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Chapter 2

Preliminaries

2.1 Notation

Vectors. Given z ∈ C, we use z∗ to refer to its complex conjugation. We will

use {e1, . . . , em} to refer to the canonical basis of Kn. We will see Kn as a linear

space equipped with the usual inner product ⟨z, z′⟩ =
∑
i∈[n] z

∗
i z

′
i, where (zi) are the

coordinates of z in the canonical basis. We use Sn−1 to refer to the set of unit vectors

of Kn. For p ∈ [1,∞), the ℓp norms of such vectors are

∥z∥p = ∥z∥ℓp =

∑
i∈[n]

|zi|p
 1

p

.

The ℓ2 norm is the norm induced by the mentioned inner product, and we will often

simply call it ∥z∥. The Lp norms are

∥z∥Lp
=

 1

n

∑
i∈[n]

|zi|p
 1

p

.

For p =∞, ∥z∥∞ = maxi |zi|. Given a normed vector space (V, ∥ ∥) with V ⊆ Kd, the

dual norm of an element v ∈ V is given by

∥v∥∗ = sup{|⟨v, w⟩| | w ∈ V, ∥w∥V ≤ 1}.
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2.1. Notation

Matrices. Given n ∈ N and K ∈ {R,C}, we use Mn(K) to denote the space of n×n
matrices with entries in K. When K is clear from the context, we will simply write

Mn. Given Z ∈ Mn(C), Z† to denote the adjoint matrix of Z. Given X ∈ Mn(R),

XT to denote the transpose of X We will use Eij to refer to the matrix of Mn whose

(i, j)-entry is 1 and the rest are 0. We will see Mn as a linear space equipped with the

inner product ⟨A,B⟩ = Tr[A†B]. Given n ∈ N, we will use Idn to refer to the identity

matrix of Mn. For p ∈ [1,∞) the Schatten-p norms of a matrix A ∈ Mn, denoted as

∥A∥Sp , are the ℓp norms of their singular values (the singular values are the square

roots of the eigengvalues of A†A). The Schatten infinity norm, ∥A∥S∞ , is the largest

singular value of A. We will often refer to ∥A∥S∞ as ∥A∥op or simply ∥A∥, because it

coincides with the operator norm of A when regarding it as a linear map from ℓ2 to ℓ2,

meaning that ∥A∥S∞ = ∥A∥op = supz ̸=0 ∥Az∥ℓ2/∥z∥ℓ2 . We will refer to the S1 norm as

the trace norm, and denote it as ∥ · ∥tr. We will refer to the S2 norm as the Frobenius

norm, and denote it as ∥ · ∥F . We will say that a matrix A ∈ Mn is a contraction if

∥A∥op ≤ 1. A matrix U ∈ Mn(C) is unitary if U†U = Idn. A matrix O ∈ Mn(R) is

orthogonal if OTO = Idn.

Indices. We write i for a t-tuple i = (it, . . . , it) ∈ [n]t of indices. Given variables

x1, . . . , xn and a t-tuple i ∈ [n]t, we use x(i) to denote the monomial xi1xi2 · · ·xit . Sim-

ilarly, given a matrix-valued map A : [n]→ Rd×d, we write A(i) := A(i1)A(i2) . . . A(it).

Quantum. We write I, X, Y, Z, H to refer to the following 2× 2 matrices.

I =

(
1 0

0 1

)
, X =

(
0 1

1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0

0 −1

)
, H =

1√
2

(
1 1

1 −1

)
.

We will also use σ0 to refer to I, σ1 to X, σ2 to Y and σ3 to Z. Given a matrix A ∈Mn,

its controlled version cA is the matrix of M2n given by

cA =

(
Idn 0

0 A

)
.

A qubit is a 2-dimensional vector space. We will often use n to refer to the number of

qubits, and N to refer to 2n, which is the total dimension of the space of (the tensor

product of) n qubits.
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Chapter 2. Preliminaries

Miscellanea. Given n ∈ N, [n] stands for the set {1, 2, . . . , n}. Sn is the symmetric

group, which is the group of permutations of [n] elements. Given z ∈ Kn and π ∈ Sn,

we define z ◦ π ∈ Kn as (z ◦ π)i = zπ(i). Throughout this thesis we will consider

different constants, all of which will be denoted by C and their value will be clear

from context. We will use Cd to refer to quantities that only depend on d and are

constant with respect to other parameters. We will use δi,j to denote the indicator of

the event i = j. Given a vector z ∈ Kn, Diag(z) is the diagonal matrix of Mn whose

diagonal entries are given by z.

2.2 Quantum mechanics

A n-qubit state ρ is an element of MN that is positive semidefinite and has trace one. A

state ρ is pure if it has rank 1, in which case ρ = |ψ⟩⟨ψ| for some unit vector of MN and

we will also call |ψ⟩ a state. A n-qubit channel Φ : MN →MN is a completely positive

trace preserving linear map. A measurement is a set {Mx}x of positive semidefinite

matrices that sum to the identity. A projector operator valued measurement (POVM)

is a measurement where Mx are projectors. By the postulates of quantum mechanics,

measuring a quantum state ρ with {Mx}x outputs x with probability Tr[ρMx].

We will often use the Choi-Jamiolkowski isomorphism to encode a quantum channel

as a quantum state. We call the resulting state as the Choi-Jamiolkowski state (or CJ

state for short). The CJ representation is given by

J(Φ) =
∑

i,j∈[N ]

Φ (|i⟩⟨j|)⊗ |i⟩⟨j| = (Φ⊗ I)

 ∑
i,j∈[N ]

|i⟩⟨j| ⊗ |i⟩⟨j|

 , (2.1)

which is an element in MN ⊗MN = MN2 . The CJ state v(Φ) is defined to be

v(Φ) =
J(Φ)

Tr[J(Φ)]
=
J(Φ)

N
. (2.2)

According to (2.1), the CJ state v(Φ) can be prepared by first preparing n EPR pairs

(over 2n qubits) and then applying Φ to the n qubits coming from the first half of

each of the n EPR pairs.

Given an d dimensional quantum system, the dynamics of the system are de-

scribed by a Hamiltonian H, which is an self-adjoint matrix of Md(C). For every time

t ∈ [0,∞), a Hamiltonian H defines a time evolution operator U(t) = e−iHt that

determines the time evolution of the quantum system in the following way. If the
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2.3. Quantum query complexity

system at time t = 0 is described by state ρ, then at time t′ > 0 it will be described

by U†(t′)ρU(t′).

2.3 Quantum query complexity

We will mainly focus on the query complexity of decision problems, those whose answer

is binary: YES or NO, -1 or 1, 0 or 1 . . . These problems can be represented by Boolean

functions f : D ⊆ {−1, 1}n → {−1, 1}. In the setting of query complexity, we are given

a known f and the goal is to compute f on an unknown input x ∈ {−1, 1}n owned by

an oracle. However, we can access this x by making queries/questions to the oracle.

The goal of a good query algorithm is to make as few queries as possible and compute

f(x). We will briefly introduce two models of query complexity, the classical and the

quantum. The interest of quantum query complexity relies on the fact that in it

the strengths and weaknesses of quantum computers can be rigorously studied with

currently-available techniques (see e.g., [Amb18, Aar21, Ham25] for recent surveys).

On the one hand, many of quantum computing’s best-known algorithms, such as for

unstructured search [Gro96], period finding (the core of Shor’s algorithm for integer

factoring) [Sho97] and element distinctness [Amb07], are most naturally described

in the query model. On the other hand, the model admits powerful lower-bound

techniques such as the polynomial method [BBC+01], to which we will devote the first

part of this thesis, and the adversary method, which we will revisit in Section 8.2.

Classical query algorithms

In the classical query model, the queries consist on the most basic questions one could

imagine asking about x, which are asking for entries of x. Formally, a classical query

is an evaluation of the function

ox : [n]→ {−1, 1} : i→ xi.

A classical query algorithm is allowed to do any computation in between queries.

When finished, the algorithm should output −1 or 1. Thus, (deterministic) classical

query algorithms can be represented as decision trees (see Fig. 2.1). On top of this, a

classical query algorithm is also allowed to use randomness, i.e., choosing a decision

tree at random.

Given that for every x the outcome of the algorithm is a binary random variable,

it is characterized by its bias (the difference between the probability of outputting 1

10
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x1

x2

x3

1

1

-1

−1

1

x4

1

1

−1

−1

−1

1

x2

x4

-1

1

1

−1

1

x3

-1

1

1

−1

−1

−1

Figure 2.1: Decision tree representing a 3-query classical algorithm that computes the
function f(x1, x2, x3, x4) = (x1 + x2)x3/2 + (x1 − x2)x4/2.

and the probability of outputting -1). We will thus identify an algorithm A with the

function A : {−1, 1}n → [−1, 1] that maps x to the bias of A on x. Now, we are ready

to define classical query complexity.

Definition 2.1. Given f : D ⊆ {−1, 1}n → {−1, 1} and ε > 0, the randomized

classical query complexity of f with error ε is the minimum number of queries made

by a classical algorithm A such that |A(x)− f(x)| ≤ ε for every x ∈ D. We use Rε(f)

to refer to this quantity. We also use R(f) to refer to R2/3(f) and D(f) to refer to

R0(f).

Remark 2.2. The number 2/3 appearing in the definition of R2/3 is somehow arbitrary,

as for any constant 0 < c < 1 we have that Rc = Θ(R2/3(d)). Indeed, say that c < 2/3.

By definition, we have that R2/3(f) ≤ Rc(f). On the other hand, Rc(f) = O(R2/3(f))

because one can take an algorithm that 2/3-approximates f , run it O(log(1/c)) times

and take the majority outcome, resulting in an algorithm that c-approximates f and

makes O(log(1/c))R2/3(f) queries.

Quantum query algorithms

In a quantum world, the queries to x ∈ {−1, 1}n are evaluations of the controlled

version of the unitary map

Cn → Cn : |i⟩ → xi|i⟩.
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2.3. Quantum query complexity

U0 U1 UtOx Ox|ψ0⟩

Figure 2.2: Quantum query algorithm.

Thus, it maps |b⟩|i⟩ → (1 + δb,1xi)|b⟩|i⟩ for b ∈ {0, 1} and i ∈ [n], and it can be

represented as the matrix

Ox = Diag(1n, x).

A quantum query algorithm is allowed to use extra quantum memory and to perform

x-independent unitary operations in between queries. Finally, it should perform a

binary measure and output −1 or 1. Thus, before the measurement the state of a

t-query quantum algorithm on input x looks like

|ψt⟩ = Ut(Ox ⊗ Idd)Ut−1 . . . U1(Ox ⊗ Idd)U0|ψ0⟩, (2.3)

where Ut, . . . , U0 are (2nd)-dimensional unitaries and |ψ0⟩ is a fixed (2nd)-dimensional

pure state. Fig. 2.2 Again, we identify a quantum algorithm with its bias. Now, we

can define quantum query complexity.

Definition 2.3. Given f : D ⊆ {−1, 1}n → {−1, 1} and ε > 0, the quantum query

complexity of f with error ε is the minimum number of queries made by a quantum

algorithm A such that |A(x) − f(x)| ≤ ε for every x ∈ D. We use Qε(f) to refer to

this quantity. We also use Q(f) to refer to Q2/3(f).

Remark 2.4. Because of the same reasons as in the classical case, we have that Q(f) =

Θ(Qc(f)) for any constant 0 < c < 1.

Remark 2.5. Although complex numbers are necessary to describe quantum physics

[RTW+21], the quantum query complexity of a function does not change if we assume

that the underlying Hilbert space is real, thanks to the construction in [MMG09].

Furthermore, every real square matrix with operator norm at most 1 (largest singular

value at most 1) is a convex combination of orthogonal matrices. Putting both things

together, we have that for the purpose of quantum query complexity we may assume

that |ψ0⟩ is a unit vector of a real Hilbert space and that U0, . . . , Ut are real square

matrices with operator norm at most 1.
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We will also analyze the smallest additive error that a t-query quantum algorithm

can achieve when computing a function f : D ⊆ {−1, 1}n → R, which is given by

E(f, t) := inf
{
ε ≥ 0 | ∃ t-query quantum algorithm A with (2.4)

|f(x)−A(x)| ≤ ε ∀x ∈ D
}
.

Note that E(f, t) and Qε(f) are similar quantities conceptually, as they both encapsu-

late a notion of optimal quantum algorithm, but they do it in different ways. On the

one hand, Qε(f) refers to optimal quantum algorithms to approximate up to a given

error ε. On the other hand, E(f, t) refers to the best t-query quantum algorithm.

2.4 Learning theory

The meta question of learning theory is the following. Given an unknown object from

which we can access expensive units of information, how many of these units do we

need in order to obtain an approximation of the object? This is a broad question, that

has many variants depending on: i) the object to learn; ii) the access model; iii) the

distance with respect to which we can measure what is a good approximation.

In addition, we will also consider the second-most important meta-question of

learning theory, which is the problem of testing. In some cases, the number of units of

information required to learn is prohibitive, but we may only be interested on whether

the unknown object satisfies a certain property or it is far from it, i.e., to test whether

the object satisfies the property.

In the second part of this thesis, we will mainly focus on learning quantum objects:

quantum query algorithms, quantum channels and Hamiltonians. We will also consider

the problem of testing properties of Hamiltonians.

We will need the following well-known result about distribution learning theory.

See [Can20, Theorem 9] for a proof.

Lemma 2.6. Let p = {p(x)}x be a probability distribution over some set X . Let
p′ = (p′(x))x be the empirical probability distribution obtained after sampling T times

from p. Then, for T = O((1/ε)2 log(1/δ)), with probability at least 1− δ, we have that

|p(x)− p′(x)| ≤ ε for every x ∈ X .
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2.5. Fourier and Pauli analysis

2.5 Fourier and Pauli analysis

In this section, we describe Fourier expansion of Boolean functions and of different

quantum objects (states, unitaries, channels) that we consider throughout this work.

Note that the terms Pauli expansion and Fourier expansion will often be used inter-

changeably in the context of quantum objects .

Fourier expansion. In this section we will talk about the space of functions defined

on the Boolean hypercube f : {−1, 1}n → R endowed with the inner product ⟨f, g⟩ =

Ex[f(x)g(x)], where the expectation is taken with respect to the uniform measure of

probability. For s ⊆ {0, 1}n, the Fourier characters, defined by χs(x) =
∏
i∈supp(s) xi,

constitute an orthonormal basis of this space. Hence, every f can be identified with a

multilinear polynomial (a polynomial that is affine on every variable) via the Fourier

expansion

f =
∑

s∈{0,1}n

f̂(s)χs, (2.5)

where f̂(s) are the Fourier coefficients given by

f̂(s) = ⟨χs, f⟩ = Ex[f(x)χs(x)]. (2.6)

The degree of f is the minimum d such that f̂(s) = 0 if |s| > d. We will often use

Parseval’s identity:

∥f∥22 := ⟨f, f⟩ =
∑
s∈[n]

f̂(s)2. (2.7)

We will also consider the ℓp-norms of the Fourier spectrum, which are defined as

∥f̂∥p =

 ∑
s∈{0,1}n

|f̂(s)|p
1/p

.

The supremum, infinity or ℓ∞ norm of such an f is ∥f∥∞ = maxx |f(x)|. The variance

of f is given by

Var[f ] =
∑
|S|≥1

f̂2(S),

and the influence of the i-th variable by

Infi[f ] =
∑
S∋i

f̂2(S) = Ex

[(
f(x)− f(x⊕i)

2

)2
]
,

14
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where given x ∈ {−1, 1}n and i ∈ [n], x⊕i is the element of {−1, 1}n obtained by flip-

ping the ith entry of x. The maximum influence of f is MaxInf[f ] := maxi∈[n] Infi[f ].

One may interpret Var[f ] as the deviation of f from its expectation and Infi[f ] as the

deviation of f from its expectation that is due to varying the i-th variable.

Remark 2.7. We will also use different notation for the indexing of the characters.

Namely, given s ∈ {0, 1}n we will identify it with its support S, so, for example, χS(x)

will be given by
∏
i∈S xi.

Pauli expansion of operators. Here, we introduce the Pauli analysis for opera-

tors, which was first explored by Montanaro and Osborne [MO08]. We consider MN

endowed with the usual inner product ⟨A,B⟩ = 1
N Tr[A†B]. The tensor product of

Pauli operators form an orthonormal basis for this space. The Pauli expansion of a

matrix M of MN is given by

M =
∑

x∈{0,1,2,3}n

M̂(x)σx, (2.8)

where M̂(x) = ⟨σx,M⟩are Pauli coefficients of M . We will refer to the collection

of non-zero Pauli coefficients {M̂(x)}x as the Pauli spectrum of M with the set of

corresponding strings denoted by spec(M). As {σx}x is an orthonormal basis, we

have a version of Parseval’s identity for operators.

∥M∥22 := ⟨M,M⟩ =
∑

x∈{0,1,2,3}n

|M̂(x)|2. (2.9)

In particular, for U ∈ UN , this implies that (|Û(x)|2)x is a probability distribution.

We will also consider the p-norms of the Pauli spectrum, which are defined as

∥M̂∥p =

 ∑
x∈{0,1,2,3}n

|M̂(x)|p
1/p

.

We now define a notion of degree for states and unitaries that generalizes the classical

notion of Fourier degree (see [MO08, Section 5]).

Definition 2.8 (Degree of a matrix). Given M ∈ MN its degree is the minimum d

such that M̂(x) = 0 for any x ∈ {0, 1, 2, 3}n with |x| > d. Here, |x| is the cardinality

of the set {i ∈ [n] : xi ̸= 0}.
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2.6. Fourier and Pauli analysis

Pauli expansion of superoperators. Here, we introduce the Pauli analysis for

superoperators, which was first explored by Bao and Yao [BY23]. We consider the

space of superoprators (linear maps from MN to MN ) endowed with the inner product

⟨Φ,Ψ⟩ = ⟨J(Φ), J(Ψ)⟩/N2. An orthonormal basis for superoperators is defined using

characters

Φx,y(ρ) = σxρσy, (2.10)

for any x, y ∈ {0, 1, 2, 3}n. The Pauli expansion of superoperators and hence quantum

channels is then defined as

Φ =
∑

x,y∈{0,1,2,3}n

Φ̂(x, y)Φx,y, (2.11)

where Φ̂(x, y) = ⟨Φx,y,Φ⟩ are the Pauli coefficients of the superoperator. As {Φx,y}x
is an orthonormal basis, we have a version of Parseval’s identity for superoperators

∥Φ∥22 := ⟨Φ,Φ⟩ =
∑

x,y∈{0,1,2,3}n

|Φ̂(x, y)|2.

We will also consider the p-norms of the Pauli spectrum of superopertors, which are

defined as

∥Φ̂∥p =

 ∑
x,y∈{0,1,2,3}n

|Φ̂(x, y)|p
1/p

.

If Φ is a channel, then Φ̂ = (Φ̂(x, y))x,y has a couple of important properties [BY23,

Lemma 8].

Fact 2.9. If Φ is a channel, then Φ̂ is a state unitarily equivalent to v(Φ). In particular,

(Φ̂(x, x))x is a probability distribution.

The degree of a superoperator is defined in the analogue way to operators.

Definition 2.10 (Degree of a superoperator). Given a superoperator Φ its degree is

the minimum d such that Φ̂(x, y) = 0 for any x, y ∈ {0, 1, 2, 3}n with |x|+ |y| > d.
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2.6 Polynomials

For p ∈ R[x1, . . . , xn] we define the following quantities, which are seminorms and

norms when restricted to the space of multilinear polynomials,

∥p∥∞ := sup
x∈{−1,1}n

|p(x)|, (2.12)

∥p∥q := (Ex∈{−1,1}n |p(x)|q)
1
q , for q ∈ [1,∞), (2.13)

We will say that a a polynomial p is bounded if its restriction to the Boolean hypercube

takes values in the interval [−1, 1].

Univariate polynomials

We list a few well-known results about univariate polynomials. For K ∈ {R,C}, we will

use K[x1, . . . , xn] to denote the space of polynomials with coefficients in K depending

on variables x1, . . . , xn ∈ K. We will use K[x1, . . . , xn]=t to refer to the space of forms

of degree t (or homogeneous polynomials of degree t), which are those whose only

non-zero coefficients correspond to monomials of degree t. We will use K[x1, . . . , xn]≤t

to refer to the space of polynomials of degree at most t. A polynomial is multilinear

if it is affine on every variable. Given f : {−1, 1}n → R, we will identify f with

the unique multilinear polynomial p ∈ R[x1, . . . , xn] such that f(x) = p(x) for every

x ∈ {−1, 1}n. The latter polynomial is given by the Fourier expansion of f .

Proposition 2.11 (Markov brothers’ inequality). Let p ∈ R[x] have degree at most

d. Then, supx∈[−1,1] |p′(x)| ≤ d2 supx∈[−1,1] |p(x)|.

Definition 2.12. Let p ∈ R[x1, . . . , xn]. Then, p is symmetric if for every π ∈ Sn and

every x ∈ Rn we have that p(x) = p(π ◦ x).

Proposition 2.13 (Minsky-Papert symmetrization principle [MS69]). Consider a

symmetric multilinear polynomial p ∈ R[x1, . . . , xn] of degree d. Then, there is a uni-

variate polynomial q : R→ R of degree d such that supy∈[−1,1] |q(y)| = supx∈{−1,1}n |p(x)|
and q(

∑
i xi/n) = p(x) for every x ∈ {−1, 1}n.

2.7 Completely bounded norms

We will introduce the completely bounded norm of a multilinear form. Informally, it is

a variation of the infinity norm where the supremum is not only evaluated on scalar

inputs, but also on matrix inputs.

17



2.7. Completely bounded norms

Definition 2.14 (Multilinear forms). Let K ∈ {R,C}. A map T : Kn×· · ·×Kn → K
is a t-linear form if it is linear with respect to every copy of Kn. We will also use

multilinear forms to refer to these functions. We will also identify every t-linear form

with a tensor T ∈ (Kn)t such that

T (x1, . . . , xt) =
∑
i∈[n]t

Tix1(i1) . . . xt(it)

for every x1, . . . , xt ∈ Kn. This tensor is uniquely determined by

Ti = T (ei1 , . . . , eit)

for every i ∈ [n]t.

Throughout this thesis, we will use the notions of multilinear form and tensor

interchangeably.

Definition 2.15. Let K ∈ {R,C}. Let m ∈ N and T : Kn × · · · × Kn = (Kn)t → K
be a t-linear form. We define the t-linear form Tm : Mn

m × · · · ×Mn
m →Mm by

Tm(X1, . . . , Xt) =
∑
i∈[n]t

TiX1(i1) . . . Xt(it)

for every X1, . . . , Xt ∈Mn
m. We define its norm as

∥Tm∥ := sup ∥T (X1, . . . , Xt)∥op,

where the supremum runs over all X1, . . . , Xt ∈Mn
m with ∥X1(i1)∥op, . . . , ∥Xt(it)∥op ≤

1.

Remark 2.16. The supremum of ∥Tm∥ does not change if Xs(is) are not only contrac-

tions but also orthogonal matrices in the real case, or unitary matrices in the complex

case. This follows from the Krein-Milman theorem and the fact that orthogonal (uni-

tary) matrices are the extreme points of the set of real (complex) contractions.

Definition 2.17 (Completely bounded norm of multilinear form). Let T : Kn× · · ·×
Kn = (Kn)t → K be a t-linear form. Its completely bounded norm is given by

∥T∥cb := sup
m∈N
∥Tm∥.

Notably, for the supremum in the completely bounded norm, one can take X1 =

18



Chapter 2. Preliminaries

· · · = Xt. Thus, one could say that polarization constant for the completely bounded

norm is 1.1

Proposition 2.18. Let T ∈ Rn×···×n be a t-tensor. Then,

∥T∥cb = sup
{
∥T (X, . . . ,X)∥op, d ∈ N

}
,

where the supremum runs over all contractions X(1), . . . , X(n) ∈Mm and all m ∈ N.

Proof. Let |||T ||| be the expression in the right-hand side of the statement. Note that it

is the same as the expression of ∥T∥cb, but now the contraction-valued mapsX1, . . . , Xt

are all equal. This shows that |||T ||| ≤ ∥T∥cb. To prove the other inequality, let

X1, . . . , Xt : [n] → BMd
and u, v ∈ Sd−1. Now, define the contraction-valued map X

by X(i) :=
∑
s∈[t] ese

T
s+1 ⊗Xs(i) for i ∈ [n], and define the unit vectors u′ := e1 ⊗ u

and v′ := et+1 ⊗ v. They satisfy

⟨u,X1(i1) . . . Xt(it)v⟩ = ⟨u′, X(i)v′⟩ for all i ∈ [n]t,

so in particular ∑
i∈[n]t

Ti⟨u,X1(i1) . . . Xt(it)v⟩ =
∑
i∈[n]t

Ti⟨u′, X(i)v′⟩.

Taking the supremum over all maps Xs and u, v shows that ∥T∥cb ≤ |||T |||, which

concludes the proof.

2.7.1 Grothendieck inequality

Let K ∈ {R,C}. Given a bilinear form A : Kn × Kn → K, we can write its infinity

norm as

∥A∥∞ = sup
|xi|=|yi|≤1

∣∣∣∣∣∣
∑
i,j∈[n]

Aijxiyj

∣∣∣∣∣∣ .
1In Banach space theory a t-linear map T : X × · · · ×X → Y determines a homogeneous degree-t

polynomial P : X → Y : A → T (A, . . . , A). The operator norms of T and P are equivalent if T is
symmetric: ∥T∥ ≤ ∥P∥ ≤ K(t)∥T∥, where K(t) is the polarization constant of degree t. For a survey
on the topic see [MMFPSS22, Section 5.1].
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For K = R the absolute value inside the supremum is not necessary, and by linearity

we have that the supremum is attained in the extreme points, so

∥A∥∞ = sup
xi,yi∈{−1,1}

∑
i,j∈[n]

Aijxiyj .

For K = C by the maximum modulus principle we have that

∥A∥∞ = sup
|xi|=|yi|=1

∣∣∣∣∣∣
∑
i,j∈[n]

Aijxiyj

∣∣∣∣∣∣ .
Also, note that ∥A∥∞ ≤ ∥A∥cb.

Theorem 2.19 (Grothendieck’s theorem [Gro53]). There exists a constant K < ∞
such that for any n ∈ N and any bilinear form A : Kn ×Kn → K, we have

∥A∥cb ≤ K∥A∥∞. (2.14)

Equivalently,

max
|xi|,|yi|≤1

∣∣∣∣∣∣
∑
i,j∈[n]

Aijxiyj

∣∣∣∣∣∣ ≤ K max
∥ui∥2,∥vj∥2≤1

∑
i,j∈[n]

Aij⟨ui, vj⟩,

where the supremum runs over all d ∈ N and all vectors ui, vj ∈ Kd.

The smallest possible constant K for which Theorem 2.19 holds is known as the

Grothendieck constant, KK
G. Determining the precise value of KK

G is a notorious open

problem posed in [Gro53]. For K = R the best-known lower and upper bounds place

it in the interval (1.676, 1.782) [Dav84, Ree91, BMMN13]. For K = C, we know that

the constant lies in (1.338, 1.405) [Haa87, Dav06].

2.8 Semidefinite programming

Semidefinite programming is an extension of linear programming that includes a bigger

family of problems and can still be efficiently solved up to arbitrary precision (see

[LR05] for an introduction to semidefinite programming). To be more precise, let

Sn be the space of symmetric matrices of Mn and let S+
n be the cone of positive

semidefinite matrices. A collection of matrices C,B1, . . . , Bl ∈ Sn and a vector b ∈ Rl
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define a primal semidefinite program (P) and a dual semidefinite program (D), which

in their canonical form are given by

(P ) inf ⟨C, Y ⟩ (D) sup ⟨b, y⟩ (2.15)

s.t. Y ∈ S+
n s.t. y ∈ Rl

B(Y ) = b C − B∗(y) ∈ S+
n ,

where B : Sn → Rl is given by B(Y ) := (⟨B1, Y ⟩ , . . . , ⟨Bl, Y ⟩), B∗(y) =
∑
i∈[l] yiBi

and ⟨B, Y ⟩ = Tr(BY ). A semidefinite program is feasible if there exists an instance

satisfying its constraints.

Note that if all matrices C,B1, . . . , Bl were diagonal, (P ) and (D) would be linear

programs. Indeed, in that case the value of (P ) would not change if we further impose

that Y is diagonal, which makes (P ) a linear program. Also, the constraint C−B∗(y) ∈
S+
n is equivalent to saying that the diagonal entries of C −B∗(y) are non-negative, so

(D) is also a linear program.

It is always satisfied that the optimal value of (P ) is at least the optimal value

of (D), what is known as weak duality. In addition, under some mild assumptions

provided by Slater’s theorem, both values are equal, what is known as strong duality.

Theorem 2.20 (Slater’s theorem). Let (P ) and (D) be a primal-dual pair of semidef-

inite programs, as in Eq. (2.15). Assume that (P ) is feasible and there exists a strictly

positive instance for (D), i.e., there exists y ∈ Rl such that C − B∗(y) is strictly

positive. Then the optimal values of (P ) and (D) are equal.

2.9 Concentration inequalities

We state a few concentration inequalities that we use often. All of them can be found

in [BLM13].

Lemma 2.21 (Hoeffding bound). Let X1, . . . , Xm be independent-random variables

that satisfy −ai ≤ |Xi| ≤ ai for some ai > 0. Then, for any τ > 0, we have

Pr
[∣∣∣ ∑
i∈[m]

Xi −
∑
i∈[m]

E[Xi]
∣∣∣ > τ

]
≤ 2 exp

(
− τ2

2(a21 + · · ·+ a2m)

)
.

Lemma 2.22 (Bernstein inequality). Let X1, . . . , Xm be independent-random vari-
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ables with |Xi| ≤M for some M > 0. Then,

Pr
[∣∣∣ ∑
i∈[m]

Xi −
∑
i∈[m]

E[Xi]
∣∣∣ > τ

]
≤ 2 exp

(
− τ2/2∑

i∈[m] Var[Xi] + τM/3

)
.

Lemma 2.23 (McDiarmid’s inequality). Let f : {−1, 1}n → R such that |f(x) −
f(x⊕i)| ≤ c for every x ∈ {−1, 1}n and every i ∈ [n]. Then, over a uniformly random

x and for any ε > 0 we have that

Prx[|f(x)− Eyf(y)| ≥ ε] ≤ exp

(
− 2ε2

nc2

)
.
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