g
4
s

Universiteit
“dd) Leiden
W’b The Netherlands

2
"Ha: 1

)
3|
B 3
.
=

.

4

&

o

Quantum computing, norms and polynomials
Escudero Gutiérrez, F.

Citation
Escudero Gutiérrez, F. (2026, February 10). Quantum computing, norms and

polynomials. Retrieved from https://hdl.handle.net/1887/4289617

Version: Publisher's Version

License: Licence agreement concerning inclusion of doctoral thesis
' in the Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/4289617

Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/4289617

Part 1

Quantum query complexity

via polynomials

23

Chapter 3

The quantum polynomial

method is complete

3.1 Introduction

In this chapter, we will review the evolution of the polynomial method in quantum
query complexity. Initially, it was proposed by Beals, Buhrman, Cleve, Mosca and
de Wolf as a tool to lower bound quantum query complexity [BBCT01], who were
inspired by the classical polynomial method of Nisan and Szegedy to lower bound
the randomized query complexity [NS94]. This technique has been proven useful in
many problems, often providing optimal lower bounds (see e.g., [BKT20] and references
therein). More than 15 years after its birth, Arunachalam, Briét and Palazuelos refined
the method using completely bounded polynomials. This way, it became a tool that
potentially allows one to prove upper bounds to quantum query complexity [ABP19].
In this chapter, based on unpublished joint work with Jop Briét, we show how to use
completely bounded polynomials to prove several previously known upper bounds to
quantum query complexity. In particular, we reprove the upper bounds by Grover,
by Deutsch and Jozsa, and by Bernstein and Vazirani [DJ92, BV93, Gro96], and we
show that k-fold forrelation can be computed by & quantum queries [AA15, BS21].
Following the result of Arunachalam et al., Gribling and Laurent proposed a hierarchy
of semidefinite programs to compute quantum query complexity [GL19]. However,
these semidefinite programs do not give any information about how optimal quantum

algorithms look like. Finally, we proposed an alternative hierarchy of semidefinite

25

3.2. Quantum lower bounds by polynomials

programs, also based on completely bounded polynomials, that not only compute
quantum query complexity, but also output the description of optimal quantum query
algorithms [Esc25]. Putting everything together, we can say that the polynomial
method is complete, in the sense that it has all the capabilities desirable from a method
to understand quantum query complexity; it can be used to show lower bounds and
upper bounds, to compute quantum query complexity, and to extract optimal quantum
algorithms.

A novelty of this chapter is that the exposition of all the results is elementary and
almost self-contained. In particular, we follow [Esc25] and reprove the Christensen and
Sinclair factorization theorem of operator spaces via semidifenite programming [CS87].
This result is the key in the refinement of the polynomial method by Arunachalam
et al., but it does not belong to the usual toolbox of the theoretical computer sci-
entist [ABP19]. Thus, this chapter offers to the computer scientist a way to fully
understand the method of Arunachalam et al. without requiring a background in op-

erator spaces.

3.2 Quantum lower bounds by polynomials

The key observation by Beals et al. that linked quantum query algorithms to polyno-
mials is that the bias of a quantum algorithm that makes ¢ queries is a multilinear
polynomial of degree at most 2¢ [BBCT01].

Theorem 3.1. Let A: {—1,1}" — [—1,1] be the bias of t-query quantum algorithm.
Then, A is a polynomial of degree at most 2t.

Proof. Before the measurement, on input x, the algorithm prepares a pure quantum

state that can be written as
|wt($)> = Ut(Ox ® Idd)Utfl .U (Oz ® Idd)Uo‘i/J0>

for some fixed unitary matrices Uy, ... U; and some fixed pure state |tg). Note that
by definition of matrix multiplication, the coefficients of |¢:(z)) in the computational
basis are multilinear polynomials of degree at most ¢. Hence, if {M_;, M7} is the
binary measurement performed by the algorithm, then the bias, (¢ (z)| M| (z)) —
(Ve ()| M_1]tbe(z)), is a polynomial of degree at most 2t. O

A direct consequence of Theorem 3.1 is that to lower bound the quantum query

complexity of a Boolean function f, it suffices to show that it cannot be approximated

26

Chapter 3. The quantum polynomial method is complete

by polynomials of low degree. More formally, we have the following.

Definition 3.2. Let f : D C {-1,1}" — {-1,1} and € > 0. The e-approzimate
degree of f is the minimum degree of a bounded polynomial p : {—1,1}"* — [—1,1]
such that |p(z) — f(x)| < ¢ for every x € D. We use (ﬁ%s(f) to refer to this quantity.
We also use (Eé(f) to refer to dAeTgQ/z))(f) and deg(f) to refer to (Eéo(f).

Corollary 3.3. Let f: D C {-1,1}" — {=1,1} be a Boolean function and let € > 0.
Then, deg.(f)/2 < Qc(f).

As an example of an application of Corollary 3.3, we will show that the quantum
query complexity of the OR,, function is Q(y/n), which implies that Grover’s algorithm
is optimal [Gro96]. To do that, we prove that d/eTg(ORn) = Q(y/n), originally shown
in [NS94], and then apply Corollary 3.7. We define the OR,, function as OR,(z) =1
if x = 1™ and OR,,(z) = —1 otherwise.

Proposition 3.4. Q(OR,,) = Q(/n).

Proof. By Corollary 3.3 it suffices to show that agé(ORn) =Q(y/n). Letp: {-1,1}" —
[—1,1] be a degree-t polynomial that satisfies

[p(z) — ORn(2)] < 2/3

for every z € {—1,1}". Consider the symmetrization p’ of p, given by p'(z) =
> res, P(mox)/nl. The symmetric polynomial p’ : {—1,1}" — R also has degree ¢,

takes values between —1 and 1 and satisfies that
[p’(z) — ORy (2)] < 2/3.

By the Minsky-Papert symmetrization technique, Proposition 2.13, there is a univari-
ate polynomial ¢ of degree t such that q(x) = p'(>_; x;/n) for every x € {—1,1}" and
q([-1,1]) C [-1,1]. In particular, |g((n —2)/n) — (—1)] < 2/3 and |¢(1) — 1] < 2/3.
Hence, |q((n —2)/n) — q(1)| > 2/3. By Markov brothers’ inequality, Proposition 2.11,
this implies that

t=

23 _ o
1— (TL— 2)/n - Q(\/>)7

as desired. O

27

3.2. Quantum lower bounds by polynomials

3.2.1 Quantum upper bounds by polynomials

The two main techniques to prove lower bounds for quantum query complexity are the
polynomial and the adversary method. The latter was proposed in 2000 by Ambainis
[Amb00], and it was quickly refined to also serve as a tool to prove quantum query
upper bounds [HLv07]. However, since 2003 it is known that there are functions f such
that Q(f) > (a\eé(f))C for some constant ¢ > 1 [Amb03], so the polynomial method
does not provide upper bounds to quantum query complexity. A natural question
was whether a refinement of the polynomial method would allow it to serve as a
tool to prove quantum upper bounds. An attempt of this refinement was proposed
by Aaronson, Ambainis, Iraids, Kokainis, Smotrovs [AAIT16]. They strengthened
Theorem 3.1 by noticing that the bias of every quantum t¢-query algorithm is not
only a multilinear polynomial of degree at most 2¢, but also the amplitudes of such
algorithms are multilinear forms of degree t. This is true because if one looks at the

state prepared by the quantum algorithm after ¢ queries it has the form of
Ui(Op @ 1dq)Us—1 ... U1 (O @ Idg)Us|tbo).

In particular, if one queried different inputs x1, ..., x; on every query,
Ut(Oz, @ 1dg)Us—1 ... U1(Oy, @ Ida)Us|b0),

then the amplitudes of the resulting state would be linear in every input. Hence, the
polynomials representing the bias of quantum query algorithms are more structured
than initially noted by Beals et al. [BBC*01]. Unfortunately, as shown in the work by
Aaronson et al., the corresponding notion of polynomial degree also fails to provide
upper bounds to quantum query complexity. However, the idea of Aaronson et al. was
in the correct direction. Shortly after, Arunachalam, Briét and Palazuelos realized that
if instead of querying binary strings the algorithms queried any contractions (matrices

with operator norm at most 1) X ..., X; the amplitudes of the resulting vector,
Ui XyUp—1 ... U X1Ug|to),

would still be linear in Xj,...,X; and bounded by 1 in absolute value [ABP19].
Furthermore, the same is true if one takes tensor products with identity, meaning that

for every m € N, every m-dimensional vector |¢) and contractions X7, ..., X; we have

28

Chapter 3. The quantum polynomial method is complete

that the amplitudes of
(U @ 1dm) Xt (Up—1 @ 1dy,) - .. (U1 @ Idp) X1 (Up @ Idiw) (J1h0) @ [))

are linear in every Xi,...,X; and bounded by 1. As this is true for every m €
N, the bias of quantum query algorithms are, in some sense that we specify below,
completely bounded polynomials. Surprisingly, Arunachalam et al. showed that the
corresponding notion of degree fully characterizes quantum query complexity, enabling
the polynomial method to be a potential tool to prove quantum upper bounds. In the
rest of the section, we will make this idea rigorous, and give examples of quantum

upper bounds by polynomials.

3.3 The completely bounded polynomial method

We start by defining a notion of completely bounded degree, and we will later prove

that it characterizes quantum query complexity.

Definition 3.5. Let f : D C {-1,1}" — {-1,1} and € > 0. The e-approzimate
completely bounded degree of f is the minimum ¢ € N such that there exists a ¢-linear
form T : R®" x --- x R?™ — R such that

o [Tlen <1,

e and |T((z,1"),...,(x,1™) —p(z)| <e Vz e D.

—_~—

We use c;)_zl_e/gs(f) to refer to this quantity and cbdeg(f) to refer to cbdegy /5(f).

As we argued at the beginning of this section, every t-query quantum algorithm
determines a completely bounded form 7', so we have that Q.(f) > &Egs(f)/z.
This strengthens the original polynomial method, because ||T|lcc < ||T|lch. Given
that there exist separations between the infinity and the completely bounded norms,
see for instance [BP19], it is expected that this refinement of the polynomial method
allows one to prove stronger quantum lower bounds. Additionally, Arunachalam et
al. showed that Q.(f) = c‘b/a_e%s(f)/Q7 turning the polynomial method into a tool to

prove quantum upper bounds.

Theorem 3.6 (Quantum query algorithms are completely bounded forms [ABP19]).
Letp: {—1,1}" — R. Then, the following are equivalent;

(a) p is the bias of a t-query quantum algorithm.

29

3.3. The completely bounded polynomial method

(b) There exists a 2t-linear form T : R?" x - .. x R?" — R such that

ITer <1 and T((x,1"),...,(z,1")) =plx) Ve {-1,1}".

Corollary 3.7 (The completely bounded polynomial method). Let f : D C {—1,1}" —
{—1,1} and € > 0. Then, Q.(f) = cbdeg.(f)72.

In order to prove Theorem 3.6, Arunachalam et al. established a relation between
operator spaces, where the completely bounded norm has been widely studied [Pau03],
and quantum algorithms. In particular, they realized that a seminal result by Chris-
tensen and Sinclair, which asserts that multilinear forms are completely bounded if
and only if they factor in a way resembling the structure of quantum algorithms, allows

one to determine which polynomials can be produced by quantum query algorithms.

Theorem 3.8 (Christensen and Sinclair factorization [CS87]). Let T : R”x---xR"™ —
R be a t-linear form. Then, | T|lco < 1 if and only if there exist d € N, (n + d)-

dimensional contractions Ay, ..., A, an (n + d)-dimensional unit vector v such that
T(z1,...,2¢) = (v, Ay(Diag(zs) ® Idg) A¢—1 . .. A1(Diag(z1) ® Ida) Agv),

for every x1,...,x; € R™.

The original statement of Theorem 3.8 works for any operator space, and the one
we use corresponds to the particular case of the natural operator space defined by {.
Also, the usual formulation of Theorem 3.8 is for complex operator spaces, which was
the one applied by Arunachalam et al. [ABP19]. However, Theorem 3.1 is sufficient
to prove Theorem 3.6, provided that we assume, without loss of generality, that we
use real numbers for quantum query algorithms (see Remark 2.5). In Section 3.4 we
will give a new proof of Theorem 3.8, based on [Esc25], via semidefinite programming.

Now, we are ready to prove Theorem 3.6.

Proof of Theorem 3.6. We first prove that a) = b). By Remark 2.5, we have that

the bias of a t-query quantum algorithm can be written as

A(z) =(v, A} (Diag(1",2) ® Idg)A] ... A]_|(Diag(1",z) @ Idg) A}
(My — M_1)A¢(Diag(1", z) ® Idg) A1 . .. A1 (Diag(1", z) ® Ida) Agv),

where Ag,...,Ar are (n + d)-dimensional contractions, v is an (n + d)-dimensional
unit vector and {M_1,M;} is a (n + d) POVM. If we define the (2t)-linear form

30

Chapter 3. The quantum polynomial method is complete

T:R?™ x --- x R — R given by

T(y1y .- y2) =(v, AOT(Diag(yzt) @ Idg)A] ... Al | (Diag(y,1) ® Idg)A]
(My — M_1)Ay(Diag(yy) ® Idg) A¢—1 . .. A1 (Diag(y1) ® Ida) Agv),

we have that T((1",z),...,(1",2)) = A(z). Furthermore, as |M; — M_1]jop < 1, by
Theorem 3.8 it follows that ||T'||c, < 1. Hence, we have showed that a) = b).

We now prove that b) = a). Let p: {—1,1}" — R be such that there exists a
2t-linear form T : R?™ x --- x R?® — R satisfying that

IT]er <1 and T((x,1"),...,(z,1") =p(z) Vz e {-1,1}".

By Theorem 3.8, there exist d € N, (n + d)-dimensional contractions Ay, ..., Ag; and

(n + d)-dimensional unit vectors u,v such that
jj(yl7 e ,ygt) = <U7 Agt (D1ag(y2t) ® Idd)AZt—l . A1 (Dlag(yl) ® Idd)Ao’U>,
for every y1,. ..,y € R*™. For every x € {—1,1}" we define

vy (z) = A¢(Diag(z,1") ® Idg)A¢—1 . .. A1 (Diag(z,1") @ Id4) Agv,
va(z) = (Diag(z,1") ® Idg) A, ... A, (Diag(z,1") ® Idq) A,v.

Note that (va(x),v1(z)) = T((x,1™),...,(x,1™)). Hence, it just remains to define a
t-query quantum algorithm whose bias is (v2(z), v1(2)). To do that, we define 2(n+d)-

dimensional contractions

Ay = (X @1dpia)e-Aog(X @ Idpyq)c-Ag,(H @ 1dy1a),

A = (X @ dpya)-A(X @ 1dyya)e-Ag, g, fori € [t — 1,
Avt = (H X Idn+d)C'At(X (9 Idn+d)7

where c-A is the controlled version of A. Then, we have that the vector prepared by

the corresponding quantum query algorithm is

ip(x)) = Ay(Idy @ Diag(z,1") @ Idg) Ay . .. A1 (Idy ® Diag(z, 1™) @ Idg) Ao (|0) & |v))

= %(I0> ® (Joa(2)) + [va(2))) + (1) @ (joa(2)) = [va(2))).

Finally, if we choose the measurement {M_1,M;} to be M; = |0)(0] ® Id,,+q and

31

3.3. The completely bounded polynomial method

M_; = |1){1| ® Id;,4.4, then we have that the bias of the quantum algorithm is

A(z) = (@) |(My = M_1)|ip(x)) = (01(2), va2()),

as desired. O

3.3.1 Examples of quantum upper bounds by polynomials

In this section, we will reprove several quantum upper bounds via the polynomial
method. We will show that certain functions are completely bounded polynomials of
degree 2t, and we will invoke Theorem 3.6, which ensures that they are the bias of a
t-query quantum algorithm.

Interestingly, for all of the examples of this section, the following non-commutative

version of the Cauchy-Schwarz inequality will play a key role.

Lemma 3.9. Let X4,...,X,, € M,, and let Y1,...,Y, € M,,. Then,

n 2 n n
H;XY < H;&XJ @YTY

op op
Proof. Consider the following matrices
X ... X, Y1 ... 0
0O ... 0 Yo ... 0
X=1 .) and Y =
0O ... O Y, ... 0

First, we have that [|XY]|2, < [XX T ||op[|[Y Y [|lop. Finally, we have that | XY2, =

1325 XaYillE,, XX M lap = [3232 XiX [lop and YTV [lop = | 202, ¥i Yillop. O

op?

Reproving Deutsch-Jozsa

Deutsch and Jozsa gave a 1-query quantum algorithm whose bias is a Boolean function
f:D C{-1,1}" = {—1,1} whose classical query complexity is (n) [DJ92]. Here,

D={ze{-1"1"}: z is balanced} U {—1",1"},

32

Chapter 3. The quantum polynomial method is complete

where x is balanced if it has the same number of —1’s and 1’s, and f is given by

Fa) = { 1 ifze{-171"},

—1 if x is balanced,

Here, we reprove the result by Deutsch and Jozsa showing that there exists a bilinear
form T : R?" x R?® — R such that

Ty <1 and T((z,1"%),(z,1") = f(z) Vax € D.
This bilinear form is given by

T((ZL‘, $/)7 (ya y,)) - 2Ei6[n]xiEj€[n]yj - Eie[n]xiyia

where z, 2’ y,y’ € {—1,1}" and the expectation is taken with respect to the uniform
distribution on [n]. (The form T does not depend on the variables ' and ¥, but
we write it like that for consistency with Theorem 3.6). It is routine to check that
T((x,1™), (z,1™)) = f(z) if z € {—1",1™} or z is balanced. To show that ||T||cp < 1,
note that for any contractions Xi,...,X,,Y1,...,Y, it follows from Lemma 3.9 that

IEi X (2E;Y; — Ya) |12, < IEsXi X [lop IE: (2E;Y; — Vi) T (2Ex Yy — Yi)lop
< |M4E; oY} Vi — 2B ;Y'Y — 2E; 1Y,y + EY;TYi|lop
= |E:Y; Yillop

<1

[

Reproving k-fold forrelation

We now consider the problem where, given k-Boolean functions fi,..., fr : {0,1}" —
{-=1,1}, the goal is to compute its k-fold forrelation (standing for Fourier correla-
tion)forry : {—1,1}%" x --- x {~=1,1}>" — R, which is given by

forri(fu,..., fx) = 2(11> > Fr(@) (1) 072 fo (o) ...

Z1,...,x,—1€{0,1}"

(=D @D £ () fr(Troa),

where (z,y) = >, x;y;. Here, the queries are made to the truth tables of fi,..., fi.
Aaronson and Ambainis introduced this problem as a candidate to witness the largest

possible separation between quantum and query complexities [AA15], which was later

33

3.3. The completely bounded polynomial method

confirmed by Bansal and Sinha [BS21]. Here, we reprove that f can be computed as
the bias of a quantum algorithm that makes k queries, one to each fi,..., fr. Note
that this is not the model that we have considered so far, where all the queries where
made to the same input. However, a simple modification of Theorem 3.6 ensures that
such an algorithm exists if forry, which is a k-linear form, satisfies [/forrk|lc, < 1.
Thus, it suffices to check the latter. Indeed, for m-dimensional orthogonal matrices
Fi(x1),. .., Fx(xr) we have that

1 o~
[(Forn)m (Fi, - o)l = sy 1 D Filwn) Y (=1 F(wa) ... Felwg1)13,,
T1

T2...Tn

where Fj(z_1) = E,, (—1)@s=126) By (23.) is the matrix-valued Fourier coefficient.
Next,

1
[(forri)m (Fi, - ., i) |15 < 2l > Fi(@) F (1) lop
z

1 T1.T x "L'/
T I Z FQT(:UQ) <Z(_1)(L1, 2)(_1)(1 2)) Fy(ah) . lop

T

28

T, o

()

N
= 271(i—lﬂ||2< Z (1)@2@3)}7‘3(933)"') Fy (22) Fy(2)

T35eens T,

< > (—1)<$2’w3>F3($3)-«-> [lop;

5oy

where in the first line we have applied Lemma 3.9, and in the third line that F(z1)

are orthogonal matrices. Now, as Fy (z2)Fy(72) = Id,,, we have that
| (forric)pm (Fis - - ., Fi) 12,

1 Tr2,T CE/ CE/
S a3 [Z B (x3) (Z(—1)< 28] (—1)¢7 3>> Fy(a5) . lop -

’ ’ !
L3,Tg..5Ly, T, Z2

(%)

34

Chapter 3. The quantum polynomial method is complete

Now, (#*) is essentially the same as (x), so iterating the argument that led us from

(*) to (#x) we arrive at

(forn)m(Fry s Fl2p < D B (@) Fi(@n—1)llop = | Ba Y (2)Fi(@) lop = 1,

Tr—1

where in the first equality we have used Parseval identity and in the second that Fj(z)

are orthogonal. Thus, forry is completely bounded, as desired.

Other examples

One can also reprove other well-known quantum upper bounds using polynomials.
Briét reproved Grover’s upper bound of O(y/n) quantum queries to compute the OR,,
function by showing that the polynomials constructed by Nisan and Szegedy to ap-
proximate OR,, are completely bounded [Bril9, NS94]. Also, using a modification of
Theorem 3.6, we could show that there exists an algorithm that with one quantum
query to the truth table of a Boolean function can sample from its Fourier distribution,
reproving Bernstein-Vazirani’s celebrated result [BV93]. We will not prove the latter
claim because it would require introducing more notation and would not add concep-
tual value, as we have already accomplished the purpose of this section: demonstrating

that quantum upper bounds can follow from the polynomial method.

3.4 From polynomials to quantum algorithms

In this section, we will start by giving an alternative proof of the Christensen-Sinclair
factorization theorem, Theorem 3.8, via semidefinite programming. Contrary to the
original proof, ours is elementary, constructive and does not need to use the Hahn-
Banach theorem (just a finite-dimensional separation result). We will follow [Esc25],
where a more general version of Christensen and Sinclair’s result is proven. After,
we will use the fact that this proof is based on semidefinite programming and is
constructive to give a hierarchy of semidefinite programs that computes quantum

query complexity and outputs optimal quantum query algorithms.

35

3.4. From polynomials to quantum algorithms

3.4.1 Christensen-Sinclair factorization via SDPs

We will prove an equivalent version of Theorem 3.8. To state it, we should introduce

the representation norm of a t-linear form 7" : R™ x --- x R®™ — R, which is given by

T lep =inf
st. T(x1,...,2¢) = (u, Ag(Diag(z1) @ Idg)A; ... A1 (Diag(z;) ® Idg) Av) ,
YV x1,...,2¢ € R", (3.1)
deN, u,v € R ull2 = |jv]|2 = w,

Ag € Mg pnd, Ay, . A1 € Myd nd, A e M,4.q contractions.

Now, we can rewrite Theorem 3.10 in the following way.

Theorem 3.10 (Christensen and Sinclair factorization [CS87]). Let T : R™ x --- X
R™ — R be a t-linear form. Then, |T||cb = [|T||rep-

We will prove the following result, which is stronger than Theorem 3.10.

Theorem 3.11. Given a t-linear form T : R™ x --- x R™ — R, there is a pair of

semidefinite programs (Pcs) and (Dgg) such that
(i) (Pcs) optimal value equals ||T||vep,
(i) (Dcs) optimal value equals ||T||ch,
(#ii) (Dgs) is the dual of (Pcs) and their optimal values are equal.

Theorem 3.11 has three important consequences. The first one is already clear from
the statement, and the other two will become clear later (see Remark 3.12). These

consequences are:
(a) Theorem 3.11 implies Theorem 3.10;

(b) (Pcs) and (Dgs) have O(poly(n)?) variables, so the known algorithms to approx-
imate semidefinite programs can be used to efficiently compute the completely
bounded norm. This will imply that there is a hierarchy of SDPs to compute

quantum query complexity.

(c) From the solution returned by these algorithms one can extract a description
of the vectors and matrices appearing in a factorization as in Eq. (3.1). This
will imply that optimal quantum query algorithms can be extracted from the
hierarchy of SDPs mentioned in Item (b).

36

Chapter 3. The quantum polynomial method is complete

We divide the proof of Theorem 3.11 in 3 parts. In the first, we introduce (Pcg)
and prove Theorem 3.11 (¢), in the second we introduce (D¢g) and prove Theorem 3.11
(#i), and in the third we show that (Pgs) and (Dcs) are semidefinite programs and
prove Theorem 3.11 (i37).

The primal semidefinite program

In this section, we introduce (Pcg) and prove Theorem 3.11 Item (i). Before doing that,
we give some intuition for why ||T||sep can be formulated as a semidefinite program.
Assume that T factors as in Eq. (3.1). Then, we consider the following block structure

for the contractions Aj:

Ao=(40() o Ao), A=| o o A=,

for s € [t — 1]. We also define the following vectors,

v; = A¢(i)v, for i € [n], (3.3)
v = Ai—s((i1,42)) .- Ap—1((is,9541)) At (is41)v, forie [n]sﬂ, seft—1], (3.4)
vl = Ag(i1)A1((i1,42)) . . . Ae(i¢)v, for i € [n]". (3.5)

We note that T; = (u, v{). Hence, T; is encoded in the entries of Y =Gram{u, vi, v{}
(which corresponds to (3.7) below). In addition, the fact that the A; are contractions

can be encoded in the entries of this Gram matrix (which gives rise to Egs. (3.9)

37

3.4. From polynomials to quantum algorithms

to (3.11) below). With these intuitions, we are ready to state (Pcg):

inf w (Pes
s.t. w>0,Y,Y >0, (3.6
Yy =T, i€ [n]', (3.7
Yoo =w, (3.8
Y Yii<w, (3.9
i€[n]

Z ()/ij,ij/)j,j'e[n]s = Bigin] (Yij,ij’)j,j’e[n]S*% seft—1], (3.10)

i€[n]

(Y55)j.5emt = ®iepn) Yijig)i jremp—1 (3.11)

where Y € M, y...1nt and Y’ € My, ,¢. The rows and columns of Y are labeled by the
elements of [n]U--- U [n]’, and for Y’ they are labeled by the elements of {0} U [n]t. 1

Proof of Theorem 3.11. Assume first that T' factors as in Eq. (3.1) for some vectors
with |Ju]|? = ||v]|? = w. Consider the block structure for the contractions A given in
Eq. (3.2), and define the vectors v; and v as in Egs. (3.3) to (3.5). Then, T} = (u,v;),

for every i € [n]*. Consider the positive semidefinite matrices
Y’ := Gram{u,v{: i€ [n]'} and Y :=Gram{v;: i€ [n]U---U[n]'},

and label the rows and columns corresponding to u with 0 and the ones corresponding
to v; and vj with i. First, we have that T; = Yj;, so Eq. (3.7) is satisfied. Eq. (3.8)
follows from the fact that ||ul|?> = w. From the fact that A; is a contraction, Eq. (3.9)

follows:

Z Y= Z (vi,v;) = <v, Z At(i)TAt(i)v> = <v,A;rAtv> < (v,v) = w.

i€[n] i€[n] i€[n]

From the fact that As are contractions for s € [t — 1] Eq. (3.10) follows. Indeed, let

1Here, given i € [n] and j € [n]®, ij should be interpreted as the concatenation of i and j, i.e.,
ij = (4,41, -,s)-

38

Chapter 3. The quantum polynomial method is complete

A € R™. Then,

<A, > (Ej,ij')j,j'e[nw)‘>

i€[n]

= > Ny

= Z Aj <At*5(i7j1)vjvAtfs(iaji)vj’> Ay

i€[n],j,j’' €[n]®
= > N AL G) A (i Gvy) Ay
i€[n].j,j’ €[n]*®

= Z)\j<’Uj,(A;F_SAt—s)(jlvji)vj/>)\j”

J.J’€[n]®

()

where in the second equality we have used that v;; = A(4, j1)v;, and in the third line
that A;_s(i,5)T = A]_,(j,i). Now, if we define w; = (A1jv1j,. .., Anjonj), it follows
that

(*) = Z (wj,AtTfsAt_swjﬁ = < ij 7A;|;5At—s ij’ >
i y

Ji'€ln]o—t

Hence, as AtT_SAt_S =< Id, it is satisfied that

(*)§< Doowls |l > wy > Yo Mglug vy
Jje [n].J.'€ln]s—1

[n]s=? J'€[n]ot ic
= <)\7 Dieln] (Y;j,ij’)j,.i/E[n]x [n])s—1x [n])\>7
as desired. The fact that Ay is a contraction implies Eq. (3.11), and this can be shown
similarly to how we just showed that Eq. (3.10) holds.

Now, assume that there exist Y, Y’ > 0, satisfying equations Egs. (3.7) to (3.11).
Consider d € N and vectors {u, v;,v;} € R? such that

Y = Gram{v;} and Y’ = Gram{u,vi}.

Eq. (3.8) implies that [ul|> = w. We define A; through its blocks. Let v € R? be a
vector with [[v]|? = w. We define 4;(i) € M, as the matrix that maps v to v; and

extend by 0 to the orthogonal complement of span{v}. This way, A; is a contraction,

39

3.4. From polynomials to quantum algorithms

because

1A¢l12, = W = % > (Aliyv, A(iyv) = % > (vi i) = Z Vi <1,

i€[n] i€[n] ze [n]
where in the inequality we have used Eq. (3.9). The definition of A;_g for s € [t — 1]

is slightly more complicated. Given (i, j) € [n] x [n], the block A;_4(i, j) is defined as
the linear map on span{vj; : j € [n]*~1} by

Ap— (1,)vj5 = vij;

and extended by 0 to the orthogonal complement. First, as {vj; : j € [n]*"!} may not
be linearly independent, we have to check that this a good definition, namely that for
every A € R""

Z AJJ% =0 = > Ajij;=0. (3.12)

j€[n]s-1

Indeed, we can prove something stronger. For any A € R"Sil, we define A € R’ by
S\j/j := §,,i7Aj, where j is the second index in the pair (4,) that indexes the block
At—s(iaj)' Thena

< > Nviss D /\jj'%jj'>

jE[n]s—1 j €n]s—1
= (N (Yiaggigi)idrem)s—1)
= (%j@y)j,ye[n]sx>

(
<5\ > (ij,kj’)j,j'e[n}sx>
{
=

IN

ke(n]

IN

s Orefn) (Yij kit)j 5 eln)s— 5‘>

A (Y, JJJJ J.J’ €ln 51)‘>

< Z)‘J.]U]M Z /\JJ’UJJ>
j€ln eln

Jj

where in the first inequality we have used that (Y;xj);j ey = 0 for every k € [n],
and in the second inequality we have used (3.10). Thus, Eq. (3.12) holds. Now, we

have to check that A;_s is a contraction. By the definition of A;_, we just have to

40

Chapter 3. The quantum polynomial method is complete

check that for every A € R™,

Eje[n]5*1 A1j15
AU = :

Z_j €l[n]s—1)\n.] Unj

is mapped to a vector with smaller or equal norm. Indeed,

(At,s)\v, At,s)\v> = Z)\j <Uij7 Uij/>)\j/

g e’
i€[n]

</\, Biefn) (Yijig)j.j e >‘>
= (A, \v),

(Ejyij/)j,j'e[n]”\>

IN

where in the inequality we have used Eq. (3.10). Finally, we define A, through its
blocks. Ao(i) is defined by Ag(i)v;; = vj; for j € [n]=1 and extended by 0 to the
orthogonal complement of span{v;; : j € [n]'~'}. Using Eq. (3.11), we can check that
these blocks are well-defined and that Ag is a contraction using a similar argument to
the one that we have just used to verify the same properties of A;_,. It just remains
to show that (u,v, A4;) defines a factorization for T as in (3.1). Eq. (3.1) holds if and
only it holds for a basis of R”. We verify it for the canonical basis {€;};c[,). On the
one hand, by definition, we have that T'(e;,,...,e;,) = T;i. On the other hand, a simple

calculation shows that

Yol,i = <U, Ao(il)Al((il, Zg)) e At—l((it—h Zt))At(Zt)’U>
= (u, Ap(Diag(e;,) ® Idg)A; ... A;—1(Diag(e;,) @ Idg) Aww).

Hence, by Eq. (3.7) follows that
T(eiys---,ei,) = (u, Ag(Diag(e;,) ® Ida)Aq ... Ay—1(Diag(e;,) @ Idg) Arv),
as desired. O

Remark 3.12. (Pcs) has poly(n)! variables, so Item (b) holds. Item (c) can be inferred
from the second part of the proof of Theorem 3.11 Item (i), where a recipe to extract

a factorization as in Eq. (3.1) for (Yj;); satisfying Egs. (3.8) to (3.11) is given.

41

3.4. From polynomials to quantum algorithms

The dual semidefinite program

In this section, we introduce (Dcg) and prove Theorem 3.11 Ttem (ii). (Dcsg) is given
by:

sup > Tios (Des)
ie[n]t
s.t. w056 > 0, (uir) L 20 fors e, (3.13)
i,i’e[n]®
Yo + o < 1, (3.14)
Yo > Yiis for i € [n] (315)
(Yi> Yy Dsgetn)s = Wigs Vig)jgrem)s for i € [n], s € [t —1], (3.16)
Yo v (Woi)iem)e/2
(yO,i)ig[n]t () >0, (317)
2 Yiy), .
i,i’e[n]t

Before diving into the proof, we give some intuition of why the optimal value of (Dcsg)
is ||T||cb- One should note that Eq. (3.17) means that the variables yo ; can be written
as (u,v;) for some vectors u, v;. Then, roughly speaking, Egs. (3.15) and (3.16)
encode that the v; equal X (i1)... X:(iz)v for some contractions X (i1),..., X¢(4)

and a vector v, and Eq. (3.14) encodes that u and v are bounded vectors.

Proof of Theorem 3.11 Item (ii). First, we note that Eq. (3.13) means that there exist
d € N and vectors {u,v,v; : i € [n]®, s € [t]} C R™ such that yj = (u,u), yo = (v, v),
and yiy = (vi,vy) for every i € [n|® and s € [t]. Then, Eq. (3.15) means that
(u,u) + (v,v) <1 and Eq. (3.17) means that yo; = 2(u,v;) for every i € [n]*. Thus,

42

Chapter 3. The quantum polynomial method is complete

we can rewrite Eq. (Dgs) as

sup 2 Z Ti{u, vi), (3.18)
i€[n]t
s.t. meN, u,v,v; € R", i€ [n]° selt,
(u,u) + (v,v) <1,
(v,v) > (v, v;), for i€ [n] (3.19)
(03, v5))j.5emys = ((Vig, vigr)) yemps fori € [n], s €t —1] (3.20)
(3.21)

Next, we will show that Egs. (3.19) and (3.20) are equivalent to the existence of
contractions Xy, ..., X; € M,, such that

U = Xoosp1(in) ... Xo(is), (3.22)

for every i € [n]® and every s € [t]. Indeed, assume that Egs. (3.19) and (3.20) hold.
Then, for every i € [n] and every s € {0} U [t], we define

Xi—s()vy := vy

for every j € [n]® and extend it by 0 on the orthogonal complement of span{v; : j €
[n]*}. We have to check that the X; (i) are well-defined as linear maps. Namely,
that for every A € R™ we have

Z Aoy =0 = Z Ajuig = 0.

Jj€n] j€[n]®

In fact, we can prove that the X;_4(i) are well-defined and contractions at the same
time. Indeed, for A € R™ we have that

< Z Aj jUij» Z Aj j' Vij! > = <)\, (<Uij7vij/>)j,j’€[n]s /\>

j€[n]® j’€ln]®
<)\7 (<”J"”j’>)j}j,€[n]s >\>
<Z AjUj, Z)\IUJ>

j€[n]® JEln

IN

3.4. From polynomials to quantum algorithms

where we have used Eq. (3.20) (or Eq. (3.19) if s = 0).
On the other hand, if Eq. (3.22) holds, it is a routine check showing that Egs. (3.19)
and (3.20) hold. Putting everything together, we can rewrite (3.18) as

sup 2 Y TR, (3.23)
ic[n]t
s.t. Re]R"t, m €N, u,v € R", X, € M, contractions for s € [t],

(u,) + (v, 0) <1,
Ry = (u, X1(i1) ... Xy (ig)v), for i € [n]".

We finally claim that the above optimization problem is equivalent to

sup 2> TR, (3.24)
i€[n]t
s.t. R e R"t, m €N, u,v € R™ X € M, contractions for s € [t],

(u,u), (v,v) <1/2,
Ry = (u, X1(i1) ... X4 (ig)v), for i€ [n]".

We first note that the optimum of Eq. (3.23) is greater or equal than the optimum
of Eq. (3.24), because the feasible region is larger in the case of Eq. (3.23). On the
other hand, if one picks a feasible instance (u,v, X) of Eq. (3.23), one can define the
instance (a,v, X) by

uIlull + ol - vy/Ilull® + [lvf®

V2lul Valoll

=3}
Il
[SH

which is feasible for Eq. (3.24) and attains a value greater or equal than (u,v,X),

because

[>T @ X (0) . Xa()d) | = ||1;||||2UT|||LT|||2’ZT (u, X1 (1) - X)) |
> ‘ZTi (u, X1(31) - .. Xo(ie)0) \

Now, the result follows from the fact that the optimal value of Eq. (3.24) is |T||ep. O

Strong duality

Finally, we prove Theorem 3.11 Item (iii).

44

Chapter 3. The quantum polynomial method is complete

Proof of Theorem 3.11 Item (ii). First, we show that (Pcg) can be expressed as in
the canonical form of (P) in Eq. (2.15). To do that we introduce the slack matrix

variables Z and Z’ and write (Pgg) as

inf w (Pcs)
w 0 0 O
0 Y 0 O
st. X:=10 0 Y 0 0]=0
0O 0 0 Z 0
o 0 0o o Z
Yoi=1T;, i€ [n]', (3.25)
w—Y{y =0, (3.26)
w — Z Yii= Zoo, (3.27)
i€[n]
Diem] Yy igeme— — Y Vi jyems = (Zig)iyeme s € [t —1], (3.28)
i€[n]
Diem) Yigigjyeme— — Yi)jgemy = 2, (3.29)

One can regard X as a positive semidefinite matrix with some entries set to 0, which
can be imposed via linear constraints. Additionally, note that the objective function w
is a linear function of the entries of X, and so are the restrictions Egs. (3.25) to (3.29).
Hence, (Pcg) has the form of (P) in Eq. (2.15).

Second, we show that (Dcg) can be expressed as in the canonical form of (D) in
Eq. (2.15). We can rewrite (Dcs) as

45

3.4. From polynomials to quantum algorithms

sup Z TiR; (ﬁCS)
i€[n]t
s.t. y07y67Ri7yi,i/7i;il S [n]sa ERS [t]
Y0 =0, y6>0, Y yyBy =0, fors € [t], (3.30)
J.i'€lnl®
Yo +yo < 1, (3.31)
Yo > Yiq, for i € [n] (3.32)
Z (yj,j/ — yij,ij’)Ej,j’ =0, forie [n], ERS [t — 1] (333)
Jj.J’€[n]®
Eo;+ Ejo
! »J J>
YoEo,0 + ';t Ry—5—=+ . 'g]t Yi,ir By = 0. (3.34)
Jen i,i’e[n

Thus, we have written (Dcg) as an optimization problem (lNDCS) on the variables
Yo, Y4, Ri, Yi,ir. Moreover, the objective function is a linear combination of these vari-
ables. Also, the constraints are positive semidefinite constraints on matrices that are
linear combinations of other matrices, where the coefficients of these linear combina-
tions are yo, ¥, Ri, ¥i,i- Putting everything together, it follows that (Dcg) is of the
form of (D) in Eq. (2.15).

Third, we show that (D¢g) is the dual of (Pcs). Equivalently, we prove that (503)
is the dual of (Pcs). To take the dual of a primal semidefinite program such as (Pcg)
it is convenient to assign a dual variable to every linear constraint. We assign R; to
the constraints in Eq. (3.25), ¥, to Eq. (3.26), yo to Eq. (3.27), and y;; to Egs. (3.28)
and (3.29). In addition, one should note that every variable in the primal corresponds
to a restriction in the dual. With this in mind, from the definition of the dual given
in Eq. (2.15), it follows that (Dcg) is the dual of (Pcs), and that the constraints of
Eq. (3.30) correspond to variable Z in (Pcs), Eq. (3.31) to varible w, and Eqgs. (3.32)
to (3.34) to variable Y.

Finally, we show that the conditions of Theorem 2.20 are satisfied by (ﬁcs) and
(ﬁcs), which implies that their values are equal. (]SCS) is feasible, as every T factors
as in Eq. (3.1) for some u,v with sufficiently large norm (if this was not true, ||T||cb

would not be a norm). In addition, we claim that the following parameters define a

46

Chapter 3. The quantum polynomial method is complete

strictly positive feasible instance for (D¢s)

, 1
y0:y0:§a
% torijelnl®, sl
ij = o7 1,5 Orl np, s)
Yig 3(n+1)s J
R; =0, forie [n]".

Indeed, with these parameters Egs. (3.30) to (3.34) read as follows:

W= Wl =Wl
Y

1 n
7Idng S —
3(n+ 1)° 3(n + 1)L

n
1 0
(3 . > 0,

and these identities are true because 1 > n/(n + 1). O

Id,-, for s € [t — 1],

3.4.2 A hierarchy of SDPs to find quantum algorithms

To introduce the announced hierarchy of SDPs, we first note that by Theorem 3.6 it
follows that the smallest error that can be achieved when approximating a function

f:DC{-1,1}" — R with a t-query quantum algorithm is

E(f,t) =inf {¢ > 0 | 3 2t-linear form T : R*" x --- x xR** - R
f@)— T((@1"). ... (2.1")| <c VoD,
1T]len < 1}

Now, an immediate corollary of Theorem 3.11 is the following formulation of &£(p,t)
as an SDP.

47

3.4. From polynomials to quantum algorithms

Corollary 3.13. Let f: {—1,1}" — [-1,1] and t € N. Then,

E(f,t) =inf €
st. >0, Y,Y =0,
Ip(a) — Z YO/,iyil e Yin| <6 y=(z,1"),V z € {-1,1}",
ie[n]?t
YO/,O = w,

Z }/;i,i Swa

i€[2n]

> Vi)igreizns = Bican)(Yijig)i gepay1, s € 26— 1,

i€[2n]

(Y{5)5.5elzn)ze = Dicen) Yijig)jgrefznjze—1s

We observe that, as a consequence of Corollary 3.13, we have that (E(f,t)): de-
termines a hierarchy of SDPs that computes quantum query complexity. Indeed, to
compute Q. (f) one can solve E(f,1), £(f,2),... and stop at the smallest t(satisfy-
ing £(f,t0) < e. Then, we will have that tg = Q.(f). Additionally, from an optimal
solution to £(f,to) one can obtain an optimal quantum algorithm. This can be easily
(but tediously) done following the constructions in the proofs of Theorem 3.6 and
Theorem 3.11 Item (i),

Comparison with other methods

There are other formulations of £(f, t) as a SDP: the aforementioned work by Gribling
and Laurent [GL19] and by Barnum, Saks, and Szegedy [BSS03]. We will compare
these three methods with ours, and also with the adversary method, which does not
compute E(f,t), but provides a SDP that directly computes the quantum query com-
plexity. We remark the following:

e The method of Gribling and Laurent does not provide a description of the ap-

proximating quantum algorithm, while the others method do.

e The sizes of the SDPs differ, as shown in Table 3.1. The ones of Corollary 3.13
are considerably smaller than the ones in [BSS03] and the size of the SDP of the
adversary method, but they are slightly bigger than the ones in [GL19].

e The adversary method loses constant factors in the characterization of quantum

query complexity, and it does not work for exact quantum query complexity. On

48

Chapter 3. The quantum polynomial method is complete

blocks | block size | # lin. ineq. # lin. eq.
Adversary method [HLv07] n |D| 0 =YD fL0)]
Barnum-Saks-Szegedy [BSS03] | nt + 2 |D| |D| O(t|DJ?)
Gribling-Laurent [GL19] 1 O(nt) 2|D[+1 O(n?)
Corollary 3.13 4 -2 | 0((2n)H) 2|D|+3 O(2t(2n)?)

Table 3.1: A comparison of the sizes of the SDPs to compute quantum query complexity.
We count the number of linear equalities, inequalities, and PSD blocks, keeping track of the
size of the largest block.

the other hand, the other three hierarchies of SDPs do characterize quantum

query complexity, including the exact case, without losing constant factors.

49

50

