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Chapter 7

Testing and learning quantum

Hamiltonians

7.1 Introduction

A fundamental and important challenge with building quantum devices is being able to
characterize and calibrate its behavior. One approach to do so is Hamiltonian learning
which seeks to learn the Hamiltonian governing the dynamics of a quantum system
given finite classical and quantum resources. Beyond system characterization, it is
also carried out during validation of physical systems and designing control strategies
for implementing quantum gates [IBF+20]. However, learning an n-qubit Hamiltonian
is known to be difficult, requiring complexity that scales exponential in the number of

qubits unless a coarse metric is used [Car23].

In practice, however, prior knowledge on the structure of Hamiltonians is available
e.g., those of engineered quantum devices [SMCG16] where the underlying Hamilto-
nians primarily involve local interactions with few non-local interactions, and even
naturally occurring physical quantum systems such as those with translationally in-
variant Hamiltonians. To highlight these structural properties, consider an n-qubit
Hamiltonian H (which is a self-adjoint operator acting on (C?)®") expanded in terms

of the n-qubit Pauli operators:

H = Z Az0z,

z€{0,1,2,3}"
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7.1. Introduction

We call the set of Paulis with non-zero coefficients A\, as the Pauli spectrum of the
Hamiltonian denoted by § = {x € {0,1,2,3}" : A\, # 0}. Of particular relevance are
k-local Hamiltonians which involve Pauli operators that act non-trivially on all but at
most k qubits and s-sparse Hamiltonians whose Pauli expansion contains at most s
non-zero Pauli operators i.e., |S| < s.

There has thus been a growing suite of Hamiltonian learning results that have
shown that when the underlying n-qubit Hamiltonian H satisfies these structural
properties, learning can be performed with only poly(n) query complexity, either by
making “queries” to the unitary evolution operator U(t) = exp(—iHt) [dSLCP11,
HBCP15, ZYLB21, HKT22, YSHY23, DOS23, HTFS23, LTN*23, SFMD*24, GCC24,
Zha24, HMG™25], or by assuming one has access to Gibbs state [AAKS21, HKT22,
RSF23, ORSFW23, BLMT23, GCC24]. Notably, [BLMT24] considered the problem of
learning Hamiltonians that are both local and sparse, without prior knowledge of the
support. Several of the learning algorithms mentioned above however require assump-
tions on the support of the Hamiltonian beyond locality or sparsity, such as [HTFS23]
which considers geometrically-local Hamiltonians (a subset of local Hamiltonians) and
[YSHY23] which requires assumptions on the support.

Moreover, before learning, it might be desirable to uncover what is the struc-
ture of an unknown Hamiltonian in order to choose specialized learning algorithms.
Even deciding if a Hamiltonian has a particular structure is a fundamental challenge
and constitutes the problem of testing if an unknown Hamiltonian satisfies a certain
structural property. This line of investigation is nascent with only a few works on
Hamiltonian property testing [SY23, ACQ22, LW22] with Blum et al. [BCO24b] hav-
ing considered the problem of testing local Hamiltonians and the problem of testing
sparse Hamiltonians yet to be tackled. This leads us to the motivating question of

this chapter:

What is the query complexity of learning and testing structured

Hamiltonians?

Problem statement

Before we state our results answering the question above, we clearly mention our
learning and testing problems first. If H is the Hamiltonian describing the dynamics
of a certain physical system, then the state of that system evolves according to the
time evolution operator U(t) = e~ *H!. This means that if p(0) is the state at time 0,
at time ¢ the state would have evolved to p(t) = U(t)p(0)UT (). Hence, to test and
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Chapter 7. Testing and learning quantum Hamiltonians

learn a Hamiltonian one can do the following: prepare a desired state, apply U(t) or
tensor products of U(t) with identity to the state, and finally measure in a chosen
basis. From here onwards, this is what we mean by querying the unitary U(¢). It
is usual to impose the normalization condition ||H|jop < 1 (i.e., that the eigenvalues
of H are bounded in absolute value by 1). We will assume this normalization unless
otherwise stated, but we will also work out the dependence on || H||p for our learning
algorithms. Throughout this paper, we will consider the normalized Frobenius norm

as the distance between Hamiltonians, unless otherwise stated. This distance is

Tr[(H — H')?]

d(H,H")=||H — H'||s = 5 ,

and it equals the fo-norm of the Pauli spectrum, d(H, H') = /> | \z — \.|2.

property of a Hamiltonian, denoted H is a class of Hamiltonians that satisfy the
property (here we will be interested in sparse and local properties). We say that H
is e-far from having a property H if d(H, H') > ¢ for every H' € H, and otherwise is

e-close. Now, we are ready to state the testing and learning problems.

Let #H be a property and let H be an unknown Hamiltonian with ||H||op < 1
and Tr[H] = 0.

Problem 7.1 (Tolerant testing). Promised H is either €1-close or ex-far from

satisfying property 7, decide which is the case by making queries to U(t).

Problem 7.2 (Hamiltonian learning). Promised H € H, output a classical
description of H € H such that |[H — H||; < ¢ by making queries to U(t).

Summary of results

The main results of this chapter are query-efficient algorithms for testing and learning
Hamiltonians that are local and/or sparse. We summarize our results in Table 7.1 (for
simplicity we state our results for constant accuracy). Before we discuss our results in

more detail, we make a few remarks about our main results.

Testing | Learning

s-sparse poly(s) poly(s)
k-local O(1) exp(k?)

Table 7.1: Query complexity for learning and testing n-qubit structured Hamiltonians.
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7.1. Introduction

(i) As far as we know, by the time of the publication, the results of this chapter are
the first: (a) with complexities that are independent of n 1, and (b) that does

not assume knowledge of the support.?

(iv) We give the first learning algorithm for Hamiltonians that are only promised to
be sparse, and not necessarily local. Similarly, our local Hamiltonian learning
problem doesn’t assume geometric locality which was assumed in several prior

works.

(7i7) Our testing algorithms are tolerant, i.e., they can handle the setting where 1 #
0. As far as we know, there are only a handful of polynomial-time tolerant testers

for quantum objects.

(v) Our learning algorithms are based on a subroutine that learns arbitrary n-qubit
Hamilotmians with O(1/e%) queries, albeit in the coarser metric of the £,,-norm
of the Pauli coefficients. As far as we know, this is the only best result for
unstructured Hamiltonians. Notably, it is also the first time-efficient proposal
for this problem.

We remark that most previous works on Hamiltonian learning (that we highlighted
earlier) are done under the distance induced by the supremum norm of the Pauli spec-
trum and with extra constraints apart from locality [dSLCP11, HBCP15, ZYLB21,
HKT22, WKR*T22, YSHY23, Car23, DOS23, HTFS23, LTNT23, SFMD*24, GCC24].
When transformed into learning algorithms under the finer distance induced by the
£-norm of the Pauli spectrum, these proposals yield complexities that depend polyno-
mially on n* and only work for a restricted family of k-local Hamiltonians. The works
that explicitly consider the problem of learning under the ¢>-norm have complexities
depending on n and assume a stronger access model [CW23, BLMT24].

Results

Testing. Recently, Bluhm, Caro and Oufkir proposed a non-tolerant testing algo-
rithm, meaning that it only works for the case e; = 0, whose query complexity is
O(n*+2 /(g9 —e1)*) and with total evolution time O(n*+1 /(g5 —21)?). They posed as

IThere are a few works that achieve n-independent complexities for learning local Hamiltoni-
ans in the co-norm of the Pauli coefficients, but when transformed into 2-norm learners they yield
complexities depending on n*.

2Soon after [Esc24b], Bakshi et al. [BLMT24] presented a learning algorithm that does not require
prior knowledge of the support, achieving Heisenberg scaling using heavy machinery.
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Chapter 7. Testing and learning quantum Hamiltonians

open questions whether the dependence on n could be removed and whether an effi-
cient tolerant-tester was possible [BCO24a, Section 1.5]. Our first result gives positive

answer to both questions.

Result 7.3. There is an algorithm that solves Problem 7.1 for k-local Hamiltonians by
making poly(1/(e2 — 1)) queries to the evolution operator and with poly(1/(e2 — 1))

total evolution time.

See Theorem 7.12 for a formal statement of this result. Our algorithm to test for
locality is simple. It consists of repeating the following process 1/(s5 — 1)* times:
prepare n EPR pairs, apply U(ez — 1) ® Iden to them and measure in the Bell basis.
Each time that we repeat this process, we sample from the Pauli sprectrum of U(es —
1).% As ey —ey is small, Taylor expansion ensures that U(ey—¢e1) = Idan —i(eg—e1)H,
so sampling from the Pauli spectrum of U(ey — £1) allows us to estimate the weight of
the non-local terms of H. If that weight is big, we output that H is far from k-local,
and otherwise we conclude that H is close to k-local.

Despite the numerous papers in the classical literature studying the problems of
testing and learning sparse Boolean functions [GOST11, NS12, YZ20, EIS22], there
are not many results on learning Hamiltonians that are sparse (and not necessarily
local) and the only testing result that we are aware of requires O(sn) queries [BCO24b,
Remark B.2]. Here, we present the first sparsity testing algorithm whose complexity
does not depend on n and the first learning algorithm for sparse Hamiltonians which
does not make any assumptions regarding the support of the Hamiltonian beyond

sparsity.

Result 7.4. There is an algorithm that solves Problem 7.1 for s-sparse Hamiltonians
by making poly(s/(e2—e1)) queries to the evolution operator and with poly(s/(e2—e1))
total evolution time.

See Theorem 7.15 for a formal statement. This testing algorithm consists on per-
forming Pauli sampling of U(v/(e3 — €7)/s) a total of O(s*/(e3 — ?)*) times. From
these samples one can estimate the sum of the squares of the top s Pauli coefficients of
U. If this quantity is big enough, we output that the Hamiltonian is close to s-sparse,
and otherwise that is far. Although from this high-level description the algorithm
seems similar to the locality testing one, the analysis is more involved and requires
taking the second order Taylor expansion, which is the reason why the dependence on

(e2 — &1) is worse in this case.

3The Pauli spectrum of a unitary U = Zz ﬁwax determines a probability distribution because
Em |U90|2 =1
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7.1. Introduction

Additionally, we provide a sparsity tester (Theorem 7.16) that only makes O(s?/e3)

queries with O(s!%/e3) total evolution time, but only works in the regime &; =

O(e2/V/s).

Learning. We first propose a protocol to learn unstructured Hamiltonians efficiently
in the coarser ¢, norm of the Pauli coefficients. Then, we turn it into a learner in the

l5 norm for local and sparse Hamiltonians.

Result 7.5. There is an algorithm that outputs estimates Xm such that | Ay — Xg;| <e
for every x € {0,1,2,3}" by making O(1/e*) queries to the evolution operator with
O(1/€3) total evolution time.

See Theorem 7.18 for a formal result. The learning algorithm has two stages.
In the first stage one samples from the Pauli distribution of U(e), as in the testing
algorithm, and from that one can detect which are the big Pauli coefficients of H. In
the second stage we learn the big Pauli coefficients via a novel subroutine based on
Clifford Shadows (see Lemma 7.17) and set the small to 0.

For Hamiltonians that are k-local, we have the following learning result in the

fo-norm.

Result 7.6. There is an algorithm that solves Problem 7.2 for k-local Hamiltonians by
making exp(k?+klog(1/¢)) queries to the evolution operator with exp(k?+ klog(1/¢))

total evolution time.

See Theorem 7.19 for a formal statement of this result. In the case that the
Hamiltonian is k-local, one can ensure that the coefficients not detected as big in
the first stage of the algorithm of Result 7.5 have a neglectable contribution to the
{o-norm, from which Result 7.6 follows. To argue this formally, we use the non-
commutative Bohnenblust-Hille inequality, which has been used recently for various
quantum learning algorithms [HCP23b, VZ23].

For Hamiltonians that are s-sparse, we have the following learning result in the

fo-norm.

Result 7.7. There is an algorithm that solves Problem 7.2 for s-sparse Hamiltonians
by making poly(s/e) queries to the evolution operator with poly(s/e) total evolution

time.

See Theorem 7.21 for a formal statement. Result 7.7 follows by adding a round-
ing step to the algorithm of Result 7.5 that ensures that all zero coefficients of the

Hamiltonians are also zero for the approximating Hamiltonian.

128



Chapter 7. Testing and learning quantum Hamiltonians

Direct comparison to previous work. Comparing the plethora of Hamilto-
nian learning algorithms can be challenging due to the different assumptions on the
structure of the Hamiltonians (local, sparse, geometrical structures, etc.), the different
distances to measure the error (£, norm of the coefficients, £5 norm, etc.), the different
complexity measures (queries, total evolution time, number of experiments, etc.), the
different access models (coherent/non-coherent queries, with/without memory, etc.)
and the different goals of the algorithm (minimizing the dependence on the dimen-
sion parameters like n, s, k, achieving the Heisenberg scaling 1/e, etc.). Thus, we only
include a direct comparison in Table 7.2 with the works that explicitly consider the
same structure and the same error metric as us. As a summary, one can say that
for constant € our results achieve better dependence on the parameters n,s,k than
previous work, while also using the weaker model of incoherent queries, where one can
perform only one query before measuring, as opposed to the coherent query model.
We also want to remark that our result for learning unstructured Hamiltonian is time

efficient, while the, to the best of our knowledge, only previous one is not [Car23].

Hamiltonians Reference tiotal Queries Access model

Car23 n/et n/et Coherent queries
Unstructured, £oo error The[orem ]7‘18 1 //53 1554 Incoherent queries
[Zha24]* 1/t 1/€e8 Coherent queries
s-sparse, (o, error [HMG*25]t s?/e s?/e Coherent queries
Theorem 7.21 1/ 1/et Incoherent queries

[CW23] n¥ /e n¥ /e Controlled and inverse queries
k-local, £y error [MFPT24]° (9n)* /e (27n3)k /€2 Coherent queries
Theorem 7.19  exp(k?)/eF  exp(k?)/e¥ Incoherent queries

Table 7.2: Comparison of algorithms for learning Hamiltonians with ||H||op < 1.

* It can be improved to O(1/e2+°(1)) total evolution time and O(1/e5t°(1)) queries by paying huge
constant factors.

t This algorithm works for Hamiltonians with sup, |Az| < 1, a weaker constraint than ||H|lop < 1.

© This algorithm is the only one in the table that uses no quantum memory. We provide an
algorithm with no quantum memory for k-local learning that performs as the one in the last row,
but with an extra factor logn.

Note added. After sharing Theorem 7.12 with Bluhm et al., they independently
improved the analysis of their testing algorithm and showed that it only requires
O(1/(e2 — £1)3e2) queries and O(1/ (g2 —e1)*%€3%) total evolution time, which is very
similar to our Theorem 7.12 [BCO24b|. In addition, for a wide range of k = O(n),

their algorithm does not require the use of auxiliary qubits.
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7.2. Preliminaries

7.2 Preliminaries

Notation

Every n-qubit operator H can be written down in its Pauli decomposition as

H= Z AzOz,

z€{0,1,2,3}"

where the real-valued coefficients A, are given by A\, = % Tr(Ho,). Parseval’s identity
states that the normalized Frobenius norm of H (denoted as || H||2) equals the £2-norm

of its Pauli spectrum, i.e.,

Tr[HtH
o= 2L S g

z€{0,1,2,3}"

We will repeatedly use that ||H|2 < ||H||op, which holds because ||H||3 is the average
of the squares of the eigenvalues of H. We will also consider the ¢, norm of the Pauli

coefficients of an operator, which is given by
[ Hlle.. = sup|hq].
x

Additionally, we will use ||H|| := max{||H|op, 1}
Given z € {0,1,2,3}", define |z| as the number of indices i € [n] where z; #
0, define

and H<j, as Z\wl <k Az0,. From the formulation of the 2-norm in terms of the Pauli
coefficients it follows that || Hs |2 < || H||2. We note that the distance of a Hamiltonian
H from the space of k-local Hamiltonians is given by ||[Hskl|l2, as H<y is the k-local
Hamiltonian closest to H. The ¢5-distance of H to being s-sparse also has a nice
expression. Assign labels from [4"] to z € {0,1,2,3}" in a way that and |A\;,| >
[Azsl =+ = [Agyn |- Then, 37, ¢y Az, 0a, is the closest s-sparse Hamiltonian to H, so the
{a-distance of H to the space of s-sparse Hamiltonians is \/W

Necessary subroutines

Suppose U is a unitary and we write out its Pauli decomposition as U = >, ﬁmom,
then by Parseval’s identity 3 |U,|> = Te[UTU]/2" = 1, ie., {|U4|?}s is a probability
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Chapter 7. Testing and learning quantum Hamiltonians

distribution. We will be using the fact below extensively.

Fact 7.8. Given access to a unitary U, one can sample from the distribution {|ﬁ1|2}x

Proof. The proof simply follows by applying U ® Ida» to n EPR pairs (i.e., preparing

the Choi-Jamiolkowski state of U) and measuring in the Bell basis, because

U®Ildye[EPR,) = > Us R) (0, @ 1d2|EPR)),
z€{0,1,2,3}n 1€[n]

and the Bell states can be written as o, ® Id3|EPR) for z € {0,1,2,3}. O

We will also use that given a Hamiltonian H, the Taylor expansion of the expo-

nential allows us to approximate the time evolution operator as

U(t) = e "M =1dyn —itH + ct’ Ry (1) | H|12, (7.1)

for t < 1/2, where the first order remainder R;(¢) is bounded ||R1(¢)|op < 1 and ¢ > 1
is a universal constant.
We will also use the celebrated Classical Shadows by Huang, Chen and Preskill.

Theorem 7.9 (Clifford shadows [HKP20]). Let p be an n-qubit state and let {O;}ic[ar
be n-qubit traceless observables. Assume that sup; Tr[O2] = O(1). Then, Algorithm 1
obtains estimates 617[, such that, with probability 1 — 6, satisfy

| Tx[0ip] — O] < €

or every i € [M]. The algorithm uses O w copies of p.
£

7.3 Technical results

In this section, we will first prove our main structural theorems for Hamiltonians
and provide subroutines which will be used later for testing and learning these struc-

tured Hamiltonians.

Structural lemma for local Hamiltonians

First, we prove a lemma regarding the discrepancy on the weights of non-local terms

of the short-time evolution operator for close-to-local and far-from-local Hamiltonians.
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7.3. Technical results

Algorithm 1 Clifford shadows
Input: Copies of a quantum state p, target set of observables {O;};c[ar, error pa-
rameter € € (0, 1), and failure parameter ¢ € (0, 1)

1: Set T' = O(log(M/5)/e?) and J = O(log(M/§))

2: for j € [J] do

3: for k € [T'/J] do

4: Apply a uniformly random Clifford gate C' to a copy of p
5 Measure in the computational basis. Let |b; 1) be the outcome
6: for i € [M] do

7 Let Oi,j,k = (2” + 1)<bj,k|0710710|bj,k>

8 end for

9 end for

10: for i € [M] do

11: Let 6i,j = Mean((éi,j,k)k)

12: end for

13: end for

14: for i € [M] do
15: Set O; := Median((()m)j)
16: end for

Output: (O;)ie(n

Lemma 7.10. Let 0 <&y < e9. Let a = (g2 — 1)/(3¢) and H be an n-qubit Hamil-
tondan with |Hl|lop < 1, where ¢ is the constant appearing in Taylor expansion (see
Eq. (7.1)). If H is e1-close k-local, then

2e1+¢
[U@)sell < (2 — o) 522,
c
and if H is eo-far from being k-local, then
€1+ 2
[U(a)>kll2 = (g2 = 61)%-

Proof. Recall that U(a) = Idan — iacH + ca?R(«) by Eq (7.1) where ||R|/op < 1. For
simplicity, we set U = U(a) and R = R;(«). First, assume that H is e;-close k-local,
then by definition we have that ||Hsg|l2 < &1. Then

2
€9 — € €9 — € 2e1 + €
1Uskllz < allHspllz + ca®||Roplls < 2—er +c| 2t ) =(e2—e1) 2,
3c 3c 9¢

where in the first inequality we have used the triangle inequality, and in the second
that H is e1-close to k-local and that ||Rskll2 < ||R|l2 < ||Rllop < 1. Now, assume
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that H is eg-far from being k-local (i.e., ||[Hsg|l2 > €2). Then

2
€2 — €1 g2 — €1 €1+ 2e2
U > a||H —cd?||R > _ > (e —
1Usklla > ol Hakll2 = co®[ Rorll2 > =5 e ( > )(w e1)"g

where in first inequality we have used triangle inequality on icH = ct?R(a) — U(«)
to conclude af Hsgll2 < ||Uskll2 + ca?||R>k|l2, and in the second the fact that H is

eo-far from k-local. O

Structural lemma for sparse Hamiltonians

Similar to local Hamiltonians, we show a discrepancy in the sum of the top Pauli
coefficients of the short-time evolution operator for close-to-sparse and far-from-sparse
Hamiltonians. To formally state this result we need to introduce the concept of top
energy. Let U(t) the time evolution operator at time ¢ and let {fj(t)}z be its Pauli
coefficients. We assign labels from {xq,...,24n_1} to = € {0,1,2,3}" in a way that
(7960 = Upn and |Uy, | > |Uy,| > -+ > |(7x4n_1|. Now, we define the top energy at time

t as
TopEnergy(t; s) == |Us, (1)[> + > [Un, ()2,

i€[s]

Lemma 7.11. Let H be a n-qubit Hamiltonian with || H||op < 1 and Tr[H] = 0. Let
t € (0,1). On the one hand, if H is e1-close to s-sparse, then

TopEnergy(t;s) > 1 — e2t? — O(t3s).
On the other hand, if H is eo-far from s-sparse, then
TopEnergy(t;s) < 1 —e3t? + O(t3s).
Proof. For this proof we need to consider the 2nd order Taylor expansion of U (t),
U(t) =1d — itH — t*H? /2 + O(t*) Ry,

where Ry is the remainder of the series of order 2 that satisfies ||Rallop < 1, because
| Hlop < 1. Since Tr[H] =0 (so Agn = 0), we have

77 t? 2 3

z€{0,1,2,3}"
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7.3. Technical results

so, using that |a? — b?| = |a — b||a + b|, we have that

Dol = (1= > A

z€{0,1,2,3}"

=O0(t%). (7.2)

To control |U,(t)| for = # 0°", we use the first order Taylor expansion of U(t) =
Idgn — itH + ct? Ry (t) and get

T (6)] = [EXa]| < [T () — (=ithe)| < U () = (—itH)|2 < O(£?)|| Rall2 < O(t?),
(7.3)

where we again used that ||R;||2 < 1. From this it follows that

1T = 2X2] = | (1T = [#al) - (T2 (0)] + A1) | = OE) (T2 + 2]}

= O(t?) (2]tA:| + O(1?)) = O(t?),
(7.4)

where the second and third equality both used Eq. (7.3); and in the last line used
[Az] < |H|lop < 1. In particular, the above implies that

U= (0)]7 = x> = O(F) (7.5)

Now we will define a quantity similar to the top energy, but now we will define
the top coeflicients as the top coefficients of H. To be precise, we assign labels to
{Y0,---,yan_1} to the elements of {0,1,2,3}" in a way such that yo = 02" and |\, | >

> A

yan_1 |- We now define

TopEnergy (t;s) := (1 —t? Z Ai) + Z(t)\yi)Q.
z€{0,1,2,3}™ i€[s]

If the top s Pauli coefficients of H coincided with the ones of U(t) and there was no
error in the Taylor expansion, then TopEnergy(¢; s)(t) = TopEnergy(t; s). However,

this may not be true in general. Nevertheless, we show that both quantities are close
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Chapter 7. Testing and learning quantum Hamiltonians

to each other. To this end,

TopEnergy(t;s) = |l_'7:,30 (t)]? + Z |T/J\'m ()2
i€[s]

> Uy () + Y [T, (1)
1€[s]

> (11— ) )+ D ()P~ (s+ 1DO(E)

2€{0,1,2,3}" i€[s]

= TopEnergy; (t;5) — (s + 1)O(t?),

where in the first inequality we used that z1,...,zs correspond to the s largest coeffi-
cients of U(t), so 3¢ (g |ﬁz (t)|? is larger than the sum of the squares of any other s
coefficients of U; in the second inequality we used Egs. (7.2) and (7.5). Similarly, one
can check that TopEnergy; (t;5) > TopEnergy(t; s) — (s + 1)O(t3), so

| TopEnergy; (t; s) — TopEnergy(t; s)| < O(st?).

Now, the claimed result follows by noticing that

TopEnergy  (t;s) = 1 — t? Z Ay, %
i>s
and that >, |)y,|? is the square of the fo-distance of H to the space of s-sparse
Hamiltonians, because ), ¢y Ay, 0y, is the s-sparse Hamiltonian closest to H. O

7.4 Testing Hamiltonians

In this section, we give our testing algorithms for local Hamiltonians.

7.4.1 Testing local Hamiltonians

We now state our locality testing algorithm and prove its guarantees.

Theorem 7.12. Algorithm 2 solves the locality testing problem (Problem 7.1 with the
property of being k-local) with probability > 1— 3§, by making O(1/(e3 —e1)* -log(1/6))
queries to the evolution operator and with O(1/(e2 — €1)? - log(1/3)) total evolution

time.

Proof. Let t = (e2 —e1)/(3¢) and let U = U(t). For notational simplicity, let ay :=
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7.4. Testing Hamiltonians

Algorithm 2 Locality tester

Input: Query access to the time evolution of U(t) = e ®H closeness and farness
parameters €1, €2 € (0,1), locality parameter k¥ € N and failure parameter § € (0,1)
1: Set T = O(log(1/8)/(e2 — €1)*)
2: Let t = (2 —£1)/(3¢) and U = U(¢)
3: Initialize o), = 0
4: fori=1,...,T do
5 Perform Pauli sampling from U. Let = € {0,1,2,3}" be the outcome.
6: if |z| > k then
7 o) oy +1/T
8 end if
9: end forSet o) =0
10: fori=1,...,T do
11: Perform Pauli sampling from U. Let « € {0,1,2,3}" be the outcome.
12: If |z| > k, o) o]l +1/T
13: end for
Output: If o} > (3/4)(e2 —e1)? or off > (g2 —e1)(e1 + 22)/(9¢) — (g2 — £1)?/(18¢)
output that H is far from local, and close to local otherwise

|Usx|13. We will first estimate oy, upto error (e2 —e1)?/4. To do that we sample from
{|U4|?}, using Fact 7.8 a total of T = O(1/(e2 — £1)*1og(1/4)) times, which can be

done with T queries. If zq,...,z7 are the outcomes of those samples, we define our
estimate as .
o) = > il > K.
i€[T)

By the Hoeffding bound, we have that indeed |a}, —aj| < (e2 —1)?/4 with probability
>1-4/2.

If of > (3/4)(e2 — £1)?, then oy > (e2 — £1)?/2, so by Lemma 7.10 we conclude
that H is far from k-local. Otherwise, if o), < (3/4)(g2 — £1)?, then ay < (g3 — £1)2.

Now we take again 7" samples from vy, ..., yr from {|(7';,5\2}z and define a new estimate
(=7 3 Ml >
o T
€T

By definition o equals oy, in expectation. Furthermore, oy is the empirical average

of random variables whose variance is considerably small, because

Elllyl > k%] = Ellly| > K]} = [[U> k3 < (e2 — e1)*.
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Then, an application of Bernstein’s inequality (Lemma 2.22) shows that «} approxi-
mates ||Us||3 up to error ((e2 —e1)?/(18¢))? with success probability 1—§/2. At this

point, using our structure Lemma 7.10, this is sufficient for testing k-locality. O

Remark 7.13. We remark that the algorithm for testing locality can be used in more
generality for testing if the support of the Hamiltonians is a given § C {0,1,2,3}"™.
Also, by a union bound one can test for M supports Si,...,Sy by paying a factor
log(M).

Theorem 7.14. Let H be a n-qubit Hamiltonian and let S1,...,Sy C {0,1,2,3}™.
Then, with O(1/(g2 —e1)*log(M/5)) queries and O(1/(e2 — 1) log(M/6)) total evo-
lution time one can simultaneously, for every i € [M], test if H is e1-close or or eo-far

from being supported on S;.

Theorem 7.12 is one case of Theorem 7.14 where M =1 and &; = {z € {0,1,2,3}" :
x| < K}

7.4.2 Testing sparse Hamiltonians

Now we state our sparsity testing algorithm and prove its guarantees.

Algorithm 3 Fully tolerant sparsity tester

Input: Query access to the time evolution of U(t) = e ®H closeness and farness

parameters €1, €9 € (0,1), sparsity parameter s € N and failure parameter § € (0, 1)
1: Set T = O(s%/(3 — £2)% - log(1/9))
2: Let t = O((e3 — %) /s) and U = U(t)
3: Perform Pauli sampling from U a total of T times. Let (|az|?)sefo,1,2,33 the
empirical estimate of (|U,|?), obtained this way.
4: Let |ag, [, ..., |og, |? the s-biggest elements of (|o|?)ze(0,1,2,30m—{on}
5 Set I' = |agn|? + Dicps |, 2

212
—€7)

Output: If ' > 1 —¢? (c3 )" %(Eg—jf)g
> - -
from sparse otherwise

output that H is close to sparse, and far

Theorem 7.15. Algorithm 3 solves the s-sparsity testing problem with probability
> 1— 46, by making O(s5/(e3 — e2)® - log(1/6)) queries to the evolution operator and
with O(s®/(e3 — €2) - log(1/6)) total evolution time.

Proof. Let t = O((¢2 — €%)/s). By Lemma 7.11 we have that if H is £;-close to being

sparse, then
2 2\2 2 2)3
€3 —e7) 1(e5 —&7)
TopEnergy(t; >1—2(2 Vo -2
p nrgy(,s)_ &1 $2 3 52 )
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while if H is eo-far from s-sparse, then

222 (22
TopEnergy(t;s) <1 — 2 (53— o1 -2 U
pEnergy(t;s) < € 52 + 3 52

From here, it follows that to test it suffices to estimate TopEnergy(¢;s) up to error

=i (1o Al LGNy gEoAf LG
= 2 1 82 3 82 2 82 3 32
-y

To do that we will obtain an estimate ({|o|2}s of {|U»|2}s and use it to approximate
TopEnergy(t; s). Using Fact 2.6, we obtain an empirical distribution {|a|?}, that is
obtained after T = O(s2log(1/6)/e2) samples from {|U,|2}, (which can be performed
with T' queries to U(t) thanks to Fact 7.8) satisfies that

2 (77 |2 €

— < .
laa? = 7] < 55 (7.
for all z € {0, 1,2,3}™ with probability > 1 —¢§. We assign new labels yo,y1, ..., yan_1
to {0,1,2,3}™ in a way such that |y, |> = |agn

we define our estimate for TopEnergy(t; s) as

% and |0‘yl|2 =2 ‘ay4n71‘2' NOW’

TopEnergy'(£; 5) = |ay, (£)]> +2 Y _ low, (B)]*.
i€[s]

It only remains to show that TopEnergy’(t; s) e-approximates TopEnergy(t;s). We will

see that in two steps. First,

TopEnergy'(;5) = |avy, (H)* +2 Y |y, (1)]
i€[s]
> o (0> +2 ) o, (8)]?

i€[s]

> Juzg ()P +2 ) Jua, (1)* — &

1€[s]

= TopEnergy(t; s) — e,

where the second line is true by definition of yg,...,y4n_1 and the third line is true

because Eq. (7.6). Switching the roles of TopEnergy’(t; s) and TopEnergy(t; s), one can
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prove that TopEnergy(t;s) > TopEnergy’(t;s) — ¢.
Complexity analysis. We have queried U(t) a total of T = O(s%log(1/6)/e?)

times with e = (¢3 — £%)3/6s? and t = O((¢3 — €2)/s), so the number of queries is

0 <(52i%)6 1og(1/5))

2

and the total evolution time

O

Furthermore, for the regime where e = O(e2/5%®) we propose a more efficient

testing algorithm.

Algorithm 4 Not that tolerant sparsity tester

Input: Query access to the time evolution of U(t) = e~*#  sparsity parameter s € N,
closeness and farness parameters €1, €9 € (0, 1) satisfying €1 = O(e2/+/s) and failure
parameter § € (0,1)
1: Set T = O(s?/e4 - log(1/6))
2: Let t = Q(ez/+/s) and U = U(t)
3: Perform Pauli sampling from U a total of T times. Let X the set of sampled
Paulis.

Output: If |[X — {0?"}| < s output that H is close to sparse, and far from sparse
otherwise

Theorem 7.16. Let H be a traceless Hamiltonian with | H|lop < 1. Provided that
g1 = O(ez/s"5), Algorithm /4 solves the s-sparsity testing problem with probability
> 1— 4. The algorithm makes O(s?/e3 - log(1/8)) queries to the evolution operator
and uses O(s'5 /€3 -log(1/6)) total evolution time.

Proof. Let C > 1 be a constant that appears in the first-order Taylor expansion,
U(t) =1d — itH + Ct* Ry (1)

with ||R1llop < 1 for t € (0,1). We will assume that § = 1/3, as the case ¢ € (0,1/3)
follows by a standard majority voting argument. Algorithm 4 is simple. One just
performs Pauli sampling of U = U(t) a number of T times, for some t and T to be

determined later. Let X be the labels of the Pauli strings sampled in this process. If
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|X — {0?"}| < s we output that H is sparse, and otherwise we output that is far from

sparse. It remains to analyze the correctness.

Correctness. In the case that H is £;-close s-sparse, there exists S C {0, 1,2,3}"

of size s where H is e;-concentrated. Then, by Taylor expansion,

S Gt | Y PO <te 4 O <208,
2 (SU{02n)) 2@ (SUT02"))

where in the last inequality we have assumed that

Hence, the probability of sampling an element outside S U {0?"} in one sample is at
most 4C2t*. Thus, the probability of not sampling an element outside S U {0?"} in T

samples is at least
(1 —4C**)7T > 1 — 4C*'T.

In particular, if

1 1

S 31070 (7.8)

it will be satisfied that |X — {02"| < s with probability > 2/3, as desired.

In the case that H is eo-far from s-sparse, we will perform an analysis similar to

the coupon collector problem. By Taylor expansion we have that for every set S of

size s,
N t
> (TP zet-cz (7.9)
z¢(S—{02"})
where we have assumed that
Ct <eq/2. (7.10)

Let X; the random variable that accounts for the number of samples between the (i—1)-
th sampled non-0>"-Pauli and the i-th sampled non-0?"-Pauli. Applying Eq. (7.9) to
every X;, it follows that E[X;] < 4/e3t? for every i € [s + 1], so

4(s+1)

E[X) + 4 Xop1] € —5
est
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Hence, by Markov’s inequality, if

4 1
T> ﬁ*j) (7.11)
gst
it will be satisfied that |X — {0?"}| > s + 1 with probability > 2/3, as desired.
Finally, we note that we have assumed conditions Egs. (7.7), (7.8), (7.10) and (7.11)
to ensure the correctness of the algorithm. All these equations are satisfied provided

that

o s=0(%)

7.5 Learning Hamiltonians

7.5.1 Learning unstructured Hamiltonians

We start by showing how to efficiently learn an arbitrary n-qubit Hamiltonian in £,
error. To do that, we propose a protocol to estimate a given set of Pauli coefficients
X of a Hamiltonian via Shadow tomography. To describe the protocol, we introduce

the following 2n-qubit observables. Given z € {0, 1,2,3}"™, we define

1
Ry = §(|Bellozn><Bellw\ + |Bell, ) (Bellpzn ),

1
Z, := 5 (~i[Bellgen ) (Belly | +i[Bell,) (Bellgen ).

Lemma 7.17. Let H be an n-qubit traceless Hamiltonian and X C {0,1,2,3}™. Then,
Algorithm 5 allows one to estimate the Pauli coefficients corresponding to X with suc-
cess probability > 1—6. It uses O((log |X|/0)||H||*/e*) queries and O(log(|X|/d)||H|? /)
total evolution time. The minimum evolution time is /|| H||?, the number of ancillas
is n, and the time complezity is O(poly(n)|X|||H||*/e* - log(|X|/9)).

Proof. Correctness of the algorithm: Let tg = O(¢/||H||?) and U = U(to). As
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Algorithm 5 Estimating a given set of Pauli coefficients of a Hamiltonian

Input: Query access to the time evolution of U(t) = e~ ®H  target set of Pauli co-
efficients X C {0,1,2,3}™ — {0™}, error parameter ¢ € (0,1), and failure parameter
d€(0,1)
1 Set T = O(|[H|[*/* - 1og(|X|/5)) and to = ©(c/||H|?
2: Set U = U(to)
3: for j € [T] do
4: Prepare |J(U)) = (U @ Idan )| Bell,,)
5: Apply a uniformly random Clifford gate C'
6 Measure in the computational basis. Let |b;) be the outcome
7 for z € X do
8 Let Rw,j = (2" + 1)<b]|0_1RIC|bJ> and Im,j = (2" + 1)(bj\C_1IIC|bj>
9: end for
10: end for
11: for x € X do _
12: Set R, := MedianOfMeans(R, ;); and I, := MedianOfMeans(Z, ;);
13: end for

Output: (R, + il,)/(—it))secx

Tr[R2] = Tr[Z2] = 2, by Theorem 7.9, the numbers R, and I, that Algorithm 5
outputs satisfy

2 2

| T [Ze [ JO)(JU)]] = Le| < e

9
[H*°

| TR J(U) (T ()] = Ral < (7.12)

for every z € X with probability > 1 — §. By Taylor expansion, as Agz» = 0, we have

that |Ugzn — 1| < O(t2||H||?). Thus,

1 = 73 73 i 7T 7T 77
Tr[R | J(U)NI(O)]] = 5 (UsUgen + Up2nUy) = Re(UUg) = Re(Us) & O(t5 | H|1*),

(7.13)

and similarly Tr[Z, | J(U)){J(U)|] = Im(ﬁ,;)iO(tgHHHQ). Hence, combining Eqs. (7.12)

and (7.13) we have that

52

1>

2
L O H|? go(g),

for every x € X. Finally, by Taylor expansion we have that |Tj'x /(=itg) — Az| <
O(tol H|I?), so

Ry +il,

ho = B <0 (Lo ) + Ol ) = Ofe)

toll H|[?
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for every x € X, as claimed.

Time complexity: The time complexity is dominated by the first loop in Al-
gorithm 5, whose time complexity is O(|X| - T - (test + poly(n)), where the poly(n)
comes from applying a random Clifford gate and t.s is the time taken to compute
(b|C~1R,C|b) for an n-qubit Clifford gate C and a computational basis state |b). Now,
expanding R, one can write (b|C~1R,C|b) as an algebraic expression of a finite num-
ber of terms of the kind (y|D|z), where |y) and |z) are computational basis states and
D a Clifford gate. Hence, via Gottesman-Knill theorem [Got98, AG04] follows that
test = O(n?), so the total time complexity is O(poly(n)|X|||H||*/e* - log(|X|/d)). O

Now, we are ready to present our learning algorithm for arbitrary Hamiltonians

with no promise about its structure.

Algorithm 6 Learning unstructured Hamiltonians

Input: Query access to the time evolution of U (t) = e~®*H#

and failure parameter § € (0,1)
+ Set T'= O(|| H||*/* - log(|| H||*/€26)) and to = O(c/|| HI|?)

, error parameter ¢ € (0,1),

—_

2: Set U = U(to)

3: Set X =0

4: for j € [T] do

5: Prepare |J(U)) = (U ® Idan)|Bell,)

6: Measure in the Bell basis and add the outcome x € {0, 1,2,3}" to X if 2 # 02"

7: end for _

8: Run Algorithm 5 run with U(t), X, ¢ and J as inputs. Let (A;).cx the output.
Output: H = D ozex Xzax

Theorem 7.18 (Learning unstructured Hamiltonians). Let H be an n-qubit and trace-
less Hamiltonian. Then, Algorithm 6 e-learns all Pauli coefficients of H with suc-
cess probability > 1 — 6. It uses O((||H||/e)*) queries to the evolution operator and
O(||H||2/€3) total evolution time. The minimum evolution time is O(e/|H|?), the al-

gorithm uses n ancilla qubits and only one round of adaptivity, and the time complexity
is poly(n, 1/e, || H|).

Proof. Let tg = O(¢/||H||?) and U = Ul(tg) and let T = O(||H||*/&* - log(|| H||?/£26)),
as in Algorithm 6.

Correctness: We claim that with probability > 1 — § the set X generated in
Algorithm 6 contains all z such that

|Az| > e, (7.14)
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and that

x| <0 (”H4) (7.15)

To show Eq. (7.14) we note that by Taylor expansion, if [A;| > e, then |U,| =
Q((e2/||H|?)), so |Us|? = Q((e*/||H||*)). Hence, the probability that such an z does
not belong to X, which stores the non-0?" outcomes of sampling from (|f]\x|2)m, is at

most

- T i 12 625
1|0, 2) <TI0 < :
(1-102F) <0 < g

Hence, as there is at most ||H||?/e? coefficients with [\;| > &, because Y [X;|* <
|H||?, Eq. (7.14) follows from a union bound. Eq. (7.15) holds because |X| < T.

Now, if Egs. (7.14) and (7.15) are satisfied, Algorithm 5 provides estimates of the
coefficients of X', which contains all labels z of coefficients |\;| > e.

Complexities: The query complexity is 27" = O(||H||*/e*), the minimum evolu-
tion time t, = O(¢/|H|?) and the total time evolution 2Tty = O(||H||2/e3). Ad-
ditionally, the time complexity of Algorithm 6 is dominated by the call to Algo-
rithm 5, which runs in time O(poly(n)|X||H||?/¢?), which thanks to Eq. (7.15) is
poly(n, 1/, |[H||). O

7.5.2 Learning local Hamiltonians

We now introduce our local Hamiltonian learner and prove its guarantees.

Algorithm 7 Local Hamiltonian learner

Input: Query access to the time evolution of U(t) = e~ *# | error parameter € € (0,1),

locality parameter k € N and failure parameter § € (0, 1)

1: Set T = exp(O(k? + klog(1/e))log(1/4)

2: Let t = efTlexp(—k(k +1)/2) and U = U(t)
3. Set 7 = (e/|[H|[2)** exp(—k(k +1)/2) and 8 = /| H|
4: Learn (-estimates X\, of A\, via Algorithm 6
5: for |z| <k do

6: if |\| <+ then

7. XI =0

8: else

9: Az = )\;

10: end if

11: end for

Output: ngk Xxo'x
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Theorem 7.19. Given a n-qubit k-local Hamiltonian H, Algorithm 7 outputs H
such that with probability > 1 — § satisfies ||[H — H||y, < . The algorithm makes
exp(O(k? + klog(||H||?/e)) log(1/8) queries to the evolution operator with exp(O(k? +
klog(||H|?/¢))log(1/6) total evolution time.

To prove this theorem, we use the non-commutative Bohnenblust-Hille inequality
by Volberg and Zhang [VZ23].

Theorem 7.20 (Non-Commutative Bohnenblust-Hille inequality). Let H = Y A0,

be a k-local Hamiltonian. Then, there is a universal constant C' such that

H= Y |n|#r <chH]|.
2€{0,1,2,3}n

Proof of Theorem 7.19. We only analyze the correctness of Algorithm 7, as the com-
plexity quickly follows from Theorem 7.18. In this proof we also use the notation of

Algorithm 7. The {s-error of approximating H with H is

IH-Hlz, = Y PP+ Y e N~ (7.16)
A<y 27 Jal <k

We show separately that the two terms are at most O(¢2?). To bound the contribution

of the small Pauli coefficients, we first note that by Theorem 7.18 we have that
Mel<y = [N <y+8=0(). (7.17)
Hence,

S P D PonFET) YT lFT <qE (CHH|P)FT = 0(e),
[ALI<y [Xz|<O(7) z€{0,1,2,3}"
(7.18)

where in the first inequality we have used Eq. (7.17), in the third inequality we have
used Theorem 7.20 and in the last inequality that v = (/|| H||?)**! exp(—k(k+1)/2).
To bound the contribution of the coefficients |A;| > v we notice that there is at most
|H||?/~v? of them, because Y |A\;|* < | H||?. Thus,

1H]?
Z |)\x*>\;:|2§751gip|/\x*)\;|2§

AL |2y |z|<k

IH?8% _
S — =¢
Y

)
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where in the second inequality we use the )\, are S-estimates of )\, and in the last
equality we use that 5 = ~ye/||H]|. O

7.5.3 Learning sparse Hamiltonians

In this section we introduce our sparse Hamiltonian learner and prove its guarantees.

Algorithm 8 Sparse Hamiltonian learner

Input: Query access to the time evolution of U(t) = e~®H  error parameter ¢ € (0, 1),
sparsity parameter s € N and failure parameter ¢ € (0,1)

1: Learn (e/2)-estimates A, of \; via Algorithm 6

2: forz € {x: A\, #0} do

3: if Al <¢e/2 then

4 Az =0

5 else), > ¢/2
6: Xz = )\;
7 end if

8: end for

Output: H= d>ow Xwam

Theorem 7.21 (Sparse Hamiltonian learning). Given an n-qubit, s-sparse Hamil-
tonian H, Algorithm 8 outputs another Hamiltonian H = meaw such that with
probability > 1— 6 satisfies |H — H||, < e, The algorithms uses O(||H||*/e*) queries
and O(||H|[2/&®) total evolution time.

Furthermore, if A\, = 0, then Xm = 0. This implies that running Algorithm 8 with
e = ¢'/\/s outputs H such that |[H — H||,, < ¢'. In this case, the algorithm uses
O(||H||[*s%/e"*) queries and O(||H|>s' /"3) total evolution time.

Proof. The first part, concerning learning in the /., error follows from Theorem 7.18.
The fact that A, = 0, then Xe = 0 follows from Line 3 of Algorithm 8. Finally, we
note that having A, =0 = X, = 0 and |\, — A\y| < &'/+/5, implies ||[H — H||,, < ¢'.
Indeed,

|H — Hl, = Z |Ae — )\ac|2 < ssup|A; — >‘a:|2 = 5,27
An 20 v

where in the first step we have used that A, = 0 = Xm = 0, in the second that
[Az — Az| < €'/4/s and in the third that H is s-sparse. O
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