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Part II

Quantum learning theory
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Chapter 6

Bohnenblust-Hille inequalities

and their applications to

learning theory

6.1 Introduction

The Bohnenblust-Hille inequality states that for any d ∈ N there exists a constant

Cd such that every d-homogeneous polynomial P : Cn → C, defined as P (z) =∑
|α|=d aαz

α, satisfies the following inequality:

∥P̂∥ 2d
d+1
≤ Cd∥P∥∞, (6.1)

where ∥P̂∥ 2d
d+1

denotes the ℓ 2d
d+1

sum of the coefficients (aα)α and ∥P∥∞ = supz∈Dn |P (z)|
is the infinity norm of P [BH31].

This inequality, which generalizes the well-known Littlewood’s 4/3-Inequality [Lit30],

has proven to be extremely useful in the study of the convergence of Dirichlet series

and was crucial in determining the asymptotic behaviors of Bohr’s radius obtained

in [DFOC+11]. In this regard, the authors demonstrated that the constant Cd can

be taken equal to Cd, for a certain constant C. The work in [DFOC+11] motivated

numerous subsequent studies, where the search focused on the upper and lower bounds

for Cd. The best known upper bound was given in [BPSS14], where it was proved that

Cd can be actually taken to be C
√
d log d.
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6.1. Introduction

Interestingly, in recent years, the Bohnenblust-Hille inequality has proven to be

useful in learning theory. This is perfectly illustrated in the striking work [EI22],

where the authors used a version of the Bohnenblust-Hille inequality for functions

defined on the hypercube f : {−1, 1}n → R, as established in [DMP19], to enhance the

seminal Low-Degree Algorithm of Linial, Mansour, and Nisan [LMN93]. After that,

the applications of the Bohnenblust-Hille inequality to learning theory have reached

the quantum computing community, motivating the study of this inequality in the non-

commutative realm ([HCP23a, RWZ24, VZ23]). In particular, in the work [VZ23], a

version of the Bohnenblust-Hille inequality is proven for N ×N -dimensional matrices,

which can be understood as a generalization of quantum Boolean functions [MO08].

In this chapter, we explore Bohnenblust-Hille inequalities from three different an-

gles: considering the completely bounded norm instead of the infinity norm, extending

the non-commutative variant proved in [VZ23], and determining the exact constants

for the case of Boolean functions.

The completely bounded Bohnenblust-Hille inequality

The completely bounded norm of a d-homogeneous polynomial P as above is defined

as

∥P∥cb = sup
∥∥∥ ∑

|α|=d

aαZ
α1
1 · · ·Zαn

n

∥∥∥
op
,

where this supremum runs over all m ∈ N and all contractions Z1, . . . , Zn in Mm(C).

This norm can be understood as a non-commutative version of the infinity norm and it

clearly provides an upper bound for it. Thus, one might expect that the corresponding

Bohnenblust-Hille inequality involves a better constant than in the classical case. On

the other hand, note that by the triangle inequality, we have that ∥P∥cb ≤
∑
α |aα|.

Simultaneously, the completely bounded norm has proven particularly suitable in the

study of quantum algorithms, providing a notion of polynomial degree that gives a

tight characterization of quantum query complexity (see Chapter 5) [ABP19]. Hence,

a Bohnenblust-Hille inequality for the completely bounded norm is also motivated

by its potential applications in quantum learning theory. The results of this chapter

rigorously fulfill these expectations. Indeed, the main result of this chapter is that the

Bohnenblust-Hille inequality holds with the optimal constant C = 1 when the infinity

norm is replaced by the completely bounded norm. Additionally, we demonstrate

that the exponent 2d/(d + 1) is also optimal in the new scenario considered here,

meaning that for p < 2d/(d + 1) there is no quantity Cd independent of n such that
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Chapter 6. Bohnenblust-Hille inequalities and their applications to
learning theory

∥P̂∥2d/(d+1) ≤ Cd∥P∥cb for every d-homogeneous polynomial P , as it happens with

the original Bohnenblust-Hille inequality Eq. (6.1).

Theorem 6.1. For every d-homogeneous polynomial P : Cn → C, defined as P (z) =∑
|α|=d aαz

α, the following inequality is satisfied:

∥P̂∥ 2d
d+1
≤ ∥P∥cb.

Moreover, both the constant 1 in the inequalities and the exponent 2d
d+1 are optimal.

In particular, our main result holds for multilinear forms. Moreover, we will also

show that in the case of general (non-necessarily homogeneous) polynomials of degree

d we have

∥P̂∥ 2d
d+1
≤
√
d+ 1∥P∥cb.

The optimality of Theorem 6.1 shows that the completely bounded norm fits per-

fectly into the study of the Bohnenblust-Hille inequality. In fact, Theorem 6.1 moti-

vates the study of the optimality of the Bohnenblust-Hille inequality from an angle

not explored to date. Rather than focusing on determining the optimal constant that

satisfies the inequality (6.1), it is possible to examine the norms that satisfy the asso-

ciated Bohnenblust-Hille inequality with a constant value of one. It is plausible that

the second problem sheds light on the first; particularly, in the problem of finding new

lower bounds for the constant Cd. Indeed, in order to find good lower bounds for the

classical BH inequality, we must consider polynomials for which the infinity norm is

very different from any norm for which a BH inequality with constant 1 can be proven.

Theorem 6.1 entails interesting consequences in learning theory. In particular, it

allows us to improve the estimates in [EI22] when we restrict ourselves to certain

functions arising in quantum computing. Indeed, in that work, it is proven that it is

possible to learn any bounded function f : {−1, 1}n → [−1, 1] of degree at most d with

L2-accuracy ε and confidence 1−δ by using O(ε−2(d+1)Cd
3/2√log d log(n/δ)) uniformly

random samples on the function. A particularly interesting type of these functions are

those that arise from a quantum algorithm with d queries. More precisely, we consider

here quantum query algorithms that prepare a state

|ψx⟩ = Ud(Oxd
⊗ Idm)Ud−1 · · ·U1(Ox1

⊗ Idm)U0|ψ0⟩, (6.2)

where m is an integer, x stands for (x1, . . . , xd), Oy is the n-dimensional matrix

that maps |i⟩ to yi|i⟩, U1, . . . , Ud are (n + m)-dimensional unitaries and |ψ0⟩ is an
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6.1. Introduction

(n + m)-dimensional unit vector. The algorithm succeeds according to a projective

measurement that measures the projection of the final state onto some fixed (n+m)-

dimensional unit vector |v⟩. Hence, the amplitude of |v⟩ is given by T (x) = ⟨v|ψx⟩,
so that |T (x)|2 is the acceptance probability of the algorithm. These quantum algo-

rithms have been considered in the quantum computing literature; for example, k-fold

forrelation, that witnesses the biggest possible quantum-classical separation, has this

structure [AA15]. As we will explain in Section 6.4, the argument in [EI22] alongside

the Bohnenblust-Hille inequality for (bounded) multilinear forms [BPSS14] imply that

the amplitudes T can be learned from O(ε−2(d+1)poly(d)d log(n/δ)) samples. Further-

more, using Theorem 6.1 instead of [BPSS14] allows us to obtain the following result

for learning d-query quantum algorithms which, in particular, requires a number of

samples that is polynomial in n when ε and δ are constants and d = log(n).

Corollary 6.2. Consider a quantum algorithm that makes d queries as explained

above. Then, its amplitudes can be learned with L2
2-accuracy ε and confidence 1 − δ

from O(ε−2(d+1)d2 log(n/δ)) uniform random samples.

Extending the non-commumative Bohnenblust-Hille inequality.

Motivated by the applications to learning quantum channels, we extend the non-

commutative version of the BH inequality proved in [VZ23]. This generalization con-

cerns the Pauli coefficients of linear maps Φ : MN →MN , where let N = 2n and n is

a natural number. These maps can be expressed as

Φ(ρ) =
∑

x,y∈{0,1,2,3}n

Φ̂(x, y) · σxρσy, (6.3)

where σx = ⊗i∈[n] σxi
and σi for i ∈ {0, 1, 2, 3} are the Pauli matrices

σ0 =

(
1 0

0 1

)
, σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
;

and Φ̂(x, y) are the Pauli coefficients of the map. Given x ∈ {0, 1, 2, 3}n, |x| is the

number of non-zero entries of x. The degree of Φ is the minimum integer d such that

Φ̂(x, y) = 0 if |x|+ |y| > d.

We show that we can upper bound the ℓ2d/(d+1)-sum of the Pauli coefficients of Φ̂

in a Bohnenblust-Hille way.
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Theorem 6.3. Let Φ : MN →MN be a linear map of degree d. Then,

∥Φ̂∥ 2d
d+1
≤ Cd∥Φ : SN1 → SN∞∥,

where C is a universal constant and SN1 and SN∞ denote the spaces of one and infinity

Schatten classes respectively.

The proof of Theorem 6.3 follows a similar approach to the one in [VZ23] and, in

fact, extends their result. Indeed, if one considers a matrix A ∈ MN , the main result

in [VZ23] follows from the application of Theorem 6.3 to the linear map Φ(X) = XA.

We use our extension to improve the current results on learning quantum chan-

nels. From a physical perspective, quantum channels describe the transformations be-

tween quantum systems. Since quantum systems are represented by quantum states,

which correspond to non-commutative probability distributions, specifically positive

semidefinite matrices with trace 1, quantum channels map one set of non-commutative

probabilities to another. Mathematically, quantum channels on n-qubits are maps

Φ : MN →MN that are completely positive and trace-preserving. In particular, they

satisfy ∥Φ : SN1 → SN∞∥ ≤ 1 and Theorem 6.3 applies to them. Learning an n-qubit

quantum channel is in general challenging and is known to require Θ(4n) applica-

tions (queries) of the channel [GJ14]. This exponential complexity can be drastically

improved when prior information on the structure of the channel is available. For ex-

ample, a recent work of Bao and Yao [BY23] considered k-junta quantum channels, i.e.,

n-qubit channels that act non-trivially only on at most k of the n (unknown) qubits

leaving the rest of qubits unchanged. These channels were shown to be learnable using

Θ̃(4k) queries to the channel [BY23].

Using the same learning model as the recent work of Bao and Yao (see Section

6.4 for details) we prove the following result for learning low-degree channels, which

contrary to the other applications of BH inequality in quantum learning theory, it has

a query complexity independent of n [HCP23a, SVZ23a, SVZ23b, VZ23].

Theorem 6.4. Let Φ be a n-qubit degree-d quantum channel. Then it can be learned

in L2-accuracy ε and confidence ≥ 1− δ by making exp
(
Õ(d2 + d log(1/ε))

)
· log(1/δ)

queries to Φ. Here, we use the notation Õ to hide logarithmic factors in d, 1/ε, and

1/δ.

99



6.2. Bohnenblust-Hille Inequality for the completely bounded norm

Boolean functions

Since boolean functions f : {−1, 1}n → {−1, 1} are particularly important in many

contexts, we also analyze this case. Remember that the classical Fourier expansion in

the hypercube allows one to write any function as

f =
∑

s∈{0,1}n

f̂(s)χs, (6.4)

where χs(x) =
∏
i∈supp(s) xi for s ∈ {0, 1}n and (f̂(s))s are the Fourier coefficients of

f . Then, the degree of f is the minimum d such that f̂(s) = 0 if |s| > d.

In this chapter, we show how the granularity property of these functions allows us

to prove the corresponding optimal Bohnenblust-Hille inequality.

Proposition 6.5. Let f : {−1, 1}n → {−1, 1} be a function of degree at most d.

Then, ( ∑
s∈{0,1}n

|f̂(s)|
2d

d+1

) d+1
2d ≤ 2

d−1
d .

The equality is witnessed by the address function.

The previous proposition might be of interest in functional analysis for two reasons.

First, it is conjectured that the value of the BH constant for real d-linear forms is

2
d−1
d [PT18], so this fact proves the conjecture for the particular case of d-linear

Boolean forms. Second, the address function, that saturates the inequality, is a d-linear

form that gives a lower bound for the BH constant for multilinear forms of 2
d−1
d , which

matches the best lower bound known so far for the BH inequality for real multilinear

forms [DMFPSS14]. Together with Proposition 6.5 about Boolean functions, in this

chapter we also study the complexity of these functions from the learning theoretical

point if view and improve previous estimates in [NPVY23, Corollary 34] and [EIS22,

Corollary 4] (see Section 6.3.1 for details).

6.2 Bohnenblust-Hille Inequality for the completely

bounded norm

In this section we will prove those results concerning the Bohnenblust-Hille Inequality

for the completely bounded norm. We will first prove a general result for tensors, from

where Theorem 6.1, as well as some other results will follow straightforwardly.
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cb-BH inequality for d-tensors

We consider K ∈ {R,C} and a d-tensor T = (Ti)i∈[n]d ∈ Kn × · · · ×Kn. Equivalently,

T can be regarded as the d-linear form T : Kn × · · · ×Kn → K given by

T (z1, . . . , zd) =
∑

i∈[n]d

Tiz1(i1) . . . zd(id).

For one such tensor, we denote

∥T̂∥ 2d
d+1

:=

 ∑
i∈[n]d

|Ti|
2d

d+1


d+1
2d

, (6.5)

The main result of the section is the following cb-BH inequality for d-tensors.

Theorem 6.6. Let T ∈ Kn × · · · ×Kn be a d-tensor. Then,

∥T̂∥ 2d
d+1
≤ ∥T∥cb.

We will make use of the following lemma, originally due to Blei [Ble79]. A simple

proof can be found in [BPSS14, Theorem 2.1].

Lemma 6.7 (Blei’s inequality). Given a d-tensor T ∈ Kn × · · · ×Kn, we have

∥T̂∥ 2d
d+1
≤

∏
s∈[d]

∑
is∈[n]

√ ∑
i1,...,is−1,is+1,...,id∈[n]

|Ti|2

 1
d

.

Now, we prove the key technical lemma, from where Theorem 6.6 will follow.

Lemma 6.8. Let T ∈ Kn × · · · ×Kn be a d-tensor and s ∈ [d]. Then,

∑
is∈[n]

√ ∑
i1,...,is−1,is+1,...,id∈[n]

|Ti1,...,is−1,is,is+1,...,id |2 ≤ ∥T∥cb.

Proof. We fix s ∈ [d]. The proof consists of evaluating T on an explicit set of contrac-

tions. In order to define these contractions, we denote m =
∑d−s
r=0 n

r +
∑s−1
r=0 n

r and

let {ei, fj : i ∈ [n]r, r ∈ {0} ∪ [d − s], j ∈ [n]t, t ∈ {0} ∪ [s − 1]} be an orthonormal

basis of ℓm2 (K), where we identify [n]0 with ∅. For every i ∈ [n] we define the matrix
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6.2. Bohnenblust-Hille Inequality for the completely bounded norm

Zi ∈Mm as:

Ziej = e(i,j), if j ∈ [n]r, r ∈ {0} ∪ [d− s− 1],

Ziej =

∑
k∈[n]s−1 T ∗

(k,i,j)fk√∑
k1,...,ks−1,ks+1,...,kd∈[n] |T(k1,...,ks−1,i,ks+1,...,kd)|2

, if j ∈ [n]d−s,

Zifj = δi,jtf(j1,...,jt−1), if j ∈ [n]t, t ∈ {0} ∪ [s− 1],

Zif∅ = 0.

Assume for the moment that Zi are contractions. One can easily check that

⟨f∅, Zi1 . . . Zide∅⟩ =
T ∗
i1,··· ,id√∑

k1,...,ks−1,ks+1,...,kd∈[n] |Tk1,...,ks−1,is,ks+1,...,kd |2
.

Hence, by assuming that Zi are contractions, we can conclude

∥T∥cb ≥ ∥
∑

i∈[n]d

TiZi1 . . . Zid∥B(ℓm2 (K)) ≥
∑

i∈[n]d

Ti⟨f∅|Zi1 . . . Zid |e∅⟩

≥
∑

i∈[n]d

Ti
T ∗
i√∑

k1,...,ks−1,ks+1,...,kd∈[n] |Tk1,...,ks−1,is,ks+1,...,kd |2

=
∑
is∈[n]

√ ∑
i1,...,is−1,is+1,...,id∈[n]

|Ti1,...,is−1,is,is+1,...,id |2,

as desired.

Thus, it remains to prove that the matrices Zi are contractions. Given that Zi

maps the sets {ei : i ∈ [n]r, r ∈ {0} ∪ [d − s − 1]}, {ei : i ∈ [n]d−s} and {fi : i ∈
[n]t, t ∈ {0} ∪ [s − 1]} to orthogonal subspaces, it suffices to show that the Zi are

contractions when restricted to those subspaces. For the first and third sets that is

clear since Zi maps each basis vector of those sets either to a different basis vector or
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to 0. For the second set, just note that for every λ ∈ Knd−s

we have

∥Zi
∑

j∈[n]d−s

λjej∥22 = ∥

∑
k∈[n]s−1

(∑
j∈[n]d−s λjT

∗
kij

)
fk√∑

k1,...,ks−1,ks+1,...,kd∈[n] |Tk1,...,ks−1,i,ks+1,...,kd |2
∥22

=

∑
k∈[n]s−1 |

∑
j∈[n]d−s λjT

∗
kij|2∑

k1,...,ks−1,ks+1,...,kd∈[n] |Tk1,...,ks−1,i,ks+1,...,kd |2

≤

(∑
k∈[n]s−1

∑
j∈[n]d−s |Tkij|2

)(∑
j∈[n]d−s |λj|2

)
∑
k1,...,ks−1,ks+1,...,kd∈[n] |Tk1,...,ks−1,i,ks+1,...,kd |2

=
∑

j∈[n]d−s

|λj|2 = ∥λ∥22,

where we have used Cauchy-Schwarz for the sum over j.

Proof of Theorem 6.6. According to Lemma 6.7 and Lemma 6.8 we have

∥T̂∥ 2d
d+1
≤

∏
s∈[d]

∑
is∈[n]

√ ∑
i1,...,is−1,is+1,...,id∈[n]

|Ti|2

 1
d

≤

∏
s∈[d]

∥T∥cb

 1
d

= ∥T∥cb.

cb-BH inequality for polynomials

Now we consider the case of polynomials. Given any (not necessarily homogeneous)

polynomial of degree d in n variables P : Kn → K, we can write it as

P =
∑

s∈{0}∪[d]

Ps, (6.6)

where Ps : Kn → K is a s-homogeneous polynomial. We denote, given s ∈ [d],

J (s, n) = {(j1, . . . , js) ∈ [n]s : j1 ≤ · · · ≤ js}.

Then, Ps can be written uniquely as

Ps(x) =
∑

j∈J (s,n)

ajxj, (6.7)
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6.2. Bohnenblust-Hille Inequality for the completely bounded norm

where we denote xj = xj1 · · ·xjs . Hence, we can define the completely bounded norm

of P as

∥P∥cb = sup
∥∥∥ ∑
s∈{0}∩[d]

∑
j∈J (s,n)

ajZj1 · · ·Zjs
∥∥∥
op
,

where the supremum runs over all (real/complex) contractions of Mm and m ∈ N.
Theorem 6.1, which refers to the d-homogeneous case, follows easily from Theorem

6.6.

Proof of Theorem 6.1. Given a d-homogeneous polynomial P : Kn → K as above, we

want to prove that ( ∑
j∈J (d,n)

|aj|
2d

d+1

) d+1
2d ≤ ∥P∥cb.

To do that, we reduce it to the case of tensors. We define Tj = aj for every j ∈ J (d, n)

and Tj = 0 for ever j ∈ [n]d \ J (d, n). By Proposition 2.18, the tensor T satisfies

( ∑
j∈J (d,n)

|aj|
2d

d+1

) d+1
2d

=
( ∑

j∈[n]d

|Tj|
2d

d+1

) d+1
2d

and ∥T∥cb = ∥P∥cb.

Hence, the result follows from Theorem 6.6.

We will now turn our attention to the case of general polynomials. To this end, we

first prove the following result:

Lemma 6.9. Let P : Kn → K be a polynomial of degree d. Then,

∥P∥cb ≥
1√
d+ 1

sup
∑

s∈[d]∪{0}

∣∣∣〈u, ∑
α∈Nn

0∑
i αi=s

aαZ
α1
1 . . . Zαn

n vs

〉∣∣∣,
where the supremum runs over all (real/complex) contractions Z1, . . . , Zn in Mm, all

m-dimensional vectors u, vs with norm less than or equal one, and all m ∈ N.

Proof. Let m ∈ N, Z1, . . . , Zn ∈ Mm be contractions and u, vs be m-dimensional

vectors with norm less than or equal one. For s ∈ {0} ∪ [d], let bs ∈ K be such that

|bs| = 1 and∣∣∣〈u, ∑
α∈Nn

0∑
i αi=s

aαZ
α1
1 . . . Zαn

n vs

〉∣∣∣ = bs

〈
u,

∑
α∈Nn

0∑
i αi=s

aαZ
α1
1 . . . Zαn

n vs

〉
.
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Let {e0, . . . , ed} be the canonical basis of Kd+1. We define the unitary operator

B : Kd+1 → Kd+1 such that B(ep+1) = ep for every p ∈ [d] and B(e0) = ed. We also

define the unit vectors

ξ =
1√
d+ 1

∑
q∈[d]∪{0}

bqvq ⊗ eq ∈ Km ⊗Kd+1 and η = u⊗ e0 ∈ Km ⊗Kd+1.

Finally, we consider the new contractions Z̃i = Zi⊗B ∈Mm(d+1) for i = 1, · · · , n.

Then, one can easily check that〈
ũ,

∑
s∈[d]∪{0}

∑
α∈Nn

0∑
i αi=s

aαZ̃
α1
1 . . . Z̃αn

n ξ
〉

=
1√
d+ 1

∣∣∣〈u, ∑
α∈Nn

0∑
i αi=s

aαZ
α1
1 . . . Zαn

n vs

〉∣∣∣,
from where the statement follows.

We can now prove a cb-BH inequality for general polynomials of degree d.

Corollary 6.10. Let P : Kn → K be a polynomial of degree d. Then,

∥P̂∥ 2d
d+1
≤
√
d+ 1∥P∥cb.

Proof. Let Q : Kn+1 → K be the s-homogeneous polynomial defined by

Q(x, xn+1) :=
∑

s∈{0}∪[d]

Ps(x)xd−sn+1,

where x = (x1, · · · , xn) and Ps is the d-homogeneous part of P .

It is clear that ∥Q̂∥ 2d
d+1

= ∥P̂∥ 2d
d+1

. On the other hand, we have

∥Q∥cb = sup
〈
u
∣∣∣ ∑
s∈{0}∩[d]

∑
α∈Nn+1

0∑
i αi=s

aαZ
α1
1 . . . Zαn

n Zd−sn+1

∣∣∣v〉,
where the sup is taken over all (real/complex) contractions Z1, . . . , Zn+1 ∈ Mm, all

m-dimensional unit vectors u and v and all m ∈ N. Then, by defining vs = Zd−sn+1|v⟩
we can use Lemma 6.9 to deduce

∥Q∥cb ≤
√
d+ 1∥P∥cb.
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6.2. Bohnenblust-Hille Inequality for the completely bounded norm

Hence, applying Theorem 6.1 to Q concludes the proof.

Optimality of the cb-BH inequality

We conclude this section by proving the optimality of Theorem 6.1. We will actu-

ally prove the optimality of Theorem 6.6, from where the optimality in the exponent

for the corresponding cb-BH inequality for d-multilinear forms and d-homogeneous

polynomials follows.

First of all, note that constant one is the best possible in the inequality since the

d-linear form T (x1, · · · , xn) = x1 satisfies ∥T̂∥2d/(d+1) = ∥T∥cb = 1. Regarding the

optimality in the exponent, it follows from the next statement.

Theorem 6.11. Let d ∈ N, let K ∈ {R,C} and let q ≥ 1. For infinitely many n ∈ N,
there exists a d-tensor T ∈ Kn × · · · ×Kn such that ∥T∥q = n

d
q and ∥T∥cb ≤ n

d+1
2 .

The optimality in the exponent of Theorem 6.6 follows easily from the previous

statement. Indeed, suppose that there is a constant Cd > 0 such that

∥T∥q ≤ Cd∥T∥cb.

Then, it follows that

n
d
q ≤ Cdn

d+1
2

for every n ∈ N. Therefore, q ≥ 2d/(d + 1). In order to see that this last estimate

implies the optimality for the BH inequality for d-homogeneous polynomials (Theorem

6.1) just note that for any d-linear form T : Kn × · · ·Kn → K, we can define a

d-homogeneous polynomial in d× n variables P : (Kn)d → K defined as

P
(
(x1(i1))i1 , · · · , (xd(id))id

)
=

n∑
i1,··· ,id=1

Ti1,··· ,idx1(i1) · · ·xd(id).

The optimality of Theorem 6.1 follows because if we consider the lexicographical order

in [n]d, then ∥P∥2d/(d+1) = ∥T∥2d/(d+1) and ∥P∥cb = ∥T∥cb.

Our proof is based on the proof of the optimality of the exponent in the classical

BH inequality (see [DGMP19, Chapter 4]).

Proof of Theorem 6.11. Let n ∈ N and let N = 2n. We will identify [N ] with P(n)

(the family of subsets of n elements) and {−1, 1}n in an arbitrary bijective way. In
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this sense, we define the matrix a ∈ RN×N via

a(x,S) =
∏
i∈S

xi,

for every x ∈ {−1, 1}n and S ⊆ [n]. This matrix satisfies that

|a(x,S)| = 1, (6.8)∑
x∈{−1,1}n

a(x,S)a(x,S′) = NδS,S′ . (6.9)

We define the d-tensor T ∈ Kn × · · · ×Kn by

T =
∑

i∈[N ]d

a(i1,i2) . . . a(id−1,id).

According to Eq. (6.8) we immediately deduce that ∥T∥q = N
d
q .

In order to prove the upper bound for ∥T∥cb we can restrict to unitary/orthogonal

matrices, thanks to Remark 2.16. Now, given arbitrary unitary matrices U1
i1
, . . . , Udid ,

if we denote

Ri1 =
∑

j∈[N ]d−1

a(i1,j2) . . . a(jd−1,jd)U
2
j2 . . . U

d
jd
,

we can apply Lemma 3.9 to write

∥∥∥ ∑
i∈[N ]d

a(i1,i2) . . . a(id−1,id)U
1
j1 . . . U

d
jd

∥∥∥ ≤ ∥∥∥ ∑
i1∈[N ]

U1
i1(U1

i1)†
∥∥∥ 1

2
∥∥∥ ∑
i1∈[N ]

R†
i1
Ri1

∥∥∥ 1
2

= N
1
2

∥∥∥ ∑
i1∈[N ]

R†
i1
Ri1

∥∥∥ 1
2

.

Now, we note that
∑
i1∈[N ]R

†
i1
Ri1 can be written as

∑
j,k∈[N ]d−1

( ∑
i1∈[N ]

a(i1,j2)a(i1,k2)

)
a(j2,j3) · · · a(jd−1,jd)a(k2,k3) · · · a(kd−1,kd)

· (Udjd)† · · · (U2
j2)†U2

k2 · · ·U
d
kd
.
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By using Eq. (6.9) and that U2
i = Id, for i ∈ [N ], the previous expression equals

N
∑
i2∈[N ]

∑
j,k∈[N ]d−2

a(i2,j3) · · · a(jd−1,jd)a(i2,k3) · · · a(kd−1,kd)(U
d
jd

)† · · · (U3
j3)†U3

k3 · · ·U
d
kd

= N
∑

j,k∈[N ]d−2

( ∑
i2∈[N ]

a(i2,j3)a(i2,k3)

)
a(j3,j4) · · · a(jd−1,jd) · · · a(k3,k4)a(kd−1,kd)

· (Udjd)† · · · (U3
j3)†U3

k3 · · ·U
d
kd
.

We see that we can iterate this process to obtain∥∥∥ ∑
i1∈[N ]

R†
i1
Ri1

∥∥∥ ≤ Nd−1
∥∥∥ ∑
id∈[N ]

(Udid)†Udid

∥∥∥ = Nd.

Therefore, we conclude that
∥∥∥∑i∈[N ]d a(i1,i2) . . . a(id−1,id)U

1
i1
. . . Udid

∥∥∥ ≤ N d+1
2 .

Remark 6.12. The d-linear form used in the proof of Theorem 6.11 also plays a central

role in quantum query complexity. Indeed, it is the linear form determined by the d-

forrelation problem, that optimally separates quantum and classical query complexity

and we already introduced in Section 3.2.1 [AA15, BS21]. We recall that, given d

Boolean functions f1, . . . , fd : {0, 1}n → {−1, 1}, its d-forrelation is defined as

forrd(f1, . . . , fd) =
1

2n
d+1
2

∑
x1,...,xd∈{0,1}n

f(x1)(−1)⟨x1,x2⟩ . . . f(xd−1)(−1)⟨xd−1,xd⟩f(xd).

Thus, if we consider the d-linear form T defined in the proof of Theorem 6.11 and we

identify the d functions f1, . . . , fd with the elements of {−1, 1}2n determined by their

truth table, we have

T (f1, . . . , fd) = 2n
d+1
2 forrd(f1, . . . , fd).

6.3 Bohnenblust-Hille inequality in other contexts

6.3.1 Boolean functions

We determine the exact value of the BH constant for Boolean functions. This result

follows from the well-known fact that the Fourier coefficients of Boolean functions

are multiples of 21−dZ. This property is usually referred to as the granularity of
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Boolean functions [O’D09, Exercise 1.11]. We sketch the proof below for the sake of

completeness.

Lemma 6.13. Let f : {−1, 1}n → {−1, 1} with degree at most d. Then, f̂(s) ∈ 21−dZ
for every s ∈ {0, 1}n.

Proof. Recall that f : {−1, 1}n → {−1, 1}. We define g : {0, 1}n → {0, 1} by

g(z) =
1

2

(
1− f((1− 2z1), . . . , (1− 2zn))

)
.

It is not difficult to see that g can be written in a unique way as

g(z) =
∑

s∈{0,1}n

cs
∏
i:si=1

zi

for some coefficients cs ∈ R such that cs = 0 for every s with |s| > d. By applying

induction on |s|, one can actually prove that cs ∈ Z for every s. Indeed, we first note

that for s = ∅, one has c0n = g(0n) ∈ {0, 1}. For s with |s| = t+ 1 > 0, assuming that

cs ∈ Z for every s with |s| ≤ t, we have

cs = g(s)−
∑

|s′|<|s|,s′i≤si

cs′ ,

so cs belongs to Z. Finally, the statement for f can be obtained by just noticing that

f(x) = 1− 2g

(
1− x1

2
, . . . ,

1− xn
2

)
= 1− 2

∑
|s|≤d

cs
∏
i:si=1

1− xi
2

.

Proposition 6.14. Let f : {−1, 1}n → {−1, 1} of degree at most d. Then,

( ∑
s∈{0,1}n

|f̂(s)|
2d

d+1

) d+1
2d ≤ 2

d−1
d .

The equality is witnessed by the address function.

Proof. Since for Boolean functions one has ∥f∥2 = 1, Lemma 6.13 and Parseval’s

identity imply that f has at most 22(d−1) non-zero Fourier coefficients. Indeed, this

immediately follows from the identity
∑
s |f̂(s)|2 = 1 and the fact that |f̂(s)| ≥ 21−d
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for every non-zero coefficient. Hence, Hölder’s inequality implies that, for p ∈ [1, 2),

∑
s:f̂(s) ̸=0

|f̂ |p · 1 ≤
( ∑
s∈{0,1}n

f̂2(s)
) p

2
(

22(d−1)
) 2−p

2

= 2(d−1)(2−p).

Taking p = 2d/(d+ 1) the claimed inequality follows.

The equality is witnessed by the address function f : ({−1, 1}n)d → {−1, 1} of

degree d and n = 2d−1, which is defined as

f(x) =
∑

a∈{−1,1}d−1

x1(1)− a1x1(2)

2
. . .

xd−1(1)− ad−1xd−1(2)

2︸ ︷︷ ︸
ga(x1,...,xd−1)

xd(a), (6.10)

where we identify {−1, 1}d−1 with [2d−1] in the canonical way. The address function

is Boolean because for every (x1, . . . , xd−1) ∈ ({−1, 1}n)d−1 there is only one a ∈
{−1, 1}d−1 such that ga(x1, . . . , xd−1) is not 0, in which case it takes the value ±1.

Given that it has 22(d−1) Fourier coefficients and all of them equal 21−d, we have that

( ∑
s∈{0,1}n

|f̂(s)|
2d

d+1

) d+1
2d

= 21−d22(d−1)· d+1
2d = 2

d−1
d ,

as promised.

6.3.2 A non-commutative BH inequality

In this section, we prove a Bohnenblust-Hille inequality for linear maps that are

bounded in the S1 to S∞ norm, such as quantum channels. Recall from Eq. (6.4)

that any such a function can be written as

f =
∑

s∈{0,1}n

f̂(s)χs,

and it has degree d if this is the minimal number for which f̂(s) = 0 if |s| > d.

The following result was proved originally in [Ble01], and with a better constant in

[DMP19].

Theorem 6.15. Let f : {−1, 1}n → R be a function of degree at most d. Then,

∥f̂∥ 2d
d+1
≤ C

√
d log d∥f∥∞,
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where C > 0 is a constant.

In order to prove Theorem 6.3 we follow a similar argument to the one used in

[VZ23]. However, we need to modify their argument in order to consider maps from

S1 to S∞ and not just matrices in MN . In fact, as we explain in Remark 6.18,

Theorem 6.3 generalizes the non-commutative BH inequality proved in [VZ23].

For every Φ : MN →MN , we will assign it a function fΦ : {−1, 1}3n×{−1, 1}3n →
C whose Fourier spectrum will be closely related to the one of Φ̂, as shown in Lemma 6.16,

and then we will be able to reduce to Theorem 6.15. The function fΦ is defined as

follows. For a = (a1, a2, a3), b = (b1, b2, b3) ∈ {−1, 1}n × {−1, 1}n × {−1, 1}n and

s, t ∈ {1, 2, 3}n, define the following matrices (which are not necessarily states)

|as⟩⟨bt| = ⊗
i∈[n]
|χs(i)
a
s(i)
i

⟩⟨χt(i)
b
t(i)
i

|,

Here |χsa⟩ is the eigenvector of σs with eigenvalue a. The function fΦ : {−1, 1}3n ×
{−1, 1}3n → C is then given by

fΦ(a, b) =
1

9n

∑
s,t∈{1,2,3}n

Tr[Φ
(
|as⟩⟨bt|

)
|bt⟩⟨as|].

We recall the reader that any function Φ : MN →MN can be expressed as

Φ(ρ) =
∑

x,y∈{0,1,2,3}n

Φ̂(x, y) · σxρσy, (6.11)

where σx = ⊗i∈[n] σxi
and σi for i ∈ {0, 1, 2, 3} are the Pauli matrices. We also recall

that, if |x| denotes the number of non-zero entries of x ∈ {0, 1, 2, 3}n, the degree of Φ

is the minimum integer d such that Φ̂(x, y) = 0 if |x|+ |y| > d.

In the following lemma, the key properties of the function f are presented.

Lemma 6.16. Let Φ : MN → MN be a function of degree at most d. Then, fΦ has

also degree d. Moreover, |fΦ(a, b)| ≤ ∥Φ∥S1→S∞ for all a, b and ∥Φ̂∥p ≤ 3d∥f̂Φ∥p.

Proof. We first show the bound on |fΦ|. Given that |as⟩⟨bt| is a rank one operator

such that ∥|as⟩∥2 = ∥|bt⟩∥2 = 1, we conclude that

∥|as⟩⟨bt|∥S1
= 1. (6.12)
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Thus, we have that:

|fΦ(a, b)| ≤ 1

9n

∑
s,t∈{1,2,3}n

|Tr[Φ
(
|as⟩⟨bt|

)
|bt⟩⟨as|]|

≤ 1

9n

∑
s,t∈{1,2,3}n

∥Φ
(
|as⟩⟨bt|

)
∥S∞∥|bt⟩⟨as|∥S1

≤ 1

9n

∑
s,t∈{1,2,3}n

∥Φ∥S1→S∞∥|as⟩⟨bt|∥S1
∥|bt⟩⟨as|∥S1

≤ 1

9n

∑
s,t∈{1,2,3}n

∥Φ∥S1→S∞ = ∥Φ∥S1→S∞ ,

where in the first inequality we have used the triangle inequality, in the second in-

equality the duality between S1 and S∞, in the third the definition of S1 → S∞ norm

and in the fourth inequality we have used Eq. (6.12).

We now prove the estimate ∥Φ̂∥p ≤ 3−d∥f̂Φ∥p and also that the degree of fΦ is d.

To this end, it suffices to show that

fΦ(a, b) =
∑

x,y∈{0,1,2,3}n

Φ̂(x, y)

3|x|+|y|

∏
i∈supp(x)

∏
j∈supp(y)

a
x(i)
i b

y(j)
j , (6.13)

where supp(x) = {i ∈ [n] : xi ̸= 0} and |x| is the size of supp(x). Indeed, this

follows from the fact that
∏
i∈supp(x)

∏
j∈supp(y) a

x(i)
i b

y(j)
j can be read as χSx,y

(a, b) for

a certain Sx,y ∈ {−1, 1}6n satisfying that Sx,y ̸= Sx′,y′ whenever (x, y) ̸= (x′, y′), for

for every x, y ∈ {0, 1, 2, 3}n.

To prove Eq. (6.13) the key is observing that for every s, t ∈ {1, 2, 3}, x, y ∈
{0, 1, 2, 3} and a, b ∈ {−1, 1}, we have that

Tr[σx|χsa⟩⟨χtb|σy|χtb⟩⟨χsa|] =



0 if (s ̸= x and x ̸= 0) or (t ̸= y and y ̸= 0),

1 if x = 0 and y = 0,

a if s = x and y = 0,

b if x = 0 and t = y,

ab if s = x and y = t.

Hence, taking tensor products we have that for every s, t ∈ {1, 2, 3}n, x, y ∈ {0, 1, 2, 3}n

and a = (a1, a2, a3), b = (b1, b2, b3) ∈ {−1, 1}n × {−1, 1}n × {−1, 1}n, it holds that

Tr[σx|as⟩⟨bt|σy|bt⟩⟨as|] = ⟨χsa|σx|χsa⟩⟨χtb|σy|χtb⟩ =
∏

i∈supp x

∏
j∈supp y

a
x(i)
i b

y(j)
j δx(i),s(i)δy(j),t(j).
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In particular, it follows that

fΦx,y (a, b) ≡ 1

9n

∑
s,t∈{1,2,3}n

Tr[σx|as⟩⟨bt|σy|bt⟩⟨as|]

=
1

9n

∏
i∈supp x

∏
j∈supp y

a
x(i)
i b

y(j)
j

∑
s∈X ,t∈Y

1,

where X = {s ∈ {1, 2, 3}n : s(i) = x(i) ∀ i ∈ supp(x)}. Since |X | = 3n−|x|, Eq. (6.13)

follows for Φx,y. Finally, Eq. (6.13) follows in general because

fΦ(a, b) =
∑

x,y∈{0,1,2,3}n

Φ̂(x, y)fΦx,y
(a, b).

Proof of Theorem 6.3. Let ℜfΦ : {−1, 1}6n → R be defined as (ℜfϕ)(x) = ℜ(fΦ(x))

and ℑfΦ : {−1, 1}6n → R as (ℑfϕ)(x) = ℑ(fΦ(x)). Note that we have that f̂ϕ =

ℜ̂fΦ + iℑ̂fΦ. By Lemma 6.16,

|(ℜfϕ)(a, b)|, |(ℑfϕ)(a, b)| ≤ |fΦ(x)| ≤ ∥Φ∥S1→S∞ ,

and that the degree of both the real and imaginary part is at most d. Hence, by the

triangle inequality and Theorem 6.15 we have

∥f̂Φ∥ 2d
d+1
≤ ∥ℜ̂fΦ∥ 2d

d+1
+ ∥ℑ̂fΦ∥ 2d

d+1
≤ C

√
d log d∥Φ∥S1→S∞ .

Thus, as ∥Φ̂∥2d/(d+1) ≤ 3d∥f̂Φ∥2d/(d+1), we have that ∥Φ̂∥2d/(d+1) ≤ Cd∥Φ∥S1→S∞ .

Corollary 6.17. Let Φ : MN →MN be an n-qubit quantum channel of degree at most

d. Then

∥Φ̂∥2d/(d+1) ≤ Cd,

Proof. We just have to show that if Φ is a quantum channel, then ∥Φ∥S1→S∞ ≤ 1. This

is true since ∥Φ∥S1→S∞ ≤ ∥Φ∥S1→S1 and Φ† is a completely positive and unital map

between C∗-algebras, so we have ∥Φ∥S1→S1 = ∥Φ†∥S∞→S∞ = 1 [Pau03, Proposition

3.2].

Remark 6.18. Theorem 6.3 generalizes the non-commutative BH inequality proved by

Volberg and Zhang in [VZ23]. Indeed, given M =
∑
x M̂(x)σx ∈MN the main result
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of [VZ23] is recovered when one applies Theorem 6.3 to ΦM (·) = (·)M , which satisfies

Φ̂M (x, y) = δx,0nM̂(y) and ∥ΦM∥S1→S∞ = ∥M∥.

6.4 Learning low-degree quantum objects

This section is devoted to explaining the applications of the results developed in the

previous section to learning theory.

Why are BH inequalities useful for learning?

We start by recalling a classical problem in learning theory which includes some of

the results we present next and serves as motivation for other problems that are

explained further below. Consider a function f : {−1, 1}n → R to which we only have

access through random samples. Here, a random sample means that we have access to

(x, f(x)) for an element x chosen uniformly at random from {−1, 1}n. Assume that we

fix ε > 0 and δ > 0. Then, we want to devise an algorithm such that, by having access

to T (n, ε, δ) random samples, produces another function f ′ : {−1, 1}n → R satisfying,

with probability at least 1 − δ, that ∥f − f ′∥2 < ε. In this case, we say that f can

be learned within L2-error ε by using T (n, ε, δ) samples.1 The goal is to minimize the

number of samples needed to learn the function.

A relevant instance of the problem we just have introduced is learning a bounded

function f : {−1, 1}n → [−1, 1] of degree at most d. The seminal low-degree algorithm

by Linial, Mansour and Nisan solves it with Od,ε(n
d) samples [LMN93].2 Their algo-

rithm is based on learning the relevant part of the Fourier spectrum of the function f

which, thanks to Parseval’s identity, allows us to learn the function. More precisely,

if f ′ has also degree at most d, we then have that

∥f − f ′∥22 =
∑

s∈{0,1}n,|s|≤d

|f̂(s)− f̂ ′(s)|2.

Hence, in order to learn f up to error ε, it suffices to learn each of its Fourier coefficients

f̂(s) with |s| ≤ d up to error ε/
√
nd. Indeed, since there are at most O(nd) of these

coefficients, this immediately implies that ∥f − f ′∥22 < ϵ2.

Now, we explain how to learn the Fourier coefficients f̂(s) for |s| ≤ d with probabil-

ity ≥ 1− δ and by just using T = O(nd log(nd/δ)/ε2) random samples (xi, f(xi))i∈[T ].

1Despite we don’t mention δ explicitly, this parameter is implicit in the problem. Sometimes, one
fixes δ = 2/3.

2Here and below, we use Od,ε to hide factors that depend on d and 1/ε and are independent of n.
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To this end, let us consider the empirical Fourier coefficients, defined as

f̂ ′(s) =
1

T

∑
i∈[T ]

f(xi)χs(xi).

Note that, for a fixed s, f̂ ′(s) can be seen as the average of T independent random

variables distributed identically to the random variable hs : {−1, 1}n → [−1, 1] given

by hs(·) = f(·)χs(·). Fixing s, since Ehs = f̂(s), we can apply the Hoeffding bound

to state that

Pr
(
|f̂ ′(s)−f̂(s)| > ε√

nd

)
= Pr

( 1

T

∣∣∣ ∑
i∈[T ]

(
f(xi)χs(xi)−f̂(s)

)∣∣∣ > ε√
nd

)
≤ exp

(
−Tϵ

2

2nd

)
.

A union bound can then be applied to upper bound the probability that |f̂ ′(s)−f̂(s)| ≤
ε√
nd

for every |s| ≤ d by

1− exp
(
− Tϵ2

2nd
+ d log n

)
.

Hence, by choosing T = 2nd log(nd/δ)/ε2, we make this upper bound equal to 1 − δ
as we wanted.

The algorithm by Linial et al. was the state of the art until recently, when Eskenazis

and Ivanisvili showed that a function of degree d can actually be learnt by using only

Od,ε(log n) random samples [EI22]. Their key insight was to use a Bohnenblust and

Hille inequality for functions defined on the hypercube f : {−1, 1}n → R, proved in

[DMP19], which can be used to upper bound the contribution of the small Fourier

coefficients. To illustrate this, we consider the sum of the squares of the Fourier

coefficients which are smaller than a certain parameter ε′, which will be fixed later;

namely ∑
s∈{0,1}n, |f̂(s)|≤ε′

|f̂(s)|2.

To upper bound this quantity, one can use that 2 = 2/(d+ 1) + 2d/(d+ 1), so∑
s∈{0,1}n, |f̂(s)|≤ε′

|f̂(s)|2 ≤ ε′
2

d+1

∑
s∈{0,1}n, |f̂(s)|≤ε′

|f̂(s)|
2d

d+1 .

Now one can use the aforementioned BH inequality, which states that ∥f̂∥2d/(d+1) ≤
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C
√
d log d∥f∥∞, to obtain ∑

s∈{0,1}n, |f̂(s)|≤ε′

|f̂(s)|
2d

d+1 ≤ ε′
2

d+1C
√
d log d.

Therefore, by setting ε′ = εd+1C−(d+1)
√
d log d/2, it follows that∑

s∈{0,1}n, |f̂(s)|≤ε′

|f̂(s)|2 ≤ ε2. (6.14)

From Eq. (6.14), Eskenazis and Ivanisvili essentially followed the ideas of Linial et

al., but now they just needed to learn every low-degree Fourier coefficient up to error

ε′ = εd+1C−(d+1)
√
d log d/2, which is much bigger than ε/

√
nd and, in particular, inde-

pendent of n. Using this approach, they proved that these functions can be learned

with L2-error ε and confidence 1− δ by using

O
(
ε−2(d+1)∥f̂∥2d2d

d+1
d2 log

(n
δ

))
(6.15)

random samples.

Learning quantum query algorithms

In particular, the result of Eskenazis and Ivanisvili applies to the amplitudes of quan-

tum query algorithms as in Eq. (6.2) which, since the early days of quantum query

complexity, are known to be bounded d-linear forms T : {−1, 1}n×{−1, 1}n → [−1, 1]

[EI22, BBC+01]. In addition, for d-linear forms it is known that the BH inequal-

ity holds with a polynomial constant, ∥T∥2d/(d+1) ≤ poly(d)∥T∥∞ [BPSS14]. Hence,

it follows from Eq. (6.15) that the amplitudes of quantum query algorithms can be

learned from

O(ε−2(d+1)poly(d)d log(n/δ)) (6.16)

samples.

A key observation here, proved in [ABP19], is that those d-linear forms arising

from quantum algorithms actually satisfy that ∥T∥cb ≤ 1 [BBC+01]. Hence, Theorem

6.1 implies the following improvement with respect to Eq. (6.16).

Corollary 6.2. Consider a quantum algorithm that makes d queries as explained

above. Then, its amplitudes can be learned with L2
2-accuracy ε and confidence 1 − δ

from O(ε−2(d+1)d2 log(n/δ)) uniform random samples.
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Note that this result requires a number of samples that is polynomial in n when

ε and δ are constants and d = log(n), while using (6.16) one would get O(nlog logn)

samples as an upper bound.

Learning low-degree Boolean functions

In this section we propose almost optimal classical and quantum algorithms to learn

low-degree Boolean functions. While we have already explained the classical access

model (via random samples), we will also need to know what we mean by a quantum

access model. The quantum counterpart of these samples are the quantum uniform

samples, defined via the (n+ 1)-qubit states

|f⟩ =
1√
2n

∑
x∈{−1,1}n

|x⟩ ⊗ |f(x)⟩ ∈ (C2)n ⊗ C2 = (C2)n+1,

where {|−1⟩, |1⟩} is the canonical (or computational) basis of C2 and we have denoted

|x⟩ = |x1⟩ ⊗ · · · ⊗ |xn⟩ ∈ (C2)n for every x ∈ {−1, 1}n. Quantum uniform samples are

at least as powerful as classical samples. Indeed, if one measures the first n qubits of

|f⟩ in the basis {|x⟩}x, then the last qubit collapses to |f(x)⟩ for a uniformly random

x. However, they are actually strictly more powerful, as they allow one to sample

from the Fourier distribution (|f̂(s)|2)s. For a proof of this well-known result, see for

instance [ACL+21, Lemma 4].

Lemma 6.19 (Fourier sampling). Let f : {−1, 1}n → {−1, 1} be a Boolean function.

There is an algorithm that inputs |f⟩, succeeds with probability 1/2 and, in this case,

samples a string s ∈ {0, 1}n according to the probability distribution (|f̂(s)|2)s.

We now state the main result of this section on Boolean functions.

Proposition 6.20. Let f : {−1, 1}n → {−1, 1} be a degree-d function. There is a

quantum algorithm that learns f exactly with probability 1− δ using O
(
4dd log (1/δ)

)
uniform quantum samples. Also, there is a classical algorithm that uses O

(
4dd log (n/δ)

)
uniform samples for this task.

Despite the simplicity of the proof of Proposition 6.20, we include it for com-

pleteness and because it seems not to be well-known. See for instance [NPVY23,

Corollary 34], which proposes a quantum algorithm for the same problem that re-

quires O(nd) samples, or [EIS22, Corollary 4] that proposes a classical algorithm that

requires O(2d
2

log n) samples. Proposition 6.20 highly improves those estimates. We
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also remark that a classical lower bound of Ω(2d log n) samples was recently proved,

making our classical result nearly optimal [EIS22]. Regarding the tightness of our

quantum result, since learning functions f : {−1, 1}d → {−1, 1} of degree d requires

Ω(2d) uniform quantum samples (which is folklore and follows from example from

[AdW18]), our quantum estimate is almost optimal too.

Proof. For the classical upper bound we propose the following algorithm. We take

T = 2 · 4d log(nd/δ) uniform samples (xi, f(xi)) and use them to define the empirical

Fourier coefficients as

f̂ ′(s) =
1

T

∑
i∈[T ]

f(xi)χs(xi),

for every s ⊆ [n]. Define now the event E = {|f̂(s)− f̂ ′(s)| < 2−d ∀ |s| ≤ d}. Then, one

can argue exactly in the same way as in Section 6.4 to conclude that Pr[E ] ≥ 1− δ.

Once we have computed the coefficients f̂ ′(s), we round every of them to the closest

number f̂ ′′(s) ∈ 2d−1Z. If E occurs, by granularity we have that f̂ ′′(s) = f̂(s) for every

|s| ≤ d, so f =
∑
s f̂

′′(s)χs, as desired.

For the quantum upper bound we begin by sampling N = 4d log(4d/δ) times

from (f̂(s)2)s∈{0,1}n . This can be done, with probability ≥ 1 − δ, by using T1 =

O(4d log(4d/δ)) quantum uniform samples, thanks to Lemma 6.19 and a Hoeffding

bound. Now, given s such that f̂(s) ̸= 0, the probability that a sample s′ according

to the distribution (f̂(s)2)s∈{0,1}n satisfies s′ ̸= s is given by 1 − f̂(s)2 ≤ 1 − 41−d,

where we have used that f̂(s)2 ≥ 41−d by Lemma 6.13. Hence, if s1, . . . , sN are the

N samples, then the probability that we have si ̸= s for every i = 1, . . . , N is upper

bounded by

(1− 41−d)N ≤ δ

4d
.

Thus, taking a union bound over the at most 4d−1 non-zero Fourier coefficients

(due to Lemma 6.13 and
∑
s |f̂(s)|2 = 1), it follows that, with probability 1 − δ, we

will have sampled every non-zero Fourier coefficient.

In the second part of the algorithm we use T2 = O(4d log(4d/δ)) quantum uni-

form samples and measure them in the computational basis, which generates classical

uniform samples. From here, we can argue as in the classical upper bound and learn

f exactly. The quantum advantage comes from Fourier sampling, that allows us to

detect the non-zero Fourier coefficients, and apply the union bound only over those,

that are at most 4d−1.
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Learning low-degree quantum channels

First of all, we define the access model we use. Given a channel Φ, a learning algorithm

is allowed to make queries to Φ as follows: it can choose a state ρ, feed ρ to the channel

to obtain Φ(ρ) and measure Φ(ρ) in any basis.

The goal here, as in the previous sections, is to produce a classical description of a

map Φ̃ that is close to Φ in the ℓ2-distance defined by the usual inner product for maps

from MN to MN , i.e., ⟨Φ, Φ̃⟩ = Tr[J(Φ)J(Φ̃)]/4n, where J(Φ) is the Choi-Jamiolkowski

(CJ) representation of Φ.

For a reader not familiar with quantum computing, we remark that the proof of the

main result of this section does not require prior knowledge of quantum computing, if

one uses Lemmas 6.21 and 6.23 in a black-box manner. The reader can find in [NC10]

an excellent reference to learn about quantum computing.

An important fact for our learning algorithm is that Φ̂ = (Φ̂(x, y))x,y is a state

that can be prepared with 1 query to Φ (see [BY23, Lemma 8]). This is the content

of the following statement.

Lemma 6.21. If Φ is a quantum channel, then Φ̂ is a state unitarily equivalent to

v(Φ). In particular, one query to Φ suffices to sample once from (Φ̂(x, x))x, which is

a probability distribution.

We will also make use of the following lemma, proved in [KMY03, Proposition 7].

Lemma 6.22. Let ρ, ρ′ be two states. Then, one can estimate Tr[ρρ′] up to error ε

with probability 1− δ, by using O((1/ε)2 log(1/δ)) copies of ρ and ρ′.

Before proving the main theorem of the section, we show that for a given x, y ∈
{0, 1, 2, 3}n, the corresponding Pauli coefficient Φ̂(x, y) can be efficiently learned.

Lemma 6.23 (Pauli coefficient estimation for channels). Let Φ : MN → MN be a

quantum channel and let x, y ∈ {0, 1, 2, 3}n. Then, Φ̂(x, y) can be estimated with error

ε and probability 1− δ using O((1/ε)2 log(1/δ)) queries to Φ.

Proof. If x = y, we just have to prepare Φ̂ and apply Lemma 6.22 to Φ̂ and the state

ρ = |x⟩⟨x|. If x ̸= y, one first learns Φ̂(x, x) and Φ̂(y, y) with error ε as before. On

the one hand, one can learn Φ̂(x, x) + Φ̂(y, y) + 2ℜΦ̂(x, y), with error ε by applying

Lemma 6.22 to Φ̂ and |ξ⟩⟨ξ|, where |ξ⟩ = 1/
√

2(|x⟩+ |y⟩). Hence, one learns ℜΦ̂(x, y)

with error 3ε/2. On the other hand, one can learn Φ̂(x, x) + Φ̂(y, y) + 2ℑΦ̂(x, y), with

error ε by applying Lemma 6.22 to Φ̂ and |η⟩⟨η|, where |η⟩ = 1/
√

2(|x⟩ + i|y⟩), and

one can then learn ℑΦ̂(x, y) with error 3ε/2.
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Now, we are ready to prove Theorem 6.4, which we restate for the convenience of

the reader.

Theorem 6.4. Let Φ be a n-qubit degree-d quantum channel. Then it can be learned

in L2-accuracy ε and confidence ≥ 1− δ by making exp
(
Õ(d2 + d log(1/ε))

)
· log(1/δ)

queries to Φ. Here, we use the notation Õ to hide logarithmic factors in d, 1/ε, and

1/δ.

Proof. The algorithm consists of 2 steps. In the first one we detect the relevant Pauli

coefficients, while in the second step we learn the few Pauli coefficients detected as

relevant.

Step 1. Detect the big Pauli coefficients. Let c > 0 be a parameter to

be determined later. We invoke Lemma 6.21 to sample T1 times from (Φ̂(x, x))x by

making T1 queries to Φ. Let (Φ̂′(x, x))x be the empirical distribution obtained from

these samples. We store the big Pauli coefficients in the set Xc = {x : Φ̂′(x, x) ≥ c}.
Note that, since

∑
x∈Xc

Φ̂′(x, x) ≤ 1, we know that

|Xc| ≤
1

c
. (6.17)

Step 2. Learn the big Pauli coefficients. We invoke Lemma 6.23 to state

that, by querying Φ just

T2 = O((1/c)4(1/ε)2 log((1/c)2(1/δ)))

times, we can find approximations Φ̂′′(x, y) of Φ(x, y) for the at most (1/c)2 pairs

(x, y) ∈ Xc, such that

sup
(x,y)∈Xc×Xc

|Φ̂(x, y)− Φ̂′′(x, y)| ≤ cε. (6.18)

happens with probability ≥ 1− δ.

Output. We output Φ′′(·) =
∑
x,y∈Xc

Φ̂′′(x, y)σx(·)σy as our approximation for

Φ.

Correctness analysis. We consider the event E = {|Φ̂(x, x)− Φ̂′(x, x)| ≤ c ∀x ∈
{0, 1, 2, 3}n}. By Lemma 2.6, taking T1 = O((1/c)2 log(1/δ)) ensures that

Pr[E ] ≥ 1− δ.
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Assuming the event E holds, we have that

x /∈ Xc =⇒ |Φ̂(x, x)| ≤ |Φ̂′(x, x)|+ ||Φ̂(x, x)| − |Φ̂′(x, x)|| ≤ 2c. (6.19)

In particular, it follows that

x /∈ Xc =⇒ |Φ̂(x, y)| ≤
√
|Φ̂(x, x)||Φ̂(y, y)| ≤

√
2c ∀ y ∈ {0, 1, 2, 3}n, (6.20)

where in the first inequality we have used that Φ̂ is positive semidefinite and in the

second inequality we have used Eq. (6.19) and that Φ̂(y, y) ≤ 1.

Assuming that both parts of the algorithm succeed, we have that Φ′′ is close to Φ.

Indeed,

∥Φ− Φ′′∥22 =
∑

x,y∈Xc

|Φ̂(x, y)− Φ̂′′(x, y)|2 +
∑

x∨y/∈Xc

|Φ̂(x, y)|2

≤ ε2 +
∑

x∨y/∈Xc

|Φ̂(x, y)|
2

d+1 |Φ̂(x, y)|
2d

d+1

≤ ε2 + (2c)
1

d+1 ∥Φ̂∥
2d

d+1
2d

d+1

≤ ε2 + c
1

d+1Cd.

Here, in the equality we have used Parseval’s identity, in the first inequality we

used Eq. (6.17), Eq. (6.18) and that 2 = 1/(d + 1/2) + 2d/(d + 1/2); in the second

inequality we have used Eq. (6.20) and in the third inequality we used the Bohnenblust-

Hille inequality for channels (Corollary 6.17). Hence, by choosing

c = ε2d+2C−d(d+1)

we obtain the desired result.

Complexity analysis. Note that T2 > T1, so the complexity T2 dominates the

complexity of the first part of the algorithm. Hence, the total number of queries made

is

O
(
C4d(d+1)(1/ε)8d+10 log(C2d(d+1)(1/ε)4d+4(1/δ))

)
.
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