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Chapter 2

Preliminaries

2.1 Notation

Vectors. Given z € C, we use z* to refer to its complex conjugation. We will
use {e1,...,en} to refer to the canonical basis of K”. We will see K™ as a linear
space equipped with the usual inner product (z,2") = ;[ 27 #i, where (z;) are the
coordinates of z in the canonical basis. We use S™~! to refer to the set of unit vectors

of K". For p € [1,00), the ¢, norms of such vectors are

lzllp = llzlle, = | Y lail”

i€[n]

The ¢ norm is the norm induced by the mentioned inner product, and we will often

simply call it ||z||. The L, norms are

P

1
lells, = (= 3 Jaap

1€[n]

For p = 00, ||2||c = max; |2;|. Given a normed vector space (V|| ||) with V C K¢, the

dual norm of an element v € V' is given by

[l = sup{[(v, w)| [ w €V, Jwlly <1}



2.1. Notation

Matrices. Givenn € Nand K € {R,C}, we use M,,(K) to denote the space of nxn
matrices with entries in K. When K is clear from the context, we will simply write
M,,. Given Z € M, (C), Z' to denote the adjoint matrix of Z. Given X € M,(R),
XT to denote the transpose of X We will use E;; to refer to the matrix of M, whose
(i,4)-entry is 1 and the rest are 0. We will see M,, as a linear space equipped with the
inner product (A, B) = Tr[ATB]. Given n € N, we will use Id,, to refer to the identity
matrix of M,,. For p € [1,00) the Schatten-p norms of a matrix A € M, denoted as
|Alls,, are the £, norms of their singular values (the singular values are the square
roots of the eigengvalues of ATA). The Schatten infinity norm, ||A||s_, is the largest
singular value of A. We will often refer to | A||s., as ||Allop or simply [|A]|, because it
coincides with the operator norm of A when regarding it as a linear map from #5 to {5,
meaning that || Al|s,, = [|Allop = sup, o [[Az|e,/||2]le,- We will refer to the S; norm as
the trace norm, and denote it as || - [|t;. We will refer to the Sp norm as the Frobenius
norm, and denote it as || - ||r. We will say that a matrix A € M, is a contraction if
|Allop < 1. A matrix U € M,,(C) is unitary if UTU = Id,,. A matrix O € M,(R) is
orthogonal if OTO = Id,,.

Indices. We write i for a t-tuple i = (it,...,i;) € [n]' of indices. Given variables
x1,...,%, and a t-tuple i € [n]*, we use z(i) to denote the monomial z;, z;, - - - z;,. Sim-

ilarly, given a matrix-valued map A: [n] — R¥¥4 we write A(i) := A(i1)A(iz2) . . . A(y).

Quantum. We write I, X, Y, Z, H to refer to the following 2 x 2 matrices.

10 0 1 0 —i 1 0 1 {1 1
I:<O 1>’X:<1 0>’Y:<z’ o)’Z:<o —1>’H:\/§<1 —1>'

We will also use o to refer to I, o1 to X, 09 to Y and o3 to Z. Given a matrix A € M,

its controlled version cA is the matrix of M, given by

cA = I, 0.
0 A

A qubit is a 2-dimensional vector space. We will often use n to refer to the number of
qubits, and N to refer to 2™, which is the total dimension of the space of (the tensor

product of) n qubits.
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Miscellanea. Given n € N, [n] stands for the set {1,2,...,n}. S, is the symmetric
group, which is the group of permutations of [n] elements. Given z € K" and 7 € S,,,
we define z om € K" as (z 0 m); = zr(;). Throughout this thesis we will consider
different constants, all of which will be denoted by C and their value will be clear
from context. We will use Cy to refer to quantities that only depend on d and are
constant with respect to other parameters. We will use d; ; to denote the indicator of
the event ¢ = j. Given a vector z € K", Diag(z) is the diagonal matrix of M, whose

diagonal entries are given by z.

2.2 Quantum mechanics

A n-qubit state p is an element of M that is positive semidefinite and has trace one. A
state p is pure if it has rank 1, in which case p = |9) (¥ for some unit vector of My and
we will also call |[¢) a state. A n-qubit channel ® : My — My is a completely positive
trace preserving linear map. A measurement is a set {M,}, of positive semidefinite
matrices that sum to the identity. A projector operator valued measurement (POVM)
is a measurement where M, are projectors. By the postulates of quantum mechanics,
measuring a quantum state p with {M,}, outputs = with probability Tr[pM,].

We will often use the Choi-Jamiolkowski isomorphism to encode a quantum channel
as a quantum state. We call the resulting state as the Choi-Jamiolkowski state (or CJ

state for short). The CJ representation is given by

J@)= Y e(duhenyl=(@en | Y mulebE ]|, (21

i,5E[N] i,5€[N]
which is an element in My ® My = My=2. The CJ state v(®) is defined to be

o(®) = Tr‘{ (?@)1 _J g\‘f). (2.2)

According to (2.1), the CJ state v(®) can be prepared by first preparing n EPR pairs
(over 2n qubits) and then applying ® to the n qubits coming from the first half of
each of the n EPR pairs.

Given an d dimensional quantum system, the dynamics of the system are de-
scribed by a Hamiltonian H, which is an self-adjoint matrix of My(C). For every time
t € [0,00), a Hamiltonian H defines a time evolution operator U(t) = e~ "It that

determines the time evolution of the quantum system in the following way. If the
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system at time ¢t = 0 is described by state p, then at time ¢’ > 0 it will be described
by UT(t")pU ().

2.3 Quantum query complexity

We will mainly focus on the query complexity of decision problems, those whose answer
is binary: YES or NO,-1or 1, 0o0r 1... These problems can be represented by Boolean
functions f : D C {—1,1}" — {—1, 1}. In the setting of query complexity, we are given
a known f and the goal is to compute f on an unknown input z € {—1,1}" owned by
an oracle. However, we can access this « by making queries/questions to the oracle.
The goal of a good query algorithm is to make as few queries as possible and compute
f(x). We will briefly introduce two models of query complexity, the classical and the
quantum. The interest of quantum query complexity relies on the fact that in it
the strengths and weaknesses of quantum computers can be rigorously studied with
currently-available techniques (see e.g., [Amb18, Aar21, Ham25] for recent surveys).
On the one hand, many of quantum computing’s best-known algorithms, such as for
unstructured search [Gro96], period finding (the core of Shor’s algorithm for integer
factoring) [Sho97] and element distinctness [Amb07], are most naturally described
in the query model. On the other hand, the model admits powerful lower-bound
techniques such as the polynomial method [BBC01], to which we will devote the first

part of this thesis, and the adversary method, which we will revisit in Section 8.2.

Classical query algorithms

In the classical query model, the queries consist on the most basic questions one could
imagine asking about x, which are asking for entries of x. Formally, a classical query

is an evaluation of the function
0y [n] = {-1,1} 1 i — x;.

A classical query algorithm is allowed to do any computation in between queries.
When finished, the algorithm should output —1 or 1. Thus, (deterministic) classical
query algorithms can be represented as decision trees (see Fig. 2.1). On top of this, a
classical query algorithm is also allowed to use randomness, i.e., choosing a decision
tree at random.

Given that for every = the outcome of the algorithm is a binary random variable,

it is characterized by its bias (the difference between the probability of outputting 1

10
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Figure 2.1: Decision tree representing a 3-query classical algorithm that computes the
function f(x1,x2,x3,24) = (X1 + x2)x3/2 + (x1 — T2)x4/2.

and the probability of outputting -1). We will thus identify an algorithm A with the
function A : {—1,1}" — [—1, 1] that maps = to the bias of A on z. Now, we are ready

to define classical query complexity.

Definition 2.1. Given f : D C {-1,1}" — {—1,1} and ¢ > 0, the randomized
classical query complexity of f with error € is the minimum number of queries made
by a classical algorithm A such that |A(z) — f(x)| < € for every x € D. We use R.(f)
to refer to this quantity. We also use R(f) to refer to Ry/3(f) and D(f) to refer to

Ro(f).

Remark 2.2. The number 2/3 appearing in the definition of Ry/3 is somehow arbitrary,
as for any constant 0 < ¢ < 1 we have that R. = ©(Ry/3(d)). Indeed, say that c < 2/3.
By definition, we have that Ry/3(f) < R.(f). On the other hand, R.(f) = O(Rz/3(f))
because one can take an algorithm that 2/3-approximates f, run it O(log(1/c)) times
and take the majority outcome, resulting in an algorithm that c-approximates f and
makes O(log(1/c))Rz/3(f) queries.

Quantum query algorithms

In a quantum world, the queries to € {—1,1}" are evaluations of the controlled

version of the unitary map
C" = C" : |i) — ;]9).

11
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| 7?90 > — UU O’L Ul Oa‘ Ut —

Figure 2.2: Quantum query algorithm.

Thus, it maps |b)|i) — (1 + dp,124)|b)|¢) for b € {0,1} and i € [n], and it can be
represented as the matrix
O, = Diag(1", ).

A quantum query algorithm is allowed to use extra quantum memory and to perform
z-independent unitary operations in between queries. Finally, it should perform a
binary measure and output —1 or 1. Thus, before the measurement the state of a

t-query quantum algorithm on input x looks like
1) = Up(Op @ 1da)Up—1 ... U1(Or @ Ida) Ugltho), (2.3)

where Uy, ..., Uy are (2nd)-dimensional unitaries and [¢p) is a fixed (2nd)-dimensional
pure state. Fig. 2.2 Again, we identify a quantum algorithm with its bias. Now, we

can define quantum query complexity.

Definition 2.3. Given f: D C {-1,1}" — {-1,1} and € > 0, the quantum query
complezity of f with error € is the minimum number of queries made by a quantum
algorithm A such that |A(x) — f(x)| < e for every x € D. We use Q.(f) to refer to
this quantity. We also use Q(f) to refer to Q/3(f).

Remark 2.4. Because of the same reasons as in the classical case, we have that Q(f) =
O(Q.(f)) for any constant 0 < ¢ < 1.

Remark 2.5. Although complex numbers are necessary to describe quantum physics
[RTW*21], the quantum query complexity of a function does not change if we assume
that the underlying Hilbert space is real, thanks to the construction in [MMGO09].
Furthermore, every real square matrix with operator norm at most 1 (largest singular
value at most 1) is a convex combination of orthogonal matrices. Putting both things
together, we have that for the purpose of quantum query complexity we may assume
that |io) is a unit vector of a real Hilbert space and that Uy, ...,U; are real square

matrices with operator norm at most 1.

12
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We will also analyze the smallest additive error that a t-query quantum algorithm

can achieve when computing a function f: D C {—1,1}" — R, which is given by

E(f,t) :==inf {e >0 | 3 t-query quantum algorithm A with (2.4)
|f(z) — A(z)| <e Vaz e D}.

Note that £(f,t) and Q.(f) are similar quantities conceptually, as they both encapsu-
late a notion of optimal quantum algorithm, but they do it in different ways. On the
one hand, Q.(f) refers to optimal quantum algorithms to approximate up to a given

error €. On the other hand, £(f,t) refers to the best t-query quantum algorithm.

2.4 Learning theory

The meta question of learning theory is the following. Given an unknown object from
which we can access expensive units of information, how many of these units do we
need in order to obtain an approximation of the object? This is a broad question, that
has many variants depending on: i) the object to learn; i) the access model; iii) the

distance with respect to which we can measure what is a good approximation.

In addition, we will also consider the second-most important meta-question of
learning theory, which is the problem of testing. In some cases, the number of units of
information required to learn is prohibitive, but we may only be interested on whether
the unknown object satisfies a certain property or it is far from it, i.e., to test whether

the object satisfies the property.

In the second part of this thesis, we will mainly focus on learning quantum objects:
quantum query algorithms, quantum channels and Hamiltonians. We will also consider

the problem of testing properties of Hamiltonians.

We will need the following well-known result about distribution learning theory.

See [Can20, Theorem 9] for a proof.

Lemma 2.6. Let p = {p(z)}. be a probability distribution over some set X. Let
p' = (p/(x))s be the empirical probability distribution obtained after sampling T times
from p. Then, for T = O((1/€)*1og(1/4)), with probability at least 1 — &, we have that
Ip(z) — p'(x)] < e for every x € X.

13



2.5. Fourier and Pauli analysis

2.5 Fourier and Pauli analysis

In this section, we describe Fourier expansion of Boolean functions and of different
quantum objects (states, unitaries, channels) that we consider throughout this work.
Note that the terms Pauli expansion and Fourier expansion will often be used inter-

changeably in the context of quantum objects .

Fourier expansion. In this section we will talk about the space of functions defined
on the Boolean hypercube f:{—1,1}" — R endowed with the inner product (f,g) =
E.[f(z)g(x)], where the expectation is taken with respect to the uniform measure of
probability. For s € {0,1}", the Fourier characters, defined by xs(z) = [L;cqupp(s) Zi>
constitute an orthonormal basis of this space. Hence, every f can be identified with a
multilinear polynomial (a polynomial that is affine on every variable) via the Fourier
expansion

f= Y Foe (25)

s€{0,1}n

~

where f(s) are the Fourier coefficients given by

~

f(s) = (X, ) = Ba[f (2) x5 (2)]. (2.6)

~

The degree of f is the minimum d such that f(s) = 0 if |s| > d. We will often use

Parseval’s identity:

IF13 = (f. ) = D F(s)% (2.7)
s€[n]

We will also consider the ¢,-norms of the Fourier spectrum, which are defined as

1/p

1Al =1 > 1Fs)

se{0,1}»

The supremum, infinity or £, norm of such an f is || f||cc = max, |f(z)|. The variance
of f is given by
Varlf] = > F(S),

|S[>1

and the influence of the i-th variable by

Inf;[f] = F*(S) = E.

S3i

14
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where given z € {—1,1}" and i € [n], 2®" is the element of {—1,1}" obtained by flip-
ping the ith entry of 2. The maximum influence of f is MaxInf[f] := max;¢,) Inf;[f].
One may interpret Var[f] as the deviation of f from its expectation and Inf;[f] as the

deviation of f from its expectation that is due to varying the i-th variable.

Remark 2.7. We will also use different notation for the indexing of the characters.
Namely, given s € {0, 1}"™ we will identify it with its support S, so, for example, xs(x)
will be given by [];cg .

Pauli expansion of operators. Here, we introduce the Pauli analysis for opera-
tors, which was first explored by Montanaro and Osborne [MOO08]. We consider My
endowed with the usual inner product (4, B) = + Tr[ATB]. The tensor product of
Pauli operators form an orthonormal basis for this space. The Pauli expansion of a

matrix M of My is given by

M= Y M@)o, (2.8)
z€{0,1,2,3}"

where M (x) = (04, M)are Pauli coefficients of M. We will refer to the collection
of non-zero Pauli coeflicients {M\ (z)}: as the Pauli spectrum of M with the set of
corresponding strings denoted by spec(M). As {o,}, is an orthonormal basis, we

have a version of Parseval’s identity for operators.

M3 = (M, M)= > [M(x)]* (2.9)
z€{0,1,2,3}"

In particular, for U € Uy, this implies that (|(7(33)\2)m is a probability distribution.
We will also consider the p-norms of the Pauli spectrum, which are defined as
1/p
M|, = Y. IM@)P

z€{0,1,2,3}"

We now define a notion of degree for states and unitaries that generalizes the classical

notion of Fourier degree (see [MOO08, Section 5]).

Definition 2.8 (Degree of a matrix). Given M € My its degree is the minimum d
such that ]\//T(x) =0 for any = € {0,1,2,3}" with |z| > d. Here, |z| is the cardinality
of the set {i € [n] : z; # 0}.

15
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Pauli expansion of superoperators. Here, we introduce the Pauli analysis for
superoperators, which was first explored by Bao and Yao [BY23]. We consider the
space of superoprators (linear maps from My to My ) endowed with the inner product
(®, V) = (J(®),J(¥))/N2. An orthonormal basis for superoperators is defined using
characters

Do y(p) = 0wpoy, (2.10)

for any x,y € {0,1,2,3}". The Pauli expansion of superoperators and hence quantum

channels is then defined as

o= Y O(z,y)0a,, (2.11)
z,y€{0,1,2,3}n

where ®(z,y) = (®,,, ®) are the Pauli coefficients of the superoperator. As {®, ,}.

is an orthonormal basis, we have a version of Parseval’s identity for superoperators

o3 = (@,®) = Y [¥xy)

z,y€{0,1,2,3}n

We will also consider the p-norms of the Pauli spectrum of superopertors, which are

defined as
1/p

12, = Yo Byl

z,y€{0,1,2,3}"

If @ is a channel, then P = (@(w,y))my has a couple of important properties [BY23,

Lemma 8§].

Fact 2.9. If ® is a channel, then d is a state unitarily equivalent to v(®). In particular,

(®(z,x)), is a probability distribution.

The degree of a superoperator is defined in the analogue way to operators.

Definition 2.10 (Degree of a superoperator). Given a superoperator ® its degree is
the minimum d such that $(x,y) =0 for any z,y € {0, 1,2,3}™ with |z| + |y| > d.

16
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2.6 Polynomials

For p € R[zy,...,z,] we define the following quantities, which are seminorms and

norms when restricted to the space of multilinear polynomials,

[Plloc == sup |p(z)], (212)
ze{—1,1}"
1
Ipllg == (Egeq—1,13n[p(2)[*)7, for ¢ € [1,00), (2.13)

We will say that a a polynomial p is bounded if its restriction to the Boolean hypercube

takes values in the interval [—1, 1].

Univariate polynomials

We list a few well-known results about univariate polynomials. For K € {R, C}, we will
use K[z1,...,2,] to denote the space of polynomials with coefficients in K depending
on variables x1,...,x, € K. We will use K[x1,...,x,|=: to refer to the space of forms
of degree ¢ (or homogeneous polynomials of degree t), which are those whose only
non-zero coefficients correspond to monomials of degree t. We will use K[x1, ...,z ]<;
to refer to the space of polynomials of degree at most ¢. A polynomial is multilinear
if it is affine on every variable. Given f : {-1,1}" — R, we will identify f with
the unique multilinear polynomial p € R[xy,...,x,] such that f(z) = p(z) for every
x € {—1,1}". The latter polynomial is given by the Fourier expansion of f.

Proposition 2.11 (Markov brothers’ inequality). Let p € R[z]| have degree at most
d. Then, sup,e(_y 1) [/ (2)] < d® sup,ep 1y [p(2)].

Definition 2.12. Let p € R[z1,...,2,]. Then, p is symmetric if for every = € S,, and
every € R™ we have that p(z) = p(7 o z).

Proposition 2.13 (Minsky-Papert symmetrization principle [MS69]). Consider a
symmetric multilinear polynomial p € Rlxq, ..., x,] of degree d. Then, there is a uni-
variate polynomial q : R — R of degree d such that sup,¢(_1 11q(y)| = supgeq_1 13 [P(2)]
and q(>,; xi/n) = p(x) for every x € {—1,1}".

2.7 Completely bounded norms

We will introduce the completely bounded norm of a multilinear form. Informally, it is
a variation of the infinity norm where the supremum is not only evaluated on scalar

inputs, but also on matrix inputs.

17
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Definition 2.14 (Multilinear forms). Let K € {R,C}. Amap T : K" x---xK" - K
is a t-linear form if it is linear with respect to every copy of K". We will also use
multilinear forms to refer to these functions. We will also identify every t-linear form
with a tensor 7' € (K™)! such that

T(x1,...,0) = Z Tizy (i1) - - - e (ie)

ie[n]t

for every x1,...,z; € K™ This tensor is uniquely determined by
/Ti = T(6i17...,€it)

for every i € [n]".

Throughout this thesis, we will use the notions of multilinear form and tensor

interchangeably.
Definition 2.15. Let K € {R,C}. Let m € Nand 7 : K" x --- x K" = (K")! - K
be a t-linear form. We define the t-linear form T,,, : M)} x --- x M — M,, by

Tm(Xla"'aXt) = Z 711‘)(1(11))(}(“)

ie[n]t

for every Xy,..., X, € M. We define its norm as
[Tl == sup |T'(X1, ..., X¢)llop,

where the supremum runs over all X, ..., X, € M7 with || X1(i1)|op, - - - » [| X (%) [Jlop <
1.

Remark 2.16. The supremum of ||T;,,|| does not change if X, (i) are not only contrac-
tions but also orthogonal matrices in the real case, or unitary matrices in the complex
case. This follows from the Krein-Milman theorem and the fact that orthogonal (uni-

tary) matrices are the extreme points of the set of real (complex) contractions.

Definition 2.17 (Completely bounded norm of multilinear form). Let 7" : K™ x - - - x
K" = (K")! — K be a t-linear form. Its completely bounded norm is given by

”T”Cb ‘= sup HT7YL||'
meN

Notably, for the supremum in the completely bounded norm, one can take X; =

18
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-+« = Xy. Thus, one could say that polarization constant for the completely bounded

norm is 1.1

Proposition 2.18. Let T' € R"*"*" pe a t-tensor. Then,
1Tty = sup {[IT(X,..., X)[lop, d €N},

where the supremum runs over all contractions X(1),...,X(n) € M,, and all m € N.

Proof. Let ||T||| be the expression in the right-hand side of the statement. Note that it
is the same as the expression of ||T'||ch, but now the contraction-valued maps X,..., X;
are all equal. This shows that [|T]| < ||T|lcb- To prove the other inequality, let
X1,...,X¢: [n] = By, and u,v € S471. Now, define the contraction-valued map X
by X (i) = > epy eser 1 @ X4(i) for i € [n], and define the unit vectors v’ :=e; ® u
and v’ := e;11 ® v. They satisfy

(u, X1(i1) .. X (ig)v) = (', X (1)0') for all i € [n],
so in particular

> Tilu, X1 (in) . X (i)v) = .Z Ty, X (I)v').

i€[n]t i€[n]t

Taking the supremum over all maps X, and wu,v shows that ||T||e, < [|T|, which

concludes the proof. O

2.7.1 Grothendieck inequality

Let K € {R,C}. Given a bilinear form A : K® x K* — K, we can write its infinity

norm as

s | =]y |<1

Ao = sup | > Ay
]

i,jE[n

In Banach space theory a t-linear map 7' : X X --- x X — Y determines a homogeneous degree-t
polynomial P: X — Y : A — T(A,...,A). The operator norms of T and P are equivalent if T is
symmetric: |T|| < ||P|| < K(¢)||T||, where K(t) is the polarization constant of degree ¢t. For a survey
on the topic see [MMFPSS22, Section 5.1].

19



2.8. Semidefinite programming

For K = R the absolute value inside the supremum is not necessary, and by linearity

we have that the supremum is attained in the extreme points, so

[Alloc = sup Z Aijziy;.

x5,y €{—1,1} i,j€[n]

For K = C by the maximum modulus principle we have that

[Allc =  sup Z Aijriy;| -

|zi|=]yi|=1 i,j€[n]

Also, note that [|A|lco < | 4||cb-

Theorem 2.19 (Grothendieck’s theorem [Gro53]). There ezists a constant K < oo
such that for any n € N and any bilinear form A : K" x K" — K, we have

[Alleb < K| Alloo- (2.14)
Equivalently,
max Aiiziyi | < K max A ug,v;),
frabluni< | 2 SIS \|u¢\|27\|vj\|2fl,,z il )
i,5€[n] i,j€[n]

where the supremum runs over all d € N and all vectors u;,v; € K.

The smallest possible constant K for which Theorem 2.19 holds is known as the
Grothendieck constant, Kg. Determining the precise value of Kg is a notorious open
problem posed in [Gro53]. For K = R the best-known lower and upper bounds place
it in the interval (1.676,1.782) [Dav84, Ree91, BMMNI13|. For K = C, we know that
the constant lies in (1.338,1.405) [Haa87, Dav06].

2.8 Semidefinite programming

Semidefinite programming is an extension of linear programming that includes a bigger
family of problems and can still be efficiently solved up to arbitrary precision (see
[LRO5] for an introduction to semidefinite programming). To be more precise, let
Sy, be the space of symmetric matrices of M, and let S;' be the cone of positive

semidefinite matrices. A collection of matrices C, By, ...,B; € S,, and a vector b € R

20
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define a primal semidefinite program (P) and a dual semidefinite program (D), which

in their canonical form are given by

(P) inf  (C,Y) (D) sup (b,v) (2.15)
s.t. YeS;t s.t. y €R!
B(Y) =b C—B(y) € 57,

where B : S,, — R! is given by B(Y) := ((B1,Y),...,(B;,Y)), B*(y) = >icn YibBi
and (B,Y) = Tr(BY). A semidefinite program is feasible if there exists an instance
satisfying its constraints.

Note that if all matrices C, By, ..., B; were diagonal, (P) and (D) would be linear
programs. Indeed, in that case the value of (P) would not change if we further impose
that Y is diagonal, which makes (P) a linear program. Also, the constraint C'—B*(y) €
St is equivalent to saying that the diagonal entries of C' — B*(y) are non-negative, so
(D) is also a linear program.

It is always satisfied that the optimal value of (P) is at least the optimal value
of (D), what is known as weak duality. In addition, under some mild assumptions

provided by Slater’s theorem, both values are equal, what is known as strong duality.

Theorem 2.20 (Slater’s theorem). Let (P) and (D) be a primal-dual pair of semidef-
inite programs, as in Eq. (2.15). Assume that (P) is feasible and there exists a strictly
positive instance for (D), i.e., there evists y € R! such that C — B*(y) is strictly
positive. Then the optimal values of (P) and (D) are equal.

2.9 Concentration inequalities

We state a few concentration inequalities that we use often. All of them can be found
in [BLM13].

Lemma 2.21 (Hoeffding bound). Let X, ..., X, be independent-random variables
that satisfy —a; < |X;| < a; for some a; > 0. Then, for any T > 0, we have

-2
Pr[ Z X, — Z E[X;]| > T] < 2exp <2(a% " “.+a%1)> .
1€[m] 1€[m]
Lemma 2.22 (Bernstein inequality). Let X1,...,X,, be independent-random vari-
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ables with | X;| < M for some M > 0. Then,

PrH S X - Y E[x)]

i€[m] i€[m)]

> ] <2e /2
T xp | — .

S S VX M3
Lemma 2.23 (McDiarmid’s inequality). Let f : {—1,1}" — R such that |f(x) —

F(@®)| < c for every x € {—1,1}" and every i € [n]. Then, over a uniformly random

x and for any € > 0 we have that

PLll](0) - By )] 2 o) < e (<25 ).

22





