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ARTICLE INFO ABSTRACT

Keywords:

Identification of facial expressions is important to navigate social interactions and associates with developmental
outcomes. It is presumed that social competence, behavioral emotion labeling and neural emotional face pro-
cessing are related, but this has rarely been studied. Here, we investigated these interrelations and their asso-
ciations with age and sex, in the YOUth cohort (1055 children, 8-11 years old). Using a multistep linear
modelling approach, we associated parent-reported social competence, basic emotion labeling skills based on
pictures of facial expressions, and neural facial emotion processing during a passive-watching fMRI task with
pictures of houses and emotional faces. Results showed better emotion labeling and higher social competence for
girls compared to boys. Age was positively associated with emotion labeling skills and specific social competence
subscales. These age- and sex-differences were not reflected in brain function. During fMRI, happy faces elicited
more activity than neutral or fearful faces. However, we did not find evidence for the hypothesized links between
social competence and behavioral emotion labeling, and with neural activity. To conclude, in pre-adolescents,
social competence and emotion labeling varied with age and sex, while social competence, emotion labeling
and neural processing of emotional faces were not associated with each other.
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Development

Sex differences

1. Introduction

Social competence can be defined as the ability to engage in mean-
ingful interactions with others (Junge et al., 2020). Emotion reasoning
helps to navigate these social interactions. Emotion reasoning is the
ability to make reasonably accurate inferences and predictions about the
emotion states of other people (Ruba and Pollak, 2020). Emotion la-
beling is considered one of the building blocks of emotion reasoning
(Ruba and Pollak, 2020). Emotion labeling is measured with
verbal-response paradigms and thus requires language in contrast to
other components of emotion reasoning, such as emotion categorization
and emotion discrimination which can therefore be assessed earlier in
life (Ruba and Pollak, 2020). In this manuscript we will use the term
emotion labeling rather than the traditional term emotion recognition that
is now considered less favorable (Barrett et al., 2019; Hoemann et al.,

2020; Ruba and Pollak, 2020). Individuals differ in their ability to
accurately label emotions on facial expressions and in the speed at which
emotion labeling occurs. Accuracy and speed of emotion labeling are
partly heritable (Swagerman et al., 2016) but also influenced by envi-
ronmental factors such as childhood maltreatment (Assed et al., 2020;
Bérubé et al., 2023).

Studies that investigated age and sex effects on social competence,
suggested lower social competence in boys compared to girls
(Maurice-Stam et al., 2018; Muris et al., 2003; Overgaauw et al., 2017)
and increases in some aspects of social competence with age (Hawk
et al., 2013; Marzocchi et al., 2002, 2004). Emotion labelling skills also
improve across development and may differ by sex. The developmental
trajectories of emotion labelling are described in detail in Bayet and
Nelson (2019). Due to the limited verbal abilities of young children,
studies on early development focus on the differential processing of
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emotions rather than emotion labeling using either behavioral (e.g.
habituation or preferential looking) or neurocognitive measurements
(mostly electroencephalography (EEG)). Studies using such techniques
showed that newborns do not show differential processing of facial
emotional expressions, but this ability rapidly develops in the first year
of life and continues to improve during childhood (Bayet and Nelson,
2019). Studies in school-age children investigated the development of
emotion labelling. In general, older children are faster and more accu-
rate in emotion labeling (Herba and Phillips, 2004), but age effects on
emotion labeling accuracy and reaction time continue to exist
throughout pre-adolescence (Gur et al., 2012; Verpaalen et al., 2019).
Looking at specific emotional expressions, the ability to accurately label
happy faces is thought to develop first (Riddell et al., 2024). Around the
age of 5, most children can accurately label happy faces (Durand et al.,
2007), while the identification of fearful emotions is thought to have a
more protracted developmental trajectory (Bayet and Nelson, 2019;
Durand et al., 2007). Regarding sex effects, a meta-analysis reports a
female advantage in emotion labeling skills (McClure, 2000). The effect
of sex is small and relatively constant throughout development.

Age- and sex-related variation in emotion labeling skills and social
competence may also reflect variation in neurocognitive differentiation
of emotional expressions. Most studies using EEG show no effects of age
on differential responses to emotional stimuli in late childhood and early
adolescence (see Dickey et al., 2021 for a review), although many but
not all studies show general developmental changes in brain responses
to emotional faces (Dickey et al., 2021; Bigelow et al., 2021; Ramo-
s-Loyo et al., 2024). In addition to EEG, functional MRI (fMRI) can be
used to study the neural processing of emotional faces. There are only a
few studies available on neural correlates of emotion processing in
pre-adolescents. One recent large study in 759 children, adolescents and
adults (ages 8-23 years) showed a developmentally stable modular ar-
chitecture with the strongest developmental changes in frontoparietal
circuits (Zhang et al., 2019). Relatively stable patterns of activation
across development were also found in a study of 823 children between
5- and 15-years-old (Camacho et al., 2023).

The neural basis of facial-emotion processing requires different
levels of specialization, as faces convey a range of hierarchically
embedded information (Adolphs, 2002; Bayet and Nelson, 2019).
Developmental studies suggest that separate processes underlie the
perception of emotional faces and the processing of other facial infor-
mation such as identity, even though these processes can affect each
other (Bayet and Nelson, 2019). A meta-analysis on children and adults
(mean age 27 years; 105 fMRI studies) on the processing of emotional
faces showed that emotional faces elicited activity in several visual,
limbic, temporoparietal and prefrontal areas; the putamen; and the
cerebellum (Fusar-Poli et al., 2009). Neural activity in the visual cortex
and cerebellum was observed independent of emotional valence. Happy,
fearful, and sad faces specifically activated the amygdala. Disgusted and
angry faces specifically activated the insula. A recent meta-analysis in
adults (141 fMRI and PET studies) showed consistent activity in the left
amygdala in response to happy, angry, fearful and sad faces, but
category-specific lateralization of the ventromedial prefrontal cortex
(Xu et al., 2021). Another recent meta-analysis in adults (96 fMRI and
PET studies) showed that the ventral pathway, especially the left fusi-
form gyrus, was more responsive to facial expression than the dorsal
pathway (Liu et al., 2021).

So far, behavioral emotion labeling, neural processing of emotional
faces and social competence are mostly studied in isolation. Still, pre-
vious studies show that both lower emotion labeling accuracy and
atypical neural processing of emotional faces relate to neuro-
developmental conditions often associated with atypical social compe-
tence. For instance, a meta-analysis showed that more accurate emotion
labeling is associated with higher social competence and less behavioral
problems in childhood and adolescence (Trentacosta and Fine, 2010).
Moreover, reviews and meta-analyses suggest that lower emotion la-
beling accuracy may be associated with a wide variety of
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neuropsychiatric or neurodevelopmental conditions, such as autism
spectrum disorder (Harms et al., 2010; Uljarevic and Hamilton, 2013;
Yeung, 2022), mood disorders, anxiety disorders or attention deficit
hyperactivity disorder (Collin et al., 2013), internalizing problems
(Zhang et al., 2024) and externalizing problems (Cooper et al., 2020).
Furthermore, aberrant neural processing of emotional faces is one of the
most consistent neuroimaging findings in the childhood maltreatment
literature (Hein and Monk, 2017) and is related to various psychiatric
conditions (Delvecchio et al., 2013; Etkin and Wager, 2007; Harms et al.,
2010; Mitchell et al., 2014; Stuhrmann et al., 2011; Monteiro et al.,
2017). However, to our current knowledge no studies investigated both
emotional labeling accuracy and neural emotional face processing in
relation to social competence in a large population-based developmental
cohort. Investigating interrelations between all three aspects may help
further the understanding of mechanisms underlying social behavior
and (a)typical development.

In this study we aim to investigate age- and sex-effects on social
competence, behavioral emotion labeling and neural processing of facial
expressions of emotions in pre-adolescence. Furthermore, we are inter-
ested in the link between inter-individual differences in emotion label-
ing accuracy and reaction time, neural facial-emotion processing, and
social competence. We hypothesize 1) that older children and girls are
faster and more accurate when labeling emotions and score higher on all
social competence subscales; 2) that shorter emotion labeling reaction
time and higher accuracy is related to higher social competence; 3) that
variation in neural processing of emotional faces can be partly explained
by age, sex and emotion labeling skills, with older children, girls and
children with superior emotion labeling skills showing different acti-
vation patterns; 4) that social competence correlates with brain activa-
tion patterns in response to emotional versus neutral faces.

2. Materials and methods
2.1. Participants

The YOUth cohort study is a longitudinal population-based study on
brain development with a specific focus on social competence and self-
regulation (Onland-Moret et al., 2020). In the current study we included
data from the first wave of YOUth: Child & Adolescent, in which 1332
children between 7.9 and 11.0 years old participated (57 % female). In
the YOUth study data on sex and gender identity is collected, but for this
study we focused on sex-effects. The YOUth cohort study was conducted
in Utrecht, a province of the Netherlands, with on average highly
educated inhabitants with high incomes (Fakkel et al., 2020; Buimer
et al., 2022). All data included here was collected prior to the COVID-19
pandemic. This study was approved by the Medical Research Ethics
Committee Utrecht. Children participated on a voluntary basis and
parents/guardians gave written consent and assent. Fig. 1 shows the
available data for the domains relevant to the current study.

2.2. Social competence data

Social competence was defined using the subscales perspective taking
and empathic concern of the Interpersonal Reactivity Index (IRI, self-
report, Davis, 1983) and the subscales prosocial behaviour and peer
problems of the Strengths and Difficulties Questionnaire (SDQ,
parent-report, Goodman, 1997, 2001). Together the subscales of the two
questionnaires tap different aspects of social competence (Junge et al.,
2020). Each of the four subscales contains 5 items, which were summed
to get total subscale scores for each child.

2.3. Behavioral emotion labeling
The Penn Computerized Neurobehavioral Battery (CNB) is devel-

oped by the University of Pennsylvania to capture specific cognitive
domains that link to brain function (Gur et al., 2010). Within YOUth:



E.E.L. Buimer et al.

Social competence data
N=936

Emotion labeling data
N=1057

fMRI data
N=752

Fig. 1. Venn diagram of the available data. Labels specify the data domains of
interest for this study and the total number of participants with data for the
domain. Colors of the labels correspond to the colors of the three circles. Area of
the circles and the overlapping spheres are proportional, and numbers indicate
absolute numbers of children. Figure adapted from web application DeepVenn
(Hulsen, 2022).

Child & Adolescent, a subset of the web-based CNB was collected,
including the 40-item Emotion Recognition Test (ER-40). In the ER-40,
the child labels the emotion on presented images of facial expressions in
a multiple-choice format: happy, sad, anger, fear or neutral. The
multiple-choice options were presented in the children’s native lan-
guage, Dutch. From the ER-40, we used accuracy (the number of correct
responses) and reaction time (the median response times computed over
the trials with correct identifications). We did not observe irregularities
in the data due to non-compliance (for example, continuously picking
the same answer). One participant had a response time for fearful facial
expressions of 11.6 seconds. The participant with this extreme outlier
was removed from the dataset because the median response time for

Houses
Example sequence of houses

Faces
Example sequence of happy faces

B
3
—8—

F_‘
P
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fearful faces was based on only this one correct trial resulting in a
response time 13 standard deviations from the mean of 2.5 seconds.
Other outliers were not as extreme or based on more than one trial. As
we were interested in inter-individual variation, we did not remove
these other outliers. Boxplots of reaction times in relation to correct
responses with and without the outlier can be found in Supplementary
figure S1.

2.4. Neuroimaging data

2.4.1. Stimuli presentation

The face/house fMRI task is a passive viewing task in which children
are presented with four blocks of stimuli (Fig. 2). Each block contains 4
sequences of 9 stimuli. The sequences contain pictures of one of the
following categories: pictures of faces with a specific emotional valence
(happy, fearful or neutral expression) or pictures of houses. The same
pictures are used in each block with for each sequence 9 different pic-
tures of the same category in a row. Within each block, categories (se-
quences) appear in a semi-random order. Stimuli are presented in blocks
of 18 seconds. Within each block, stimuli are presented for 1 second
followed by a 1 second fixation cross. Between blocks there is a period of
rest. To ensure that the children remain focused, they are instructed to
press a button when a red circle appears in the center of the screen. This
circle appears as first stimulus at the start of the task and after each block
(five times in total). No other behavioral data is collected during the
scan. For the pictures of the faces, we used different stimuli than in the
behavioral emotion labeling task. In the fMRI task we used stimuli from
the Radboud Faces Database from 9 adult actors (4 male, 5 female)
(Langner et al, 2010). The stimuli were presented on an
MRI-compatible 23-inch LCD screen with a resolution of 1080 by 1920
pixels (BOLDscreen, Cambridge Research Systems).

2.4.2. Neuroimaging acquisition
In the YOUth cohort study, the collection of MRI data is monitored

Block Sequence*
Rest
Button press attention check

Happy
Fear

Button press to test attention

2

House
Neutral
Rest
Button press attention check

1 second fixation

Rest
Button press attention check

Al
1
1
1
1
R2
A2
2 House
2 Fear
1 second stimulus 2 Neutral
2 Happy
R3 Rest
A3 Button press attention check
3 Happy
Et cetera 3 Fear
3 House
3 Neutral
R4 Rest
A4 Button press attention check
4 House
4 Fear
4 Neutral
4 Happy
RS
AS

* The following 9 stimuli were used in each sequence:
Stimuli happy: fhappy1, mhappy1, fhappy2, mhappy2, fhappy3, mhappy3, fhappy4,mhappy4, fhappy4
Stimuli fear: ffear1, mfear1, ffear2, mfear2, ffear3, mfear3, ffeard, mfear4, ffear3
Stimuli neutral: fneu1, mneu1, fneu2, mneu2, fneu3, mneu3, fneud, mneud, fneu5
Stimuli house: house1, house1, house2, house2, house3, house3, house4, house4, house3

Note: Each actor or house has its own number. For male actors m is used and for female actors f. The same stimuli were presented in the same order in each sequence.

Fig. 2. Design of fMRI task.



E.E.L. Buimer et al.

closely over time based on human data and weekly collected phantom
data. The YOUth MRI protocol, quality control and test-retest reliability
are described in detail elsewhere (Buimer et al., 2020). All data was
acquired on the same Philips Ingenia CX 3.0 T MRI scanner.
Whole-brain, T2 * -weighted echo planar images were acquired with the
following parameters: TR = 1000 ms; TE = 25 ms; flip angle 65°;
2.5 mm x 2.5 mm in-plane resolution; 2.5 mm slice thickness; 51 slices
per volume; SENSE factor 1.8 (anterior—-posterior); multiband factor 3.
Data was acquired in a single run of 389 dynamic scans. For anatomical
reference a structural T1-weighted 3D gradient echo scan was acquired
with the following parameters: TR = 10 ms; TE = 4.6 ms; flip angle
= 8° voxel size =0.75mmx 0.75 mmx 0.80 mm; parallel imaging
factor = 1.70 (AP) and 1.40 (RL).

2.4.3. Preprocessing

Preprocessing and subsequent processing of fMRI scans were done
using SPM12 (http://www.fil.ion.ucl.ac.uk/spm/) in MATLAB 2020b
(The MathWorks Inc., Massachusetts, United States). The steps
described here are identical to those used in previous studies that
included YOUth fMRI data (Buimer et al., 2020; Pas et al., 2021). In
short, preprocessing included realignment to correct for head motion,
where the time-series were registered by a least-square approach and a
rigid-body transformation. After realignment, slice timing correction,
spatial normalization to MNI-152 space, and smoothing (8 mm full
width at half maximum) to correct for inter-individual differences in
functional anatomy were applied. Collected MRI-scans of the children
are processed immediately after data collection for quality control
purposes, on a local server with scripted pipelines. For each scan a
quality control report was generated (Buimer et al., 2022). Reports
contained figures of realignment parameters, motion statistics and
signal measures plotted against the time series. Furthermore, signal and
noise brain maps were included in the reports. Local drops in signal were
found in scans with high framewise displacement scores but signal drops
could also indicate scanner artefacts. We found that the best and most
objective way to remove scans with severe motion artefacts was by using
a fixed fMRI signal threshold (see individual analyses).

2.4.4. Individual analyses

Task activity was estimated using a general linear model (GLM)
including factors for happy faces, fearful faces, neutral faces, and houses.
The six realignment parameters were added to the design matrix to
model residual effect of head motion. All data were high-pass filtered
with a cut-off of 128 seconds to remove low-frequency drifts. We used a
global signal threshold of 80 % to avoid including brain areas with low
signal. Participants exhibiting significant signal drops within the brain
mask, leading to holes in the mask, were excluded from the analysis (Pas
et al., 2021). This resulted in exclusion of 53 out of 806 fMRI scans. Low
signals drops were mostly related to motion artefacts, although in some
cases scanner artefacts may have played a role. After the GLM, we
defined four contrasts: 1) faces > houses; 2) happy faces > neutral faces;
3) fearful faces > neutral faces; 4) fearful faces > happy faces. The
first-level analyses produced four contrast maps for each participant.

2.4.5. Group analyses

In the second-level analyses, task activation maps were thresholded
at prwe < .05 and a cluster extent threshold based on p < .001 which
corresponds to a z-value of 3.1 (based on Eklund et al., 2016). The
threshold for significance was converted into a voxel size threshold (k)
based on the SPM file of each contrast using the SPM Cluster Size
Threshold Estimation tool (https://doi.org/10.5281/zenodo.1689891).
This resulted in a cluster size threshold of 21 voxels for contrast 1 (faces
> houses); 27 voxels for contrast 2 and 4 (happy faces > neutral faces
and fearful faces > happy faces); 28 voxels for contrast 3 (fearful faces >
neutral faces). Because we found widespread and very large clusters
(even with our stringent thresholds), we included a watershed proced-
ure to subdivide clusters based on local minima and maxima. The peaks
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and local minima were used to define borders and to split the cluster into
separate segments (Fig. 3). Individual contrast maps were masked with
the different segments and the average of the g-values for the voxels
within a mask were extracted for subsequent analyses.

2.5. Statistical analyses

All statistical analyses were conducted in R version 4.0.5 (2021-03-
31). The effect of age and sex on social competence was tested with
separate linear models for each social competence subscale. The
threshold for significance was adjusted to p < .0125 based on Bonferroni
correction for the four subscales.

For the emotion labeling data, we started with an analysis of variance
(ANOVA) to test if the median response time on correct trials was on
average different for different types of emotions. Tukey’s test was used
as post-hoc analysis to test for differences in group means. Next, we
investigated the effect of age and sex on emotion labeling (accuracy and
response time) using separate linear models for the different emotions.
The threshold for significance was adjusted to p < .005 based on a
Bonferroni correction for the 10 analyses (5 contrasts for both accuracy
and speed). Additionally, we reran these analyses after adding the 4
social competence subscales using the same Bonferroni corrected
threshold for significance.

For the fMRI analyses, the average f-values in individual segments
were the dependent variables in linear regression models. As indepen-
dent variables we started off with only age and sex. Next, we added
emotion labeling skills: response time and accuracy for happy emotions
as predictors for active subclusters in the happy versus neutral contrast;
response time and accuracy for fearful emotions as predictors for active
subclusters in the fearful versus neutral contrast; response time and
accuracy independent of emotional valence as predictors for the faces
versus houses contrast. We controlled the number of false positives by
adjusting the p-values over the different subclusters for the false dis-
covery rate (FDR) within each contrast and using a threshold of pppgr
< .05 (Benjamini and Hochberg, 1995). Lastly, we ran these analyses
again with the four social competence subscales as predictors in addition
to age and sex, instead of emotion labeling skills, again using FDR-ad-
justed p-values for determining significance.

2.6. Addressing non-normality with residual-based permutations

In the case when dependent variables were not normally distributed,
we ran the linear models as usual to get effect sizes, standard errors and
the t-statistic of the variable of interest but determined significance by
computing p-values through residual-based permutations (Buzkova,
2016). For each variable of interest, a separate model was fitted leaving
this variable out of the equation, which acted as the null model in this
analysis. Next, residuals of this null model were used to create new
observations with the same sample size as the original sample. First, we
computed the fitted values for each observation and added permuted
residuals. The effect of the variable of interest (left out in the null-model)
was tested in the permuted sample by fitting the full linear model
including the variable of interest, providing a t-statistic for this variable.
This procedure was repeated 10.000 times resulting in a distribution of
ti-statistics for the variable of interest. Finally, the p-value was calculated
by assessing the probability of the t-statistic of the original model (t,rig)
given the ¢ distribution:

Ppermutated= (14-sum(abs(t;)> =abs(torig)))/(10000+-1)

This procedure is repeated for each variable of interest. Illustrative
examples of this procedure can be found in Figure S2.
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Contrast map where clusters span multiple regions

Fig. 3. Example of the watershed procedure. As input, we use a contrast map (in this example Faces > Houses) thresholded with prwg < .05 and a cluster extent
threshold based on p < .001 which corresponds to a z-value of 3.1. The watershed procedure then finds local peaks and minima and creates binary masks of the
segmentations. The segmentation masks can be used as regions-of-interest in subsequent analyses.

2.7. Post-hoc analyses

2.7.1. ROI analyses

After the data were seen and after preprinting our study (Buimer
et al., 2024), we added region of interest (ROI) analyses. ROIs were
selected for each contrast separately (Table 2) based on literature
(Fusar-Poli et al., 2009; Xu et al., 2021; Liu et al., 2021; Passarotti et al.,
2003). Cerebellar ROIs were not included as a small field-of-view was
used during the fMRI acquisition and the prefrontal cortex was priori-
tized over the cerebellum while setting the field-of-view. The automated
anatomical labelling (AAL) template (Tzourio-Mazoyer et al., 2002) was
used to generate mean activation levels per AAL region. A one-sample

Table 1

t-test was used to test if the group mean of task activation in a ROIL
differed from zero. ROIs with an FDR-adjusted p-value < .05 were used
in subsequent analyses. Next, the mean activation level in individual
ROIs were the dependent variables in linear regression models. Similar
to described in Section 2.5, we started with the effect of age and sex,
then emotion labeling skills and then social competence subscales on
activation in the ROIs. Again, within each contrast p-values were
FDR-adjusted over the different ROIs to determine significance.

2.7.2. The effects of smoothing
Even though a smoothing kernel of 8 mm is still widely used (Xu
et al,, 2021), for large developmental cohort studies this level of

The effect of age and sex on emotion labeling accuracy and speed. The results of linear models with age and sex as independent variables and number of correct
responses or median reaction time in milliseconds based on correct trials only as dependent variables. Each row shows the results of a separate linear model for a
specific emotion. The subscript orig indicates that the statistics are computed from the original linear model (forig, SEorig, torig) While the subscript permutated indicates

that the p-values are computed from the residual-based permutations (Ppermutated)-

Model Age Sex

Df Borig SEorig torig Dpermutated Borig SEorig torig Ppermutated
Accuracy
Happy 1054 0.05 0.02 2.05 .0404 0.12 0.04 3.06 .0023*
Sad 1054 0.18 0.06 3.23 .001* 0.37 0.10 3.80 <.0001*
Angry 1054 0.28 0.05 5.64 <.001* 0.15 0.09 1.73 .0839
Fearful 1054 0.29 0.06 5.12 <.001* 0.32 0.10 3.33 .0011*
Neutral 1054 0.23 0.06 3.98 <.001* —0.10 0.10 -1.01 .3219
Reaction time
Happy 1054 —150 14 -10.77 <.0001* —96 24 —4.00 .0002*
Sad 1050 —145 26 —5.62 <.0001* -97 45 —2.17 .0296
Angry 1051 —181 28 —6.41 <.0001* —156 49 -3.20 .0022*
Fearful 1054 -213 28 —7.51 <.0001* —67 49 -1.37 .1684
Neutral 1043 —253 31 -8.11 <.0001* 18 54 0.33 7465

* = survives Bonferroni correction for the total number of analyses in the table, i.e., p < .005.
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Table 2
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Task activations in regions-of-interest. For comparison ROI-based analyses with and without smoothing as part of the preprocessing pipeline are included. ROIs were
created using the automated anatomical labelling (AAL) template (Tzourio-Mazoyer et al., 2002).

Original group

Low motion subgroup

Smoothed data

Non-smoothed data

Smoothed data Non-smoothed data

Contast and AAL Region t (752) PrpR t (752) PrpR t (717) PrpR t (717) PrpR
Faces > Houses

Fusiform_L —39.353 <0.0001* —39.748 <0.0001* —38.554 <0.0001* —38.854 <0.0001*
Fusiform_R —43.511 <0.0001* —47.229 <0.0001* —42.554 <0.0001* —46.020 <0.0001*
Occipital Sup L —38.33 <0.0001* —38.020 <0.0001* —37.791 <0.0001* —37.316 <0.0001*
Occipital Sup R —36.793 <0.0001* —36.596 <0.0001* —35.988 <0.0001* —35.643 <0.0001*
Occipital Mid_L —43.674 <0.0001* —44.38 <0.0001* —43.158 <0.0001* —43.452 <0.0001*
Occipital Mid_R —42.576 <0.0001* —44.243 <0.0001* —42.020 <0.0001* —43.572 <0.0001*
Occipital_Inf L —23.52 <0.0001* —22.281 <0.0001* —23.445 <0.0001* —22.262 <0.0001*
Occipital Inf R —32.818 <0.0001* —31.378 <0.0001* —32.560 <0.0001* —31.008 <0.0001*
Parietal Sup_L —12.691 <0.0001* —13.868 <0.0001* —12.166 <0.0001* —13.215 <0.0001*
Parietal Sup_R —-10.243 <0.0001* —11.557 <0.0001* —9.940 <0.0001* -11.130 <0.0001*
Parietal Inf L —1.984 0.0556 —2.867 0.0046* —1.758 0.0924 —2.615 0.0098*
Parietal Inf R -1.871 0.0664 —3.080 0.0025* —-1.608 0.1166 —2.778 0.0065*
Temporal_Inf L 0.440 0.6597 —0.447 0.655 0.782 0.4346 —0.049 0.9609
Temporal_Inf R —3.312 0.0012* —4.183 <0.0001* —2.961 0.0040* -3.739 0.0003*
Happy > Neutral

Fusiform_L 13.178 <0.0001* 12.699 <0.0001* 13.120 <0.0001* 12.459 <0.0001*
Fusiform_R 12.467 <0.0001* 12.359 <0.0001* 12.238 <0.0001* 11.893 <0.0001*
Amygdala L 6.219 <0.0001* 6.647 <0.0001* 6.579 <0.0001* 6.906 <0.0001*
Amygdala R 6.613 <0.0001* 6.590 <0.0001* 6.891 <0.0001* 6.679 <0.0001*
Cingulum_Ant L 5.255 <0.0001* 6.097 <0.0001* 4.782 <0.0001* 5.661 <0.0001*
Cingulum_Ant R 4.535 <0.0001* 4.446 <0.0001* 3.918 0.0001* 3.839 0.0002*
Occipital Mid_L 18.657 <0.0001* 18.934 <0.0001* 19.010 <0.0001* 19.322 <0.0001*
Occipital Mid_R 14.331 <0.0001* 14.503 <0.0001* 14.225 <0.0001* 14.353 <0.0001*
Precuneus_L 5.774 <0.0001* 5.343 <0.0001* 5.900 <0.0001* 5.464 <0.0001*
Precuneus_R 5.494 <0.0001* 5.017 <0.0001* 5.659 <0.0001* 5.136 <0.0001*
Insula_L 3.628 0.0003* 3.408 0.0008* 3.346 0.0010* 3.074 0.0024*
Insula R 5.098 <0.0001* 5.491 <0.0001* 4.794 <0.0001* 5.223 <0.0001*
Frontal_Med_Orb_L 2.680 0.0079* 1.504 0.1331 2.999 0.0029* 1.920 0.0552
Frontal Med_Orb_R 2.356 0.0187* 1.566 0.1241 2.570 0.0104* 1.965 0.0524
Putamen_L 5.145 <0.0001* 4.798 <0.0001* 4.973 <0.0001* 4.639 <0.0001*
Putamen R 5.119 <0.0001* 5.020 <0.0001* 4.809 <0.0001* 4.765 <0.0001*
SupraMarginal L 5.387 <0.0001* 5.276 <0.0001* 5.632 <0.0001* 5.468 <0.0001*
SupraMarginal R 5.200 <0.0001* 5.345 <0.0001* 5.305 <0.0001* 5.449 <0.0001*
Temporal Mid_L 7.299 <0.0001* 7.355 <0.0001* 7.591 <0.0001* 7.389 <0.0001*
Temporal Mid R 5.926 <0.0001* 5.759 <0.0001* 5.970 <0.0001* 5.619 <0.0001*
Fearful > Neutral

Fusiform_L 7.832 <0.0001* 8.701 <0.0001* 7.828 <0.0001* 8.547 <0.0001*
Fusiform R 6.737 <0.0001* 7.354 <0.0001* 6.443 <0.0001* 6.923 <0.0001*
Amygdala L 6.067 <0.0001* 6.710 <0.0001* 7.361 <0.0001* 7.825 <0.0001*
Amygdala_R 5.545 <0.0001* 5.457 <0.0001* 5.895 <0.0001* 5.569 <0.0001*
Parietal Inf L —1.153 0.448 -1.261 0.3322 -1.231 0.4372 -1.329 0.3684
Parietal Inf R —-0.037 0.9705 —0.012 0.9901 —0.362 0.7450 —0.390 0.7255
Frontal Med_Orb_L —1.081 0.448 —1.806 0.1606 —0.870 0.5769 —1.506 0.2983
Frontal Med_Orb_R —0.710 0.5735 —1.003 0.4065 —0.496 0.7317 —0.595 0.6516
Frontal_Inf Oper_L 1.040 0.448 1.224 0.3322 0.875 0.5769 0.965 0.4724
Frontal_Inf Oper R 0.741 0.5735 0.751 0.5434 0.325 0.7450 0.351 0.7255
Frontal_Inf Tri L 1.392 0.3286 1.468 0.285 1.098 0.4909 1.111 0.4367
Frontal_Inf Tri_ R 0.947 0.476 1.037 0.4065 0.453 0.7317 0.555 0.6516
Frontal Inf Orb_L 1.961 0.1131 1.281 0.3322 1.705 0.1994 1.128 0.4367
Frontal Inf Orb_R 2.117 0.089 1.952 0.1321 1.805 0.1840 1.588 0.2898
Occipital_Inf L 11.413 <0.0001* 11.887 <0.0001* 11.500 <0.0001* 12.030 <0.0001*
Occipital Inf R 13.479 <0.0001* 13.428 <0.0001* 13.771 <0.0001* 13.700 <0.0001*
Pallidum L —-0.097 0.9705 —0.608 0.5977 —0.466 0.7317 —0.952 0.4724
Pallidum R —0.437 0.7451 —0.576 0.5977 —0.552 0.7317 —0.576 0.6516
Fearful > Happy

Amygdala L —0.558 0.5768 —0.502 0.6155 0.159 0.8736 0.226 0.8212
Amygdala_ R —1.292 0.2624 —1.505 0.177 -1.221 0.2965 —1.506 0.1766
Cingulum_Ant L —8.503 <0.0001* —9.184 <0.0001* —8.187 <0.0001* —8.918 <0.0001*
Cingulum_Ant R -7.267 <0.0001* —7.154 <0.0001* —6.894 <0.0001* —6.907 <0.0001*

" = Survives a threshold < 0.05 after adjusting for the False Discovery Rate (FDR).

smoothing may be too much (Gardumi et al., 2016; Jo et al., 2007;
Sacchet and Knutson, 2013). To assess the impact of smoothing on our
data, ROI-analyses were run with and without smoothing. All
above-described analyses were run twice to be able to compare
smoothed and non-smoothed output. When reporting the whole brain
task effects based on the non-smoothed data, we used the same thresh-
olding as for the smoothed data: prwr < .05 and a cluster extent

threshold based on p < .001 which corresponds to a z-value of 3.1
(based on Eklund et al., 2016). For the non-smoothed data this resulted
in a cluster extent threshold of k = 2 for all contrasts.

2.7.3. The effects of motion artefacts
To investigate potential effects of motion contamination in our data,
we added a frame-to-frame metric for exclusion. We created a low
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motion subgroup of children by excluding children with high motion
frames (> 0.3 mm, based on Smith et al., 2022) on over 30 % of the
frames, thus retaining only children with at least 70 % low motion
frames (n = 718). ROI-based analyses were rerun for this low motion
subgroup with and without smoothing.

3. Results
3.1. Social competence

3.1.1. Variation

For the Strengths and Difficulties Questionnaire (SDQ) scores ranged
from 1 to 10 for prosocial behavior and 0-9 for peer problems (theoretical
range for both subscales is from 0 to 10). As can be expected in a cohort
study, the SDQ subscales were skewed towards typical socio-emotional
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behavior with a mean and standard deviation of 8.49 (1.69) for proso-
cial behavior and 1.07 (1.56) for peer problems. For the Interpersonal
Reactivity Index (IRI) both subscales (perspective taking and emphatic
concern) ranged from O to 28 covering the full range of possible scores.
The data was normally distributed with a mean and standard deviation
of 14.37 (4.96) for perspective taking and 18.44 (4.40) for emphatic
concern.

3.1.2. The effects of age and sex

Better social competence was found for girls compared to boys for all
subscales and age effects were found for two subscales (Fig. 4). From the
SDQ, prosocial behavior increased with age t(933) = 2.731, g = 0.175,
standard error = 0.064, Ppermutated = -0066 and was higher for girls t
(933) = 5.096, f = 0.557, standard error = 0.109, ppermutated = -0001.
No age effects were found for peer problems and higher scores were

Lower level of prosocial
behavior for boys and younger
children
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Fig. 4. Effects of age and sex on social competence subscales. Red dots indicate social competence scores for girls and blue dots indicate scores for boys. Lines show
the relation modeled linearly between social competence score and age (for girls in red, boys in blue and in black for the group as whole). Peer problems and
prosocial behavior are subscales from the for the Strengths and Difficulties Questionnaire (SDQ). Empathic concern and perspective taking are subscales from the

Interpersonal Reactivity Index (IRI).
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reported for boys compared to girls t(933) = -4.314, § = -0.443, stan-
dard error = 0.103, Ppermutated = -0002. From the IRI, perspective taking
increased with age t(933) = 3.983, 8 = 0.751, standard error = 0.188,
Ppermutated = -0001 and was higher for girls t(933) = 4.645, § = 1.488,
standard error = 0.320, Ppermutated = -0001. No age effects were found for
empathic concern and lower scores were reported for boys compared to
girls 1(933) = 4.252, p =1.211, standard error = 0.285, Ppermutated
=.0001. Reported results survived Bonferroni correction based on the
four subscales (p < .0125).

3.2. Emotion labeling skills

3.2.1. Accuracy and response time

Children were highly accurate when labeling happy, fearful, and
neutral facial expressions in all trials, while some angry and sad faces
proved more difficult on average (Figure S3). The mean and standard
deviations of the accuracy measures were: Happy 7.64 (0.62), Sad 4.89
(1.56), Angry 4.28 (1.40), Fearful 6.53 (1.59), Neutral 6.92 (1.62). The
difference in accuracy between emotions was significant F(4)= 1067,
p < .001. The Tukey post-hoc test revealed that all cross comparisons
showed significant differences. There was a significant difference in
median response time on correct trials between the different emotions, F
(4)=66.93, p < .001. The Tukey post-hoc test revealed that children
were faster on correct trials for happy faces compared to each of the
other emotions (all p < .001), with no statistical differences between the
other emotions (Fig. 5). When repeating the analysis limiting to children
with at least 4 correct responses on every type of emotion (n = 258), we
found the same results. The relation between the median response time
on correct trials and the number of correct trials for each child can be
found in Supplementary figure S1.

3.2.2. The effects of age and sex

As the distribution of the emotion labeling data violated assumptions
of normality, we tested for significance with residuals-based permuta-
tions (Buzkova, 2016). For more information on this procedure, see the
supplementary materials and Figure S2. In general, older children and
girls had an advantage and were significantly more accurate and faster
on accurate trials when labeling most of the emotions (Table 1). The
accuracy when labeling sad, angry, fearful, and neutral emotions was
significantly higher in older children. For happy emotions, the effect of
age on accuracy did not survive Bonferroni correction (p =.0404).
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Fig. 5. Response time on correct trials for the different emotions. Boxplot of the
quartiles of the median response times on correct trials for different facial ex-
pressions of emotion. Each color represents a different facial expression stimuli.
Black dots are individual data points outside the interquartile range.
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There was a statistically significant advantage for older children in the
reaction time for correctly labeling all emotions. Furthermore, girls were
more accurate when labeling happy, sad, and fearful facial expressions,
and faster in the correct trials for happy and angry facial expressions. See
supplementary table S1 for all the statistics.

3.2.3. The relation with social competence

Again, residuals-based permutations were used to determine signif-
icance (Buzkova, 2016). See supplementary methods and Figure S2.
None of the four subscales of social competence were significant pre-
dictors of emotion labeling accuracy or speed for any of the emotions in
linear models corrected for age and sex (see Supplementary table S2).

3.3. The neural processing of emotional faces

3.3.1. Task compliance

Task compliance was good with most children responding to every
red circle in between blocks of the stimuli of interest (Figure S4). Only
2.3 % of the children (n = 18) showed low task compliance, which was
defined as pushing the button in between blocks never (n = 7), only
once (n = 8) or twice (n = 3). Because the percentage of children with
low task compliance was so low, all children were included in subse-
quent analyses.

3.3.2. Task activation

Whole brain analyses showed wide-spread task activation (Fig. 6).
We found more activation during faces versus houses in the bilateral
middle temporal gyrus, bilateral amygdala, left supramarginal gyrus,
bilateral precuneus, and left precentral gyrus. Higher activity in houses
versus faces was found in the bilateral fusiform gyrus and right superior
occipital gyrus. See Table S3 for an overview of activation clusters.
Higher activity in happy faces versus neutral faces was found in the
bilateral occipital pole, right inferior occipital gyrus, left posterior
orbital gyrus, left amygdala, left anterior insula, left middle cingulate
gyrus, left middle frontal gyrus, and left superior frontal gyrus
(Table S4). Higher activity in fearful faces versus neutral faces was found
in the bilateral occipital fusiform gyrus, left inferior occipital gyrus,
bilateral entorhinal area, right temporal pole, and bilateral thalamus
(Table S5). Happy faces elicited more activation than fearful faces in the
bilateral occipital pole, right inferior occipital gyrus, left anterior insula,
left putamen, and left middle frontal gyrus (Table S6).

Inspired by Miller at al., 2016, we additionally visualized overlap in
first-level activation patterns, i.e. the percentage of children passing
simple voxel-wise activation thresholding (t > 1.96) for each contrast.
Despite the widespread and strong activation patterns for all contrasts,
only the activation in the bilateral fusiform gyrus extending to the su-
perior occipital gyrus was robust and this cluster was significantly
activated in over 50 % of the participants for the faces > houses
(negative) contrast (Supplementary Figure S5). This suggests that this
contrast elicits the most robust brain activation across individuals in our
study.

Next, the large clusters were split up in subclusters based on the local
peaks of the whole brain activation using a watershed procedure
(Fig. 6). We ended up with 34 subclusters for faces > houses; 10 sub-
clusters for houses > faces; 49 subclusters for happy faces > neutral
faces; 15 subclusters for fearful faces > neutral faces; 50 subclusters for
happy faces > fearful faces. These subclusters were then used for sub-
sequent analyses.

3.3.3. The effects of age and sex

We did not find age or sex effects on activation patterns in the con-
trasts happy versus neutral (positive), fearful versus neutral (positive)
and happy versus fearful (negative) (Supplementary tables S7 to S9). We
did find a positive correlation between age and brain activity in the faces
> houses contrast (i.e., larger contrast in older children; Fig. 7, Sup-
plementary table S10). This effect was significant for 4 subclusters
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Fig. 6. From task activation to subclusters and task activation without smoothing. Axial slices (left hemisphere on the left side) of the task activity (A, C and D) or the
binary subcluster masks created with the watershed procedure (B) visualized using MRIcroGL. The activity for each contrast is thresholded at prwg < .05 and a cluster
extent threshold based on p < .001 which corresponds to a z-value of 3.1. The render on the right shows a transparent overview of the activity in both hemispheres
and the location of the axial slices. Activity or masks in blue are based on negative contrast maps and activity or masks in red are based on positive contrast maps.
Panel A shows the task activation in the original analysis. Panel B shows the cluster segmentations after the watershed procedure. Panel C shows the task activation
based on non-smoothed data. Panel D shows the task activation based on non-smoothed data in a low motion subgroup.

extracted from faces > houses (positive) in the left superior temporal
gyrus, t(749) = 3.251, pppr = -0193, Pyncorr = -0012, = 0.038 (SE =
0.012), the left medial frontal gyrus, t(749) = 3.415, pgppr = .0193,
Puncorr = -0007, = 0.078 (SE = 0.023), the left planum polare, t(749) =
3.225, pppr = .0193, Puncorr = -0013, f = 0.051 (SE = 0.016), and the left
superior frontal gyrus (medial segment), t(749) = 2.823, prpr = .0494,
Puncorr = -0049, = 0.072 (SE = 0.026). Furthermore, we also found a
positive correlation between age and brain activity in 1 subcluster

extracted from faces > houses (negative) indicating less deactivation (i.
e., higher activation) in older children for faces compared to houses in
the bilateral posterior cingulate gyrus in older children, t(749) = 2.777,
Drpr = 0.0494, puncorr = .0056, = 0.041 (SE = 0.015). Additionally, we
found a larger contrast for faces > houses (positive) for girls in the right
supplementary motor cortex, t(749) = 3.309, pmpr = .0431, Puncorr
=.0010, § =0.088 (SE = 0.026). No age effect was found in this
subcluster.
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Fig. 7. Age and sex effects on activity during faces versus houses. An axial slice shows the location of the subcluster (left hemisphere on the left side). In the plot
individual p-weights from the second-level analysis, averaged over the ROI, are plotted against age in years. The solid red lines indicate that the contrast between
faces > houses (positive) increases with age as group-average higher activity in faces than houses. The solid blue line indicates a large contrast in younger children
with as group-average higher activity in the faces > houses (negative) contrast. The rightest plot in the bottom row shows the significant effect of sex with a larger
contrast for faces > houses (positive) in girls and no age effect in this subcluster. The dot-dash line is based on the girls only and the dashed line is based on the

boys only.

3.3.4. The relation with social competence

None of the four subscales of social competence were significant
predictors of brain activity in any of the contrasts in linear models
corrected for age and sex (Supplementary tables S11-S13).

3.4. The behavioral labeling and the neural processing of emotional faces

The ability to accurately label happy faces and the response time
when correctly labeling happy faces did not significantly relate to brain
activity in the happy versus neutral faces contrast (Supplementary table
S14). Similarly, we did not find evidence that emotion labeling skills for
fearful faces was related to brain activity during the processing of fearful
versus neutral faces (Supplementary table S15). As a post-hoc analysis,
we wondered if the most robust contrast (faces versus houses), would
relate to response time during correct trials and accuracy in the emotion
labeling task (independent of emotional valence). Again, we did not find
significant associations between brain activity during faces versus
houses and emotion labeling skills at a behavioral level (Supplementary
table S16).

3.5. Post-hoc analyses

ROI-based task activation results with and without smoothing can be
found in Table 2. For the contrast faces > houses (negative), we found an
FDR-adjusted significant task effect in the bilateral fusiform gyrus, the
bilateral occipital gyrus (inferior, middle and superior part), the
bilaterial superior parietal gyrus and the right inferior temporal gyrus.
Additionally, in the non-smoothed but not in the smoothed task acti-
vation data the bilateral inferior parietal gyrus was significantly acti-
vated in the contrast faces > houses (negative). For the contrast happy
> neutral (positive), we found a significant task effect in the bilateral
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fusiform gyrus, the bilateral amygdala, the bilateral anterior cingulate
gyrus, the bilateral middle occipital gyrus, the bilateral precuneus, the
bilateral insula, the bilateral putamen, the bilateral supramarginal gyrus
and the bilateral middle temporal gyrus. These regions thus showed
higher activation in response to happy faces than in response to neutral
faces. In the smoothed but not in the non-smoothed task activation data
the bilateral medial orbital frontal gyrus was significantly activated in
the contrast happy > neutral (positive). For the contrast fearful >
neutral (positive), we found a significant task effect in the bilateral
fusiform gyrus, the bilateral amygdala and the bilateral inferior occipital
gyrus. These regions thus showed higher activation in response to fearful
faces than in response to neutral faces. For the contrast fearful > happy
(negative), we found a significant task effect in the bilateral anterior
cingulate. These regions thus showed higher activation in response to
happy faces than in response to fearful faces. No other differences were
found between smoothed and non-smoothed data in the ROI analyses.
Adding a frame-to-frame criterium for motion correction reduced the
motion contamination in the data (Figure S6). The ROI-based task ef-
fects for the low motion subgroup with and without smoothing resem-
bled the task effects in the original group with and without smoothing.
Fig. 6 shows the impact of removing smoothing from the pipeline on
whole brain task effects in the original group and the low motion sub-
group. Whole brain task activation was widespread and scattered in
many very small clusters in the non-smoothed data.

Subsequent analyses showed no evidence for effects of age, sex,
emotion labeling accuracy, emotion labeling response time and social
competence subscales on task activation in ROIs (all pgppr > 0.05) in
smoothed and non-smoothed data. Statistics corresponding to the sub-
sequent non-significant ROI-analyses with and without smoothing can
be found in the supplementary tables S17-S26. Analyses in the low
motion subgroup also yielded no significant results (Table S27 to
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Table S36).
4. Discussion

In this study, we tested whether social competence, behavioral
emotion labeling and neural processing of emotional faces were related
in pre-adolescence and if inter-individual variation in these measures
could be explained by age and sex. To this end we used data from 1054
children between 8- and 11-years-old participating in the YOUth cohort
study. We found effects of age and sex on social competence, behavioral
emotion labeling and neural face versus house processing, but no evi-
dence for effects on neural differential processing of emotional expres-
sions, nor for interrelations between social competence, behavioral
emotion labeling and neural processing of emotional faces.

4.1. Social competence

We used four subscales to assess social competence (Junge et al.,
2020). From the Interpersonal Reactivity Index (Davis, 1983) we used
the subscales perspective taking (IRI-pt) and empathic concern (IRI-ec),
and from the Strengths and Difficulties Questionnaire (Goodman, 1997,
2001) we used the subscales peer problems (SDQ-pp) and prosocial
behavior (SDQ-ps). The subscales were distributed as can be expected in
a population-based study. Social competence was higher for girls than
boys, consistent with literature (Maurice-Stam et al., 2018; Muris et al.,
2003; Overgaauw et al., 2017). Furthermore, IRI-pt and SDQ-ps
increased with age. Previous work shows age group differences be-
tween early adolescence and late adolescence for the IRI-pt but not the
IRI-ec (Hawk et al., 2013). This may suggest that perspective taking
(grouped under cognitive empathy) may have a protracted develop-
mental trajectory compared to empathic concern (grouped under af-
fective empathy). Using the SDQ, more prosocial behavior in older
children (9-11 years) compared to younger children (7-8 years) have
been reported before as well (Marzocchi et al., 2002, 2004).

4.2. Behavioral emotion labeling

We assessed emotion labeling using the Penn CNB, a neurocognitive
test battery with good validity and reliability (Swagerman et al., 2016).
Accuracy reached a ceiling effect in pre-adolescence, especially for
happy faces, neutral and fearful faces, leaving less room for
inter-individual variation. Still, we show that in pre-adolescence there is
an advantage in emotion labeling accuracy and response time for older
children compared to younger children. Furthermore, girls were more
accurate than boys in labeling happy, sad, and fearful expressions, and
faster than boys in correct trials for happy and angry expressions. These
associations are consistent with previous work using the Penn ER task in
a population with a wider age range 8-21 (Gur et al., 2012). Further-
more, our findings are in line with age and sex effects found for emotion
labeling accuracy, reaction time was not included, in 8- to 12-year-old
children using the Radboud Faces Database (Verpaalen et al., 2019). It
remains unclear if the age- and sex-effects on emotion labeling speed are
domain-specific or reflect improvements in general cognitive ability or
processing speed (Swagerman et al., 2016).

We did not find an association between emotion labeling accuracy or
speed and any of the social competence subscales in models corrected for
age and sex, contradicting previous studies. Previous work showed
negative associations between emotion labeling accuracy and the SDQ-
pp or total problem scores and positive associations between emotion
labeling accuracy and SDQ-ps in young children (Burley et al., 2022),
children with attention deficit hyperactivity disorder (Staff et al., 2022),
children with neurodevelopmental disorders (Loytomaki et al., 2022),
children with disruptive behavior (Hunnikin et al., 2020) and adopted
children (Paine et al., 2023). For the IRI subscales, previous studies are
less consistent. In a study on healthy adults, IRI-ec was negatively
associated with accuracy in the Penn ER task (Beals et al., 2022), while
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in two other studies on adults IRI-ec was positively associated with
emotion labeling accuracy (Israelashvili et al., 2020). Taken together,
previous studies show that in young children, vulnerable populations
and atypical developing children emotion labeling skills may be pre-
dictive of social competence. Here, we find no support that emotion
labeling skills predict social competence which may be partly explained
by the little variation in SDQ scores and by the ceiling effect for emotion
labeling accuracy (see also Section 4.5 for a more extensive discussion).

4.3. Neural facial emotion processing

The fMRI task resulted in wide-spread activation for the faces >
houses (positive and negative) contrast, the happy faces > neutral faces
(positive) contrast, the fearful faces > neutral faces (positive) contrast
and the fearful faces > happy faces (negative) contrast. Emotion faces
elicited more activity than neutral faces and happy faces elicited more
activity than fearful faces. When comparing our results to results in
meta-analyses (Fusar-Poli et al., 2009; Xu et al., 2021; Liu et al., 2021),
the activation in the current study is much more widespread. There are
four possible explanations for this widespread activity. One, our sample
size of 752 participants with fMRI data is much larger than the indi-
vidual studies included in the meta-analysis. Large sample sizes can
result in large clusters spanning multiple regions (Woo et al., 2014),
something researchers can (partly) control for with stringent statistical
thresholding. Two, the meta-analyses are mostly based on adults, and it
is suggested that in childhood brain activity is more diffuse while
maturation results in more focal activation patterns (Durston et al.,
2006), even though this interpretation has also been criticized (Brown
et al., 2006; Poldrack, 2010). Three, we found large inter-individual
variation in the first-level contrast maps which may result in wide-
spread second-level activation patterns. Four, for large developmental
cohort studies, a smoothing kernel of 8 mm may result in too much
smoothing (Gardumi et al., 2016; Jo et al., 2007; Sacchet and Knutson,
2013). We found minor difference when comparing results of smoothed
and non-smoothed data in the ROI-analyses (Table 2). The whole brain
task effects without smoothing still show widespread brain activity
patterns although the large clusters are now scattered in numerous small
subclusters (Fig. 6).

Activation patterns in the ROI-based and whole brain analyses partly
overlapped with meta-analyses (Fusar-Poli et al., 2009; Xu et al., 2021;
Liu et al., 2021). Importantly, based on literature (Fusar-Poli et al.,
2009; Passarotti et al., 2003; Miller et al., 2016), we expected activity in
the fusiform gyrus to be higher in faces compared to houses, but in our
study fusiform gyrus activity was higher in response to houses as
compared to faces. The different directionality in the fusiform gyrus may
be explained by the inclusion of different age categories in our study
compared to previous studies. Older participants showed greater neural
response when processing emotional faces than younger participants in
a meta-analysis (Fusar-Poli et al., 2009). Furthermore, the images of
houses and faces may have differed on lower-level visual properties
unrelated to the content (e.g. spatial frequency and variation in color).
Therefore, some stimuli may have attracted more attention than others.
Visual properties of the stimuli were not controlled for to keep stimuli
more naturalistic. Alternatively, the use of different task stimuli could
explain the different results: pictures of faces were contrasted to pictures
of houses in the current study, and pictures of faces were contrasted to a
fixation of a crosshair on the screen in Fusar-Poli et al. (2009).

Despite previous research showing that neutral faces can be ambig-
uous (Zhang et al., 2019), in our cohort the accuracy of labeling neutral
faces was very high (Figure S3). Therefore, we believe that neutral faces
were not necessarily a bad control in our study. Still, as the current
design lacks in-scanner behavioral data, we are not able to differentiate
between difficulties in distinguishing between emotions or differential
activation related to the emotional valence of the stimulus. The
passive-watching design of our study has more disadvantages. Because
children were not actively labeling emotions, the attention and task
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engagement may have been lower. Still, in between stimuli blocks,
children were instructed to press a button in response to a red circle and
less than 1 % of the children did not respond to the red button stimuli in
any of the trials and task compliance was good on average (Figure S4).

Another limitation of the current study is how motion was addressed.
While the signal drop threshold removed extreme and repetitive motion
artefacts, some level of motion contamination was still present in the
data (Figure S6). To address this, we added a frame-to-frame metric for
exclusion as a post-hoc analysis. We created a low motion subgroup by
retaining children with at least 70 % low motion frames. After reviewing
the literature, we defined low motion frames using a threshold of
< 0.3 mm (Smith et al., 2022). A more stringent threshold may signifi-
cantly impact our participant characteristics, as studies suggest that
motion artefacts may be more pronounced in younger children, boys and
children with ADHD or other diagnoses, though these factors are not
consistently linked to motion across all studies (Thomson et al., 2024;
Frew et al., 2022; Dosenbach et al., 2017). Results in our low motion
subgroup were comparable to the results found in the larger original
group. Although not incorporated in the current study, censoring
high-motion data points in GLM designs is a way to reduce motion
contamination in fMRI studies even more (Siegel et al., 2014).

To analyze effects of age, sex, social competence and emotion la-
beling on neural activity, we segmented the large clusters in subclusters
with the aim of detecting the true signal seeds. Contrary to our expec-
tations, no effects of age and sex were found for emotional versus neutral
faces. There are no previous studies of this magnitude in 8-, 9- and 10-
year-olds. Potentially, our brain-wide approach prevented us to pick
up subtle effects (Marek et al., 2022), especially as fMRI data in general
and for this task are only moderately reliable due to the state-dependent
nature of brain function and other sources of variations such as noise
(Buimer et al., 2020). Another explanation could be that the task design
(passive-watching) did not elicit sufficient region-specific brain activity.
Still, activity in four subclusters, that were more active during faces
compared to houses, was positively associated with age with an
increased contrast in older children in the left superior temporal gyrus,
the left medial frontal gyrus, the left planum polare, and the medial
segment of the left superior frontal gyrus. The activity in one subcluster
that was more active during houses compared to faces was positively
associated with age with a decreased contrast in older children in the
bilateral posterior cingulate gyrus. Sex effects were found in one sub-
cluster faces > houses (positive) with an increased contrast for girls in
the right supplementary motor cortex. We did not find an association
between neural processing and any of the social competence subscales.
Previous studies did find associations between neural processing and the
social competence subscales IRI-ec and IRI-pt, although not always. In
adolescents, the IRI-pt was associated with seed-based functional con-
nectivity with a negative association for most regions (Tremblay et al.,
2022). Within the default mode network connectivity was positively
associated with IRI-ec and IRI-pt in adolescence (Winters et al., 2021). In
adults, activity in the bilateral superior medial frontal cortex (a node
within the DMN) was positively associated with the IRI-pt and nega-
tively with the IRI-ec (Oliveira-Silva et al., 2018). A study in adults using
a false-belief task found positive associations between the IRI-pt and
medial prefrontal cortex activity (False-Belief > False-Photograph), but
no effect for the IRI-ec (Dodell-Feder et al., 2014). In young adults,
functional brain activity in response to familiar versus unfamiliar faces
was not related to the empathic concern subscale of the Interpersonal
Reactivity Index (IRI-ec) (Heckendorf et al., 2016). No associations be-
tween neural activity during prosocial choices for friends and the IRI-ec
or the IRI-pt were found in a study during mid-adolescence (Schreuders
et al., 2019). In post-hoc analyses we repeated all analyses using ROIs
based on previous literature instead of whole brain activity and no
significant associations were found. Overall, in one of the largest studies
to date in children between 8 and 11 years of age we find no support that
social competence and neural processing of emotional faces are related
contradicting smaller studies with different designs (resting-state
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functional connectivity or task-based fMRI with different tasks).

4.4. Association between behavioral emotion labeling and neural facial
emotion processing

Previous research validated the Penn task in children and adults (Gur
etal., 2010, 2012). A version of the emotion task was modified for use in
the fMRI scanner and elicited task-specific activation in individuals
older than 16 years (Roalf et al., 2014). Still, in this study we did not find
an association between behavioral emotion labeling skills and the neural
processing of emotional faces. One possible explanation is that variation
in performance on the Penn task does rely on more than emotional
processing brain networks, as motor speed, processing speed and
cognitive ability play a role as well (Swagerman et al., 2016). In the
same way, the passive watching task elicited widespread activity and
may not have been able to selectively target the facial emotion pro-
cessing network. In the same way, the social competence subscales
included in this study may tap on different aspects of social behavior
that are unrelated to emotion labeling or neural facial emotion pro-
cessing. Lastly, the ceiling effect for emotion labeling accuracy could be
an explanation that no link was found between emotion labeling and
neural facial emotion processing (see also Section 4.5 for a more
extensive discussion).

4.5. Emotion differentiation and labeling as building blocks of social
competence

The current results also do not support prior suggestions that
emotion differentiation and labeling are important building blocks of
social competence (e.g. Bayet and Nelson, 2019; Junge et al., 2020).
However, to find a direct relation between two tasks, there needs to be
variation between individuals in both tasks. Such variation is often ab-
sent in tasks that show robust findings on a group level, referred to as the
reliability paradox (Hedge et al., 2018). Indeed, the emotion labeling
task in this cohort was selected because of their robustness on a group
level (Onland-Moret et al., 2020) and shows little individual variation
here. Most prior studies that show a strong relation between emotional
labeling and social competence included groups that show more varia-
tion between individuals, because individuals either showed atypical
development or were younger and strongly developing the skill. It could
be hypothesized that the measurements of emotional labeling included
in the current study were already matured well enough to not vary much
between children, and therefore not directly relate to social competence
anymore. Still, for neural emotion face processing the inter-individual
variation was very high. Additionally, social competence relies on
much more than emotion labeling or neural emotional face processing
only. In each developmental period specific characteristics contributing
to social competence are strengthened (Junge et al., 2020). Therefore,
the link between emotion labeling and social competence may be
stronger in younger children, while in pre-adolescence individual dif-
ferences in social competence may be better predicted by complex
cognitive processes such as attributing a mental state to someone; un-
derstanding the social context; determining what would be appropriate
behavior under the circumstances (Hoemann et al., 2019). Recent
studies experiment with more naturalistic or dynamic emotional stimuli
(for example, Camacho et al., 2023).

4.6. Conclusion

We tested for interrelations between three predictors of social
behavior in daily life: social competence, emotion labeling and neural
processing of emotional faces. In a developmental cohort of pre-
adolescents, we show an advantage for girls and older children for so-
cial competence and facial emotion labeling, but no support for a rela-
tion between the two factors. Furthermore, we show strong and
widespread brain activity in response to faces (happy faces > fearful
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faces > neutral faces) and houses, but no association between the task
contrasts and social competence or behavioral emotion labeling. To
conclude, we find age- and sex-related variation in emotion labeling
skills and social competence in pre-adolescence. However, in a popu-
lation cohort we did not find support for associations between neural
activity in response to faces, behavioral emotion labeling and social
competence.
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