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Chapter 4

Grothendieck inequalities

characterizes converses to the

polynomial method

4.1 Introduction

For a Boolean function f : D → {−1, 1} defined on a set D ⊆ {−1, 1}n, the cele-

brated polynomial method of Beals, Buhrman, Cleve, Mosca and de Wolf [BBC+01],

introduced in Chapter 3, gives a lower bound on the quantum query complexity of f

in terms of the approximate degree. Using this method, many well-known quantum

algorithms were proved to be optimal in terms of query complexity (see e.g., [BKT20]

and references therein).

Since polynomials are simpler objects than quantum query algorithms, it is of in-

terest to know how well approximate degree approximates quantum query complexity.

There are total functions f that satisfy Q(f) ≥ d̃eg(f)c for some absolute constant

c > 1 [Amb06, ABDK16]; the second reference gives an exponent c = 4− o(1), which

was shown to be optimal in [ABDK16]. For partial functions it was recently shown

that this separation can even be exponential [AB23]. These separations rule out a

direct converse to the polynomial method, whereby a given bounded degree-2t poly-

nomial p can be computed by a t-query quantum algorithm A. However, since these

results concern functions whose approximate degree grows with n, they leave room for

the possibility that such an A approximates p with some error that depends on t.
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4.1. Introduction

For bounded polynomials of degree at most 2, a multiplicative converse to the

polynomial method was proved in [AAI+16], showing that up to an absolute con-

stant scaling, quadratic polynomials can indeed be computed by 1-query quantum

algorithms.

Theorem 4.1 (Quadratic multiplicative converse [AAI+16]). There exists an absolute

constant C ∈ (0, 1] such that E(Cp, 1) = 0 for every bounded polynomial p of degree at

most 2.

This result directly implies the following additive version.

Corollary 4.2 (Quadratic additive converse). There exists an absolute constant ε ∈
(0, 1) such that the following holds. For every bounded polynomial p of degree at most 2,

we have E(p, 1) ≤ ε. In particular, one can take ε = 1−C for the constant C appearing

in Theorem 4.1.

In light of the polynomial method, Corollary 4.2 shows that one-query quantum

algorithms are roughly equivalent to bounded quadratic polynomials. The authors

of [AAI+16] asked whether this result generalizes to higher degrees. Two ways to

interpret this question are that for any k, any bounded degree-2k polynomial p satisfies:

(a) Multiplicative converse: E(Cp, k) = 0 for some C = C(k) > 0, or;

(b) Additive converse: E(p, k) ≤ ε for some ε = ε(k) < 1.

The dependence on the degree k in these options is necessary due to the known sep-

arations between bounded-error quantum query complexity and approximate degree.

Option (a), the higher-degree version of Theorem 4.1, was ruled out in [ABP19].

Theorem 4.3. For any C > 0, there exist an n ∈ N and a bounded quartic n-variable

polynomial p such that no two-query quantum algorithm A satisfies E[A(x)] = Cp(x)

for every x ∈ {−1, 1}n.

Note that Option ((a)) with C implies Option ((b)) with 1− C, but Theorem 4.3

does not rule out Option ((a)).

Contributions of this chapter

Our first contribution concerns an error in the original proof of Theorem 4.3, which

was based on a probabilistic example. Here, we show that Theorem 4.3 holds as

stated, both by considering a slightly modified probabilistic example and by giving

a completely explicit example. More importantly, we prove a stronger result that

subsumes Theorem 4.3: we rule out the possibility of Option ((b)).
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Theorem 4.4. There is no constant ε ∈ (0, 1) such that for every bounded polynomial

p of degree at most 4, we have E(p, 2) ≤ ε.

In the context of quantum query complexity of Boolean functions, this rules out

arguably the most natural way to upper bound Q(f) in terms of d̃eg(f): First, ε-

approximate f by a degree-2t polynomial p, then ε′-approximate p with a t-query

quantum algorithm A, with ε + ε′ < 1, and finally boost the success probability of

A so that it approximates f , for instance by taking the majority of independent runs

of A. Corollary 4.2 gives the only exceptional case where this is possible in general.

Our second contribution concerns 1-query quantum algorithms. For the case of

bilinear forms, Theorem 4.1 was proved using a surprising application of the famous

Grothendieck theorem (see Section 2.7.1). The general form of Theorem 4.1 follows

from decoupling techniques. In this chapter, we show that the additive approximation

implied by Theorem 4.1 is optimal.

Theorem 4.5. The worst-case minimum error for one-query quantum algorithms

satisfies

sup
p
E(p, 1) = 1− 1

KR
G

,

where the supremum is taken over the set of bounded bilinear forms.

This complements another well-known characterization of KR
G in terms of the

largest-possible Bell-inequality violations in two-player XOR games [Tsi80].

The main technical result of this chapter

Both Theorems 4.3 and 4.4 are in fact corollaries of our main result (Theorem 4.13

below), which gives a formula for E(p, t) when p is a block-multilinear form. Block-

multilinear forms already played an important role in other works related to quan-

tum query complexity [OZ15, AAI+16, BSdW22], theoretical computer science [KN07,

Lov10, KM13] and in the polarization theory of functional analysis [BH31, Har72].

The formula characterizes E(p, t) in terms of a ratio of norms appearing naturally

in Grothendieck’s theorem for bilinear forms (see Section 2.7.1). The dual formulation

of Grothendieck’s theorem asserts that for any bilinear form A : Rn × Rn → R,

∥A∥∞,∗ ≤ KR
G∥A∥cb,∗.

Similar norms can be defined for block-multilinear forms of higher degree. Endowing

the space of polynomials with the standard inner product of the coefficient vectors in
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the monomial basis, our formula for E(p, t) is as follows.

Theorem 4.6 (Informal version of Theorem 4.13). For a block-multilinear form p of

degree 2t, we have

E(p, t) = sup
q

⟨p, q⟩ − ∥q∥cb,∗
∥q∥∞,∗

.

where the supremum runs over all block-multilinear forms q of degree 2t.

The proof of Theorem 4.6 uses a characterization of quantum query algorithms in

terms of completely bounded polynomials [ABP19].

Theorems 4.4 and 4.5 follow from Theorem 4.6 by taking suprema over particular

sequences of bounded degree-2t block-multilinear forms. From Theorem 4.6 it follows

that

sup
p
E(p, t) = sup

q

[(
sup
p

⟨p, q⟩
∥q∥∞,∗

)
− ∥q∥cb,∗
∥q∥∞,∗

]
= 1− inf

q

∥q∥cb,∗
∥q∥∞,∗

. (4.1)

Now, Theorem 4.5 follows from Eq. (4.1) and the dual version of Grothendieck’s

inequality (Section 4.1). Similarly, Theorem 4.4 is proven by using Eq. (4.1) and

constructing a family of degree-4 polynomials (pn)n that witnesses the failure of

Grothendieck inequality. By this we mean that (pn)n exhibit the separation

∥pn∥cb
∥pn∥∞

→∞. (4.2)

By duality this implies that there is a sequence (rn)n with ∥rn∥cb,∗/∥rn∥∞,∗ → 0,

which alongside Eq. (4.1) implies that supp E(p, 2) = 1, as desired.

4.2 Preliminaries

Polynomials, norms and quantum query complexity

As usual we let R[x1, . . . , xn] be the ring of n-variate polynomials with real coefficients,

whose elements we write as

p(x) =
∑
α∈Zn

≥0

cαx
α, (4.3)

where xα = xα1
1 · · ·xαn

n and cα ∈ R. We define the support of p by

supp(p) = {α ∈ Zn≥0 | cα ̸= 0}.
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For α ∈ Zn≥0, write |α| = α1 + · · · + αn, which is the degree of the monomial xα. A

form of degree d is a homogeneous polynomial of degree d, i.e., a polynomial whose

support consists of α for which |α| = d. Denote by R[x1, . . . , xn]=d the space of forms

of degree d. For p as in Eq. (4.3), define its homogeneous degree-d part by

p=d(x) =
∑
|α|=d

cαx
α.

We endow R[x1, . . . , xn] with the inner product given by

⟨p, q⟩ =
∑
α∈Zn

≥0

cαc
′
α,

where cα and c′α are the coefficients of p and q, respectively.

We recall the definition of ∥ · ∥1 and ∥ · ∥∞, which are seminorms of polynomials in

R[x1, . . . , xn], and norms on the space of multilinear polynomials.

∥p∥∞ := sup
x∈{−1,1}n

|p(x)|,

∥p∥1 := Ex∈{−1,1}n |p(x)|,

where the expectation is taken with respect to the uniform probability measure.

We will work with a reformulation of the completely bounded polynomial method,

Theorem 3.6. To state it, we define the completely bounded norm of a form p.

Definition 4.7. Let p ∈ R[x1, . . . , xn]=t. Then, its completely bounded norm is

defined by

∥p∥cb = inf
{
∥T∥cb | p(x) = T (x, . . . , x) ∀x ∈ Rn

}
,

where the infimum runs over all t-linear forms T : Rn × · · · × Rn → R.

Note that we are slightly abusing notation because we have introduced two notions

of completely bounded norm for t-linear forms T : Rn × · · · × Rn → R. The first one

in Definition 2.17, where we regard T as a multilinear form. Furthermore, such T can

also be regarded as a homogeneous polynomial in nt variables, so we have defined a

second notion of completely bounded norm for it in Definition 4.7. For the rest of the

chapter, we will use the definition of Definition 4.7. However, to prove Theorem 4.5

we should show that for bilinear forms both norms are equal (see Proposition 4.25

below).
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Now, we can restate Theorem 3.6.1

Theorem 4.8 (Completely bounded polynomial method). Let p : {−1, 1}n → [−1, 1]

and let t ∈ N. Then,

E(p, t) = inf ∥p− q∥∞
s.t. h ∈ R[x1, . . . , xn+1]=2t with ∥h∥cb ≤ 1

q : {−1, 1}n → R, with q(x) = h(x, 1) ∀ x ∈ {−1, 1}n.

Block-multilinear forms

Theorem 4.13 is stated for a special kind of polynomials, which are the block-multilinear

forms.

Definition 4.9. Let P = {I1, . . . , It} be a partition of [n] into t (pairwise disjoint)

non-empty subsets. Define the set of block-multilinear polynomials with respect to P
to be the linear subspace

VP = Span
{
xi1 · · ·xit | i1 ∈ I1, . . . , it ∈ It

}
.

We also work with the larger space of polynomials spanned by monomials where

in the above we replace linearity by odd degree.

Definition 4.10. For a family Q ⊆ 2[m] of pairwise disjoint subsets, let WQ ⊆
R[x1, . . . , xm] be the subspace of polynomials spanned by monomials xα with α ∈ Zm≥0

satisfying ∑
i∈I

αi ≡ 1 mod 2 ∀I ∈ Q. (4.4)

We use ΠQ : R[x1, . . . , xm]→WQ to refer to the projector onto WQ.

Remark 4.11. Given a partition P of [n], we have VP ⊂WP . In particular, VP consists

of precisely the multilinear polynomials in WP .

Although the projector ΠQ onto WQ is properly defined on the space of polynomials

of n variables, we will slightly abuse notation and let it act on a t-tensor T ∈ Rn×···×n

as follows. Define IQ ⊆ [n]t to be the set of t-tuples that contain an odd number of

1A direct reformulation of Theorem 3.6 would be with the polynomial h below belonging to
R[x1, . . . , x2n]=2t, instead of R[x1, . . . , xn+1]=2t, However, in [GL19] it was observed that only one
extra variable is needed.
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elements from each set in Q. Then, we let ΠQT be the tensor given by

(ΠQT )i :=

{
Ti if i ∈ IQ,
0 otherwise.

(4.5)

It is not hard to see that if p is a polynomial satisfying T (x, . . . , x) = p(x) for every

x ∈ {−1, 1}n, then ΠQT (x, . . . , x) = ΠQp(x) for every x ∈ {−1, 1}n.

We note that all the norms and seminorms we have mentioned are norms on the

space VP for any partition P of [n]. Hence, we can take the dual of these norms with

respect to this subspace, so from now on ∥p∥∞,∗ and ∥p∥cb,∗ will be the dual of ∥p∥∞
and ∥p∥cb of VP , respectively. By contrast, when we write ∥R∥cb,∗ for some t-tensor

Rn×···×n we refer to the dual norm of the completely bounded norm of R with respect

to the whole space of t-tensors.

We stress that ∥ · ∥∞,∗ need not be equal to ∥ · ∥1. This is because we are taking

the dual norms with respect to VP and not with respect to the space of all multilinear

maps, in which case the dual norm would be ∥p∥1. The following example shows that

∥p∥∞,∗ ̸= ∥p∥1 in general.

Example 4.12. Consider n = 3, t = 1 and p = (x1 + x2 + x3)/3. Then, ∥p∥1 > 1/3,

but ∥p∥∞,∗ ≤ 1/3. Indeed, as |p(x)| ≥ 1/3 for every x ∈ {−1, 1}3 and |p(x)| > 1/3 for

some x ∈ {−1, 1}3, we have that ∥p∥1 > 1/3. On the other hand, in this case P = {[3]}
so VP is the set of linear polynomials. Note that if q is linear, then ∥q̂∥1 = ∥q∥∞, where

q̂ is the Fourier transform of q. Hence

∥p∥∞,∗ = sup
q∈VP ,∥q∥∞≤1

⟨p, q⟩ = sup
q∈VP ,∥q̂∥1≤1

⟨p̂, q̂⟩ ≤ sup
∥q̂∥1≤1

∥p̂∥∞∥q̂∥1 =
1

3
,

where in second equality we used Parseval’s identity.

4.3 E(p, t) for block-multilinear forms

In this section we formally state and prove our main result:

Theorem 4.13. Let P be a partition of [n] in 2t subsets and p ∈ VP . Then,

E(p, t) = sup {⟨p, r⟩ − ∥r∥cb,∗ | r ∈ VP , ∥r∥∞,∗ ≤ 1} .

For the proof, we use more convenient expressions for the completely bounded

norms and the fact that the projector ΠQ is contractive under several norms.
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Contractivity of the projector ΠQ.

A key element of the proof of Theorem 4.13 is that can restrict the infimum in Theo-

rem 4.8 to the space of polynomials WQ given in Definition 4.10. To do that, we prove

that the orthogonal projector onto this space, ΠQ is contractive in several norms.

This will follow from the fact that ΠQ has a particularly nice structure in the form

of an averaging operator. Let Q be a family of disjoint subsets of [n]. For each

I ∈ Q let zI be a random variable that takes the values −1 and 1 with probability

1/2 and let z = (zI)I∈Q. For a bit string x ∈ {−1, 1}n, we define the random variable

x · z ∈ {−1, 1}n as

(x · z)(i) :=

{
xizI if i ∈ I for some I ∈ Q,
xi otherwise.

For a matrix-valued map A : [n] → M(d) we define the random variable A · z in an

analogous way.

Proposition 4.14. For any p ∈ R[x1, . . . , xn] and x ∈ Rn, we have that

ΠQp(x) = Ez
[
p(x · z)

∏
I∈Q

zI

]
.

Similarly, for any t-tensor T ∈ Rn×···×n, positive integer d and matrix-valued map

A : [n]→M(d), we have that

ΠQT (A) = Ez

[
T (A · z)

∏
I∈Q

zI

]
.

Proof. By linearity, it suffices to prove the equality for monomials. Let α ∈ Zn≥0. Then

we have

(x · z)α
∏
I∈Q

zI = xα
∏
I∈Q

z
1+

∑
i∈I αi

I .

It follows that

Ez
[
(x · z)α

∏
I∈Q

zI

]
=

xα if 1 +
∑
i∈I αi = 0 mod 2 ∀I ∈ Q,

0 otherwise.

It remains to observe that this is precisely the projection of xα on WQ. The statement

for tensors follows analogously.
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Finally, we prove that ΠQ is contractive with respect to the relevant norms.

Lemma 4.15. Let Q be a family of disjoint subsets of [n] and p ∈ R[x1, . . . , xn] and

let norm ∈ {cb,∞, 1} where for the cb-norm we moreover require p to be homogeneous.

Then

∥ΠQp∥norm ≤ ∥p∥norm.

Proof. First, we consider the ∥ · ∥∞ norm. For every x ∈ {−1, 1}n, we have that

x · z ∈ {−1, 1}n, so

|ΠQp(x)| ≤ Ez|p(x · z)
∏
I∈Q

zI | = Ez|p(x · z)| ≤ Ez∥p∥∞ = ∥p∥∞,

where in the first inequality we used Proposition 4.14 and the triangle inequality.

Second, we consider ∥ · ∥cb. Arguing as in the ∥ · ∥∞ case and using Definition 4.7,

it follows that for any t-tensor T ∈ Rn×···×n we have that ∥ΠQT∥cb ≤ ∥T∥cb. Given

that ΠQp(x) = ΠQT (x) if p(x) = T (x), it follows that

∥ΠQp∥cb ≤ ∥ΠQT∥cb ≤ ∥T∥cb

for every t-tensor T ∈ Rn×···×n such that T (x) = p(x). Taking the infimum over all

those T we arrive at ∥ΠQp∥cb ≤ ∥p∥cb.

Finally, for ∥ · ∥1 we have

∥ΠQp∥1 = Ex|Ezp(x · z)
∏
I∈Q

zI | ≤ ExEz|p(x · z)| = EzEx|p(x)| = ∥p∥1,

where in the first equality we have used Proposition 4.14 and in the third we have used

the fact that the uniform measure is invariant under multiplication by z ∈ {−1, 1}n.

Putting everything together

We are now ready to prove Theorem 4.13. To this end, we start from the expression

given in Theorem 4.8 for E(p, t) and let h ∈ R[x1, . . . , xn+1]=2t with ∥h∥cb ≤ 1 and let

q : {−1, 1}n → R be defined by q(x) = h(x, 1) for every x ∈ {−1, 1}n.

We first show that we can project q (and h) onto WP and obtain a feasible solution

whose objective value is at least as good as q. Since P is a partition of [n], it defines a

family of disjoint subsets of [n+ 1], so by Lemma 4.15, we have ∥ΠPh∥cb ≤ ∥h∥cb ≤ 1.

Since the degree of h is at most 2t, the polynomial ΠPh has degree at most 2t.
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This shows that each monomial in its support contains exactly one variable from

each of the 2t sets in P. We can therefore observe that ΠPh does not depend on

xn+1. Since h(x, 1) = q(x), we have ΠPh(x, 1) = ΠPq(x) and therefore ΠPq ∈ VP .

From Definition 4.7 follows that ∥ΠPq∥cb ≤ 1. Indeed, applying ΠP to a 2t-tensor

T ∈ R(n+1)×···(n+1) that certifies ∥h∥cb ≤ 1 results in a tensor ΠPT that satisfies

ΠPT (i) = 0 whenever i contains an index equal to n + 1. So, ΠPT (x, 1) = ΠPq(x)

for every x ∈ {−1, 1}n and thus ΠPT , viewed as a 2t-tensor in Rn×···×n, certifies

∥ΠPq∥cb ≤ 1. For the objective value of ΠPq we finally observe that

∥p−ΠPq∥∞ = ∥ΠP(p− q)∥∞ ≤ ∥p− q∥∞,

where we used that p ∈ VP in the equality and Lemma 4.15 in the inequality. This

shows that

E(p, t) ≥ inf{∥p− q∥∞ | q ∈ VP with ∥q∥cb ≤ 1}.

To show that the above inequality is in fact an equality it suffices to observe that given

a polynomial q ∈ VP , we can define h ∈ R[x1, . . . , xn+1] as h(x, xn+1) = q(x) and then

we have ∥h∥cb ≤ ∥q∥cb.

Finally, in the above reformulation of E(p, t), we can express ∥p− q∥∞ in terms of

its dual norm and obtain

E(p, t) = inf
q

sup
r
⟨p− q, r⟩

s.t. q ∈ VP with ∥q∥cb ≤ 1,

r ∈ VP with ∥r∥∞,∗ ≤ 1.

Finally, we need the von Neumann’s minimax theorem (see [Nik54] for a proof).

Theorem 4.16 (Minimax). Let X and Y convex compact sets. Let f : X × Y → R
such that f is concave in the first variable and convex in the second. Then,

sup
x∈X

inf
y∈Y

f(x, y) = inf
y∈Y

sup
x∈X

f(x, y).

The desired result then follows by exchanging the infimum and supremum, which we

are allowed to do by Theorem 4.16.
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4.4 Separations between infinity and completely bounded

norms

In this section we show that the completely bounded norm of a degree 4 bounded

polynomial can be unbounded. In other words, we prove the following Theorem.

Theorem 4.17. There is a sequence pn ∈ R[x1, . . . , xn]=4 such that

∥pn∥cb
∥pn∥∞

→∞.

To prove Theorem 4.17 we first provide a framework to lower bound the completely

bounded norm inspired on a technique due to Varopoulos [Var74].2 Second, we con-

struct two sequences of bounded polynomials, one random and one explicit, that fit in

that framework and have unbounded completely bounded norm.

Lower bounding the completely bounded norm

We will first talk about general cubic forms, that is polynomials given by:

p(x) =
∑

S∈([n]
3 )

cS
∏
i∈S

xi, (4.6)

where the cS are some real coefficients. We will lower bound its completely bounded

norm. Then, we will extent this lower bound to an associated quartic form, given by

x0p(x). For i ∈ [n], define the ith slice of p to be the symmetric matrix Mi ∈ Rn×n

with (j, k)-coefficient equal to c{i,j,k} if i, j, k are pairwise distinct and 0 otherwise.

Then, define

∆(p) = max
i∈[n]
∥Mi∥op.

Lemma 4.18 (tri-linear Varopoulos decomposition). Let p be an n-variate multilinear

cubic form as in (4.6). Then, for some d ∈ N, there exist contractions A(1), . . . , A(n) ∈

2We use the same construction as the one proposed by Varopoulos, but we apply it to multilinear
polynomials, which gives it the extra property displayed in Eq. (4.7)
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Md and orthogonal vectors u, v ∈ Sd−1 such that [A(j), A(i)] = 0, and

A(i)2 = 0 (4.7)

⟨u,A(i)v⟩ = 0 (4.8)

⟨u,A(i)A(j)v⟩ = 0 (4.9)

⟨u,A(i)A(j)A(k)v⟩ =
c{i,j,k}

∆(p)
(4.10)

for all pairwise distinct i, j, k ∈ [n].

Proof. For each i ∈ [n], define Mi as above. Define Wi = ∆(p)−1Mi and note that Wi

has operator norm at most 1. For each i ∈ [n], define the (2n + 2) × (2n + 2) block

matrix

A(i) =

 ei

WT
i

eTi

,
where the first and last rows and columns have size 1, the second and third have

size n and where the empty blocks are filled with zeros. Define u = e2n+1 and v = e1.

The rest of the proof is identical to the proof of [BP19, Lemma 2.11], except for the

property that A(i)2 = 0. This follows from the fact that

A(i)2 =

 WT
i ei

eTi W
T
i


and that the ith row and ith column of Mi (and hence Wi) are zero.

Corollary 4.19. Let p be an n-variate multilinear cubic form as in (4.6). Sup-

pose that an (n + 2)-variate quartic form h ∈ R[x0, x1, . . . , xn, z] satisfies h(x, 1) =

x0p(x1, . . . , xn) for every x ∈ {−1, 1}n+1. Then,

∥h∥cb ≥
∥p∥22
∆(p)

.

Proof. From the orthonormality of the characters, it follows that h and x0p have

equal coefficients for each quartic multilinear monomial in the variables x0, . . . , xn,

which are cS for x0χS with S ∈
(
[n]
3

)
and 0 otherwise. Let A(1), . . . , A(n) ∈ BMd

and u, v ∈ Sd be as in Lemma 4.18, and extend A by A(0) = I, A(n + 1) = 0.
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Commutativity and properties (4.7)–(4.9) imply that if a quartic monomial expression

A((i, j, k, l)) with i, j, k, l ∈ {0, . . . , n + 1} has repeated indices or an index equal

to n+ 1, then ⟨u,A((i, j, k, l))v⟩ = 0. With this, it follows that, for every Th such that

Th(x, . . . , x) = h(x), we have

∥Th∥cb ≥
∑

i∈({0}∪[n+1])4

Ti

〈
u,A(i)v

〉
=

∑
S∈([n]

3 )

cS

〈
u, A(0)

∏
i∈S

A(i)v
〉
. (4.11)

Finally, if we use that A(0) = Id, property (4.10) and Parseval’s identity, we obtain

the desired result:

∥h∥cb = inf ∥Th∥cb ≥
∑

S∈([n]
3 )

cS⟨u,
∏
i∈S

A(i)v⟩ = ∆(p)−1
∑

S∈([n]
3 )

c2S =
∥p∥22
∆(p)

.

A separation based on a random example

We begin by defining a random cubic form as in (4.6) where the coefficients cS are

chosen to be independent uniformly distributed random signs. Parseval’s identity then

gives ∥p∥22 =
(
n
3

)
. We now use a standard random-matrix inequality to upper bound

∆(p) (see [Tao12, Corollary 2.3.6] for a proof).

Lemma 4.20. There exist absolute constants C, c ∈ (0,∞) such that the following

holds. Let n be a positive integer and let M be a random n × n symmetric random

matrix such that for j ≥ i, the entries Mij are independent random variables with

mean zero and absolute value at most 1. Then, for any τ ≥ C, we have

Pr
[
∥M∥op > τ

√
n
]
≤ Ce−cτn.

Applying Lemma 4.20 to the slices Mi and the union bound then imply that ∆(p) ≤
C
√
n with probability 1−exp(−Cn). By Hoeffding’s inequality [BLM13, Theorem 2.8]

and the union bound, we have that ∥p∥∞ ≤ Cn2 with probability 1 − exp(−Cn).

Rescaling p then gives that there exists a bounded multilinear cubic form such that

∥p∥22/∆(p) ≥ C
√
n. Now Theorem 4.17 follows from Corollary 4.19.
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A construction based on an explicit example

We also give an explicit construction using techniques from [BP19], which were used

there to disprove a conjecture on a tri-linear version of Grothendieck’s theorem. We do

not exactly use the construction from that paper because it involves complex functions.

Instead, we will use the Möbius function (defined below), which is real valued and has

the desired properties.

The construction uses some notions from additive combinatorics. For a function

f : Zn → [−1, 1] (on the cyclic group of order n), define the 3-linear form

p(x1, x2, x3) =
∑

a,b∈Zn

x1,ax2,a+bx3,a+2bf(a+ 3b).

where x1, x2, x3 ∈ {−1, 1}n and the sums of a and b are done in Zn.

We begin by upper bounding ∆(p). The polynomial p has 3n slices, Mi,a ∈ R[3]×Zn

for each i ∈ [3] and a ∈ Zn, which we view as 3×3 block-matrices with blocks indexed

by Zn. The slice M1,a is supported only on the (2, 3) and (3, 2) blocks, which are each

others’ transposes. On its (2, 3) block it has value f(a+3b) on coordinate (a+b, a+2b)

for each b. In particular, this matrix has at most one nonzero entry in each row and

column. It follows that a relabeling of the rows turns M1,a into a diagonal matrix

with diagonal entries in [−1, 1], and therefore ∥M1,a∥op ≤ 1. Similarly, we get that

∥Mi,a∥op ≤ 1 for i = 2, 3. Hence,

∆(p) ≤ 1. (4.12)

for any choice of f .

Now we will choose a specific f for which we will be able to upper bound ∥p∥∞ and

lower bound ∥p∥22. Identify Zn with {0, 1 . . . , n−1} in the standard way. We choose f

to be the Möbius function restricted to this interval. That is, set f(0) = 0 and for

a > 0, set

f(a) =


1 if a is square-free with an even number of prime factors

−1 if a is square-free with an odd number of prime factors

0 otherwise.

The infinity norm of p can be upper bounded in terms of the Gowers 3-uniformity
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norm of f . This norm plays a central role in additive combinatorics and is defined by

∥f∥U3 =
(
Ea,b1,b2,b3∈Zn

∏
c∈{0,1}3

f(a+ c1b1 + c2b2 + c3b3)
) 1

8

.

The proof of the announced bound can be found in [Gre07, Proposition 1.11].

Lemma 4.21 (generalized von Neumann inequality). Suppose that n is coprime to 6.

Then, for any f : Zn → [−1, 1], we have that

∥p∥∞ ≤ n2∥f∥U3 .

A recent result by Tao and Teräväinen [TT23] given an upper bound to the Gowers

3-uniformity norm of the Möbius function.

Theorem 4.22. Let f : Zn → R be the Möbius function. Then,

∥f∥U3 ≤ 1

(log log n)C
.

for some constant C > 0.

Combining Lemma 4.21 and Theorem 4.22 it follows that

∥p∥∞ ≤
n2

(log log n)C
(4.13)

for some constant C > 0.

To lower bound ∥p∥22 we begin using Parseval’s identity, which implies that

∥p∥22 = n
∑
a∈Zn

f(a)2. (4.14)

Given that |f(a)|2 is 1 if a is square-free and 0 otherwise, we can use a classical result

of number theory to lower bound ∥p∥22 (see [HW+79, page 269] for a proof).

Proposition 4.23. There are 6
π2n − O(

√
n) natural numbers between 1 and n that

are square-free.

From Eq. (4.14) and Proposition 4.23 follows that

∥p∥22 =
6

π2
n2 −O(

√
n3). (4.15)
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Finally, we substitute p by p/(n2/(log log n)C), and it follows from Eqs. (4.12),

(4.13) and (4.15) that p is bounded and

∥p∥22
∆(p)

≥ 6

π2
(log log n)C − o(1).

Again, Theorem 4.17 now follows from Corollary 4.19.

Remark 4.24. The jointly completely bounded norm of p is given by

∥p∥jcb = sup
d∈N
∥
∑

a,b∈Zn

A(1, a)A(2, a+ b)A(3, a+ 2b)f(a+ 3b)∥,

where the supremum is taken over maps A : [3]× [n]→ Cd×d such that ∥A(i, a)∥op ≤ 1

and [A(i, a), A(j, b)] = [A(i, a), A(j, b)†] = 0 for all i ̸= j and a, b ∈ Zn. This norm can

also be stated in terms of tensor products and the supremum is attained by observable-

valued maps. As such, this norm appears naturally in the context of non-local games.

It was shown in [BBB+19] that Proposition 4.21 also holds for the jointly completely

bounded norm, that is ∥p∥jcb ≤ n2∥f∥U3 . The proof of Corollary 4.19 easily implies

that ∥p∥cb ≥ ∥p∥22/∆(p). This was used in [BP19] to prove that the jcb and cb norms

are inequivalent.

4.5 Grothendieck inequalities characterize converses

to the polynomial method

In this section, we show, as a corollary of Theorem 4.13, that Grothendieck inequal-

ities characterize converses to the polynomial method. By this we mean that: i) for

1-query algorithms an additive converse is possible and moreover this converse char-

acterizes KR
G; and ii) for 2-query algorithms no additive converse is possible, because

Grothendieck’s inequality fails for 3-linear forms.

4.5.1 Characterizing KR
G with 1-query quantum algorithms

Here we prove Theorem 4.5. Before doing that, we should prove Definition 2.17 and

Definition 4.7 coincide for bilinear forms, so we can apply Grothendieck’s Theorem,

which uses Definition 2.17, into Theorem 4.13, which uses Definition 4.7.

Proposition 4.25. For bilinear forms Definitons 2.17 and 4.7 coincide.
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Proof. Let T : Rn × Rn → R be a bilinear form. In this proof we will use ∥T∥cb
to refer to the quantity defined in Definition 2.17, and we will write the quantity of

Definition 4.7 as

∥T∥c̃b = inf
{
∥R∥cb | T (x) = R(x, x) ∀ x ∈ Rn × Rn

}
,

where the infimum runs over all bilinear forms R : (Rn × Rn)× (Rn × Rn)→ R.

We first prove that ∥T∥c̃b = ∥Tsym∥cb, where Tsym : (Rn×Rn)× (Rn×Rn)→ R is

the only symmetric bilinear form such that T (x) = Tsym(x, x) for every x ∈ Rn ×Rn.
On the one hand, by definition, it follows that ∥T∥c̃b ≤ ∥Tsym∥cb. On the other hand,

consider a bilinear form R : (Rn×Rn)× (Rn×Rn)→ R such that T (x) = R(x, x) for

every x ∈ Rn × Rn. We define RT : (Rn × Rn)× (Rn × Rn)→ R as the bilinear form

obtained by transposing the matrix associated to R as in Definition 2.14. We have that

Tsym = (R+RT)/2 and that T (x) = RT(x, x) for every x ∈ Rn ×Rn. Furthermore, it

is satisfied that

∥RT∥cb = sup
{
∥
∑
i,j

Rj,iA(i)B(j)∥ | A(i), B(j) ∈ BMd

}
(4.16)

= sup
{
∥
∑
i,j

Rj,iB(j)TA(i)T∥ | A(i), B(j) ∈ BMd

}
= ∥R∥cb,

where we use (twice) that for any matrix M we have ∥M∥ = ∥MT∥. Thus, we have

that ∥R∥cb ≥ ∥Tsym∥cb, so ∥T∥c̃b ≥ ∥Tsym∥cb.

Second, we prove that ∥T∥cb = ∥Tsym∥cb. We observe that Tsym = 1
2

(
0 T

TT 0

)
.

Thus, we immediately have that ∥T∥cb ≤ ∥Tsym∥cb. Also, it is satisfied that

∥Tsym∥cb ≤
1

2

(∥∥∥(0 T

0 0

)∥∥∥
cb

+
∥∥∥( 0 0

TT 0

)∥∥∥
cb

)

≤ 1

2

(
∥T∥cb + ∥TT∥cb

)
= ∥T∥cb,

where the last equality uses (4.16).

We recall that it was shown in [AAI+16] that for every bilinear form there exists

a 1-query quantum algorithm that makes additive error at most 1 − 1/KR
G. It thus
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remains to show the lower bound.

Theorem 4.5. The worst-case minimum error for one-query quantum algorithms

satisfies

sup
p
E(p, 1) = 1− 1

KR
G

,

where the supremum is taken over the set of bounded bilinear forms.

Proof. Theorem 4.13 shows the following:

sup
p∈BB

E(p, 1) = sup
∥p∥∞≤1

sup
∥r∥∞,∗≤1

⟨p, r⟩ − ∥r∥cb,∗ (4.17)

= sup
∥r∥∞,∗≤1

∥r∥∞,∗ − ∥r∥cb,∗ (4.18)

= sup
∥r∥∞,∗=1

1− ∥r∥cb,∗.

It thus remains to show that for bilinear forms ∥r∥∞,∗ ≤ KR
G∥r∥cb,∗. We do so start-

ing from Grothendieck’s theorem for matrices. It states that for A ∈ Rn×n we have

∥A∥cb ≤ KR
G∥A∥∞. Each bilinear form q : {−1, 1}n × {−1, 1}n → R uniquely corre-

sponds to a matrix A ∈ Rn×n such that q(x, y) = xTAy. Moreover, for such q and A

one has ∥q∥∞ = ∥A∥∞ (immediate) and in Proposition 4.25 we showed ∥q∥cb = ∥A∥cb,

so ∥q∥cb ≤ KR
G∥q∥∞. A duality argument then concludes the proof:

∥r∥∞,∗ = sup
∥q∥∞≤1

⟨r, q⟩ ≤ sup
∥q∥cb≤KR

G

⟨r, q⟩ = KR
G∥r∥cb,∗.

Remark 4.26. If in Theorem 4.5 we restrict the supremum to bilinear forms on n+ n

variables, for a fixed n, then we obtain a characterization of KR
G(n) instead of KR

G.

Here, KR
G(n) = sup ∥A∥cb/∥A∥∞, where the supremum is taken over all non-zero n×n

real matrices.

4.5.2 No converse for the polynomial method

In this section we show that there is no additive nor multiplicative converse for polyno-

mials of degree 4 and 2-query algorithms. In other words, we will prove Theorems 4.3

and 4.4. Before doing that, we explain what was the error in the proof of Theorem 4.3

given in [ABP19].
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Their proof arrives at the equation∑
α,β∈{0,1,2,3,4}n:|α|+|β|=4

d′α,βx
α = C

∑
α∈{0,1}n:|α|=4

dαx
α ∀ x ∈ {−1, 1}n, (4.19)

where d′α,β , dα and C are some real numbers, xα stands for
∏n
i=1 x

αi
i and |α| for∑n

i=1 αi. It follows from the orthogonality of the characters that d′α,0 = Cdα for all

α ∈ {0, 1}n such that |α| = 4. What is used, however, is that d′α,0 = Cdα for all

α ∈ {0, 1, 2, 3, 4}n such that |α| = 4, which is not true in general. For instance if

n = 1, C = 1 and d′(2,0),(0,2) = −d′(0,0),(4,0) = 1 and the rest of the coefficients set to 0,

then (4.19) becomes x2 − 1 = 0, ∀ x ∈ {−1, 1}.

We now prove that there is no additive converse, from which the non-multiplicative

converse result quickly follows.

Theorem 4.4. There is no constant ε ∈ (0, 1) such that for every bounded polynomial

p of degree at most 4, we have E(p, 2) ≤ ε.

Proof. For any partition P of {0} ∪ [3n] in 2t subsets, Theorem 4.13 shows that

sup
p∈VP ,∥p∥∞≤1

E(p, t) = sup
p∈VP ,∥p∥∞≤1

sup
r∈VP ,∥r∥∞,∗≤1

⟨p, r⟩ − ∥r∥cb,∗

= sup
r∈VP ,∥r∥∞,∗≤1

∥r∥∞,∗ − ∥r∥cb,∗

= sup
r∈VP ,∥r∥∞,∗=1

1− ∥r∥cb,∗.

Consider now the case t = 2 and the partition Pn = {{0}, {1, . . . , n}, {n+ 1, . . . , 2n},
{2n + 1, . . . , 3n}} of {0} ∪ [3n]. In Theorem 4.17 a sequence of forms pn ∈ VPn was

constructed with the property that

∥pn∥cb
∥pn∥∞

→∞. (4.20)

Hence, by a duality argument we get that there is a sequence rn ∈ VPn
such that

∥rn∥cb,∗/∥rn∥∞,∗ → 0. Indeed, suppose towards a contradiction that there is a K > 0

such that for every n ∈ N and every r ∈ VPn
we have that ∥r∥cb,∗ ≥ K∥r∥∞,∗. Then,

∥p∥cb = sup
∥r∥cb,∗≤1

⟨r, p⟩ ≤ 1

K
sup

∥r∥∞,∗≤1

⟨r, p⟩ =
1

K
∥p∥∞,
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which contradicts Eq. (4.20). The sequence rn shows that

sup
p∈VPn ,∥p∥∞≤1,n∈N

E(p, 2) = 1,

which implies the stated result.

Theorem 4.3. For any C > 0, there exist an n ∈ N and a bounded quartic n-variable

polynomial p such that no two-query quantum algorithm A satisfies E[A(x)] = Cp(x)

for every x ∈ {−1, 1}n.

Proof. First note that we can assume C ≤ 1, because |E[A(x)]| ≤ 1 for any algorithm

A and any x ∈ {−1, 1}n. Assume that there exists 0 < C ≤ 1 such that for every

bounded p of degree 4 there is a 2-query algorithm A with E[A(x)] = p(x) for every

x ∈ {−1, 1}n. We claim that that A approximates p up to an additive error 1− 1/C,

which contradicts Theorem 4.4. Indeed,

|p(x)− E[A(x)]| = |p(x)(1− C)| ≤ 1− C.
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