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A Supplementary material for Chapters 2-5

Table A.1: Links to supplementary materials available online for each chapter.

Chapter Supplementary material

https://ars.els-cdn.com/content/image/1-s2.0-50921344924001678-
mmcl.pdf

3 https://doi.org/10.1111/jiec.13181

https://www.sciencedirect.com/science/arti-
cle/pii/S0959652622044195#appsecl

5 https://www.rsc.org/suppdata/d5/ee/d5ee01356a/d5ee01356al.pdf

2

B Sensitivity analyses for Chapters 4 and 5

Simplified sensitivity analyses for alternative steel demand scenarios for Chapters 4 and 5
assess the effect of lower steel production amounts in Germany (Chapter 4) and globally
(Chapter 5).

Assumptions

The steel production amounts are reduced as follows.
For the German steel scenarios (Chapter 4), instead of a constant production of
42.4 Mt steel/year, steel production linearly declines from 2020 onwards such that it
reaches a 30% reduction by 2050 compared to 2020 (29.68 Mt steel/year). This rep-
resents an annual reduction rate of 1% of the 2020 production levels, i.e.,
0.424 Mt steel/year.
For the global steel study (Chapter 5), the sensitivity analysis assumes constant steel
production instead of an increase by 61% from 2020 by 2060.

For emission intensities, the original trajectories of the steel production market mixes are

assumed as proxies. These are presented in Figure 5 (Chapter 4) and in Figure 6 (Chapter 5)
for the German and the global study, respectively.

Results

When assuming these reduced demand scenarios of the sensitivity analysis, the steel in-
dustry may still consume disproportionately large shares of the remaining carbon budgets
in the future.
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For Germany, the resulting cumulative CO; emissions are reduced by 10-14% compared to
the respective original scenarios by 2050 (see Figure B.1), i.e., by 86-210 Mt CO,. Neverthe-
less, they exceed the proportional share of the 1.5°C and 1.75°C carbon budgets allocated
for the German steel industry in this study. Only the very best-performing CCS scenario
nearly meets the upper boundary of the proportional 1.75°C budget with an overshoot of
2% by 2050. The decarbonization scenarios still require 9-12% and 8-11% of the upper
thresholds of the proportional 1.5°C and 1.75°C budgets, respectively. These shares are
much higher when assuming less beneficial distribution approaches for defining German
carbon budgets (see Table 5, Chapter 4), representing the lower boundaries of the carbon
budgets.

For the global steel scenarios, cumulative emissions are reduced by 21% and 18% for the
2°Cand 1.5°C scenario respectively, i.e., by 26 and 16 Gt CO,-eq. They represent 7-11% and
15-24% of the 2°C and 1.5°C budgets by 2060 respectively (assuming the 50t-83t percen-
tile of the carbon budgets). As such, they may meet their proportionate share of the global
end-of-the-century 2°C budget by 2060, but still clearly exceed their share of the 1.5°C
budget.

1400 A 1.5°C - increased
B 1.75°C - increased
1200 = Reference scenario
/ Electrification scenario
1000 | ) -
Coal-exit scenario
Carbon capture scenario

Mt CO»

Q T T T T T
2020 2025 2030 2035 2040 2045 2050

Figure B.1: Results of the sensitivity analysis assuming a linear decline of steel production in Germany reach-
ing -30% by 2050 compared to 2020. Cumulative CO, emissions for 2020-2050 per scenario compared to
proportional carbon budgets of the iron and steel industry in Germany for a 1.5°C (yellow area, average
share) and a 1.75°C (red area, average share) climate target (for budget definition see Table 6, Chapter 4).
The dashed horizontal lines represent the carbon budgets if the allocation share for the steel industry is
increased from its average of 7.6% to 10%. For each scenario, the emission factor of electricity is varied
between minimum and maximum values (see Table 4, Chapter 4). Results for the original scenarios with
constant production amounts are provided in Figure 6, in Chapter 4.

Reflections

Although cumulative emissions to some extent reach levels very close to the carbon budg-
ets by 2050 and 2060 under the assumed decreased production amounts, the results should
be interpreted with caution. Cumulative emissions will very likely continue to rise by the
end of the century requiring additional shares of the carbon budgets, as steel production is
unlikely to be climate-neutral by 2060 (Figure 6, Chapter 5). Consequently, meeting the
carbon budgets by 2100 is less feasible than by 2060. Furthermore, the assumptions of
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demand reductions are substantial, i.e., a 30% decrease within 30 years, and constant in-
stead of a 61% increase within 40 years. Achieving such drastic demand changes poses a
considerable challenge.

Nevertheless, demand is a direct multiplier of emissions. As such, reducing demand repre-
sents a very effective mitigation strategy, particularly in the near future, when emission
intensities are still high, and under scenarios with less ambitious climate targets.

It is important to note that these sensitivity analyses estimate the effect of lowering pro-
duction amounts but they do not represent consistent supply and demand scenarios gen-
erated by IMAGE, since emission intensities are based on the original production scenarios
instead of derived from new supply scenarios. Hence, emission intensities and cumulative
emissions may be overestimated in this analysis, as, for example, secondary production
shares may be higher and primary production lower under decreased production amounts.
Hence, the sensitivity analysis represents a conservative estimate.

Analyses which can consistently couple comprehensive demand and supply scenarios re-
quire methods and models which are beyond the scope of this work, and are thus subject
for future research.
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