
Quantum computing, norms and polynomials
Escudero Gutiérrez, F.

Citation
Escudero Gutiérrez, F. (2026, February 10). Quantum computing, norms and
polynomials. Retrieved from https://hdl.handle.net/1887/4289617

Version: Publisher's Version

License: Licence agreement concerning inclusion of doctoral thesis
in the Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/4289617

Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/4289617

Part I

Quantum query complexity

via polynomials

23

Chapter 3

The quantum polynomial

method is complete

3.1 Introduction

In this chapter, we will review the evolution of the polynomial method in quantum

query complexity. Initially, it was proposed by Beals, Buhrman, Cleve, Mosca and

de Wolf as a tool to lower bound quantum query complexity [BBC+01], who were

inspired by the classical polynomial method of Nisan and Szegedy to lower bound

the randomized query complexity [NS94]. This technique has been proven useful in

many problems, often providing optimal lower bounds (see e.g., [BKT20] and references

therein). More than 15 years after its birth, Arunachalam, Briët and Palazuelos refined

the method using completely bounded polynomials. This way, it became a tool that

potentially allows one to prove upper bounds to quantum query complexity [ABP19].

In this chapter, based on unpublished joint work with Jop Briët, we show how to use

completely bounded polynomials to prove several previously known upper bounds to

quantum query complexity. In particular, we reprove the upper bounds by Grover,

by Deutsch and Jozsa, and by Bernstein and Vazirani [DJ92, BV93, Gro96], and we

show that k-fold forrelation can be computed by k quantum queries [AA15, BS21].

Following the result of Arunachalam et al., Gribling and Laurent proposed a hierarchy

of semidefinite programs to compute quantum query complexity [GL19]. However,

these semidefinite programs do not give any information about how optimal quantum

algorithms look like. Finally, we proposed an alternative hierarchy of semidefinite

25

3.2. Quantum lower bounds by polynomials

programs, also based on completely bounded polynomials, that not only compute

quantum query complexity, but also output the description of optimal quantum query

algorithms [Esc25]. Putting everything together, we can say that the polynomial

method is complete, in the sense that it has all the capabilities desirable from a method

to understand quantum query complexity; it can be used to show lower bounds and

upper bounds, to compute quantum query complexity, and to extract optimal quantum

algorithms.

A novelty of this chapter is that the exposition of all the results is elementary and

almost self-contained. In particular, we follow [Esc25] and reprove the Christensen and

Sinclair factorization theorem of operator spaces via semidifenite programming [CS87].

This result is the key in the refinement of the polynomial method by Arunachalam

et al., but it does not belong to the usual toolbox of the theoretical computer sci-

entist [ABP19]. Thus, this chapter offers to the computer scientist a way to fully

understand the method of Arunachalam et al. without requiring a background in op-

erator spaces.

3.2 Quantum lower bounds by polynomials

The key observation by Beals et al. that linked quantum query algorithms to polyno-

mials is that the bias of a quantum algorithm that makes t queries is a multilinear

polynomial of degree at most 2t [BBC+01].

Theorem 3.1. Let A : {−1, 1}n → [−1, 1] be the bias of t-query quantum algorithm.

Then, A is a polynomial of degree at most 2t.

Proof. Before the measurement, on input x, the algorithm prepares a pure quantum

state that can be written as

|ψt(x)⟩ = Ut(Ox ⊗ Idd)Ut−1 . . . U1(Ox ⊗ Idd)U0|ψ0⟩

for some fixed unitary matrices U0, . . . Ut and some fixed pure state |ψ0⟩. Note that

by definition of matrix multiplication, the coefficients of |ψt(x)⟩ in the computational

basis are multilinear polynomials of degree at most t. Hence, if {M−1,M1} is the

binary measurement performed by the algorithm, then the bias, ⟨ψt(x)|M1|ψt(x)⟩ −
⟨ψt(x)|M−1|ψt(x)⟩, is a polynomial of degree at most 2t.

A direct consequence of Theorem 3.1 is that to lower bound the quantum query

complexity of a Boolean function f , it suffices to show that it cannot be approximated

26

Chapter 3. The quantum polynomial method is complete

by polynomials of low degree. More formally, we have the following.

Definition 3.2. Let f : D ⊆ {−1, 1}n → {−1, 1} and ε ≥ 0. The ε-approximate

degree of f is the minimum degree of a bounded polynomial p : {−1, 1}n → [−1, 1]

such that |p(x)− f(x)| ≤ ε for every x ∈ D. We use d̃egε(f) to refer to this quantity.

We also use d̃eg(f) to refer to d̃eg2/3(f) and deg(f) to refer to d̃eg0(f).

Corollary 3.3. Let f : D ⊆ {−1, 1}n → {−1, 1} be a Boolean function and let ε ≥ 0.

Then, d̃egε(f)/2 ≤ Qε(f).

As an example of an application of Corollary 3.3, we will show that the quantum

query complexity of the ORn function is Ω(
√
n), which implies that Grover’s algorithm

is optimal [Gro96]. To do that, we prove that d̂eg(ORn) = Ω(
√
n), originally shown

in [NS94], and then apply Corollary 3.7. We define the ORn function as ORn(x) = 1

if x = 1n and ORn(x) = −1 otherwise.

Proposition 3.4. Q(ORn) = Ω(
√
n).

Proof. By Corollary 3.3 it suffices to show that d̃eg(ORn) = Ω(
√
n). Let p : {−1, 1}n →

[−1, 1] be a degree-t polynomial that satisfies

|p(x)−ORn(x)| ≤ 2/3

for every x ∈ {−1, 1}n. Consider the symmetrization p′ of p, given by p′(x) :=∑
π∈Sn

p(π ◦ x)/n!. The symmetric polynomial p′ : {−1, 1}n → R also has degree t,

takes values between −1 and 1 and satisfies that

|p′(x)−ORn(x)| ≤ 2/3.

By the Minsky-Papert symmetrization technique, Proposition 2.13, there is a univari-

ate polynomial q of degree t such that q(x) = p′(
∑
i xi/n) for every x ∈ {−1, 1}n and

q([−1, 1]) ⊆ [−1, 1]. In particular, |q((n − 2)/n) − (−1)| ≤ 2/3 and |q(1) − 1| ≤ 2/3.

Hence, |q((n− 2)/n)− q(1)| ≥ 2/3. By Markov brothers’ inequality, Proposition 2.11,

this implies that

t =

√
2/3

1− (n− 2)/n
= Ω(

√
n),

as desired.

27

3.2. Quantum lower bounds by polynomials

3.2.1 Quantum upper bounds by polynomials

The two main techniques to prove lower bounds for quantum query complexity are the

polynomial and the adversary method. The latter was proposed in 2000 by Ambainis

[Amb00], and it was quickly refined to also serve as a tool to prove quantum query

upper bounds [HLv07]. However, since 2003 it is known that there are functions f such

that Q(f) > (d̃eg(f))c for some constant c > 1 [Amb03], so the polynomial method

does not provide upper bounds to quantum query complexity. A natural question

was whether a refinement of the polynomial method would allow it to serve as a

tool to prove quantum upper bounds. An attempt of this refinement was proposed

by Aaronson, Ambainis, Iraids, Kokainis, Smotrovs [AAI+16]. They strengthened

Theorem 3.1 by noticing that the bias of every quantum t-query algorithm is not

only a multilinear polynomial of degree at most 2t, but also the amplitudes of such

algorithms are multilinear forms of degree t. This is true because if one looks at the

state prepared by the quantum algorithm after t queries it has the form of

Ut(Ox ⊗ Idd)Ut−1 . . . U1(Ox ⊗ Idd)U0|ψ0⟩.

In particular, if one queried different inputs x1, . . . , xt on every query,

Ut(Oxt
⊗ Idd)Ut−1 . . . U1(Ox1

⊗ Idd)U0|ψ0⟩,

then the amplitudes of the resulting state would be linear in every input. Hence, the

polynomials representing the bias of quantum query algorithms are more structured

than initially noted by Beals et al. [BBC+01]. Unfortunately, as shown in the work by

Aaronson et al., the corresponding notion of polynomial degree also fails to provide

upper bounds to quantum query complexity. However, the idea of Aaronson et al. was

in the correct direction. Shortly after, Arunachalam, Briët and Palazuelos realized that

if instead of querying binary strings the algorithms queried any contractions (matrices

with operator norm at most 1) X1 . . . , Xt the amplitudes of the resulting vector,

UtXtUt−1 . . . U1X1U0|ψ0⟩,

would still be linear in X1, . . . , Xt and bounded by 1 in absolute value [ABP19].

Furthermore, the same is true if one takes tensor products with identity, meaning that

for every m ∈ N, every m-dimensional vector |ϕ⟩ and contractions X1, . . . , Xt we have

28

Chapter 3. The quantum polynomial method is complete

that the amplitudes of

(Ut ⊗ Idm)Xt(Ut−1 ⊗ Idm) . . . (U1 ⊗ Idm)X1(U0 ⊗ Idm)(|ψ0⟩ ⊗ |ϕ⟩)

are linear in every X1, . . . , Xt and bounded by 1. As this is true for every m ∈
N, the bias of quantum query algorithms are, in some sense that we specify below,

completely bounded polynomials. Surprisingly, Arunachalam et al. showed that the

corresponding notion of degree fully characterizes quantum query complexity, enabling

the polynomial method to be a potential tool to prove quantum upper bounds. In the

rest of the section, we will make this idea rigorous, and give examples of quantum

upper bounds by polynomials.

3.3 The completely bounded polynomial method

We start by defining a notion of completely bounded degree, and we will later prove

that it characterizes quantum query complexity.

Definition 3.5. Let f : D ⊆ {−1, 1}n → {−1, 1} and ε ≥ 0. The ε-approximate

completely bounded degree of f is the minimum t ∈ N such that there exists a t-linear

form T : R2n × · · · × R2n → R such that

• ∥T∥cb ≤ 1,

• and |T ((x, 1n), . . . , (x, 1n))− p(x)| ≤ ε ∀ x ∈ D.

We use c̃bdegε(f) to refer to this quantity and c̃bdeg(f) to refer to c̃bdeg2/3(f).

As we argued at the beginning of this section, every t-query quantum algorithm

determines a completely bounded form T , so we have that Qε(f) ≥ c̃bdegε(f)/2.

This strengthens the original polynomial method, because ∥T∥∞ ≤ ∥T∥cb. Given

that there exist separations between the infinity and the completely bounded norms,

see for instance [BP19], it is expected that this refinement of the polynomial method

allows one to prove stronger quantum lower bounds. Additionally, Arunachalam et

al. showed that Qε(f) = c̃bdegε(f)/2, turning the polynomial method into a tool to

prove quantum upper bounds.

Theorem 3.6 (Quantum query algorithms are completely bounded forms [ABP19]).

Let p : {−1, 1}n → R. Then, the following are equivalent;

(a) p is the bias of a t-query quantum algorithm.

29

3.3. The completely bounded polynomial method

(b) There exists a 2t-linear form T : R2n × · · · × R2n → R such that

∥T∥cb ≤ 1 and T ((x, 1n), . . . , (x, 1n)) = p(x) ∀ x ∈ {−1, 1}n.

Corollary 3.7 (The completely bounded polynomial method). Let f : D ⊆ {−1, 1}n →
{−1, 1} and ε ≥ 0. Then, Qε(f) = c̃bdegε(f)72.

In order to prove Theorem 3.6, Arunachalam et al. established a relation between

operator spaces, where the completely bounded norm has been widely studied [Pau03],

and quantum algorithms. In particular, they realized that a seminal result by Chris-

tensen and Sinclair, which asserts that multilinear forms are completely bounded if

and only if they factor in a way resembling the structure of quantum algorithms, allows

one to determine which polynomials can be produced by quantum query algorithms.

Theorem 3.8 (Christensen and Sinclair factorization [CS87]). Let T : Rn×· · ·×Rn →
R be a t-linear form. Then, ∥T∥cb ≤ 1 if and only if there exist d ∈ N, (n + d)-

dimensional contractions A0, . . . , At, an (n+ d)-dimensional unit vector v such that

T (x1, . . . , xt) = ⟨v,At(Diag(xt)⊗ Idd)At−1 . . . A1(Diag(x1)⊗ Idd)A0v⟩,

for every x1, . . . , xt ∈ Rn.

The original statement of Theorem 3.8 works for any operator space, and the one

we use corresponds to the particular case of the natural operator space defined by ℓ∞.

Also, the usual formulation of Theorem 3.8 is for complex operator spaces, which was

the one applied by Arunachalam et al. [ABP19]. However, Theorem 3.1 is sufficient

to prove Theorem 3.6, provided that we assume, without loss of generality, that we

use real numbers for quantum query algorithms (see Remark 2.5). In Section 3.4 we

will give a new proof of Theorem 3.8, based on [Esc25], via semidefinite programming.

Now, we are ready to prove Theorem 3.6.

Proof of Theorem 3.6. We first prove that a) =⇒ b). By Remark 2.5, we have that

the bias of a t-query quantum algorithm can be written as

A(x) =⟨v,AT
0 (Diag(1n, x)⊗ Idd)A

T
1 . . . A

T
t−1(Diag(1n, x)⊗ Idd)A

T
t

· (M1 −M−1)At(Diag(1n, x)⊗ Idd)At−1 . . . A1(Diag(1n, x)⊗ Idd)A0v⟩,

where A0, . . . , AT are (n + d)-dimensional contractions, v is an (n + d)-dimensional

unit vector and {M−1,M1} is a (n + d) POVM. If we define the (2t)-linear form

30

Chapter 3. The quantum polynomial method is complete

T : R2n × · · · × R2n → R given by

T (y1, . . . , y2t) =⟨v,AT
0 (Diag(y2t)⊗ Idd)A

T
1 . . . A

T
t−1(Diag(yt+1)⊗ Idd)A

T
t

· (M1 −M−1)At(Diag(yt)⊗ Idd)At−1 . . . A1(Diag(y1)⊗ Idd)A0v⟩,

we have that T ((1n, x), . . . , (1n, x)) = A(x). Furthermore, as ∥M1 −M−1∥op ≤ 1, by

Theorem 3.8 it follows that ∥T∥cb ≤ 1. Hence, we have showed that a) =⇒ b).

We now prove that b) =⇒ a). Let p : {−1, 1}n → R be such that there exists a

2t-linear form T : R2n × · · · × R2n → R satisfying that

∥T∥cb ≤ 1 and T ((x, 1n), . . . , (x, 1n)) = p(x) ∀ x ∈ {−1, 1}n.

By Theorem 3.8, there exist d ∈ N, (n+ d)-dimensional contractions A0, . . . , A2t and

(n+ d)-dimensional unit vectors u, v such that

T (y1, . . . , y2t) = ⟨v,A2t(Diag(y2t)⊗ Idd)A2t−1 . . . A1(Diag(y1)⊗ Idd)A0v⟩,

for every y1, . . . , y2t ∈ R2n. For every x ∈ {−1, 1}n we define

v1(x) = At(Diag(x, 1n)⊗ Idd)At−1 . . . A1(Diag(x, 1n)⊗ Idd)A0v,

v2(x) = (Diag(x, 1n)⊗ Idd)A
T
t+1 . . . A

T
2t−1(Diag(x, 1n)⊗ Idd)A

T
2tv.

Note that ⟨v2(x), v1(x)⟩ = T ((x, 1n), . . . , (x, 1n)). Hence, it just remains to define a

t-query quantum algorithm whose bias is ⟨v2(x), v1(x)⟩. To do that, we define 2(n+d)-

dimensional contractions

Ã0 = (X ⊗ Idn+d)c-A0(X ⊗ Idn+d)c-A
T
2t(H ⊗ Idn+d),

Ãi = (X ⊗ Idn+d)c-Ai(X ⊗ Idn+d)c-A
T
2t−i, for i ∈ [t− 1],

Ãt = (H ⊗ Idn+d)c-At(X ⊗ Idn+d),

where c-A is the controlled version of A. Then, we have that the vector prepared by

the corresponding quantum query algorithm is

|ψ(x)⟩ = Ãt(Id2 ⊗Diag(x, 1n)⊗ Idd)Ãt−1 . . . Ã1(Id2 ⊗Diag(x, 1n)⊗ Idd)Ã0(|0⟩ ⊗ |v⟩)

=
1

2
(|0⟩ ⊗ (|v1(x)⟩+ |v2(x)⟩) + (|1⟩ ⊗ (|v1(x)⟩ − |v2(x)⟩).

Finally, if we choose the measurement {M−1,M1} to be M1 = |0⟩⟨0| ⊗ Idn+d and

31

3.3. The completely bounded polynomial method

M−1 = |1⟩⟨1| ⊗ Idn+d, then we have that the bias of the quantum algorithm is

A(x) = ⟨ψ(x)|(M1 −M−1)|ψ(x)⟩ = ⟨v1(x), v2(x)⟩,

as desired.

3.3.1 Examples of quantum upper bounds by polynomials

In this section, we will reprove several quantum upper bounds via the polynomial

method. We will show that certain functions are completely bounded polynomials of

degree 2t, and we will invoke Theorem 3.6, which ensures that they are the bias of a

t-query quantum algorithm.

Interestingly, for all of the examples of this section, the following non-commutative

version of the Cauchy-Schwarz inequality will play a key role.

Lemma 3.9. Let X1, . . . , Xn ∈Mm and let Y1, . . . , Yn ∈Mm. Then,

∥∥∥ n∑
i=1

XiYi

∥∥∥2
op
≤
∥∥∥ n∑
i=1

XiX
T
i

∥∥∥
op

∥∥∥ n∑
i=1

Y T
i Yi

∥∥∥
op
.

Proof. Consider the following matrices

X =


X1 . . . Xn

0 . . . 0
...

...

0 . . . 0

 and Y =


Y1 . . . 0

Y2 . . . 0
...

...

Yn . . . 0

 .

First, we have that ∥XY ∥2op ≤ ∥XXT∥op∥Y TY ∥op. Finally, we have that ∥XY ∥2op =

∥
∑n
i=1XiYi∥2op, ∥XXT∥op = ∥

∑n
i=1XiX

T
i ∥op and ∥Y TY ∥op = ∥

∑n
i=1 Y

T
i Yi∥op.

Reproving Deutsch-Jozsa

Deutsch and Jozsa gave a 1-query quantum algorithm whose bias is a Boolean function

f : D ⊆ {−1, 1}n → {−1, 1} whose classical query complexity is Ω(n) [DJ92]. Here,

D = {x ∈ {−1n, 1n} : x is balanced} ∪ {−1n, 1n},

32

Chapter 3. The quantum polynomial method is complete

where x is balanced if it has the same number of −1’s and 1’s, and f is given by

f(x) =

{
1 if x ∈ {−1n, 1n},
−1 if x is balanced,

Here, we reprove the result by Deutsch and Jozsa showing that there exists a bilinear

form T : R2n × R2n → R such that

∥T∥cb ≤ 1 and T ((x, 1n), (x, 1n)) = f(x) ∀ x ∈ D.

This bilinear form is given by

T ((x, x′), (y, y′)) = 2Ei∈[n]xiEj∈[n]yj − Ei∈[n]xiyi,

where x, x′, y, y′ ∈ {−1, 1}n and the expectation is taken with respect to the uniform

distribution on [n]. (The form T does not depend on the variables x′ and y′, but

we write it like that for consistency with Theorem 3.6). It is routine to check that

T ((x, 1n), (x, 1n)) = f(x) if x ∈ {−1n, 1n} or x is balanced. To show that ∥T∥cb ≤ 1,

note that for any contractions X1, . . . , Xn, Y1, . . . , Yn it follows from Lemma 3.9 that

∥EiXi(2EjYj − Yi)∥2op ≤ ∥EiXiX
T
i ∥op∥Ei(2EjYj − Yi)T(2EkYk − Yi)∥op

≤ ∥4Ej,kY T
j Yk − 2Ei,jY T

j Yi − 2Ei,kY T
i Yk + EiY T

i Yi∥op
= ∥EiY T

i Yi∥op
≤ 1.

Reproving k-fold forrelation

We now consider the problem where, given k-Boolean functions f1, . . . , fk : {0, 1}n →
{−1, 1}, the goal is to compute its k-fold forrelation (standing for Fourier correla-

tion)forrk : {−1, 1}2n × · · · × {−1, 1}2n → R, which is given by

forrk(f1, . . . , fk) =
1

2
n(k−1)

2

∑
x1,...,xk−1∈{0,1}n

f1(x1)(−1)⟨x1,x2⟩f2(x2) . . .

· (−1)⟨xk−2,xk−1⟩fk−1(xk−1)f̂k(xk−1),

where ⟨x, y⟩ =
∑
i xiyi. Here, the queries are made to the truth tables of f1, . . . , fk.

Aaronson and Ambainis introduced this problem as a candidate to witness the largest

possible separation between quantum and query complexities [AA15], which was later

33

3.3. The completely bounded polynomial method

confirmed by Bansal and Sinha [BS21]. Here, we reprove that f can be computed as

the bias of a quantum algorithm that makes k queries, one to each f1, . . . , fk. Note

that this is not the model that we have considered so far, where all the queries where

made to the same input. However, a simple modification of Theorem 3.6 ensures that

such an algorithm exists if forrk, which is a k-linear form, satisfies ∥forrk∥cb ≤ 1.

Thus, it suffices to check the latter. Indeed, for m-dimensional orthogonal matrices

F1(x1), . . . , Fk(xk) we have that

∥(forrk)m(F1, . . . , Fk)∥2op =
1

2n(k−1)
∥
∑
x1

F1(x1)
∑
x2...xn

(−1)⟨x1,x2⟩F2(x2) . . . F̂k(xk−1)∥2op,

where F̂k(xk−1) = Exk
(−1)⟨xk−1,xk⟩Fk(xk) is the matrix-valued Fourier coefficient.

Next,

∥(forrk)m(F1, . . . , Fk)∥2op ≤
1

2n
∥
∑
x1

F1(x1)FT
1 (x1)∥op

· 1

2n(k−2)
∥
∑

x2,...,x′
n

. . . FT
2 (x2)

(∑
x1

(−1)⟨x1,x2⟩(−1)⟨x1,x
′
2⟩

)
︸ ︷︷ ︸

2nδx2,x′
2

F2(x′2) . . . ∥op

︸ ︷︷ ︸
(∗)

≤ 1

2n(k−3)
∥
∑
x2

(∑
x3,...,xn

(−1)⟨x2,x3⟩F3(x3) . . .

)T

FT
2 (x2)F2(x2)

·

(∑
x3,...,xn

(−1)⟨x2,x3⟩F3(x3) . . .

)
∥op,

where in the first line we have applied Lemma 3.9, and in the third line that F1(x1)

are orthogonal matrices. Now, as FT
2 (x2)F2(x2) = Idm, we have that

∥(forrk)m(F1, . . . , Fk)∥2op

≤ 1

2n(k−3)
∥

∑
x3,x′

3...,x
′
n,x

′
n

. . . FT
3 (x3)

(∑
x2

(−1)⟨x2,x3⟩(−1)⟨x
′
2,x

′
3⟩

)
F3(x′3) . . . ∥op︸ ︷︷ ︸

(∗∗)

.

34

Chapter 3. The quantum polynomial method is complete

Now, (∗∗) is essentially the same as (∗), so iterating the argument that led us from

(∗) to (∗∗) we arrive at

∥(forrk)m(F1, . . . , Fk)∥2op ≤ ∥
∑
xk−1

F̂T
k (xk−1)F̂k(xk−1)∥op = ∥Ex FT

k (x)Fk(x)∥op = 1,

where in the first equality we have used Parseval identity and in the second that Fk(x)

are orthogonal. Thus, forrk is completely bounded, as desired.

Other examples

One can also reprove other well-known quantum upper bounds using polynomials.

Briët reproved Grover’s upper bound of O(
√
n) quantum queries to compute the ORn

function by showing that the polynomials constructed by Nisan and Szegedy to ap-

proximate ORn are completely bounded [Bri19, NS94]. Also, using a modification of

Theorem 3.6, we could show that there exists an algorithm that with one quantum

query to the truth table of a Boolean function can sample from its Fourier distribution,

reproving Bernstein-Vazirani’s celebrated result [BV93]. We will not prove the latter

claim because it would require introducing more notation and would not add concep-

tual value, as we have already accomplished the purpose of this section: demonstrating

that quantum upper bounds can follow from the polynomial method.

3.4 From polynomials to quantum algorithms

In this section, we will start by giving an alternative proof of the Christensen-Sinclair

factorization theorem, Theorem 3.8, via semidefinite programming. Contrary to the

original proof, ours is elementary, constructive and does not need to use the Hahn-

Banach theorem (just a finite-dimensional separation result). We will follow [Esc25],

where a more general version of Christensen and Sinclair’s result is proven. After,

we will use the fact that this proof is based on semidefinite programming and is

constructive to give a hierarchy of semidefinite programs that computes quantum

query complexity and outputs optimal quantum query algorithms.

35

3.4. From polynomials to quantum algorithms

3.4.1 Christensen-Sinclair factorization via SDPs

We will prove an equivalent version of Theorem 3.8. To state it, we should introduce

the representation norm of a t-linear form T : Rn × · · · × Rn → R, which is given by

∥T∥rep = inf w

s.t. T (x1, . . . , xt) = ⟨u,A0(Diag(x1)⊗ Idd)A1 . . . At−1(Diag(xt)⊗ Idd)Atv⟩ ,

∀ x1, . . . , xt ∈ Rn, (3.1)

d ∈ N, u, v ∈ Rd, ∥u∥22 = ∥v∥22 = w,

A0 ∈Md,nd, A1, . . . , At−1 ∈Mnd,nd, At ∈Mnd,d contractions.

Now, we can rewrite Theorem 3.10 in the following way.

Theorem 3.10 (Christensen and Sinclair factorization [CS87]). Let T : Rn × · · · ×
Rn → R be a t-linear form. Then, ∥T∥cb = ∥T∥rep.

We will prove the following result, which is stronger than Theorem 3.10.

Theorem 3.11. Given a t-linear form T : Rn × · · · × Rn → R, there is a pair of

semidefinite programs (PCS) and (DCS) such that

(i) (PCS) optimal value equals ∥T∥rep,

(ii) (DCS) optimal value equals ∥T∥cb,

(iii) (DCS) is the dual of (PCS) and their optimal values are equal.

Theorem 3.11 has three important consequences. The first one is already clear from

the statement, and the other two will become clear later (see Remark 3.12). These

consequences are:

(a) Theorem 3.11 implies Theorem 3.10;

(b) (PCS) and (DCS) have O(poly(n)t) variables, so the known algorithms to approx-

imate semidefinite programs can be used to efficiently compute the completely

bounded norm. This will imply that there is a hierarchy of SDPs to compute

quantum query complexity.

(c) From the solution returned by these algorithms one can extract a description

of the vectors and matrices appearing in a factorization as in Eq. (3.1). This

will imply that optimal quantum query algorithms can be extracted from the

hierarchy of SDPs mentioned in Item (b).

36

Chapter 3. The quantum polynomial method is complete

We divide the proof of Theorem 3.11 in 3 parts. In the first, we introduce (PCS)

and prove Theorem 3.11 (i), in the second we introduce (DCS) and prove Theorem 3.11

(ii), and in the third we show that (PCS) and (DCS) are semidefinite programs and

prove Theorem 3.11 (iii).

The primal semidefinite program

In this section, we introduce (PCS) and prove Theorem 3.11 Item (i). Before doing that,

we give some intuition for why ∥T∥rep can be formulated as a semidefinite program.

Assume that T factors as in Eq. (3.1). Then, we consider the following block structure

for the contractions As:

A0 =
(
A0(1) . . . A0(n)

)
, As =


As(1, 1) . . . As(1, n)

...
. . .

...

As(n, 1) . . . As(n, n)

 , At =

At(1)

. . .

At(n)

 ,

(3.2)

for s ∈ [t− 1]. We also define the following vectors,

vi = At(i)v, for i ∈ [n], (3.3)

vi = At−s((i1, i2)) . . . At−1((is, is+1))At(is+1)v, for i ∈ [n]s+1, s ∈ [t− 1], (3.4)

v′i = A0(i1)A1((i1, i2)) . . . At(it)v, for i ∈ [n]t. (3.5)

We note that Ti = ⟨u, v′i⟩. Hence, Ti is encoded in the entries of Y =Gram{u, vi, v′i}
(which corresponds to (3.7) below). In addition, the fact that the Ai are contractions

can be encoded in the entries of this Gram matrix (which gives rise to Eqs. (3.9)

37

3.4. From polynomials to quantum algorithms

to (3.11) below). With these intuitions, we are ready to state (PCS):

inf w (PCS)

s.t. w ≥ 0, Y, Y ′ ⪰ 0, (3.6)

Y ′
0,i = Ti, i ∈ [n]t, (3.7)

Y ′
0,0 = w, (3.8)∑
i∈[n]

Yi,i ≤ w, (3.9)

∑
i∈[n]

(Yij,ij′)j,j′∈[n]s ⪯ ⊕i∈[n](Yij,ij′)j,j′∈[n]s−1 , s ∈ [t− 1], (3.10)

(Y ′
j,j′)j,j′∈[n]t ⪯ ⊕i∈[n](Yij,ij′)j,j′∈[n]t−1 , (3.11)

where Y ∈Mn+···+nt and Y ′ ∈M1+nt . The rows and columns of Y are labeled by the

elements of [n]∪ · · · ∪ [n]t, and for Y ′ they are labeled by the elements of {0} ∪ [n]t. 1

Proof of Theorem 3.11. Assume first that T factors as in Eq. (3.1) for some vectors

with ∥u∥2 = ∥v∥2 = w. Consider the block structure for the contractions As given in

Eq. (3.2), and define the vectors vi and v′i as in Eqs. (3.3) to (3.5). Then, Ti = ⟨u, vi⟩ ,
for every i ∈ [n]t. Consider the positive semidefinite matrices

Y ′ := Gram{u, v′i : i ∈ [n]t} and Y := Gram{vi : i ∈ [n] ∪ · · · ∪ [n]t},

and label the rows and columns corresponding to u with 0 and the ones corresponding

to vi and v′i with i. First, we have that Ti = Y ′
0,i, so Eq. (3.7) is satisfied. Eq. (3.8)

follows from the fact that ∥u∥2 = w. From the fact that At is a contraction, Eq. (3.9)

follows:

∑
i∈[n]

Yi,i =
∑
i∈[n]

⟨vi, vi⟩ =

〈
v,
∑
i∈[n]

At(i)
TAt(i)v

〉
=
〈
v,AT

t Atv
〉
≤ ⟨v, v⟩ = w.

From the fact that As are contractions for s ∈ [t − 1] Eq. (3.10) follows. Indeed, let

1Here, given i ∈ [n] and j ∈ [n]s, ij should be interpreted as the concatenation of i and j, i.e.,
ij = (i, j1, . . . , js).

38

Chapter 3. The quantum polynomial method is complete

λ ∈ Rns

. Then, 〈
λ,
∑
i∈[n]

(Yij,ij′)j,j′∈[n]sλ

〉

=
∑

i∈[n],j,j′∈[n]s

λj ⟨vij, vij′⟩λj′

=
∑

i∈[n],j,j′∈[n]s

λj ⟨At−s(i, j1)vj, At−s(i, j
′
1)vj′⟩λj′

=
∑

i∈[n],j,j′∈[n]s

λj
〈
vj, A

T
t−s(j1, i)At−s(i, j

′
1)vj′

〉
λj′

=
∑

j,j′∈[n]s

λj
〈
vj, (A

T
t−sAt−s)(j1, j

′
1)vj′

〉
λj′︸ ︷︷ ︸

(∗)

,

where in the second equality we have used that vij = A(i, j1)vj, and in the third line

that At−s(i, j)
T = AT

t−s(j, i). Now, if we define wj = (λ1jv1j, . . . , λnjvnj), it follows

that

(∗) =
∑

j,j′∈[n]s−1

⟨wj, A
T
t−sAt−swj′⟩ =

〈∑
j

wj

 , AT
t−sAt−s

∑
j′

wj′

〉 .
Hence, as AT

t−sAt−s ⪯ Id, it is satisfied that

(∗) ≤

〈 ∑
j∈[n]s−1

wj

 ,

 ∑
j′∈[n]s−1

wj′

〉 =
∑

i∈[n],j,j′∈[n]s−1

λij⟨vij, vij′⟩λij′

= ⟨λ,⊕i∈[n](Yij,ij′)j,j′∈[n]×[n])s−1×[n]λ⟩,

as desired. The fact that A0 is a contraction implies Eq. (3.11), and this can be shown

similarly to how we just showed that Eq. (3.10) holds.

Now, assume that there exist Y, Y ′ ⪰ 0, satisfying equations Eqs. (3.7) to (3.11).

Consider d ∈ N and vectors {u, vi, vi} ∈ Rd such that

Y = Gram{vi} and Y ′ = Gram{u, v′i}.

Eq. (3.8) implies that ∥u∥2 = w. We define At through its blocks. Let v ∈ Rd be a

vector with ∥v∥2 = w. We define At(i) ∈ Md as the matrix that maps v to vi and

extend by 0 to the orthogonal complement of span{v}. This way, At is a contraction,

39

3.4. From polynomials to quantum algorithms

because

∥At∥2op =
⟨Atv,Atv⟩
⟨v, v⟩

=
1

w

∑
i∈[n]

⟨At(i)v,At(i)v⟩ =
1

w

∑
i∈[n]

⟨vi, vi⟩ =
1

w

∑
i∈[n]

Yi,i ≤ 1,

where in the inequality we have used Eq. (3.9). The definition of At−s for s ∈ [t− 1]

is slightly more complicated. Given (i, j) ∈ [n]× [n], the block At−s(i, j) is defined as

the linear map on span{vjj : j ∈ [n]s−1} by

At−s(i, j)vjj = vijj

and extended by 0 to the orthogonal complement. First, as {vjj : j ∈ [n]s−1} may not

be linearly independent, we have to check that this a good definition, namely that for

every λ ∈ Rns−1 ∑
j∈[n]s−1

λjjvjj = 0 =⇒
∑

j∈[n]s−1

λjjvijj = 0. (3.12)

Indeed, we can prove something stronger. For any λ ∈ Rns−1

, we define λ̃ ∈ Rns

by

λ̃j′j := δj,j′λj, where j is the second index in the pair (i, j) that indexes the block

At−s(i, j). Then, 〈 ∑
j∈[n]s−1

λjjvijj,
∑

j′∈[n]s−1

λjj′vijj′

〉

=
〈
λ, (Y(ijj,ijj′)j,j′∈[n]s−1λ

〉
=
〈
λ̃, (Y(ij,ij′)j,j′∈[n]s λ̃

〉
≤

〈
λ̃,
∑
k∈[n]

(Ykj,kj′)j,j′∈[n]s λ̃

〉

≤
〈
λ̃,⊕k∈[n](Ykj,kj′)j,j′∈[n]s−1 λ̃

〉
=
〈
λ, (Yjj,jj′)j,j′∈[n]s−1λ

〉
=

〈 ∑
j∈[n]s−1

λjjvjj,
∑

j′∈[n]s−1

λjj′vjj′

〉
,

where in the first inequality we have used that (Ykj,kj′)j,j′∈[n]s ⪰ 0 for every k ∈ [n],

and in the second inequality we have used (3.10). Thus, Eq. (3.12) holds. Now, we

have to check that At−s is a contraction. By the definition of At−s, we just have to

40

Chapter 3. The quantum polynomial method is complete

check that for every λ ∈ Rns

,

λv :=


∑

j∈[n]s−1 λ1jv1j
...∑

j∈[n]s−1 λnjvnj


is mapped to a vector with smaller or equal norm. Indeed,

⟨At−sλv,At−sλv⟩ =
∑

i,j,j′∈[n]s

λj ⟨vij, vij′⟩λj′

=

〈
λ,
∑
i∈[n]

(Yij,ij′)j,j′∈[n]sλ

〉

≤
〈
λ,⊕i∈[n](Yij,ij′)j,j′∈[n]s−1λ

〉
= ⟨λv, λv⟩ ,

where in the inequality we have used Eq. (3.10). Finally, we define A0 through its

blocks. A0(i) is defined by A0(i)vij = v′ij for j ∈ [n]t−1 and extended by 0 to the

orthogonal complement of span{vij : j ∈ [n]t−1}. Using Eq. (3.11), we can check that

these blocks are well-defined and that A0 is a contraction using a similar argument to

the one that we have just used to verify the same properties of At−s. It just remains

to show that (u, v,Ai) defines a factorization for T as in (3.1). Eq. (3.1) holds if and

only it holds for a basis of Rn. We verify it for the canonical basis {ei}i∈[n]. On the

one hand, by definition, we have that T (ei1 , . . . , eit) = Ti. On the other hand, a simple

calculation shows that

Y ′
0,i = ⟨u,A0(i1)A1((i1, i2)) . . . At−1((it−1, it))At(it)v⟩

= ⟨u,A0(Diag(ei1)⊗ Idd)A1 . . . At−1(Diag(eit)⊗ Idd)Atv⟩.

Hence, by Eq. (3.7) follows that

T (ei1 , . . . , eit) = ⟨u,A0(Diag(ei1)⊗ Idd)A1 . . . At−1(Diag(eit)⊗ Idd)Atv⟩,

as desired.

Remark 3.12. (PCS) has poly(n)t variables, so Item (b) holds. Item (c) can be inferred

from the second part of the proof of Theorem 3.11 Item (i), where a recipe to extract

a factorization as in Eq. (3.1) for (Y ′
0,i)i satisfying Eqs. (3.8) to (3.11) is given.

41

3.4. From polynomials to quantum algorithms

The dual semidefinite program

In this section, we introduce (DCS) and prove Theorem 3.11 Item (ii). (DCS) is given

by:

sup
∑
i∈[n]t

Tiy0,i (DCS)

s.t. y0, y
′
0 ≥ 0,

(
yi,i′
)
i,i′∈[n]s

⪰ 0, for s ∈ [t], (3.13)

y0 + y′0 ≤ 1, (3.14)

y0 ≥ yi,i, for i ∈ [n] (3.15)

(yj, yj′)j,j∈[n]s ≥ (yij, yij′)j,j′∈[n]s for i ∈ [n], s ∈ [t− 1], (3.16)
y′0 . . . (y0,i)i∈[n]t/2 . . .
...

(y0,i)i∈[n]t

2

(
yi,i′
)
i,i′∈[n]t

...

 ⪰ 0, (3.17)

Before diving into the proof, we give some intuition of why the optimal value of (DCS)

is ∥T∥cb. One should note that Eq. (3.17) means that the variables y0,i can be written

as ⟨u, vi⟩ for some vectors u, vi. Then, roughly speaking, Eqs. (3.15) and (3.16)

encode that the vi equal X1(i1) . . . Xt(it)v for some contractions X1(i1), . . . , Xt(it)

and a vector v, and Eq. (3.14) encodes that u and v are bounded vectors.

Proof of Theorem 3.11 Item (ii). First, we note that Eq. (3.13) means that there exist

d ∈ N and vectors {u, v, vi : i ∈ [n]s, s ∈ [t]} ⊂ Rm such that y′0 = ⟨u, u⟩, y0 = ⟨v, v⟩,
and yi,i′ = ⟨vi, vi′⟩ for every i ∈ [n]s and s ∈ [t]. Then, Eq. (3.15) means that

⟨u, u⟩ + ⟨v, v⟩ ≤ 1 and Eq. (3.17) means that y0,i = 2⟨u, vi⟩ for every i ∈ [n]t. Thus,

42

Chapter 3. The quantum polynomial method is complete

we can rewrite Eq. (DCS) as

sup 2
∑
i∈[n]t

Ti⟨u, vi⟩, (3.18)

s.t. m ∈ N, u, v, vi ∈ Rm, i ∈ [n]s, s ∈ [t],

⟨u, u⟩+ ⟨v, v⟩ ≤ 1,

⟨v, v⟩ ≥ ⟨vi, vi⟩, for i ∈ [n] (3.19)

(⟨vj, vj′⟩)j,j∈[n]s ≥ (⟨vij, vij′⟩)j,j′∈[n]s for i ∈ [n], s ∈ [t− 1] (3.20)

(3.21)

Next, we will show that Eqs. (3.19) and (3.20) are equivalent to the existence of

contractions X1, . . . , Xt ∈Mm such that

vi = Xt−s+1(i1) . . . Xt(is)v, (3.22)

for every i ∈ [n]s and every s ∈ [t]. Indeed, assume that Eqs. (3.19) and (3.20) hold.

Then, for every i ∈ [n] and every s ∈ {0} ∪ [t], we define

Xt−s(i)vj := vij

for every j ∈ [n]s and extend it by 0 on the orthogonal complement of span{vj : j ∈
[n]s}. We have to check that the Xt−s(i) are well-defined as linear maps. Namely,

that for every λ ∈ Rns

we have∑
j∈[n]s

λjvj = 0 =⇒
∑

j∈[n]s

λjvij = 0.

In fact, we can prove that the Xt−s(i) are well-defined and contractions at the same

time. Indeed, for λ ∈ Rns

we have that〈 ∑
j∈[n]s

λjvij,
∑

j′∈[n]s

λj′vij′

〉
=

〈
λ,
(
⟨vij, vij′⟩

)
j,j′∈[n]s

λ

〉

≤
〈
λ,
(
⟨vj, vj′⟩

)
j,j′∈[n]s

λ

〉
=

〈 ∑
j∈[n]s

λjvj,
∑

j′∈[n]s

λj′vj′

〉
,

43

3.4. From polynomials to quantum algorithms

where we have used Eq. (3.20) (or Eq. (3.19) if s = 0).

On the other hand, if Eq. (3.22) holds, it is a routine check showing that Eqs. (3.19)

and (3.20) hold. Putting everything together, we can rewrite (3.18) as

sup 2
∑
i∈[n]t

TiRi, (3.23)

s.t. R ∈ Rn
t

, m ∈ N, u, v ∈ Rm, Xs ∈Mm contractions for s ∈ [t],

⟨u, u⟩+ ⟨v, v⟩ ≤ 1,

Ri = ⟨u,X1(i1) . . . Xt(it)v⟩ , for i ∈ [n]t.

We finally claim that the above optimization problem is equivalent to

sup 2
∑
i∈[n]t

TiRi, (3.24)

s.t. R ∈ Rn
t

, m ∈ N, u, v ∈ Rm, Xs ∈Mm contractions for s ∈ [t],

⟨u, u⟩ , ⟨v, v⟩ ≤ 1/2,

Ri = ⟨u,X1(i1) . . . Xt(it)v⟩ , for i ∈ [n]t.

We first note that the optimum of Eq. (3.23) is greater or equal than the optimum

of Eq. (3.24), because the feasible region is larger in the case of Eq. (3.23). On the

other hand, if one picks a feasible instance (u, v,X) of Eq. (3.23), one can define the

instance (ũ, ṽ, X) by

ũ =
u
√
∥u∥2 + ∥v∥2√

2∥u∥
, ṽ =

v
√
∥u∥2 + ∥v∥2√

2∥v∥
,

which is feasible for Eq. (3.24) and attains a value greater or equal than (u, v,X),

because∣∣∣∑Ti ⟨ũ, X1(i1) . . . Xt(it)ṽ⟩
∣∣∣ =
∥u∥2 + ∥v∥2

2∥u∥∥v∥

∣∣∣∑Ti ⟨u,X1(i1) . . . Xt(it)v⟩
∣∣∣

≥
∣∣∣∑Ti ⟨u,X1(i1) . . . Xt(it)v⟩

∣∣∣.
Now, the result follows from the fact that the optimal value of Eq. (3.24) is ∥T∥cb.

Strong duality

Finally, we prove Theorem 3.11 Item (iii).

44

Chapter 3. The quantum polynomial method is complete

Proof of Theorem 3.11 Item (iii). First, we show that (PCS) can be expressed as in

the canonical form of (P) in Eq. (2.15). To do that we introduce the slack matrix

variables Z and Z ′ and write (PCS) as

inf w (P̃CS)

s.t. X :=


w 0 0 0 0

0 Y 0 0 0

0 0 Y ′ 0 0

0 0 0 Z 0

0 0 0 0 Z ′

 ⪰ 0

Y0,i = Ti, i ∈ [n]t, (3.25)

w − Y ′
0,0 = 0, (3.26)

w −
∑
i∈[n]

Yi,i = Z0,0, (3.27)

⊕i∈[n] (Yij,ij′)j,j′∈[n]s−1 −
∑
i∈[n]

(Yij,ij′)j,j′∈[n]s = (Zj,j′)j,j′∈[n]s , s ∈ [t− 1], (3.28)

⊕i∈[n] (Yij,ij′)j,j′∈[n]t−1 − (Y ′
j,j′)j,j′∈[n]t = Z ′, (3.29)

One can regard X as a positive semidefinite matrix with some entries set to 0, which

can be imposed via linear constraints. Additionally, note that the objective function w

is a linear function of the entries of X, and so are the restrictions Eqs. (3.25) to (3.29).

Hence, (PCS) has the form of (P) in Eq. (2.15).

Second, we show that (DCS) can be expressed as in the canonical form of (D) in

Eq. (2.15). We can rewrite (DCS) as

45

3.4. From polynomials to quantum algorithms

sup
∑
i∈[n]t

TiRi (D̃CS)

s.t. y0, y
′
0, Ri, yi,i′ , i, i

′ ∈ [n]s, s ∈ [t]

y0 ≥ 0, y′0 ≥ 0,
∑

j,j′∈[n]s

yj,j′Ej,j′ ⪰ 0, for s ∈ [t], (3.30)

y0 + y′0 ≤ 1, (3.31)

y0 ≥ yi,i, for i ∈ [n] (3.32)∑
j,j′∈[n]s

(yj,j′ − yij,ij′)Ej,j′ ⪰ 0, for i ∈ [n], s ∈ [t− 1] (3.33)

y′0E0,0 +
∑
j∈[n]t

Rj
E0,j + Ej,0

2
+

∑
i,i′∈[n]t

yi,i′Ei,i′ ⪰ 0. (3.34)

Thus, we have written (DCS) as an optimization problem (D̃CS) on the variables

y0, y
′
0, Ri, yi,i′ . Moreover, the objective function is a linear combination of these vari-

ables. Also, the constraints are positive semidefinite constraints on matrices that are

linear combinations of other matrices, where the coefficients of these linear combina-

tions are y0, y
′
0, Ri, yi,i′ . Putting everything together, it follows that (DCS) is of the

form of (D) in Eq. (2.15).

Third, we show that (DCS) is the dual of (PCS). Equivalently, we prove that (D̃CS)

is the dual of (P̃CS). To take the dual of a primal semidefinite program such as (P̃CS)

it is convenient to assign a dual variable to every linear constraint. We assign Ri to

the constraints in Eq. (3.25), y′0 to Eq. (3.26), y0 to Eq. (3.27), and yi,i to Eqs. (3.28)

and (3.29). In addition, one should note that every variable in the primal corresponds

to a restriction in the dual. With this in mind, from the definition of the dual given

in Eq. (2.15), it follows that (D̃CS) is the dual of (P̃CS), and that the constraints of

Eq. (3.30) correspond to variable Z in (P̃CS), Eq. (3.31) to varible w, and Eqs. (3.32)

to (3.34) to variable Y.

Finally, we show that the conditions of Theorem 2.20 are satisfied by (P̃CS) and

(D̃CS), which implies that their values are equal. (P̃CS) is feasible, as every T factors

as in Eq. (3.1) for some u, v with sufficiently large norm (if this was not true, ∥T∥cb
would not be a norm). In addition, we claim that the following parameters define a

46

Chapter 3. The quantum polynomial method is complete

strictly positive feasible instance for (D̃CS)

y0 = y′0 =
1

3
,

yi,j =
δi,j

3(n+ 1)s
, for i, j ∈ [n]s, s ∈ [t],

Ri = 0, for i ∈ [n]t.

Indeed, with these parameters Eqs. (3.30) to (3.34) read as follows:

1

3
≥ 0, Id ≻ 0

1

3
+

1

3
≤ 1,

1

3
≻ n

3(n+ 1)
,

1

3(n+ 1)s
Idns ≻ n

3(n+ 1)s+1
Idns , for s ∈ [t− 1],(

1
3 0

0 1
3(n+1)t Idnt

)
≻ 0,

and these identities are true because 1 > n/(n+ 1).

3.4.2 A hierarchy of SDPs to find quantum algorithms

To introduce the announced hierarchy of SDPs, we first note that by Theorem 3.6 it

follows that the smallest error that can be achieved when approximating a function

f : D ⊆ {−1, 1}n → R with a t-query quantum algorithm is

E(f, t) = inf
{
ε ≥ 0 | ∃ 2t-linear form T : R2n × · · · × ×R2n → R

|f(x)− T ((x, 1n), . . . , (x, 1n))| ≤ ε ∀x ∈ D,

∥T∥cb ≤ 1}.

Now, an immediate corollary of Theorem 3.11 is the following formulation of E(p, t)

as an SDP.

47

3.4. From polynomials to quantum algorithms

Corollary 3.13. Let f : {−1, 1}n → [−1, 1] and t ∈ N. Then,

E(f, t) = inf ε

s.t. ε ≥ 0, Y, Y ′ ⪰ 0,

|p(x)−
∑

i∈[n]2t

Y ′
0,iyi1 . . . yi2t | ≤ ε, y = (x, 1n),∀ x ∈ {−1, 1}n,

Y ′
0,0 = w,∑
i∈[2n]

Yi,i ≤ w,

∑
i∈[2n]

(Yij,ij′)j,j′∈[2n]s ⪯ ⊕i∈[2n](Yij,ij′)j,j′∈[2n]s−1 , s ∈ [2t− 1],

(Y ′
j,j′)j,j′∈[2n]2t ⪯ ⊕i∈[2n](Yij,ij′)j,j′∈[2n]2t−1 ,

We observe that, as a consequence of Corollary 3.13, we have that (E(f, t))t de-

termines a hierarchy of SDPs that computes quantum query complexity. Indeed, to

compute Qε(f) one can solve E(f, 1), E(f, 2), . . . and stop at the smallest t0 satisfy-

ing E(f, t0) ≤ ε. Then, we will have that t0 = Qε(f). Additionally, from an optimal

solution to E(f, t0) one can obtain an optimal quantum algorithm. This can be easily

(but tediously) done following the constructions in the proofs of Theorem 3.6 and

Theorem 3.11 Item (i),

Comparison with other methods

There are other formulations of E(f, t) as a SDP: the aforementioned work by Gribling

and Laurent [GL19] and by Barnum, Saks, and Szegedy [BSS03]. We will compare

these three methods with ours, and also with the adversary method, which does not

compute E(f, t), but provides a SDP that directly computes the quantum query com-

plexity. We remark the following:

• The method of Gribling and Laurent does not provide a description of the ap-

proximating quantum algorithm, while the others method do.

• The sizes of the SDPs differ, as shown in Table 3.1. The ones of Corollary 3.13

are considerably smaller than the ones in [BSS03] and the size of the SDP of the

adversary method, but they are slightly bigger than the ones in [GL19].

• The adversary method loses constant factors in the characterization of quantum

query complexity, and it does not work for exact quantum query complexity. On

48

Chapter 3. The quantum polynomial method is complete

blocks block size # lin. ineq. # lin. eq.
Adversary method [HLv07] n |D| 0 |f−1(1)||f−1(0)|

Barnum-Saks-Szegedy [BSS03] nt+ 2 |D| |D| Θ(t|D|2)
Gribling-Laurent [GL19] 1 Θ(nt) 2|D|+ 1 Θ(n2t)

Corollary 3.13 4t− 2 Θ((2n)2t) 2|D|+ 3 Θ(2t(2n)2t)

Table 3.1: A comparison of the sizes of the SDPs to compute quantum query complexity.
We count the number of linear equalities, inequalities, and PSD blocks, keeping track of the
size of the largest block.

the other hand, the other three hierarchies of SDPs do characterize quantum

query complexity, including the exact case, without losing constant factors.

49

50

