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Chapter 5

Towards Aaronson and
Ambainis conjecture via
Fourier completely bounded

polynomials

5.1 Introduction

Understanding the quantum query complexity of Boolean functions f : D — {—1,1},
where D is a subset of {—1,1}", has been a crucial task of quantum information
science [Amb18]. Many celebrated quantum algorithms show an advantage in terms of
query complexity, for example in unstructured search [Gro96], period finding [Sho97],
Simon’s problem [Sim97], NAND-tree evaluation [FGGO7] and element distinctness
[Amb07]. However, these advantages are limited to be polynomial in the case of
total functions (those with D = {—1,1}"), while they can be exponential for highly
structured problems (informally, this means that |D| = 0(2")), such as for Simon’s
problem [Sim97], period finding [Sho97] or k-fold forrelation [AA15, Tal20, BS21,
SSW21]. It is widely believed that a lot of structure is necessary for superpolynomial

speedups!. The following folklore conjecture, which has circulated since the late 90s,

1Recently, Yamakawa and Zhandry showed that superpolynomial speedups can be attained in
unstructured search problems. That does not contradict that structure is needed to achieve super-
polynomial speedups in decision problems, which are those modeled by Boolean functions [YZ22].
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5.1. Introduction

but was first formally posed by Aaronson and Ambainis [AA09], formalizes this idea.

Conjecture 5.1 (Folklore). The biases of t-query quantum algorithms can be simu-
lated with error at most ¢ on at least a (1—0)-fraction of the inputs using poly(¢, 1/¢,1/6)

classical queries.

In other words, it is believed that quantum query algorithms can be approximated
almost everywhere by classical query algorithms with only a polynomial overhead.

A route towards proving Conjecture 5.1 was designed by Aaronson and Ambainis
using that the bias of quantum query algorithms are polynomials. Indeed, Beals et al.
[BBCT01], proved that the bias of a t-query quantum algorithm is a bounded polyno-
mial p: {—1,1}" — R of degree at most 2¢t. Based on this observation, Aaronson and
Ambainis conjectured in [AA09] that every bounded polynomial of bounded degree

has an influential variable.

Conjecture 5.2 (Aaronson-Ambainis (AA)). Let p: {—1,1}" — R be a polynomial

of degree at most ¢ with [|p||loc < 1. Then, p has a variable with influence at least
poly(Var[p], 1/t).

The argument of [AA09, Theorem 7] to show that Conjecture 5.2 would imply
Conjecture 5.1 works as follows. Let p the bounded polynomial of degree at most 2¢
that represents the bias of ¢ query quantum algorithm. Say that we want to approx-
imate p(y) for some y € {—1,1}". First, query an influential variable ¢ of y. Then,
the restricted polynomial p|x(i):y(i) would also be a bounded polynomial of degree
at most 2t, so we can query again an influential variable. Given that the influences
of these variables are big, after a small number of queries the remaining polynomial
would have a low variance, so if we output its expectation it would be close to p(y)
with high probability.

A few reductions to other conjectures have been made. The first one is that is
sufficient to prove the conjecture for one-block decoupled polynomials [OZ15]. Very
recently, Lovett and Zhang stated two conjectures related to fractional certificate com-
plexity that, if true, would imply the AA conjecture [LZ22]. Also recently, Austrin
et al. showed a connection of the AA conjecture with cryptography: they proved
that if the AA conjecture is false, then there is a secure key agreement in the quan-
tum random oracle model that cannot be broken classically [ACCT22]. The most
recent work in this line of research is the one by Bhattacharya, who showed that
the conjecture is true for random restrictions of the polynomial [Bha25]. Regarding

particular cases, it is only known to be true in a few scenarios: Boolean functions
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f{-1,1}" - {-1,1} [Mid05, OSSS05, JZ11], symmetric polynomials [Ival9], mul-
tilinear forms whose Fourier coefficients are all equal in absolute value [Mon12] and
block-multilinear completely bounded polynomials [BSdW22].

The last result is relevant in this context because Arunachalam, Briét and Palazue-
los showed that the biases of quantum query algorithms are polynomials that are not
only bounded, but also completely bounded [ABP19] (see Theorem 3.6). This is a
more restricted normalization condition, which can be informally understood as the
polynomial taking bounded values when evaluated not only on bounded scalars, but
also on bounded matrix inputs. This way, one could try to use this extra condition to
prove results about quantum query algorithms.

This idea was first put in practice by Bansal, Sinha and de Wolf [BSdW22]. They
showed that the AA conjecture holds for completely bounded block-multilinear forms,
which implies an almost everywhere classical simulation result, similar to Conjec-
ture 5.1, for the amplitudes of certain quantum query algorithms. These algorithms
query different (non-controlled) bit strings on every query, while Conjecture 5.1 con-

cerns algorithms that query the same controlled bit string on every query.

Results of this chapter

We follow that line of work and use the characterization of [ABP19] to design a route
towards Conjecture 5.1. Our first result is a new presentation of that characteriza-
tion that is more convenient for our purposes. To do this we introduce the Fourier
completely bounded t-norms (|| - ||feb,¢), which are relaxations of the supremum norm.
In these norms we not only take the supremum of the values that the polynomial
takes over Boolean strings as in Eq. (2.12), but also on matrix inputs that behave like
Boolean strings. We will not include formal definitions in the introduction, but we
illustrate the concept of having Boolean behavior of degree t with an example. For
m € N, we denote the m x m real matrices by M,,. Say that ¢t = 4 and n = 6, then if a
pair of vectors u,v € R™ and a string of matrices A € (M,,)® have Boolean behaviour

of degree 4, they satisfy, for instance,
(u, A(DA(1)A(2)AB)v) = (u, A(5)A(2)A(3)A(5)v),

because they should simulate the relation (1)z(1)x(2)z(3) = z(5)x(2)z(3)z(5) sat-
isfied by any Boolean string {—1,1}%. As the reader might guess, (u,v, A) will have
Boolean behavior of degree ¢ if it simulates the relations of F5 that involve product of

t of the canonical generators.
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5.1. Introduction

Using the Fourier expansion of polynomials defined on the Boolean hypercube
we will introduce a natural way of evaluating polynomial in matrix inputs that have
Boolean behavior, which allows us to introduce the Fourier completely bounded ¢-

norm.

Definition 5.3. (Informal version of Definition 5.10) Let p : {—1,1}" — R be a

polynomial of degree at most ¢. Its Fourier completely bounded t-norm is given by

[Pllgeb,¢ == sup |p(u, v, A)] (5.1)
where the supremum is taken over all (u,v, A) that have Boolean behavior of degree t.

After a reinterpretation of the semidefinite programs proposed in [GL19] to char-
acterize quantum query complexity, based on [ABP19], we show that the Fourier

completely bounded ¢-norms are those that characterize quantum query algorithms.

Theorem 5.4. Let p : {—1,1}" — R. Then, p is the bias of a t-query quantum
algorithm if and only if its degree is at most 2t and ||p||ep2t < 1.

This new presentation of the main result of [ABP19] is more compact than the
original one. It is presented directly in terms of polynomials of the Boolean hypercube,
does not involve a minimization over possible completely bounded extensions of p as
in Definition 4.7, and eludes the use of tensors/multilinear forms.

Given that the Fourier completely bounded ¢-norms are at least the supremum
norm?, Theorem 5.4 suggests that Conjecture 5.2 may be more general than necessary.
Hence, we propose the following weaker conjecture, that would also imply Conjecture
5.1.

Conjecture 5.5. Let p : {—1,1}" — R be a polynomial of degree at most ¢ with
IPllteb,e < 1. Then, p has a variable with influence at least poly(Var[p],1/t).

Using a generalization through creation and annihilation operators of the con-
struction used by Varopoulos to rule out a von Neumann’s inequality for degree 3

polynomials [Var74], we can prove a particular case of Conjecture 5.5.

Theorem 5.6. Let t € N. Let p : {—1,1}" — R be a homogeneous polynomial of

degree t and with ||p||ten+ < 1. Then, the mazimum influence of p is at least Var[p]?.

2From the results of [BP19] it can be inferred that there is a sequence of polynomials p, of degree
3 such that ||pn||tcb,3/]|Pnllcc —n 0.
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The proof of the homogeneous case does not straightforwardly generalize (see Re-
mark 5.20), but it suggests a way to solve the general case (see Remark 5.21). In
particular, we propose Question 5.22 (that reminds of tensor networks and almost-
quantum correlations), which if answered affirmatively would imply Conjecture 5.5.

Theorem 5.6 is the first result concerning the AA conjecture whose constant has
no dependence on the degree (to prove Conjecture 5.1 we could afford a polynomial
dependence on the degree). Also, it requires considerably fewer algebraic constraints
than the other particular cases for which we know AA conjecture to hold. In addition,
thanks to Theorem 5.4, it can be interpreted directly in terms of quantum query

algorithms.

Corollary 5.7. Lett € N. Let A be a t-query quantum algorithm whose bias is a
homogeneous polynomial p : {—1,1}" — R of degree 2t. Then, the mazimum influence

of p is at least Var[p]?.

With a similar construction as the one we used for Theorem 5.6, we can reprove the
results of [BSdW22] regarding the influence of block-multilinear completely bounded
polynomials. These polynomials have a particular algebraic structure and also a nor-

malization condition when evaluated on matrix inputs (see Section 5.4.1 below).

Theorem 5.8. Let t € N. Let p : {—1,1}"*" — R be a block-multilinear degree t
polynomial with ||p|lcs < 1. Then, p has a variable of influence at least (Var[p]/t)?.
What is more, if p is homogeneous of degree t, then it has a variable of influence at
least Var[p]?.

Theorem 5.8 corresponds to [BSdW22, Theorem 1.4], where Bansal et al. proved
the same result but with influences at least Var[p]?/[e(t + 1)*] in the general case and
with Var[p]?/(t+1)? in the homogeneous degree ¢ case. Their proofs involve evaluating
p in random infinite dimensional matriz inputs, which they can control using ideas of
free probability. However, our proof evaluates p in explicit finite dimensional matrix
inputs, is shorter and obtains better constants. In particular, our constant for the

homogeneous case is optimal.

5.2 The Fourier completely bounded ¢-norms

There is a vast theory concerning the properties of multilinear maps 7" : R™" x- - - xR"™ —
R that are completely bounded, i.e., bounded when they are extended to matrix do-

mains [Pau03]. However, to the best of our knowledge, there is no notion of being
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completely bounded for polynomials p : {—1,1}" — R defined on the Boolean hyper-
cube. Here, we propose a matrix notion of behaving like a Boolean string. Then, using
the Fourier expansion of these polynomials we define the evaluation of the polynomi-
als on these matrix inputs that behave like Boolean strings. Finally, we introduce the
Fourier completely bounded ¢-norms and prove a few of their properties.

We recall that every p: {—1,1}" — R can be written as

p(z) =Y (S [[ =), (5.2)

SCn) =X

where p(S) are the Fourier coefficients of p. We say that p has degree at most ¢ if
p(S) = 0 for every |S| > ¢, where |S| denotes the cardinality of S.

We will be interested on simulating the behavior of bit strings = € {—1,1}" x {1}

t

with one extra frozen variable3. Given t € N and i,j € [n + 1]* we say that i ~ j, if

z(i1)...2(ig) = 2(j1) . .. x(jq) for every z € {—1,1}" x {1}. (5.3)
In other words, if we define
Si = {k € [n] : k occurs an odd number of times in i},

then i ~ j if and only if S; = Sj. Note that n + 1 does not belong to these sets S;.
Given S C [n] with |S| < t, we write [i¥] to denote the equivalence class of indices i
such that S; = S.

Definition 5.9. Let n,t,m € N. Let u,v € S~ ! and let A € (B,,)". We say that
(u,v, A) has Boolean behavior of degree t if

(u, A(ir) ... A(ia)v) = (u, A(j1) . .. A(ja)v)

for all i,j € [n + 1]* such that i ~ j. We call %" to the set of (u,v, A) with Boolean
behavior of degree t.

Informally, having Boolean behavior of degree ¢t means that the relations of Eq. (5.3)
and some normalization conditions are satisfied. In particular, for any bit string
x € {—1,1}" x {1} and any t € N, we have that (1,1,2) has Boolean behavior of
degree t.

3The extra variable set to 1 is there because quantum query algorithms query a controlled bit
string. A non-controlled version, which would not require that extra variable.
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Also note that given t € N, for every S C [n] with |S| < ¢ there is at least one
i € [n+ 1]* such that S; = S. Thus, given (u,v, A) with Boolean behavior of degree
t, for every |S| <t the product [], g 2(i) can be simulated (in a unique manner) by
(u, A(i7) ... A(i5)v). In particular, this means that for a polynomial p of degree at
most ¢, we can define through Eq. (5.2) an evaluation of p on every (u, v, A) that has
Boolean behavior of degree ¢, which leads to the definition Fourier completely bouded

t-norm.

Definition 5.10. Let p : {—1,1}" — R be a polynomial of degree at most ¢. Then,

its Fourier completely bounded t-norm is defined by

Ipllsen.e = sup Y B AGT) .. Adif)v).
(.0, A)EBB ) | 5] <t

The rest of the section is devoted to prove a few results concerning the Fourier

completely bounded t-norms. First of all we show that, indeed, they are norms.

Proposition 5.11. Lett € N. Then, || - ||ltcbs 25 @ norm in the space of polynomials
p:{—1,1}" = R of degree at most t.

Proof. Tt clearly satisfies the triangle inequality and is homogeneous. Also, if p = 0

then [|p||teb,: = 0, and vice versa, because ||plloc < ||P/tcb,t- O

One nice property of these norms is that they can be computed as semidefinite

programs.

Proposition 5.12. Letp: {—1,1}" — R be a polynomial of degree at most t. Then,

its Fourier completely bounded t-norm can be written as the following SDP

IPllcn,e =sup > H(S)(u,vis), (5-4)

Seln],|S|<t

u,v,vi ER™ meN ien+1]° selt,

(u,v;) = (u,v5), if i~j, i,j € [n+ 1], (5.5)

<uau> = <U?U> = 17 (56)

Gramjep,11)° {vij} < Gramjep 4177, {v5}, for i € [n+ 1], (5.7)
se[t—1]o set—1]o

where we by vy with j € [n+ 1]° we mean v, Gram denotes the gram matriz and the

symbol ‘X’ the usual matriz inequality.
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5.2. The Fourier completely bounded ¢-norms

Proof. Let ||p||l be the expression on the right-hand side of Eq. (5.4). Note that
Eq. (5.5) represents the relations of bit strings of Eq. (5.3), while Eqgs. (5.6) and (5.7)

encode normalization conditions.

On the one hand, every (u,v, A) € %" defines a feasible instance for ||p|| through
vi = A1) ... A(is)v
for every i € [n 4 1]° and every s € [t]. Given that the value of this instance is

S RS AGY). . Ao

SC[n],|S|<t

we have that |[p[| > ||p|lecb,-

On the other hand, let u,v,v; € R™ be a feasible instance of ||p|||. For i € [n + 1]
define A(i) € M, as the linear map from R™ to R™ that takes v; to v;; for every
j € [n+1)® and every s € [t — 1]o, and it is extended to the orthogonal complement
as 0. First of all, we should check that this is a correct definition, meaning that for
every A € R™, with m = (n+1)""' +--- + (n+ 1)°, we have that

Z)\j’Uj =0 = Z /\jvij = 0.
J J
Indeed, we can prove something stronger:

z Ajvi;) Z)\ g = AT Gramjep,11)° {vij A < AT Gramje(y41)° {vj 1A

§ I se[t 10 se[t—1]o

= QoA )Ty Ay
j ¥

The above calculation also proves that the A(:)’s are contractions, and thanks to
Eq. (5.5) it follows that (u,v, A) has Boolean behavior of degree ¢. Finally, note that

the value of this (u,v, A) for ||p||eb,; is the same as the value of (u,v,v;) for ||p|], so

1P llgeb.e > [Pl O

Given t,t' € N with ¢’ > ¢ and a polynomial p : {—1,1}" — R of degree at most t,
Iplltcb,e and ||pl|seb,+ have different definitions, but they are comparable. In particular,

we prove that the Fourier completely bounded ¢-norms are not increasing.
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Proposition 5.13. Let p: {—1,1}" — R be a polynomial of degree at most t. Then,

[Pl eb,e+1 < [|Pllfeb ¢-

Remark 5.14. Proposition 5.13 is coherent with Theorem 5.4 (proved below), because
allowing more queries to quantum algorithms only increases their power. Theorem 5.4
also suggests that ||p|ltcb.n = ||Plloc should hold, because n quantum queries should
be enough to output any bounded polynomial. If true, alongside Propositions 5.12
and 5.13, it would mean that (||p||tcb,)ie[n] is a decreasing hierarchy of SDPs that
tend to ||p||oo-

Proof of Proposition 5.13. Let (u,v, A) have Boolean behavior of degree ¢ + 1. Then,

A(n+ 1)

(’lj, 53 A) = (’U,, M7

A) (5.8)

has Boolean behavior of degree ¢t. Also, given that ¢t +1 > ¢, we have that for every
S C [n] with |S| < t, there exists i € [n + 1]**! such that S; = S, 4,41 =n + 1, and

(u, A(iy) ... A(igg)v) = [|A(n + D)o||(@, A(ir) . . . A(ig)D). (5.9)
This way,
[Pl cb,e+1 = sup Z ﬁ(5)<U’A(if)~-~A(if+1)U>

(u,U,A)eg@%t+lsg[n]7‘S‘St

= sw A+ Do Y BS)@ AR A7)
(u,v,A)e BB+ SC[nl,|S|<t

< sup > B AG) . A7)
(w0, BB gCln]|5)<t

< sup S RS AT A GG

(W " AVEBBT 5] || <t

= ||p||fcb,t7

where in the second line we have used Eq. (5.9), and in the third line that ||A(n+1)v|| <
1, and in the fourth that (u,v, E) has Boolean behavior of degree ¢. O

The next proposition states that || - |/sp: does not increase after restrictions, which
is a relevant feature to ensure that Conjecture 5.5 implies Conjecture 5.1. Given a

polynomial p : {—1,1}" — R and i € [n], the restriction of p to the i-th variable
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5.2. The Fourier completely bounded ¢-norms

being set to y € {—1,1} is the polynomial ¢ : {—1,1}""1 — R (whose variables we
index with xz(1),...,z(i — 1),z(¢ + 1),...,2(n) for convenience) defined by ¢(x) :=

Proposition 5.15. Let p: {—1,1}" — R be a polynomial of degree at most t and let
i €[n]. Let g: {—1,1}""1 = R be the restriction of p to the i-th variable being set to
y € {—1,1}. Then,

lalleb,e < [IPllteb,e-

Proof. Consider a pair of vectors and a string of matrices (u,v, A(1),..., A(i—1), A(i+
1),...,A(n + 1)) with Boolean behavior of degree ¢. Define % := u, ¥ := v and A(j)
for j € [n+1] as
- A(j if j 414,
A=y 20 I
yAn+1) if j =1

It can be verified that (@, 7, A(1), ..., A(n+1)) has Boolean behavior of degree . Now
note that for every S C [n] — {i}, it is satisfied that

q(S) = p(S) + yp(S U {i}). (5.10)
Also, for every S C [n] — {i} with |S] <t —1, it is satisfied that

(@, AGY) ... Aoy = yla, AV L AGE o). (5.11)
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Thus,
llqllteb,t = sup > q(S)(u, A(jY) ... AP )
(u,v,A(5))EBRB" 1
AUNEES sc—(ikisise
= sup S B AGY) . AGT )
(u, ,A(‘))e%%t nl—{i
ujg[n—il]—{i} SCln]—{i},|SI<t
+ > yp(S U{i})(u, AGY) - AGiT o)
SC[n]—{i},IS|<t-1
_ —~, ~ 7 .S -~ -5\~
= sup S B @ AGY) ... A(i3)D)
(u,v,A(j)) BB 17
AT SClnl—{i}.|S|<t
.Su{z T SU{1}\~
+ ST BSu{in@ AT L AGTTh)
SCn]—{i},|S|<t—1
< sup S RS WL AGY) A G
(W' A ())EBB"  sC(n)|s|<t
J€[n+1] - -
- ||prcb,t7

where in the second line we have used Eq. (5.10), in the fourth line Eq. (5.11), and in
the sixth line that (1, v, fl) has Boolean behavior. O

5.3 Quantum query algorithms are Fourier completely

bounded polynomials

Now we are ready to prove Theorem 5.4, that fully characterizes quantum query

algorithms in terms of the Fourier completely bounded ¢-norms.

Theorem 5.4. Let p : {—1,1}" — R. Then, p is the bias of a t-query quantum
algorithm if and only if its degree is at most 2t and ||p||gew,2¢ < 1.

To prove Theorem 5.4 we reinterpret the semidefinite programs of [GL19], based
on [ABP19].

Theorem 5.16 (Gribling-Laurent). Let p : {—1,1}" — R. Then, p is the bias of

t-query quantum algorithm if and only if its degree is at most 2t and the value of the
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following semidefinite program is at most 0,

max —wt Y ’L)f(z) (5.12)
ze{—-1,1}"
st.w>0, meN, A, € (B,)"", u,v € R™, s¢€[2t],
Il =1, [lull® = [lo]]* = w

B(S5) = (u, Ay (i1) . .. Age(ing)v), i€ [n+1]*

where ¢l = Y pe 1.1y B2

Remark 5.17. Theorem 5.16 corresponds to [GL19, Equation (24)]. There, the authors
not only ask for the A,(i) to be contractions, but also unitaries. However, that extra
restriction does not change the value of the semidefinite program because we can
always block-encode a contraction in the top left corner of an unitary (see for instance
[AATT16, Lemma 7]). We also want to remark that A(i) can be taken to be equal
to Ag (i) for every s, s € [2t] and every i € [n + 1], as this extra restriction does not
change value of the semidefinite program. Indeed, let (u,v, As, w, ¢) be part of feasible
instance of Eq. (5.12). Define now

uU:=u ey,

V=0 ® ey,

ZA i) @ esey,

s€[2t]

where {€,}sc[2¢41) is an orthonormal basis of R2**+1. Then,

(u, Ar(ir) ... Aalize)v) = (@, Air) ... Ai20)0),

for every i € [n + 1]**. Hence, (i,7, A, w, ¢) is a feasible instance for Eq. (5.12) that

attains the same value as (u,v, A, w, ¢).

Proof of 5.4. Thanks to Theorem 5.16 and Remark 5.17, we know that p is the output

of t-query quantum algorithm if and only if its degree is at most 2¢ and the following
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constraint is satisfied

> p@e) (5.13)

ze{—1,1}»

st.w>0 meN, Ac (B,)"", u,veR™,
[l =1, (5.14)
[ull = [v]]* = w,

B(S;) = (u, A(iy) ... A(iz)v), i € [n+ 1]*.

Now, note that if (u, v, A, ¢, w) satisfies all conditions of Eq. (5.13) except for Eq. (5.14),
then (u/+/l|oll1, v/ /91, A, &/||6]l1, w/]|¢]|1) would be a feasible instance. Further-

more, given that

3 p(z)o(x) 1 3 p(z)o(x) w

<w = <
2 7 gl

A ol

ze{—-1,1}n ze{-1,1}"

we can write Eq. (5.13) forgetting about the normalization condition of Eq. (5.14). In
other words, Eq. (5.13) is equivalent to

y o peele) (5.15)

ze{—1,1}"
st.w>0, meN, A€ (By)"", u,veR™,
[ull = [Jv]|* = w, (5.16)

B(S;) = (u, A(iy) ... A(izg)v), i€ [n+1]*.

In addition, by homogeneity we can assume w = 1, as if (u,v, A, ¢, w) is a feasible
instance, then (u/v/w,v/v/w, A, ¢/w, 1) also is, and Eq. (5.15) is satisfied for the first
instance if and only if is satisfied for the second instance. Also note, that if (u,v, A)
are part of a feasible instance of Eq. (5.15), then it automatically has Boolean behavior
of degree 2¢, and any (u,v, A) defines a feasible instance for Eq. (5.15). Finally, by
Parseval’s identity we can rewrite 3 ; jyn p(z%f(m) as S gcqn] P(S)é(S). Putting
altogether we get that p is the output of t-query quantum algorithm if and only if its
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degree is at most 2¢ and

ST RS, AGS) . A < 1

SCinl,|S|<2t

s.t. (u,v, A) has Boolean behavior of degree 2t,

which is the same as saying that ||p||en 2: < 1. O

5.4 Aaronson and Ambainis conjecture for (Fourier)

completely bounded polynomials

In this section we prove Theorem 5.6 and Theorem 5.8. Both are based on the con-

struction used by Varopoulos to disprove a degree 3 von Neumann’s inequality [Var74].

5.4.1 AA conjecture for block-multilinear completely bounded

polynomials

Before proving Theorem 5.8, we shall specify what is a block-multilinear completely
bounded polynomial. A block-multilinear polynomial of degree t is a polynomial p :
{=1,1}"** — R such that if we divide the variables x € {—1,1}"*? in ¢ blocks of n
coordinates each, then the every of the monomials of p has at most one coordinate of
each of the blocks. In other words, the block-multilinear polynomials of degree t are

those that can be written as

Py, za) =p0) + > Y Z {(b1,i1), -+, (bsyis)P)ap, (i1) - - .z, (is),

s€t] belt]® i€[n]
b1 < <bs

(5.17)
for every (z1,...,24) € ({—1,1}")%. For this kind of polynomials, there is a very

natural way of evaluating them in matrix inputs,

p(A1,..., Ag) @1dm+z Z {(b1yi1), -+, (bsyis) D) Ap, (i1) - - . Ap, (i),
selt] belt)” nu

b1< -<bs

(5.18)

84



Chapter 5. Towards Aaronson and Ambainis conjecture via Fourier
completely bounded polynomials

for every A, € (My,)", s € [t] and m € N. The completely bounded norm of a

block-multilinear polynomial is defined as*
Illeb == sup{||p(A1, ..., Aq)|| : meN, A; € (B,)", s € [t]}. (5.19)

Concerning these polynomials, we can show the following.

Theorem 5.8. Let t € N. Let p : {—1,1}"** — R be a block-multilinear degree t
polynomial with ||p|lcs < 1. Then, p has a variable of influence at least (Var[p]/t)?
What is more, if p is homogeneous of degree t, then it has a variable of influence at
least Var[p]?.

Remark 5.18. With our proof of the homogeneous case of Theorem 5.8 we can show
that for the case of p: {—1,1}"** — R being a homogeneous degree t block-multinear

polynomial we have the following non-commutative root influence inequality

Ipllen > \/Infss[p], (5.20)

i€[n]

for any s € [t]. This improves [BSdW22, Theorem 1.4] in two ways. First, we can
allow s to be any number in [t], while they only prove the result of s € {1,¢}. Second,
they prove a weaker statement that depends on ¢, namely,

Inf, ;[p
1Dl > z m

for s € {1,t}.

Remark 5.19. Given that p(z1,...,24) = 21(1)...24(1) is a homogeneous degree t
block-multilinear completely bounded polynomial with Var[p]? = MaxInf[p] = 1, we
have that the homogeneous case of Theorem 5.8 is optimal.

Proof of the homogeneous degree t case of Theorem 5.8. Let p be a homogeneous de-
gree t block-multilinear polynomial. Let s € [t]. We label the coordinates by (r, 1),
where r € [t] indicates the block, and i € [n]. Our goal is defining A € (B,,)" and
fo,ep € S™1 such that

ﬁ({(17i1)7-‘-7(t>id)}). (5.21)

(fo, A(ir) - .. Alia)ey) = Inf, ;. [p]

4We abuse notation here, as, for the case of homogeneous block-multilinear polynomials, this
definition conflicts with the one given in Definition 4.7. For the rest of the chapter, we will use the
one in Eq. (5.18).
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Once we are there, we can prove the announced root-influence inequality Eq. (5.20).
Indeed,

plles > D BUH(Ld0), - () ) {(fo, Alin) - . Alia)eo)

i1,...,ia€[n]

= Z ﬁ({(l,il)a“-v(t,id)})

i1, ,ide[n]

= Z Z ﬁ({(177/1)7’(t7ld)})2

ﬁ({(lail)v ) (ta 'Ld)})

Inf, ;. [p]

is€[n] 57'9 11, is—1,0s+1,1a€[n]
Tnforlp]
_ > Jut
1€[n]

Finally, the statement about the maximal influence quickly follows from the root-

influence inequality

Inf, ;[p Var[p|
Ipllet > Z \/me Z \/MaxInf[p} - \/MaXInf[p]7

i€[n]

which after rearranging yields

MaxInf[p] > (Var[ ])2

1plleb

Hence, it suffices to design (fy,ep, A) € S™~1 xS~ 1 x (B,,)" satisfying Eq. (5.21).
Let S := {{(ryir),..., (t,3)} 1 bpy..yig € [n], s+1 <r <t}and &' := {{(1,41),...,(r, i)} :
i1,...,0p € [n], 7 < s—1}. Let m := 2+|S|+[S’|. Let {ep,es, fo, fsr: S€S, 5 €S}
be an orthonormal basis of R™, and define A(i) € M, by

A(i)es = esuf(t—|9],i)}s for 0 < |S| <t-s—-1, SeS,

’
A(i)es = Z p(S"USU{(s, Z)})fS’; for [S|=t—s, S€S,
’ ’ Infs Z( )
S'eS ?
|S"|=s—1

A(i) fs = 0(sr),iyes fsr—qqsiys ST €S

We claim that (fp,ep, A(7)) satisfies Eq. (5.21). This is because the first applica-
tions of the A()’s act like a creation operator and the last as annihilation operators.

The first t — s — 1 of the matrices on ey create a vector that stores the indices of these
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first ¢ — s — 1 applications, namely

A(s + 1) .. A(t)e@ = €{((s+1,iaq1)s(tria))}

The t — s application has a unique behavior, as it maps the previous vector to a

superposition of f. vectors, namely

, (S U ((8yis)y---s (t4a)))
A(i)eq((st1impn)bin)) = D Tt o) fsr-
Sles/ 8,1 p
|S"|=s—1
Finally, the last s — 1 applications of the matrices act like annihilation operators,

meaning that
A(ir) . Ais—1)fsr = 05 ((1,i1),...,(s—1,is_1)) J0-

Putting everything together we conclude that indeed Eq. (5.21) is satisfied.

Finally, we claim that A(:) are contractions. Given that {eg: 0 < |S| <t—s—
1, SeS8} {es: |S|=t—s, S8} and {fs : S € S’} are mapped to orthogonal
spaces, we just have to check than when A(7) is a contraction when it is restricted to
the span of each of these 3 sets. For the first and third sets of vectors that is clear.

For the second is true because for any A\ € [n]!~*

4G 3 sesl = Yy PEUSUUEIN,

Ses SeS  §'es’ Inf ;[p]
|S|=t—s [S|=t—s|8"|=5—1

S e (zlSSGS mswsu{(s,i)ms)

| |=s—1 |=t—s

Infsﬁi[p]

S yes (S e A0S UL ) (e 1)

|S"|=s—1 |=t—s
Inf, ;[p]

IN

= _— )\2
Infs,i [p} Ses o
|S|=t—s

= > Asesl,

Ses
|S|=t—s

where in the inequality we have used Cauchy-Schwarz. O
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Proof of the general case of Theorem 5.8. Let p: {—1,1}"** — R be a block-multilinear
degree t polynomial. For every s € [t], let p—s be its degree s part. Let D € [t] be such
that Var[p—p] > Var[p]/t, which exists because Var[p] = >_ ., Var[p=,]. We will now

divide the proof in two parts. One is showing that

[P=plleb < [[Pllcb, (5.22)
and the other is proving that
Var[p—p] \ >
MaxInf(p_p) > () . (5.23)
IP=plcb

Once we had done that, the result will easily follow:

MaxInf(p) > MaxInf(p—p) > (\W—D])Q > (Var[p} )2

lp=plcb tlpllen

where in the second inequality we have used Eq. (5.23), and in the third we have used
Eq. (5.22) and that Var[p_p] > Var[p]/t.

First, we prove Eq. (5.22). Let B € B,y be defined by B := ZSQ[D] esel 1, where
{es}se[p+1] is an orthonormal basis of RP+L. Note that (e, BSepy1) = 6 p for all
s € [t]o. Hence,

lp=plleb = sup > > p=p({(br,in), ., (bpyin)})

m—1 n
u,vES m,efge(Bm) be[t]? i€[n]P
b1<--<bp

. <u Ab1 (21) e AbD (iD)U>

= sup Z Z Z {(b1,01), -, (bsyis)})

u,’UESm’_l, AE(B,,L)n SG be[t]s 1€
meN b1< <bg

(u®er, (Ap, (1) ® B) ... (A, (is) © Bjv @ ep 1)

< plleb-

Second, we prove Eq. (5.23). Let S := {{(b1,%1),...,(bp_1,ip—1)} : bs € [t], b1 <
- < bp-1, is € [n], s € [D—1]}. Let m := 2+ |S|. Let {v, fy,fs : S € S} be an
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orthonormal basis of R™. For b € [t], i € [n], define A,(i) € M,, by
. p—p(SU{(b,1
i Pop(SU{(Bi)
peperd MaxInf[p—p]
1S|=D~1

Ap(i) fs := dpiyes fs—{(b.i)y, for S € SUD.

Ap(i) are contractions because they map the vectors of an orthonormal basis to or-
thogonal vectors without increasing their norms. Note that for b; < --- < bp and
i € [n]P we have that

i iV _ p=p{(b1,41),. .., (bp,ip)})
(fo, Ap, (i1) - - . Ap, (iD)V) Vx| .

Thus,

[P=plleb = Z Z {(b1,41),..., (bp,ip)})(fo, p(A1, - .., Aa)v)

b1< <bD
Vi)
MaxInf[p_p] ’

which after rearranging yields Eq. (5.23). O

5.4.2 AA conjecture for homogeneous Fourier completely bounded

polynomials

Finally, we prove a new case of the AA conjecture.

Theorem 5.6. Let t € N. Let p : {—1,1}" — R be a homogeneous polynomial of
degree t and with ||p||sen,e < 1. Then, the mazimum influence of p is at least Var[p]>.

Proof. Let m:=1+ (§) +---+ (,",). Let {v, fo, fs : S C [n], 1 <|S| <t —1} be an
orthonormal basis of R™. Define the matrices A(i) € M,, as

U_Z\/Malf Ts—tip

|S| t
A(z)fs = (559if5_{1-}, for S C [n], 0< |S‘ <t—1,
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for i € [n] and A(n + 1) := 0. We claim that (fyp, v, A(7)) has Boolean behavior of
degree t. A(n + 1) is clearly a contraction. For i € [n], A(i) is a contraction, as it
maps vectors of the orthonormal basis to orthogonal vectors without increasing the

norm, because
p(s)?  _ Infifp]

. 2
1A = = MaxInf[p]  MaxInf[p]

<1

On the other hand, if S C [n] satisfies |S| <t — 1, then any i € [n + 1]* with S; = S
either has a repeated element of [n] or has an appearance of the index n + 1, which
implies that (fg, A(i1)... A(ig)) = 0 = p(S). If |S| = ¢, then any i € [n + 1] with
S; = S has t different indices in [n] (corresponding to the elements of S), so in that

case R
p(S)

MaxInf[p) . (5.24)

(fo, AGiy) ... A(ig)v) =

Putting everything together we conclude that (fy,v, A(7)) has Boolean behavior of

degree t, so

ey S P
Iolene > 32 9o Ai)--- Ak = 32 ey

_ Var[p]
MaxInf[p]’

where in the first equality we have used Eq. (5.24). After rearranging, the above

expression yields

Var|p| )2

[Pll b, ¢

MaxInf[p] > (

O

Remark 5.20. Sadly, we could not extend the proof of Theorem 5.6 to the general
case. Now, we aim to illustrate what would go wrong with our technique.

For example, consider a polynomial p : {—1,1}* — R with deg(p) = 1 and
Ipllteb,3 < 1. Ideally, we would want to define unit vectors v and v and contractions
A(i) such that for every S C [3] and every i € [i”] they satisfied

p(S)

(u, A(i1) A(ia) A(iz)v) = m-

(5.25)

If we emulated the strategy of the proof of Theorem 5.6, then A(1)v should be a

normalized superposition of orthogonal vectors whose amplitudes are all possible p(S;)
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that have i3 = 1. In particular, all p(S) with |S| = 1 must be included among these
amplitudes, because if S = {i}, then S = S(; 1 1). Hence, the normalizing factor of
A(1)v should be /Varp, instead of \/MaxInf(p). Note that this extra normalization
comes from the fact that given that given (i1,42,43), it may happen that iz & S(;, i, i)
and p(S(i, ,iz,i5)) 7 0, because p is not homogeneous of degree-3. If we mimic the rest

of the proof after this first step that we were forced to modify, we would reach

p(S)

(u, Air) ... A(iz)v) = Werr

instead of Eq. (5.25), which would lead to ||p||teb,3 > +/Varp, that is trivially true,
because ||p|lteb,3 > ||P]lco and [|p]leo > +/Varp.

Remark 5.21. However, there might be a different way of, given a polynomial p of

degree at most ¢, choosing (u, v, A) with Boolean behavior of degree ¢ such that

508,
u, A(). - Alia)v) = poly(t,pl\(/I;iInf[p]) ’

for any i € [n+1]*. If that was true, one could copy and paste the proof of Theorem 5.6
and conclude Conjecture 5.5.

This reduces Conjecture 5.5 to a question with flavor of tensor networks (see
[CPGSV21] for an introduction to the topic). In particular, the central questions
in matrix product states theory is, given a t-tensor T € C"* " *" to find matrices
Ay, ..., A of low dimension such that Ty = Tr[A(é1) ... A(it)] for every i € [n]*. Thus,
we are asking the same question, but with a different goal: to minimize the operator
norm of the matrices, instead of their dimensions.

It also has the flavor of almost-quantum correlations [NGHA15]. Almost-quantum
correlations are a model for multiparty quantum mechanics that eludes tensor products
and commutativity of the observables: it only imposes the commutativity on the
correlations. For example, in a bipartite scenario, valid correlations would be those
determined by observables {A;},cx and {By},cy and a state |¢) such that

(V[AsBy|v) = ($|ByAzl¢p), forallz € X,y € V.

In other words, almost-quatum correlations impose the commutativity conditions with
respect to the sandwiches with |1), instead of directly imposing them to the observ-
ables, Similarly, we would like to find matrices that satisfy certain Boolean relations

with respect to the product with two vectors u and v.
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Question 5.22. Given a polynomial p of degree at most t, is there (u,v, A) € BAB'
such that

. o p(S:)
(u, A(ir) ... Alig)v) = poly(t, MaxInf([p])’

for anyie [n+1]'?
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