an equal
volume of natural gas. Secondary materials were assumed to replace
primary materials based on a substitution ratio. Additionally, the use

Table 2

Distribution of waste streams, biogas, and landfill gas across the individual
processes (SS: source separated, MRFs: material recovery facilities; AD: anaer-
obic digestion; ICE: internal combustion engine). The values represent the per-
centage of the total stream allocated to each process.

Stream Process Reference Realistic Unrestricted
Packaging MRFs 100 100 100
waste, SS
Paper/ MRFs 100 100 100
cardboard,
SS
Glass, SS Transfer + MRFs 100 100 100
Organic AD 100 100 100
waste, SS
Residual MRFs / landfill 79/21 79/21 79/21
waste, SS
Recyclable Recycling 100 100 100
materials
Rejects from Incineration / 72/0/0/28 0/50 © 0/50/50/0
MRFs * gasification / /50 ¢ /0
pyrolysis / landfill
Organic AD / composting /  29/39/31 29/39/31 29/39/31
waste, landfill
residual ”
Rejects from Landfill 100 100 100
AD
Digestate Composting - - -
Digestate Composting / 64/36 64/36 64/36
(other) landfill
Stabilized Landfill 100 100 100
material
Biogas ¢ Flare / upgrading 10/46.5/ 10/0/1.7/  10/0/1.7/0/
/ boiler / ICE / 1.7/41.8/0 0/88.3 88.3
DRM
Landfill gas Flare / ICE 98/2 98/2 98/2

# Rejects from sorting residual and packaging waste at MRFs.

b Organic waste separated from residual waste at MRFs.

¢ Digestate produced from source-separated organic waste.

4 The allocation of biogas is calculated by the model as a function of capacity.

¢ The allocation of rejects going to gasification and pyrolysis in the realistic
scenario is calculated by the model as a function of capacity.
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of compost on land substitutes the production and application of
mineral fertilizers, following a nutrient equivalence approach. This
technology scenario corresponds to all processes connected by black
lines in Fig. 1.

— Realistic scenario. Gasification and pyrolysis are implemented in
the system with realistic expected capacities while incineration is
removed from the system. Rejects are split evenly between these two
technologies (i.e., 50 % of rejects go to each process). A downdraft
gasifier operating at 900°C, 1.5 bar, and an equivalence ratio of 0.3
was selected for the assessment. The capacity of the unit was
established at 116,000 tons of waste per year (Seo et al., 2018).
Regarding the pyrolysis unit, the capacity was established at 100,000
tons per year. The pyrolysis reactor was set to operate at 500°C with
1 s vapor residence time. Biogas from the anaerobic digestor is
directed to the DRM unit, where it is transformed into syngas and
used for electricity production. The capacity of the DRM unit is also
realistic, set at 15,341,632 Nm® of biogas per year. For the assess-
ment, the DRM unit was configured to operate with cerium oxide as a
catalyst at 900°C and 1 bar in the reactor. The syngas generated
during the gasification and dry reforming processes was transformed
into electricity to substitute electricity from the grid and the gener-
ated oil and char from pyrolysis were used to replace an equivalent
amount of heavy fuel oil and charcoal based on the lower heating
value. In this scenario, the technologies connected by colored lines in
Fig. 1 were considered, and incineration was disregarded. Specific
details on stream allocation can be consulted in Table 2, where the
main differences in scenarios appear in the “Rejects from MRFs” and
“Biogas” rows.

— Unrestricted scenario. All three new technologies (gasification,
pyrolysis, and DRM) were implemented and distributed across the
system in the same way as in the realistic scenario, but no capacity
restrictions were set for the newly implemented processes. Details on
stream allocation can be consulted in Table 2. Gasification and py-
rolysis then have the necessary combined capacity to manage all
rejects. In the same way as the previous scenario, the technologies
connected by colored lines in Fig. 1 were considered, and incinera-
tion was disregarded. The main difference with the previous scenario
is the capacity of the considered processes.

Additionally, the above-mentioned scenarios were further divided
into three source separation sub-scenarios (Low, Mid, High) to evaluate
the combined impact of new technologies and increased waste separa-
tion on reducing landfill rates. For household waste, separation rates
increase across Low, Mid, and High scenarios for each waste type:
packaging waste (79.5 %, 80.0 %, 85.0 %), paper and cardboard (35.2
%, 70.0 %, 85.0 %), glass (60.2 %, 80.0 %, 90.0 %), and organic waste
(42.3 %, 70.0 %, 85.0 %). In commercial waste, packaging waste, paper
and cardboard, and glass remain at 0.0 % separation across all scenarios,
while organic waste increases from 74.9 % in Low to 80.0 % in Mid and
85.0 % in High. Separation rates were selected using trend projections
starting with data of 2019 (low separation) to meet separation targets
for 2040 (high separation scenario) (Municipality of Madrid, 2019).

3. Results and discussion

The proposed methodology, which combines machine-learning sur-
rogate models with MFA and LCA, constitutes an innovative result in
itself. Beyond the methodological approach, the results derived from
this study have been divided into two categories: process-level results,
regarding the outcomes from process simulation for data generation and
surrogate model training; and system-level results, regarding the out-
comes from implementation and analysis of the WMS scenarios defined
in Section 2.5.
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3.1. Process-level results

As the interest of simulating does not lie in one particular case but in
generating a wide range of valid data for the training of the surrogate
model, pairplots of key process parameters were selected to illustrate the
results. In Fig. 4, the triangle below the diagonal shows a scatter plot of
all the resulting data points and the diagonal itself presents a histogram
plot showing the frequency distribution of responses. The upper triangle
depicts the probability density function of the dataset. As the datasets
come directly from successful simulations runs in Aspen Plus, the data
visualization in Fig. 4 represents intrinsic thermodynamic behavior that
the machine-learning models have to incorporate.

Fig. 4a shows how the composition of the syngas varies across a
sample of 6000 simulation runs dissagregated by type of gasifier. A set of
two behaviors can be distinguished from the figure: the first one com-
piles all fluidized, updraft, and downdraft gasifiers (blue, pink, and or-
ange points), while the second one englobes the circulating bed gasifiers.
The first one presents relatively linear responses within similar numer-
ical ranges. For instance, in the CO,—CO scatter plot, a clear inverse
linear relationship can be observed. The corresponding probability
density function shows that, among all the gasifiers that present a linear
trend, the updraft gasifier produces syngas with higher content in CO
and CO,. Similarly, Hy and CH4 also present clear correlation but more
variables seem to be necessary to fully explain the behavior. Regarding
the second behavior, circulating gasifiers show a much more dispersed
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response behavior around the sampled sensitivity area. For the CO,—CO
plot, this type of gasifier exhibits a nonlinear behavior. As the other
variables were varied equally across the other gasifiers, this nonlinearity
was directly attributed to the internal (more complex) recirculation of
the fluidized bed present in this configuration and not in the others. In
the case of gasification, other variables such as temperature or pressure
in the gasifier also influence the response behavior, but only the type of
gasifier was selected for simplicity in the visualization.

Fig. 4b shows the response behavior for the three produced phases
(gas/oil/char) obtained from the pyrolysis process simulation for waste
sources of varied carbon content at different temperatures. In this case, it
can be observed that the higher the temperature, the higher the gas
generation, compensated with lower generation of the liquid and solid
products. Differentiated behaviors are a positive feature as they are
more easily identified by the machine-learning models during the
training procedure.

A similar plot corresponding to the process-level visualization for the
dry reforming process can be found in the Supplementary Information.
This includes a pairplot representing the response behavior of the pro-
duced syngas for the dry reforming process in three cases based on
different catalysts. It shows a similar distribution across catalysts, thus
making the composition of the generated syngas similar. Carbon mon-
oxide exhibited a direct linear response behavior with hydrogen, an
inverse linear response with methane, and a dispersed response with
carbon dioxide.
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Fig. 4. Pairplots representing response behavior for (a) the composition of the generated syngas in the gasification process, and (b) the different product generations

in the pyrolysis process for a range of operating temperatures.
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These results are shown as an example of the trends and behaviors
that are embedded in the trained machine-learning surrogate models.
The waste management model is then capable to consider different
operating conditions for the newly integrated processes. Furthermore,
the model is capable of reflecting these changes in the generation of the
LCIs used in the system-level LCA calculations.

3.2. System-level results

3.2.1. Life-cycle profile of the system

The global warming impact potentially generated by the WMS of
Madrid over a year under the three assessed scenarios is presented in
Fig. 5a. Results are shown for the lowest source separation rate sub-
scenario, as it is the closest one to the current context in Madrid. Posi-
tive values indicate impacts generated by the system, while negative
values represent avoided impacts from the generated products because
of the substitution approach. The net value represents the difference
between the generated and the avoided impacts.

In the reference scenario, the net global warming impact is 359.7 kt
CO2.¢q- The main contributions at the process level came from landfilling
and incineration: 267.3 kt CO2.¢q and 194.3 kt CO».¢q, respectively. The
realistic scenario considers the replacement of the incinerator for a
gasification unit and a pyrolysis unit with realistic capacities. In this
case, the combined capacity of the units was not enough to manage all
rejects, so a fraction of them were diverted to landfilling, thus increasing
the global warming impact of this process. However, the net impact
decreased compared to the reference scenario since both gasification
and pyrolysis reversed their impacts by avoiding conventional market
products (net impact of —10.6 and —83.2 kt COz.q, respectively). The
implementation of dry reforming decreased the total impact of anaer-
obic digestion, but its relative contribution to the system remained low.
The unrestricted scenario shows the implementation of all of these
emerging technologies without capacity restrictions, thus being able to
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manage all the rejects of the system and reducing the environmental
impact of the landfill to a minimum of 235.4 kt COx.¢q. As more rejects
reach the pyrolysis and gasification units for processing, a greater sub-
stitution of products (electricity, pyrolysis char, and pyrolysis oil) oc-
curs, which subsequently reduces the net global warming impact even
further. The net impact becomes negative thanks to the implementation
of these technologies, especially pyrolysis. A very slight improvement in
the net impact could be associated with the unrestricted dry reforming
unit compared to the second scenario.

The environmental characterization of the three assessed scenarios
for a broader range of environmental indicators is presented in Fig. 5b.
For each indicator in the figure, the impact for each scenario was rela-
tivized to the maximum absolute value in the category. Overall, the
results show that implementing the emerging technologies entails an
environmental performance improvement across all the studied in-
dicators compared to the reference scenario. In addition to the global
warming impact, terrestrial eutrophication, fresh water eutrophication,
human toxicity — noncancer effects, ecotoxicity, and ionizing radiation
impacts also became negative, indicating large co-benefits associated
with emerging technologies. Other impact categories, including marine
eutrophication and photochemical ozone formation, decreased by 75 %
and 95 %.

The impact reduction is mainly associated with avoiding landfill and
recovering products like oil and char from pyrolysis and electricity from
gasification. However, the capacity of the new process units proved to be
a relevant factor when enhancing environmental performance. The ab-
solute values supporting Fig. 5 are provided in the Supplementary
Information.

3.2.2. Landfill rate assessment

Fig. 6 illustrates the landfill rate results for each of the three analyzed
scenarios and compares them to the 10 % target established in the
Directive 2018/850 on the landfill of waste (European Commission,
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Fig. 5. (a) Annual global warming impact of the complete waste management system for the three assessed scenarios (black dots correspond to net global warming
impacts), and (b) environmental comparison of the three scenarios for all studied impact categories (GWP: global warming; AP: acidification; ET: terrestrial
eutrophication; EF: freshwater eutrophication; EM: marine eutrophication; POFP: photochemical ozone formation; ODP: ozone depletion; HTC: human toxicity —
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Comparison of LF Rate in Different Scenarios

60 4

LF Rate (%)

10 A

Target
1 Low source separation
[0 Mid source separation
I High source separation

0 T
Reference

Realistic

T T
Unrestricted

Scenarios

Fig. 6. Landfill (LF) rate for every scenario under different source separation rates (all scenarios are compared to the 10 % European target).

2018). Additionally, results from each scenario were contextualized
considering three source separation rates (low, mid, and high, as spec-
ified in Section 2.5). The main factor affecting landfill rate is the ca-
pacity of the technology used to deal with rejects. The WMS generates
394,251 tons of rejects per year for the lowest source separation rate
scenario. In the conventional scenario, incineration is used to manage
these rejects while reaching the maximum capacity of the incinerator
(328,000 tons of waste per year). The excess amount of waste is sent to
landfill, leading to a landfill rate around 57 % for a system with low
source separation (40 % for one with high source separation).

The realistic scenario contemplates the integration of both pyrolysis
and gasification with realistic capacities (100,000 and 116,800 tons of
waste, respectively). In this case, the total capacity to deal with rejects is
decreased compared to the first scenario as these technologies are not
yet found on the scale of large waste management incinerators. Conse-
quently, the landfill rate for the second scenario with high source sep-
aration increased to 47 % as the untreated rejects would be diverted to
landfill.

For the unrestricted scenario, no capacity limit was set for the py-
rolysis and gasification processes, thus being able to deal with all rejects
allocated to them. This led to a reduced landfill rate of 37.6 %, still far
from the landfill target set by the European Commission. It should be
noted that an equivalent landfill rate could be achieved with an equiv-
alently sized incineration facility capable of managing all of the
incoming rejects, although that would entail lower environmental
benefits.

Adequate sizing of the technology used to deal with rejects from
MREFs is key to reducing waste reaching landfills. For WMSs that have
already achieved the landfill target through intense incineration and
recycling, substituting the incinerator for a combination of pyrolysis and
gasification could decrease the environmental impact, as shown in
Section 3.2.1. However, in the case of systems that are still in efforts to
reduce landfills, such as the one in Madrid, the mere implementation of
these technologies might not be enough, even if source separation rates
were increased.

The model can help identify the technological limits for landfill
waste reduction, providing valuable insights for decision-making.
Consequently, it can support claims demanding special efforts to in-
crease social and business engagement to reduce waste generation.
Additionally, when the operational management contract or the lifespan

10

for an incineration plant nears termination, this model can help mu-
nicipalities estimate the technical and environmental impacts of inte-
grating emerging technologies into their system. Finally, a model like
the one developed in this study would help estimate the required ca-
pacity of these new technologies for a given system. In the case study of
Madrid, capacities of 197,125 tons per year would be required for both
of these units, assuming each one deals with half of the generated rejects
as in the studied scenarios.

In its reference configuration, the model represents a regional system
with conventional technologies found in many WMSs across the globe.
General findings regarding the substitution of an incineration plant for
an emerging technology such as gasification or pyrolysis are applicable
to systems relying on incineration to achieve a lower landfill rate.

4. Conclusions

In this study, emerging waste management technologies (pyrolysis,
gasification, and dry reforming of methane) were integrated into an
MFA and LCA model of a regional WMS. At the process level, machine-
learning surrogate models were used instead of former approaches based
on transfer coefficients. This approach enabled the simplified process
models to retain the thermodynamic responsiveness of rigorous models.
At the system level, the waste management model was useful in
assessing the environmental impact of the illustrative system of Madrid
under three different scenarios. Overall, the implementation of the
above-mentioned technologies was concluded to involve a favorable
impact on the environmental performance of the system. Gasification
and pyrolysis were found especially interesting as their integration
enabled the phase-out of the incineration unit. The assessment of the
landfill rate of each scenario under different source separation rates
showed that, despite the expected environmental benefits, the landfill
rate reduction capacity of these emerging technologies was as limited as
the one from incineration since all of them depend on their corre-
sponding treatment capacities. The most optimistic scenario, with high
source separation and no capacity restrictions for the new plants, ach-
ieved a landfill rate of 37.6 %. In this sense, if a system already has an
acceptable landfill rate thanks to incineration, the substitution of an
incineration unit for these new technologies would be environmentally
beneficial while maintaining a low landfill rate. On the other hand,
systems with incineration that do not achieve a low landfill rate would
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not reverse the situation by implementing these new technologies even
though environmental impacts would generally be reduced. The most
optimistic scenario showed a reduction of 116.5 % in terms of global
warming potential and 10-193 % for other impact categories. In
essence, optimizing the capacity of the existing and emerging facilities
was concluded to be a key factor in minimizing both landfill rate and
environmental impact. Finally, the economic analysis of the newly in-
tegrated processes and system optimization under environmental and
economic criteria are proposed as future work toward a new generation
of decision-making support models in the field of waste management.
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