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Chapter 5

Towards Aaronson and

Ambainis conjecture via

Fourier completely bounded

polynomials

5.1 Introduction

Understanding the quantum query complexity of Boolean functions f : D → {−1, 1},
where D is a subset of {−1, 1}n, has been a crucial task of quantum information

science [Amb18]. Many celebrated quantum algorithms show an advantage in terms of

query complexity, for example in unstructured search [Gro96], period finding [Sho97],

Simon’s problem [Sim97], NAND-tree evaluation [FGG07] and element distinctness

[Amb07]. However, these advantages are limited to be polynomial in the case of

total functions (those with D = {−1, 1}n), while they can be exponential for highly

structured problems (informally, this means that |D| = o(2n)), such as for Simon’s

problem [Sim97], period finding [Sho97] or k-fold forrelation [AA15, Tal20, BS21,

SSW21]. It is widely believed that a lot of structure is necessary for superpolynomial

speedups1. The following folklore conjecture, which has circulated since the late 90s,

1Recently, Yamakawa and Zhandry showed that superpolynomial speedups can be attained in
unstructured search problems. That does not contradict that structure is needed to achieve super-
polynomial speedups in decision problems, which are those modeled by Boolean functions [YZ22].
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5.1. Introduction

but was first formally posed by Aaronson and Ambainis [AA09], formalizes this idea.

Conjecture 5.1 (Folklore). The biases of t-query quantum algorithms can be simu-

lated with error at most ε on at least a (1−δ)-fraction of the inputs using poly(t, 1/ε, 1/δ)

classical queries.

In other words, it is believed that quantum query algorithms can be approximated

almost everywhere by classical query algorithms with only a polynomial overhead.

A route towards proving Conjecture 5.1 was designed by Aaronson and Ambainis

using that the bias of quantum query algorithms are polynomials. Indeed, Beals et al.

[BBC+01], proved that the bias of a t-query quantum algorithm is a bounded polyno-

mial p : {−1, 1}n → R of degree at most 2t. Based on this observation, Aaronson and

Ambainis conjectured in [AA09] that every bounded polynomial of bounded degree

has an influential variable.

Conjecture 5.2 (Aaronson-Ambainis (AA)). Let p : {−1, 1}n → R be a polynomial

of degree at most t with ∥p∥∞ ≤ 1. Then, p has a variable with influence at least

poly(Var[p], 1/t).

The argument of [AA09, Theorem 7] to show that Conjecture 5.2 would imply

Conjecture 5.1 works as follows. Let p the bounded polynomial of degree at most 2t

that represents the bias of t query quantum algorithm. Say that we want to approx-

imate p(y) for some y ∈ {−1, 1}n. First, query an influential variable i of y. Then,

the restricted polynomial p|x(i)=y(i) would also be a bounded polynomial of degree

at most 2t, so we can query again an influential variable. Given that the influences

of these variables are big, after a small number of queries the remaining polynomial

would have a low variance, so if we output its expectation it would be close to p(y)

with high probability.

A few reductions to other conjectures have been made. The first one is that is

sufficient to prove the conjecture for one-block decoupled polynomials [OZ15]. Very

recently, Lovett and Zhang stated two conjectures related to fractional certificate com-

plexity that, if true, would imply the AA conjecture [LZ22]. Also recently, Austrin

et al. showed a connection of the AA conjecture with cryptography: they proved

that if the AA conjecture is false, then there is a secure key agreement in the quan-

tum random oracle model that cannot be broken classically [ACC+22]. The most

recent work in this line of research is the one by Bhattacharya, who showed that

the conjecture is true for random restrictions of the polynomial [Bha25]. Regarding

particular cases, it is only known to be true in a few scenarios: Boolean functions
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f : {−1, 1}n → {−1, 1} [Mid05, OSSS05, JZ11], symmetric polynomials [Iva19], mul-

tilinear forms whose Fourier coefficients are all equal in absolute value [Mon12] and

block-multilinear completely bounded polynomials [BSdW22].

The last result is relevant in this context because Arunachalam, Briët and Palazue-

los showed that the biases of quantum query algorithms are polynomials that are not

only bounded, but also completely bounded [ABP19] (see Theorem 3.6). This is a

more restricted normalization condition, which can be informally understood as the

polynomial taking bounded values when evaluated not only on bounded scalars, but

also on bounded matrix inputs. This way, one could try to use this extra condition to

prove results about quantum query algorithms.

This idea was first put in practice by Bansal, Sinha and de Wolf [BSdW22]. They

showed that the AA conjecture holds for completely bounded block-multilinear forms,

which implies an almost everywhere classical simulation result, similar to Conjec-

ture 5.1, for the amplitudes of certain quantum query algorithms. These algorithms

query different (non-controlled) bit strings on every query, while Conjecture 5.1 con-

cerns algorithms that query the same controlled bit string on every query.

Results of this chapter

We follow that line of work and use the characterization of [ABP19] to design a route

towards Conjecture 5.1. Our first result is a new presentation of that characteriza-

tion that is more convenient for our purposes. To do this we introduce the Fourier

completely bounded t-norms (∥ · ∥fcb,t), which are relaxations of the supremum norm.

In these norms we not only take the supremum of the values that the polynomial

takes over Boolean strings as in Eq. (2.12), but also on matrix inputs that behave like

Boolean strings. We will not include formal definitions in the introduction, but we

illustrate the concept of having Boolean behavior of degree t with an example. For

m ∈ N, we denote the m×m real matrices by Mm. Say that t = 4 and n = 6, then if a

pair of vectors u, v ∈ Rm and a string of matrices A ∈ (Mm)6 have Boolean behaviour

of degree 4, they satisfy, for instance,

⟨u,A(1)A(1)A(2)A(3)v⟩ = ⟨u,A(5)A(2)A(3)A(5)v⟩,

because they should simulate the relation x(1)x(1)x(2)x(3) = x(5)x(2)x(3)x(5) sat-

isfied by any Boolean string {−1, 1}6. As the reader might guess, (u, v,A) will have

Boolean behavior of degree t if it simulates the relations of Fn2 that involve product of

t of the canonical generators.
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Using the Fourier expansion of polynomials defined on the Boolean hypercube

we will introduce a natural way of evaluating polynomial in matrix inputs that have

Boolean behavior, which allows us to introduce the Fourier completely bounded t-

norm.

Definition 5.3. (Informal version of Definition 5.10) Let p : {−1, 1}n → R be a

polynomial of degree at most t. Its Fourier completely bounded t-norm is given by

∥p∥fcb,t := sup |p(u, v,A)| (5.1)

where the supremum is taken over all (u, v,A) that have Boolean behavior of degree t.

After a reinterpretation of the semidefinite programs proposed in [GL19] to char-

acterize quantum query complexity, based on [ABP19], we show that the Fourier

completely bounded t-norms are those that characterize quantum query algorithms.

Theorem 5.4. Let p : {−1, 1}n → R. Then, p is the bias of a t-query quantum

algorithm if and only if its degree is at most 2t and ∥p∥fcb,2t ≤ 1.

This new presentation of the main result of [ABP19] is more compact than the

original one. It is presented directly in terms of polynomials of the Boolean hypercube,

does not involve a minimization over possible completely bounded extensions of p as

in Definition 4.7, and eludes the use of tensors/multilinear forms.

Given that the Fourier completely bounded t-norms are at least the supremum

norm2, Theorem 5.4 suggests that Conjecture 5.2 may be more general than necessary.

Hence, we propose the following weaker conjecture, that would also imply Conjecture

5.1.

Conjecture 5.5. Let p : {−1, 1}n → R be a polynomial of degree at most t with

∥p∥fcb,t ≤ 1. Then, p has a variable with influence at least poly(Var[p], 1/t).

Using a generalization through creation and annihilation operators of the con-

struction used by Varopoulos to rule out a von Neumann’s inequality for degree 3

polynomials [Var74], we can prove a particular case of Conjecture 5.5.

Theorem 5.6. Let t ∈ N. Let p : {−1, 1}n → R be a homogeneous polynomial of

degree t and with ∥p∥fcb,t ≤ 1. Then, the maximum influence of p is at least Var[p]2.

2From the results of [BP19] it can be inferred that there is a sequence of polynomials pn of degree
3 such that ∥pn∥fcb,3/∥pn∥∞ →n ∞.
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The proof of the homogeneous case does not straightforwardly generalize (see Re-

mark 5.20), but it suggests a way to solve the general case (see Remark 5.21). In

particular, we propose Question 5.22 (that reminds of tensor networks and almost-

quantum correlations), which if answered affirmatively would imply Conjecture 5.5.

Theorem 5.6 is the first result concerning the AA conjecture whose constant has

no dependence on the degree (to prove Conjecture 5.1 we could afford a polynomial

dependence on the degree). Also, it requires considerably fewer algebraic constraints

than the other particular cases for which we know AA conjecture to hold. In addition,

thanks to Theorem 5.4, it can be interpreted directly in terms of quantum query

algorithms.

Corollary 5.7. Let t ∈ N. Let A be a t-query quantum algorithm whose bias is a

homogeneous polynomial p : {−1, 1}n → R of degree 2t. Then, the maximum influence

of p is at least Var[p]2.

With a similar construction as the one we used for Theorem 5.6, we can reprove the

results of [BSdW22] regarding the influence of block-multilinear completely bounded

polynomials. These polynomials have a particular algebraic structure and also a nor-

malization condition when evaluated on matrix inputs (see Section 5.4.1 below).

Theorem 5.8. Let t ∈ N. Let p : {−1, 1}n×t → R be a block-multilinear degree t

polynomial with ∥p∥cb ≤ 1. Then, p has a variable of influence at least (Var[p]/t)2.

What is more, if p is homogeneous of degree t, then it has a variable of influence at

least Var[p]2.

Theorem 5.8 corresponds to [BSdW22, Theorem 1.4], where Bansal et al. proved

the same result but with influences at least Var[p]2/[e(t+ 1)4] in the general case and

with Var[p]2/(t+1)2 in the homogeneous degree t case. Their proofs involve evaluating

p in random infinite dimensional matrix inputs, which they can control using ideas of

free probability. However, our proof evaluates p in explicit finite dimensional matrix

inputs, is shorter and obtains better constants. In particular, our constant for the

homogeneous case is optimal.

5.2 The Fourier completely bounded t-norms

There is a vast theory concerning the properties of multilinear maps T : Rn×· · ·×Rn →
R that are completely bounded, i.e., bounded when they are extended to matrix do-

mains [Pau03]. However, to the best of our knowledge, there is no notion of being
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completely bounded for polynomials p : {−1, 1}n → R defined on the Boolean hyper-

cube. Here, we propose a matrix notion of behaving like a Boolean string. Then, using

the Fourier expansion of these polynomials we define the evaluation of the polynomi-

als on these matrix inputs that behave like Boolean strings. Finally, we introduce the

Fourier completely bounded t-norms and prove a few of their properties.

We recall that every p : {−1, 1}n → R can be written as

p(x) =
∑
S⊆[n]

p̂(S)
∏
i∈S

x(i), (5.2)

where p̂(S) are the Fourier coefficients of p. We say that p has degree at most t if

p̂(S) = 0 for every |S| > t, where |S| denotes the cardinality of S.

We will be interested on simulating the behavior of bit strings x ∈ {−1, 1}n × {1}
with one extra frozen variable3. Given t ∈ N and i, j ∈ [n+ 1]t we say that i ∼ j, if

x(i1) . . . x(id) = x(j1) . . . x(jd) for every x ∈ {−1, 1}n × {1}. (5.3)

In other words, if we define

Si := {k ∈ [n] : k occurs an odd number of times in i},

then i ∼ j if and only if Si = Sj. Note that n + 1 does not belong to these sets Si.

Given S ⊆ [n] with |S| ≤ t, we write [iS ] to denote the equivalence class of indices i

such that Si = S.

Definition 5.9. Let n, t,m ∈ N. Let u, v ∈ Sm−1 and let A ∈ (Bm)n. We say that

(u, v,A) has Boolean behavior of degree t if

⟨u,A(i1) . . . A(id)v⟩ = ⟨u,A(j1) . . . A(jd)v⟩

for all i, j ∈ [n+ 1]t such that i ∼ j. We call BBt to the set of (u, v,A) with Boolean

behavior of degree t.

Informally, having Boolean behavior of degree tmeans that the relations of Eq. (5.3)

and some normalization conditions are satisfied. In particular, for any bit string

x ∈ {−1, 1}n × {1} and any t ∈ N, we have that (1, 1, x) has Boolean behavior of

degree t.

3The extra variable set to 1 is there because quantum query algorithms query a controlled bit
string. A non-controlled version, which would not require that extra variable.
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Also note that given t ∈ N, for every S ⊆ [n] with |S| ≤ t there is at least one

i ∈ [n + 1]t such that Si = S. Thus, given (u, v,A) with Boolean behavior of degree

t, for every |S| ≤ t the product
∏
i∈S x(i) can be simulated (in a unique manner) by

⟨u,A(iS1 ) . . . A(iSd )v⟩. In particular, this means that for a polynomial p of degree at

most t, we can define through Eq. (5.2) an evaluation of p on every (u, v,A) that has

Boolean behavior of degree t, which leads to the definition Fourier completely bouded

t-norm.

Definition 5.10. Let p : {−1, 1}n → R be a polynomial of degree at most t. Then,

its Fourier completely bounded t-norm is defined by

∥p∥fcb,t = sup
(u,v,A)∈BBt

∑
S⊆[n],|S|≤t

p̂(S)⟨u,A(iS1 ) . . . A(iSd )v⟩.

The rest of the section is devoted to prove a few results concerning the Fourier

completely bounded t-norms. First of all we show that, indeed, they are norms.

Proposition 5.11. Let t ∈ N. Then, ∥ · ∥fcb,t is a norm in the space of polynomials

p : {−1, 1}n → R of degree at most t.

Proof. It clearly satisfies the triangle inequality and is homogeneous. Also, if p = 0

then ∥p∥fcb,t = 0, and vice versa, because ∥p∥∞ ≤ ∥p∥fcb,t.

One nice property of these norms is that they can be computed as semidefinite

programs.

Proposition 5.12. Let p : {−1, 1}n → R be a polynomial of degree at most t. Then,

its Fourier completely bounded t-norm can be written as the following SDP

∥p∥fcb,t = sup
∑

S∈[n],|S|≤t

p̂(S)⟨u, viS ⟩, (5.4)

u, v, vi ∈ Rm, m ∈ N, i ∈ [n+ 1]s, s ∈ [t],

⟨u, vi⟩ = ⟨u, vj⟩, if i ∼ j, i, j ∈ [n+ 1]t, (5.5)

⟨u, u⟩ = ⟨v, v⟩ = 1, (5.6)

Gramj∈[n+1]s,
s∈[t−1]0

{vij} ≼ Gramj∈[n+1]s,
s∈[t−1]0

{vj}, for i ∈ [n+ 1], (5.7)

where we by vj with j ∈ [n + 1]0 we mean v, Gram denotes the gram matrix and the

symbol ‘≼’ the usual matrix inequality.
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Proof. Let |||p||| be the expression on the right-hand side of Eq. (5.4). Note that

Eq. (5.5) represents the relations of bit strings of Eq. (5.3), while Eqs. (5.6) and (5.7)

encode normalization conditions.

On the one hand, every (u, v,A) ∈ BBt defines a feasible instance for |||p||| through

vi := A(i1) . . . A(is)v

for every i ∈ [n+ 1]s and every s ∈ [t]. Given that the value of this instance is∑
S⊆[n],|S|≤t

p̂(S)⟨u,A(iS1 ) . . . A(iSd )v⟩

we have that |||p||| ≥ ∥p∥fcb,t.

On the other hand, let u, v, vi ∈ Rm be a feasible instance of |||p|||. For i ∈ [n+ 1]

define A(i) ∈ Mm as the linear map from Rm to Rm that takes vj to vij for every

j ∈ [n + 1]s and every s ∈ [t − 1]0, and it is extended to the orthogonal complement

as 0. First of all, we should check that this is a correct definition, meaning that for

every λ ∈ Rm, with m = (n+ 1)t−1 + · · ·+ (n+ 1)0, we have that∑
j

λjvj = 0 =⇒
∑
j

λjvij = 0.

Indeed, we can prove something stronger:

(
∑
j

λjvij)
T
∑
j′

λj′vij′ = λTGramj∈[n+1]s,
s∈[t−1]0

{vij}λ ≤ λTGramj∈[n+1]s,
s∈[t−1]0

{vj}λ

= (
∑
j

λjvj)
T
∑
j′

λj′vj′ .

The above calculation also proves that the A(i)’s are contractions, and thanks to

Eq. (5.5) it follows that (u, v,A) has Boolean behavior of degree t. Finally, note that

the value of this (u, v,A) for ∥p∥fcb,t is the same as the value of (u, v, vj) for |||p|||, so

∥p∥fcb,t ≥ |||p|||.

Given t, t′ ∈ N with t′ > t and a polynomial p : {−1, 1}n → R of degree at most t,

∥p∥fcb,t and ∥p∥fcb,t′ have different definitions, but they are comparable. In particular,

we prove that the Fourier completely bounded t-norms are not increasing.
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Proposition 5.13. Let p : {−1, 1}n → R be a polynomial of degree at most t. Then,

∥p∥fcb,t+1 ≤ ∥p∥fcb,t.

Remark 5.14. Proposition 5.13 is coherent with Theorem 5.4 (proved below), because

allowing more queries to quantum algorithms only increases their power. Theorem 5.4

also suggests that ∥p∥fcb,n = ∥p∥∞ should hold, because n quantum queries should

be enough to output any bounded polynomial. If true, alongside Propositions 5.12

and 5.13, it would mean that (∥p∥fcb,t)t∈[n] is a decreasing hierarchy of SDPs that

tend to ∥p∥∞.

Proof of Proposition 5.13. Let (u, v,A) have Boolean behavior of degree t+ 1. Then,

(ũ, ṽ, Ã) = (u,
A(n+ 1)v

∥A(n+ 1)v∥
, A) (5.8)

has Boolean behavior of degree t. Also, given that t + 1 > t, we have that for every

S ⊆ [n] with |S| ≤ t, there exists i ∈ [n+ 1]t+1 such that Si = S, it+1 = n+ 1, and

⟨u,A(i1) . . . A(it+1)v⟩ = ∥A(n+ 1)v∥⟨ũ, Ã(i1) . . . Ã(id)ṽ⟩. (5.9)

This way,

∥p∥fcb,t+1 = sup
(u,v,A)∈BBt+1

∑
S⊆[n],|S|≤t

p̂(S)⟨u,A(iS1 ) . . . A(iSt+1)v⟩

= sup
(u,v,A)∈BBt+1

∥A(n+ 1)v∥
∑

S⊆[n],|S|≤t

p̂(S)⟨ũ, Ã(iS1 ) . . . Ã(iSd )ṽ⟩

≤ sup
(u,v,A)∈BBt+1

∑
S⊆[n],|S|≤t

p̂(S)⟨ũ, Ã(iS1 ) . . . Ã(iSd )ṽ⟩

≤ sup
(u′,v′,A′)∈BBt

∑
S⊆[n],|S|≤t

p̂(S)⟨u′, A′(iS1 ) . . . A′(iSd )v′⟩

= ∥p∥fcb,t,

where in the second line we have used Eq. (5.9), and in the third line that ∥A(n+1)v∥ ≤
1, and in the fourth that (ũ, ṽ, Ã) has Boolean behavior of degree t.

The next proposition states that ∥ ·∥fcb,t does not increase after restrictions, which

is a relevant feature to ensure that Conjecture 5.5 implies Conjecture 5.1. Given a

polynomial p : {−1, 1}n → R and i ∈ [n], the restriction of p to the i-th variable
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being set to y ∈ {−1, 1} is the polynomial q : {−1, 1}n−1 → R (whose variables we

index with x(1), . . . , x(i − 1), x(i + 1), . . . , x(n) for convenience) defined by q(x) :=

p(x(1), . . . , x(i− 1), y, x(i+ 1), . . . , x(n)).

Proposition 5.15. Let p : {−1, 1}n → R be a polynomial of degree at most t and let

i ∈ [n]. Let q : {−1, 1}n−1 → R be the restriction of p to the i-th variable being set to

y ∈ {−1, 1}. Then,

∥q∥fcb,t ≤ ∥p∥fcb,t.

Proof. Consider a pair of vectors and a string of matrices (u, v,A(1), . . . , A(i−1), A(i+

1), . . . , A(n + 1)) with Boolean behavior of degree t. Define ũ := u, ṽ := v and Ã(j)

for j ∈ [n+ 1] as

Ã(j) =

{
A(j) if j ̸= i,

yA(n+ 1) if j = i.

It can be verified that (ũ, ṽ, Ã(1), . . . , Ã(n+1)) has Boolean behavior of degree t. Now

note that for every S ⊆ [n]− {i}, it is satisfied that

q̂(S) = p̂(S) + yp̂(S ∪ {i}). (5.10)

Also, for every S ⊆ [n]− {i} with |S| ≤ t− 1, it is satisfied that

⟨ũ, Ã(jS1 ) . . . Ã(jSd )ṽ⟩ = y⟨ũ, Ã(j
S∪{i}
1 ) . . . Ã(j

S∪{i}
d )ṽ⟩. (5.11)
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Thus,

∥q∥fcb,t = sup
(u,v,A(j))∈BBt

j∈[n+1]−{i}

∑
S⊆[n]−{i},|S|≤t

q̂(S)⟨u,A(jS1 ) . . . A(jSt )v⟩

= sup
(u,v,A(j))∈BBt

j∈[n+1]−{i}

∑
S⊆[n]−{i},|S|≤t

p̂(S)⟨u,A(jS1 ) . . . A(jSd )v⟩

+
∑

S⊆[n]−{i},|S|≤t−1

yp̂(S ∪ {i})⟨u,A(jS1 ) . . . A(jSd )v⟩

= sup
(u,v,A(j))∈BBt

j∈[n+1]−{i}

∑
S⊆[n]−{i},|S|≤t

p̂(S)⟨ũ, Ã(jS1 ) . . . Ã(jSd )ṽ⟩

+
∑

S⊆[n]−{i},|S|≤t−1

p̂(S ∪ {i})⟨ũ, Ã(j
S∪{i}
1 ) . . . Ã(j

S∪{i}
d )ṽ⟩

≤ sup
(u′,v′,A′(j))∈BBt

j∈[n+1]

∑
S⊆[n],|S|≤t

p̂(S)⟨u′, A′(jS1 ) . . . A′(jSd )v′⟩

= ∥p∥fcb,t,

where in the second line we have used Eq. (5.10), in the fourth line Eq. (5.11), and in

the sixth line that (ũ, ṽ, Ã) has Boolean behavior.

5.3 Quantum query algorithms are Fourier completely

bounded polynomials

Now we are ready to prove Theorem 5.4, that fully characterizes quantum query

algorithms in terms of the Fourier completely bounded t-norms.

Theorem 5.4. Let p : {−1, 1}n → R. Then, p is the bias of a t-query quantum

algorithm if and only if its degree is at most 2t and ∥p∥fcb,2t ≤ 1.

To prove Theorem 5.4 we reinterpret the semidefinite programs of [GL19], based

on [ABP19].

Theorem 5.16 (Gribling-Laurent). Let p : {−1, 1}n → R. Then, p is the bias of

t-query quantum algorithm if and only if its degree is at most 2t and the value of the
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following semidefinite program is at most 0,

max − w +
∑

x∈{−1,1}n

p(x)ϕ(x)

2n
(5.12)

s.t. w ≥ 0, m ∈ N, As ∈ (Bm)n+1, u, v ∈ Rm, s ∈ [2t],

∥ϕ∥1 = 1, ∥u∥2 = ∥v∥2 = w,

ϕ̂(Si) = ⟨u,A1(i1) . . . A2t(i2t)v⟩, i ∈ [n+ 1]2t,

where ∥ϕ∥1 =
∑
x∈{−1,1}n

|ϕ(x)|
2n .

Remark 5.17. Theorem 5.16 corresponds to [GL19, Equation (24)]. There, the authors

not only ask for the As(i) to be contractions, but also unitaries. However, that extra

restriction does not change the value of the semidefinite program because we can

always block-encode a contraction in the top left corner of an unitary (see for instance

[AAI+16, Lemma 7]). We also want to remark that As(i) can be taken to be equal

to As′(i) for every s, s′ ∈ [2t] and every i ∈ [n + 1], as this extra restriction does not

change value of the semidefinite program. Indeed, let (u, v,As, w, ϕ) be part of feasible

instance of Eq. (5.12). Define now

ũ := u⊗ e1,

ṽ := v ⊗ e2t+1,

A(i) :=
∑
s∈[2t]

As(i)⊗ eseTs ,

where {es}s∈[2t+1] is an orthonormal basis of R2t+1. Then,

⟨u,A1(i1) . . . Ad(i2t)v⟩ = ⟨ũ, Ã(i1) . . . Ã(i2t)ṽ⟩,

for every i ∈ [n + 1]2t. Hence, (ũ, ṽ, Ã, w, ϕ) is a feasible instance for Eq. (5.12) that

attains the same value as (u, v,As, w, ϕ).

Proof of 5.4. Thanks to Theorem 5.16 and Remark 5.17, we know that p is the output

of t-query quantum algorithm if and only if its degree is at most 2t and the following
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constraint is satisfied ∑
x∈{−1,1}n

p(x)ϕ(x)

2n
≤ w (5.13)

s.t. w ≥ 0, m ∈ N, A ∈ (Bm)n+1, u, v ∈ Rm,

∥ϕ∥1 = 1, (5.14)

∥u∥2 = ∥v∥2 = w,

ϕ̂(Si) = ⟨u,A(i1) . . . A(i2t)v⟩, i ∈ [n+ 1]2t.

Now, note that if (u, v,A, ϕ,w) satisfies all conditions of Eq. (5.13) except for Eq. (5.14),

then (u/
√
∥ϕ∥1, v/

√
∥ϕ∥1, A, ϕ/∥ϕ∥1, w/∥ϕ∥1) would be a feasible instance. Further-

more, given that

∑
x∈{−1,1}n

p(x)ϕ(x)

2n
≤ w ⇐⇒ 1

∥ϕ∥1

∑
x∈{−1,1}n

p(x)ϕ(x)

2n
≤ w

∥ϕ∥1
,

we can write Eq. (5.13) forgetting about the normalization condition of Eq. (5.14). In

other words, Eq. (5.13) is equivalent to

∑
x∈{−1,1}n

p(x)ϕ(x)

2n
≤ w (5.15)

s.t. w ≥ 0, m ∈ N, A ∈ (Bm)n+1, u, v ∈ Rm,

∥u∥2 = ∥v∥2 = w, (5.16)

ϕ̂(Si) = ⟨u,A(i1) . . . A(i2t)v⟩, i ∈ [n+ 1]2t.

In addition, by homogeneity we can assume w = 1, as if (u, v,A, ϕ,w) is a feasible

instance, then (u/
√
w, v/

√
w,A, ϕ/w, 1) also is, and Eq. (5.15) is satisfied for the first

instance if and only if is satisfied for the second instance. Also note, that if (u, v,A)

are part of a feasible instance of Eq. (5.15), then it automatically has Boolean behavior

of degree 2t, and any (u, v,A) defines a feasible instance for Eq. (5.15). Finally, by

Parseval’s identity we can rewrite
∑
x∈{−1,1}n

p(x)ϕ(x)
2n as

∑
S⊆[n] p̂(S)ϕ̂(S). Putting

altogether we get that p is the output of t-query quantum algorithm if and only if its
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degree is at most 2t and ∑
S⊆[n],|S|≤2t

p̂(S)⟨u,A(iS1 ) . . . A(iS2t)v⟩ ≤ 1

s.t. (u, v,A) has Boolean behavior of degree 2t,

which is the same as saying that ∥p∥fcb,2t ≤ 1.

5.4 Aaronson and Ambainis conjecture for (Fourier)

completely bounded polynomials

In this section we prove Theorem 5.6 and Theorem 5.8. Both are based on the con-

struction used by Varopoulos to disprove a degree 3 von Neumann’s inequality [Var74].

5.4.1 AA conjecture for block-multilinear completely bounded

polynomials

Before proving Theorem 5.8, we shall specify what is a block-multilinear completely

bounded polynomial. A block-multilinear polynomial of degree t is a polynomial p :

{−1, 1}n×t → R such that if we divide the variables x ∈ {−1, 1}n×t in t blocks of n

coordinates each, then the every of the monomials of p has at most one coordinate of

each of the blocks. In other words, the block-multilinear polynomials of degree t are

those that can be written as

p(x1, . . . , xd) = p̂(∅) +
∑
s∈[t]

∑
b∈[t]s

b1<···<bs

∑
i∈[n]s

p̂({(b1, i1), . . . , (bs, is)})xb1(i1) . . . xbs(is),

(5.17)

for every (x1, . . . , xd) ∈ ({−1, 1}n)t. For this kind of polynomials, there is a very

natural way of evaluating them in matrix inputs,

p(A1, . . . , Ad) = p̂(∅)Idm+
∑
s∈[t]

∑
b∈[t]s

b1<···<bs

∑
i∈[n]s

p̂({(b1, i1), . . . , (bs, is)})Ab1(i1) . . . Abs(is),

(5.18)
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for every As ∈ (Mm)n, s ∈ [t] and m ∈ N. The completely bounded norm of a

block-multilinear polynomial is defined as4

∥p∥cb := sup{∥p(A1, . . . , Ad)∥ : m ∈ N, As ∈ (Bm)n, s ∈ [t]}. (5.19)

Concerning these polynomials, we can show the following.

Theorem 5.8. Let t ∈ N. Let p : {−1, 1}n×t → R be a block-multilinear degree t

polynomial with ∥p∥cb ≤ 1. Then, p has a variable of influence at least (Var[p]/t)2.

What is more, if p is homogeneous of degree t, then it has a variable of influence at

least Var[p]2.

Remark 5.18. With our proof of the homogeneous case of Theorem 5.8 we can show

that for the case of p : {−1, 1}n×t → R being a homogeneous degree t block-multinear

polynomial we have the following non-commutative root influence inequality

∥p∥cb ≥
∑
i∈[n]

√
Infs,i[p], (5.20)

for any s ∈ [t]. This improves [BSdW22, Theorem 1.4] in two ways. First, we can

allow s to be any number in [t], while they only prove the result of s ∈ {1, t}. Second,

they prove a weaker statement that depends on t, namely,

∥p∥cb ≥
∑
i∈[n]

√
Infs,i[p]√
e(t+ 1)

,

for s ∈ {1, t}.
Remark 5.19. Given that p(x1, . . . , xd) = x1(1) . . . xd(1) is a homogeneous degree t

block-multilinear completely bounded polynomial with Var[p]2 = MaxInf[p] = 1, we

have that the homogeneous case of Theorem 5.8 is optimal.

Proof of the homogeneous degree t case of Theorem 5.8. Let p be a homogeneous de-

gree t block-multilinear polynomial. Let s ∈ [t]. We label the coordinates by (r, i),

where r ∈ [t] indicates the block, and i ∈ [n]. Our goal is defining A ∈ (Bm)n and

f∅, e∅ ∈ Sm−1 such that

⟨f∅, A(i1) . . . A(id)e∅⟩ =
p̂({(1, i1), . . . , (t, id)})√

Infs,is [p]
. (5.21)

4We abuse notation here, as, for the case of homogeneous block-multilinear polynomials, this
definition conflicts with the one given in Definition 4.7. For the rest of the chapter, we will use the
one in Eq. (5.18).
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Once we are there, we can prove the announced root-influence inequality Eq. (5.20).

Indeed,

∥p∥cb ≥
∑

i1,...,id∈[n]

p̂({(1, i1), . . . , (t, id)})⟨f∅, A(i1) . . . A(id)e∅⟩

=
∑

i1,...,id∈[n]

p̂({(1, i1), . . . , (t, id)})
p̂({(1, i1), . . . , (t, id)})√

Infs,is [p]

=
∑
is∈[n]

1√
Infs,is [p]

∑
i1,...,is−1,is+1,id∈[n]

p̂({(1, i1), . . . , (t, id)})2︸ ︷︷ ︸
Infs,i[p]

=
∑
i∈[n]

√
Infs,i[p].

Finally, the statement about the maximal influence quickly follows from the root-

influence inequality

∥p∥cb ≥
∑
i∈[n]

√
Infs,i[p] ≥

∑
i∈[n]

Infs,i[p]√
MaxInf[p]

=
Var[p]√

MaxInf[p]
,

which after rearranging yields

MaxInf[p] ≥
(

Var[p]

∥p∥cb

)2

.

Hence, it suffices to design (f∅, e∅, A) ∈ Sm−1×Sm−1×(Bm)n satisfying Eq. (5.21).

Let S := {{(r, ir), . . . , (t, it)} : ir, . . . , it ∈ [n], s+1 ≤ r ≤ t} and S ′ := {{(1, i1), . . . , (r, ir)} :

i1, . . . , ir ∈ [n], r ≤ s−1}. Let m := 2+|S|+|S ′|. Let {e∅, eS , f∅, fS′ : S ∈ S, S′ ∈ S ′}
be an orthonormal basis of Rm, and define A(i) ∈Mm by

A(i)eS := eS∪{(t−|S|,i)}, for 0 ≤ |S| ≤ t− s− 1, S ∈ S,

A(i)eS :=
∑
S′∈S′

|S′|=s−1

p̂(S′ ∪ S ∪ {(s, i)})√
Infs,i(p)

fS′ , for |S| = t− s, S ∈ S,

A(i)fS′ := δ(|S′|,i)∈S′fS′−{(|S′|,i)}, S
′ ∈ S ′.

We claim that (f∅, e∅, A(i)) satisfies Eq. (5.21). This is because the first applica-

tions of the A(i)’s act like a creation operator and the last as annihilation operators.

The first t− s− 1 of the matrices on e∅ create a vector that stores the indices of these
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first t− s− 1 applications, namely

A(s+ 1) . . . A(t)e∅ = e{((s+1,is+1),...,(t,id))}.

The t − s application has a unique behavior, as it maps the previous vector to a

superposition of f· vectors, namely

A(is)e{((s+1,is+1),...,(t,id))} =
∑
S′∈S′

|S′|=s−1

p̂(S′ ∪ ((s, is), . . . , (t, id)))√
Infs,i(p)

fS′ .

Finally, the last s − 1 applications of the matrices act like annihilation operators,

meaning that

A(i1) . . . A(is−1)fS′ = δS′,((1,i1),...,(s−1,is−1))f∅.

Putting everything together we conclude that indeed Eq. (5.21) is satisfied.

Finally, we claim that A(i) are contractions. Given that {eS : 0 ≤ |S| ≤ t − s −
1, S ∈ S}, {eS : |S| = t− s, S ∈ S} and {fS′ : S′ ∈ S ′} are mapped to orthogonal

spaces, we just have to check than when A(i) is a contraction when it is restricted to

the span of each of these 3 sets. For the first and third sets of vectors that is clear.

For the second is true because for any λ ∈ [n]t−s

∥A(i)
∑
S∈S

|S|=t−s

λSeS∥ = ∥
∑
S∈S

|S|=t−s

∑
S′∈S′

|S′|=s−1

p̂(S′ ∪ S ∪ {(s, i)})√
Infs,i[p]

λSfS′∥

=

√√√√√√∑ S′∈S′

|S′|=s−1

(∑
S∈S

|S|=t−s
p̂(S′ ∪ S ∪ {(s, i)})λS

)2

Infs,i[p]

≤

√√√√√∑ S′∈S′

|S′|=s−1

(∑
S∈S

|S|=t−s
p̂(S′ ∪ S ∪ {(s, i)})2

)(∑
S∈S

|S|=t−s
λ2S

)
Infs,i[p]

=

√
Infs,i[p]

Infs,i[p]

√√√√ ∑
S∈S

|S|=t−s

λ2S

= ∥
∑
S∈S

|S|=t−s

λSeS∥,

where in the inequality we have used Cauchy-Schwarz.

87



5.4. Aaronson and Ambainis conjecture for (Fourier) completely
bounded polynomials

Proof of the general case of Theorem 5.8. Let p : {−1, 1}n×t → R be a block-multilinear

degree t polynomial. For every s ∈ [t], let p=s be its degree s part. Let D ∈ [t] be such

that Var[p=D] ≥ Var[p]/t, which exists because Var[p] =
∑
s∈[t] Var[p=s]. We will now

divide the proof in two parts. One is showing that

∥p=D∥cb ≤ ∥p∥cb, (5.22)

and the other is proving that

MaxInf(p=D) ≥
(

Var[p=D]

∥p=D∥cb

)2

. (5.23)

Once we had done that, the result will easily follow:

MaxInf(p) ≥ MaxInf(p=D) ≥
(

Var[p=D]

∥p=D∥cb

)2

≥
(

Var[p]

t∥p∥cb

)2

,

where in the second inequality we have used Eq. (5.23), and in the third we have used

Eq. (5.22) and that Var[p=D] ≥ Var[p]/t.

First, we prove Eq. (5.22). Let B ∈ Bt+1 be defined by B :=
∑
s∈[D] ese

T
s+1, where

{es}s∈[D+1] is an orthonormal basis of RD+1. Note that ⟨e1, BseD+1⟩ = δs,D for all

s ∈ [t]0. Hence,

∥p=D∥cb = sup
u,v∈Sm−1, A∈(Bm)n

m∈N

∑
b∈[t]D

b1<···<bD

∑
i∈[n]D

p̂=D({(b1, i1), . . . , (bD, iD)})

· ⟨u,Ab1(i1) . . . AbD (iD)v⟩

= sup
u,v∈Sm−1, A∈(Bm)n

m∈N

∑
s∈[t]

∑
b∈[t]s

b1<···<bs

∑
i∈[n]s

p̂({(b1, i1), . . . , (bs, is)})

· ⟨u⊗ e1, (Ab1(i1)⊗B) . . . (Abs(is)⊗B)v ⊗ eD+1⟩

≤ ∥p∥cb.

Second, we prove Eq. (5.23). Let S := {{(b1, i1), . . . , (bD−1, iD−1)} : bs ∈ [t], b1 <

· · · < bD−1, is ∈ [n], s ∈ [D − 1]}. Let m := 2 + |S|. Let {v, f∅, fS : S ∈ S} be an
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orthonormal basis of Rm. For b ∈ [t], i ∈ [n], define Ab(i) ∈Mm by

Ab(i)v :=
∑
S∈S

|S|=D−1

p̂=D(S ∪ {(b, i)})√
MaxInf[p=D]

fS ,

Ab(i)fS := δ(b,i)∈SfS−{(b,i)}, for S ∈ S ∪ ∅.

Ab(i) are contractions because they map the vectors of an orthonormal basis to or-

thogonal vectors without increasing their norms. Note that for b1 < · · · < bD and

i ∈ [n]D we have that

⟨f∅, Ab1(i1) . . . AbD (iD)v⟩ =
p̂=D({(b1, i1), . . . , (bD, iD)})√

MaxInf[p=D]
.

Thus,

∥p=D∥cb ≥
∑

b∈[t]D

b1<···<bD

∑
i∈[n]D

p̂=D({(b1, i1), . . . , (bD, iD)})⟨f∅, p(A1, . . . , Ad)v⟩

=
Var[p=D]√

MaxInf[p=D]
,

which after rearranging yields Eq. (5.23).

5.4.2 AA conjecture for homogeneous Fourier completely bounded

polynomials

Finally, we prove a new case of the AA conjecture.

Theorem 5.6. Let t ∈ N. Let p : {−1, 1}n → R be a homogeneous polynomial of

degree t and with ∥p∥fcb,t ≤ 1. Then, the maximum influence of p is at least Var[p]2.

Proof. Let m := 1 +
(
n
0

)
+ · · ·+

(
n
t−1

)
. Let {v, f∅, fS : S ⊆ [n], 1 ≤ |S| ≤ t− 1} be an

orthonormal basis of Rm. Define the matrices A(i) ∈Mm as

A(i)v :=
∑
S∋i
|S|=t

p̂(S)√
MaxInf[p]

fS−{i},

A(i)fS := δS∋ifS−{i}, for S ⊆ [n], 0 ≤ |S| ≤ t− 1,
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for i ∈ [n] and A(n + 1) := 0. We claim that (f∅, v, A(i)) has Boolean behavior of

degree t. A(n + 1) is clearly a contraction. For i ∈ [n], A(i) is a contraction, as it

maps vectors of the orthonormal basis to orthogonal vectors without increasing the

norm, because

∥A(i)v∥2 =
∑
S∋i

p̂(S)2

MaxInf[p]
=

Infi[p]

MaxInf[p]
≤ 1.

On the other hand, if S ⊆ [n] satisfies |S| ≤ t − 1, then any i ∈ [n + 1]t with Si = S

either has a repeated element of [n] or has an appearance of the index n + 1, which

implies that ⟨f∅, A(i1) . . . A(id)⟩ = 0 = p̂(S). If |S| = t, then any i ∈ [n + 1]t with

Si = S has t different indices in [n] (corresponding to the elements of S), so in that

case

⟨f∅, A(i1) . . . A(id)v⟩ =
p̂(S)√

MaxInf[p]
. (5.24)

Putting everything together we conclude that (f∅, v, A(i)) has Boolean behavior of

degree t, so

∥p∥fcb,t ≥
∑
S⊆[n]

p̂(S)⟨f∅, A(i1) . . . A(id)v⟩ =
∑
S⊆[n]

p̂(S)2√
MaxInf[p]

=
Var[p]√

MaxInf[p]
,

where in the first equality we have used Eq. (5.24). After rearranging, the above

expression yields

MaxInf[p] ≥
(

Var[p]

∥p∥fcb,t

)2

.

Remark 5.20. Sadly, we could not extend the proof of Theorem 5.6 to the general

case. Now, we aim to illustrate what would go wrong with our technique.

For example, consider a polynomial p : {−1, 1}3 → R with deg(p) = 1 and

∥p∥fcb,3 ≤ 1. Ideally, we would want to define unit vectors u and v and contractions

A(i) such that for every S ⊆ [3] and every i ∈ [iS ] they satisfied

⟨u,A(i1)A(i2)A(i3)v⟩ =
p̂(S)√

MaxInf[p]
. (5.25)

If we emulated the strategy of the proof of Theorem 5.6, then A(1)v should be a

normalized superposition of orthogonal vectors whose amplitudes are all possible p̂(Si)
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that have i3 = 1. In particular, all p̂(S) with |S| = 1 must be included among these

amplitudes, because if S = {i}, then S = S(i,1,1). Hence, the normalizing factor of

A(1)v should be
√

Var p, instead of
√

MaxInf(p). Note that this extra normalization

comes from the fact that given that given (i1, i2, i3), it may happen that i3 /∈ S(i1,i2,i3)

and p̂(S(i1,i2,i3)) ̸= 0, because p is not homogeneous of degree-3. If we mimic the rest

of the proof after this first step that we were forced to modify, we would reach

⟨u,A(i1) . . . A(i3)v⟩ =
p̂(S)√
Var[p]

instead of Eq. (5.25), which would lead to ∥p∥fcb,3 ≥
√

Var p, that is trivially true,

because ∥p∥fcb,3 ≥ ∥p∥∞ and ∥p∥∞ ≥
√

Var p.

Remark 5.21. However, there might be a different way of, given a polynomial p of

degree at most t, choosing (u, v,A) with Boolean behavior of degree t such that

⟨u,A(i1) . . . A(id)v⟩ =
p̂(Si)

poly(t,MaxInf[p])
,

for any i ∈ [n+1]t. If that was true, one could copy and paste the proof of Theorem 5.6

and conclude Conjecture 5.5.

This reduces Conjecture 5.5 to a question with flavor of tensor networks (see

[CPGSV21] for an introduction to the topic). In particular, the central questions

in matrix product states theory is, given a t-tensor T ∈ Cn×···×n, to find matrices

A1, . . . , At of low dimension such that Ti = Tr[A(i1) . . . A(it)] for every i ∈ [n]t. Thus,

we are asking the same question, but with a different goal: to minimize the operator

norm of the matrices, instead of their dimensions.

It also has the flavor of almost-quantum correlations [NGHA15]. Almost-quantum

correlations are a model for multiparty quantum mechanics that eludes tensor products

and commutativity of the observables: it only imposes the commutativity on the

correlations. For example, in a bipartite scenario, valid correlations would be those

determined by observables {Ax}x∈X and {By}y∈Y and a state |ψ⟩ such that

⟨ψ|AxBy|ψ⟩ = ⟨ψ|ByAx|ψ⟩, for all x ∈ X , y ∈ Y.

In other words, almost-quatum correlations impose the commutativity conditions with

respect to the sandwiches with |ψ⟩, instead of directly imposing them to the observ-

ables, Similarly, we would like to find matrices that satisfy certain Boolean relations

with respect to the product with two vectors u and v.
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Question 5.22. Given a polynomial p of degree at most t, is there (u, v,A) ∈ BBt

such that

⟨u,A(i1) . . . A(id)v⟩ =
p̂(Si)

poly(t,MaxInf[p])
,

for any i ∈ [n+ 1]t?
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