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Chapter 8

Cute remarks

In this chapter, we gather new proofs of known results that we find elegant and concise.

All of them relate to functions defined on the Boolean cube.1

8.1 Generalizing a work of Kalai and Schulman

Kalai and Schulman studied the influences of multilinear polynomials with {−1, 0, 1}-
valued coefficients [KS19] (we refer to their work for motivation). They showed an

upper bound of
∑
i∈[n]

√
Infi[p] in terms of ∥p∥∞. They proved that

∑
i∈[n]

√
Infi[p] ≤ 3dd5/2∥p∥∞

for unimodular polynomials. We can improve this bound, generalize it to arbitrary

polynomials (not necessarily unimodular), and show that the exponential dependence

on d is necessary. Our proof is simple, short and based on hypercontractivity [Bon70]

and a bound on the sum of L1 influences [BB14, FHKL16].

Before diving into the proof of the main result of this section, Proposition 8.3, we

need to the define the Lq influences and state two results that we use as lemmas. The

Lq influence is defined by

Infqi [p] = Ex
[∣∣∣∣p(xi→1)− p(xi→−1)

2

∣∣∣∣q] ,
1The results of Section 8.1 were derived in a conversation with Miquel Saucedo during a research

stay in Hausdorff Institute for Mathematics, in Bonn, Germany.
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8.2. Generalizing a work of Kalai and Schulman

where the expectation is taken with respect to the uniform distribution on {−1, 1}n.

Note that Inf2[p] equals the Inf[p] defined in Section 2.5. In the Boolean case, Inf2i [p] =

Infqi [p] for every q ∈ [1,∞).

Theorem 8.1 (Hypercontractivity). Let p : {−1, 1}n → R be a polynomial of degree

at most d. Then, √
Ex |p(x)|2 ≤ edEx|p(x)|.

Theorem 8.2 (Bound on sum of L1 influences). Let p : {−1, 1}n → R be a polynomial

of degree at most d. Then, ∑
i∈[n]

Inf1i [p] ≤ d2∥p∥∞.

Proposition 8.3. Let p : {−1, 1}n → R be a polynomial of degree d. Then,

∑
i∈[n]

√
Inf2i [p] ≤ edd2∥p∥∞.

In addition, there is a unimodular degree d polynomial p such that

∑
i∈[n]

√
Inf2i [p] ≥

√
2
d−2
∥p∥∞.

Proof. By Theorem 8.1 it follows that for every i ∈ [n]√
Inf2i [p] ≤ edInf1i [p].

Now, taking the sum over i ∈ [n] and applying Theorem 8.2 we arrive at the claimed

result.

Let n = 2d−1. The (unnormalized) address function of p : ({−1, 1})n)d → R of

degree d is defined as

p(x) =
∑

a∈{−1,1}d−1

(x1(1)− a1x1(2)) . . . (xd−1(1)− ad−1xd−1(2))︸ ︷︷ ︸
ga(x1,...,xd−1)

xd(a), (8.1)

where we identify {−1, 1}d−1 with [2d−1]. It is satisfied that ∥p∥∞ = 2d−1, because

given (x1, . . . , xd−1) ∈ ({−1, 1}n)d−1 there is only one a ∈ {−1, 1}d−1 such that

ga(x1, . . . , xd−1) is not 0, in which case it takes the value ±2d−1. For every of the

2d−1 variables xd(a) we have that Inf2d,a[p] = 2d−2, so
∑√

Inf2i [p] ≥ (2d−2)3/2.
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Chapter 8. Cute remarks

8.2 The adversary method via Grothendieck’s in-

equality

In the first part of this thesis, we have focused on the polynomial method. Here, we will

revisit the other main method to prove quantum query lower bounds: the adversary

method [Amb00, HLv07] (see [LS21] for a survey). To define the adversary bound we

must introduce some notation. Let f : {−1, 1}n → {−1, 1}. A matrix Γ ∈ M2n(C) is

an adversary matrix for f if it is Hermitian and for every x, y ∈ {−1, 1}n such that

f(x) = f(y) we have that

⟨x|Γ|y⟩ = 0,

where {|x⟩} is an orthonormal basis of C2n . Given i ∈ [n], Di ∈ M2n is the matrix

defined by

⟨x|Di|y⟩ =

{
0 if xi = yi,

1 if xi ̸= yi.

The adversary bound of f is defined by

Adv(f) := sup
Γ

∥Γ∥op
maxi∈[n] ∥Γ ◦Di∥op

, (8.2)

where the supremum runs over all adversary matrices Γ and ◦ denotes the entry-wise

matrix product, namely (A ◦B)ij = AijBij . In this section, we will give a, to the best

of our knowledge, novel proof of the following result via Grothendieck’s inequality (see

Section 2.7.1).

Proposition 8.4. Let f : {−1, 1}n → {−1, 1}. Then, Q(f) = Ω(Adv(f)).

Before diving into the proof, we give an intuition of why such a result holds. Con-

sider an algorithm whose bias approximates f with high probability. Before making

any query, the algorithm prepares a state that does not depend on the input x. In

terms of adversary matrices Γ, this will mean that some closeness measure, to be

defined below, will have value ∥Γ∥op before making any query. Also, at the end of

the algorithm, the state prepared on a pair of inputs x and y such that f(x) ̸= f(y)

must be far away, so the algorithm can distinguish them with a measurement. In

terms of Γ, this will be formalized via Grothendieck’s inequality and will mean that

the closeness measure will have value ≤ KG/5 · ∥Γ∥op at the end of the algorithm.

Finally, it will follow from a simple argument that the algorithm can only separate

the states prepared when querying x and y a bounded amount per query. In terms of
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8.2. The adversary method via Grothendieck’s inequality

Γ, this will mean that the closeness measure can only decrease 2maxi ∥Γ ◦Di∥op per

query. Putting everything together we have that the algorithm must make at least

∥Γ∥op − KG

5 ∥Γ∥op
2 maxi∈[n] ∥Γ ◦Di∥op

queries.

Proof. We will show that Q2/100(f) = Ω(Adv(f)). Let A be an algorithm that makes

t queries and whose bias 2/100 approximates f(x). This means, that A fails with

probability ∥Π−f(x)|ψtx⟩∥22 ≤ 1/100. Let Γ be an adversary matrix for f . Let |δ⟩ be

such that |⟨δ|Γ|δ⟩| = ∥Γ∥op. We define the closeness measure at step s ∈ {0, . . . , t} as

Cs := |
∑
x,y

Γxyδ
∗
xδy⟨ψsx|ψsy⟩|,

where |ψsx⟩ is the state prepared by the algorithm on input x just after the sth query.

We divide the rest of the proof in three steps. First, we note that

C0 = |
∑
x,y

Γxyδ
∗
xδy⟨ψ0

x|ψ0
y⟩| = |

∑
x,y

Γxyδ
∗
xδy| = |⟨δ|Γ|δ⟩| = ∥Γ∥op,

where we have used that |ψ0
x⟩ does not depend on x because no queries have been

made.

Second, we claim that

Ct ≤ KG

5
∥Γ∥op

where KG is the (complex) Grothendieck’s constant, which is strictly smaller than 5.

Indeed, let Π−1,Π1 be the measurement performed by the algorithm, then

Ct = |
∑
x,y

Γxyδ
∗
xδy⟨ψtx|ψty⟩| = |

∑
x,y:f(x)̸=f(y)

Γxyδ
∗
xδy⟨ψtx|(Π−1 + Π1)|ψty⟩|

≤ |
∑

x,y:f(x)̸=f(y)

Γxyδ
∗
xδy(⟨ψtx|Π−f(x))|ψty⟩|+ |

∑
x,y:f(x) ̸=f(y)

Γxyδ
∗
xδy⟨ψtx|(Π−f(y)|ψty⟩)|

≤ 2

10
sup

∥ux∥2,∥vy∥2≤1

|
∑
x,y

Γxyδ
∗
xδy⟨ux, vy⟩|

≤ 2KG

10
sup

αx,βy∈{−1,1}
|
∑
x,y

Γxyδ
∗
xδyαxβy|

=
KG

5
∥Γ∥op,
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Chapter 8. Cute remarks

where in the first line we have used that Γ is an adversary matrix; in the third line

that ∥Π−f(x)|ψtx⟩∥22 is the failure probability, so it is smaller than 1/100; and in the

fourth line we have used Grothendieck’s inequality, Theorem 2.19.

Finally, we claim that

Cs − Cs−1 ≤ 2 max ∥Γ ◦Di∥op

for s ∈ [t]. Let Us be the unitary in between the (s − 1)th and the sth queries.

Recall that Ox acts as the controlled version of |i⟩ → xi|i⟩, so Ox|0⟩|i⟩ = |0⟩|i⟩ and

Ox|1⟩|i⟩ = xi|1⟩|i⟩. Let d be the extra dimensions of the algorithm as in Eq. (2.3).

Then,

Cs − Cs−1 ≤ |
∑
x,y

Γxyδ
∗
xδy(⟨ψsx|ψsy⟩ − ⟨ψs−1

x |ψs−1
y ⟩)|

= |
∑
x,y

Γxyδ
∗
xδy⟨ψs−1

x |(Ox ⊗ Idd)U
†
sUs︸ ︷︷ ︸

Id2nd

(Oy ⊗ Idd)− (Id2nd)|ψs−1
y ⟩|

= |
∑
ij

∑
x,y

Γxyδ
∗
xδy⟨ψs−1

x |(|1i⟩⟨1i| ⊗ Idd) (xiyj − 1)︸ ︷︷ ︸
−2(Di)xy

(|1j⟩⟨1j| ⊗ Idd)|ψs−1
y ⟩|

= 2|
∑
i

∑
x,y

(Γ ◦Di)xyδ
∗
x⟨ψs−1

x |(|1i⟩ ⊗ Idd)(⟨1i| ⊗ Idd)|ψs−1
y ⟩δy|.

Now, if we define Γ̃ as the block diagonal matrix with Γ ◦ Di as diagonal blocks for

i ∈ [n], and G as the block diagonal matrix whose blocks are the Gram matrices of

{δx(⟨1i| ⊗ Idd)|ψs−1
x ⟩}x, we have that

Cs − Cs−1 = 2|⟨Γ̃, G⟩| ≤ 2∥Γ̃∥op∥G∥tr

= 2 max
i∈[n]
∥Γ ◦Di∥op

∑
i

tr[Gram({δx(⟨1i| ⊗ Idd)|ψs−1
x ⟩}x)]

= 2 max
i∈[n]
∥Γ ◦Di∥op

∑
x

|δx|2︸ ︷︷ ︸
=⟨δ,δ⟩=1

∑
i

⟨ψs−1
x |(|1i⟩⟨1i| ⊗ Idd)|ψs−1

x ⟩︸ ︷︷ ︸
≤⟨ψs−1

x |ψs−1
x ⟩=1

= 2 max
i∈[n]
∥Γ ◦Di∥op.

Putting everything together, it follows that

t ≥ Ct − C0

2 maxi∈[n] ∥Γ ◦Di∥op
= Ω

(
∥Γ∥op

maxi∈[n] ∥Γ ◦Di∥op

)
.
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8.3. Average sensitivity lower bounds all reasonable complexity
measures

8.3 Average sensitivity lower bounds all reasonable

complexity measures

We will show that the average sensitivity s(f) of a Boolean function lower bounds

all the reasonable complexity measures of a Boolean function, which is the list of

well-studied complexity measures considered in [ABDK+21]. For total Boolean func-

tions, all of these measures are polynomially related to classical and quantum query

complexity. In particular, we will show that the average sensitivity lower bounds the

spectral sensitivity of a Boolean function λ(f). This is enough, as λ(f) lower bounds,

up to constant factors, all the reasonable complexity measures. From there, we can

easily show that all reasonable complexity measures are Ω(n) for almost all Boolean

functions, concisely reproving previous results such as Q(f) = Ω(n) for almost all total

Boolean functions [Amb99, ABSdW13]. More formally, given f : {−1, 1}n → {−1, 1}
its average sensitivity is defined by

s(f) := Ex
∑
i∈[n]

[(
f(x)− f(x⊕i)

2

)2
]
,

which also equals the sum of the influences,
∑
i∈[n] Inf2i [f ]. Its spectral sensitivity is

given by

λ(f) := sup
Γ

∥Γ∥
maxi∈[n] ∥Γ ◦Di∥

,

where the supremum runs over all adversary matrices that satisfy Γ[x, y] = 0 if the

Hamming distance between x and y is not 1 (see Section 8.2 for the definitions of

adversary matrix and Di).

Proposition 8.5. Let f : {−1, 1}n → {−1, 1}. Then, s(f) ≤ λ(f). Furthermore, the

inequality is tight for f = χ[n].

Proof. Let Γ be the adversary matrix such that Γx,y = 1 if the Hamming distance

between x and y is exactly one and f(x) ̸= f(y) and 0 in the other case. Note that Γ

can be written as

Γx,y = δx⊕i,yδf(x),f(x⊕i) = δx⊕i,y

(
f(x)− f(x⊕i)

2

)2

.

For this matrix, we can see that ∥Γ∥op ≥ s(f) and ∥Γ ◦ Di∥op = 1 for all i ∈ [n].
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Indeed,

∥Γ∥op ≥
∑

x,y∈{−1,1}n

1

2n
Γx,y =

∑
x,y∈{−1,1}n

1

2n
δx⊕i,y

(
f(x)− f(x⊕i)

2

)2

=
∑
i∈[n]

Ex
(
f(x)− f(x⊕i)

2

)2

= s(f).

On the other hand,

∥Γ ◦Di∥op = sup
∥u∥2=1

∑
x∈{−1,1}n

uxux⊕iδf(x),f(x⊕i) ≤ sup
∥u∥2=1

∑
x∈{−1,1}n

|uxux⊕i |

≤ sup
∥u∥2=1

∥u∥22 = 1.

Finally, for f = χ[n] we have that λ(f) = s(f) = n.

Corollary 8.6. Let CM be any reasonable complexity measure. For a 1−exp(− exp(n))

fraction of all Boolean functions f : {−1, 1}n → {−1, 1} we have that CM(f) = Ω(n).

Proof. If we pick a uniformly random Boolean function f : {−1, 1}n → {−1, 1}, then

Efs(f) = Ex
∑
i

Ef
1− f(x)f(x⊕i)

2
= Ex

∑
i

1

2
=
n

2
.

Now, note that changing the value of f on one input makes s(f) change at most 2n/2n.

Then, by McDiarmid’s inequality, Lemma 2.23, we have that

Pr
[
s(f) ≤ n

3

]
≤ exp(− exp(n)).

Now, the statement follows from Proposition 8.5 and the fact that λ(f) lower bounds,

up to constant factors, all reasonable complexity measures [ABDK+21].
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Oufkir, and Cambyse Rouzé. Certifying and learning quantum ising

hamiltonians. arXiv preprint arXiv:2509.10239, 2025.

[BCO24a] Andreas Bluhm, Matthias C Caro, and Aadil Oufkir. Hamiltonian prop-

erty testing (version 1). arXiv preprint 2403.02968v1, 2024. arXiv:

2403.02968v1.

[BCO24b] Andreas Bluhm, Matthias C Caro, and Aadil Oufkir. Hamiltonian prop-

erty testing (version 2). arXiv preprint 2403.02968v2, 2024. arXiv:

2403.02968v2.
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