

Universiteit
Leiden
The Netherlands

Quantum computing, norms and polynomials

Escudero Gutiérrez, F.

Citation

Escudero Gutiérrez, F. (2026, February 10). *Quantum computing, norms and polynomials*. Retrieved from <https://hdl.handle.net/1887/4289617>

Version: Publisher's Version

License: [Licence agreement concerning inclusion of doctoral thesis in the Institutional Repository of the University of Leiden](#)

Downloaded from: <https://hdl.handle.net/1887/4289617>

Note: To cite this publication please use the final published version (if applicable).

Quantum computing, norms and polynomials

Proefschrift

ter verkrijging van
de graad van doctor aan de Universiteit Leiden,
op gezag van rector magnificus prof.dr. S. de Rijcke,
volgens besluit van het college voor promoties
te verdedigen op dinsdag 10 februari 2026
klokke 16:00 uur

door
Francisco Escudero Gutiérrez

geboren te Madrid

in 1997

Promotor:

Dr. J. Briët

(CWI & Universiteit Leiden)

Co-promotor:

Prof.dr. S.O. Fehr

(CWI & Universiteit Leiden)

Promotiecommissie: Prof.dr.ir. G.L.A. Derkx

Prof.dr. L. Ducas

(CWI & Universiteit Leiden)

Prof.dr. M. Laurent

(Tilburg University)

Prof.dr. C. Palazuelos

(Universidad Complutense de Madrid)

Dr. H. Zhang

(University of South Carolina)

Copyright © 2026 Francisco Escudero Gutiérrez.

This thesis was funded by the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement no. 945045, and by the NWO Gravitation project NETWORKS under grant no. 024.002.003.

Cover design by Marta Crespí Campomar and Francisco Escudero Gutiérrez.

Para vosotros: mamá, papá, Nacho y Raquel.

Acknowledgements

I want to start these acknowledgements by thanking the most important person in my PhD journey: my advisor, Jop Briët. Since the first moment, you did not care only about research, but also about my personal well-being and my mental health. You introduced me to the beautiful world of quantum query complexity and its interplay with functional analysis, making me a better researcher by showing in our meetings what are the questions to be asked. Furthermore, you made sure to connect me with other researchers that I ended up collaborating with. You also made of me a way better writer than the one I was four years ago. Last but not least, you have always been a role model, as a great researcher with an excellent work-personal-life balance, who is aware of his surroundings, and who cares about his colleagues in a personal way. I am certain that you are going to be a great group leader.

I also want to devote a special mention to my promotor, Serge Fehr. Thanks, Serge, for kindly agreeing to be my promotor at the last stage of my PhD, and for being available and actively involved in the process of graduation since then.

I want to continue by thanking three of my collaborators, who were more than collaborators: Srinivasan Arunachalam, Sander Gribling and Carlos Palazuelos. Thank you, Srini, Sander, and Carlos, for the support, encouragement, career advice and writing tips throughout all my PhD. I also want to thank Ronald de Wolf. Thanks, Ronald, for offering yourself to be on my committee when we were struggling to form it, for very useful feedback on my thesis, and for the constant support during these four years.

Now, it is turn to thank my colleagues for making the office a place where I enjoyed many, many hours of my life. To Marten, for the dinners at our places, the trips, the conversations, for being paranympths together, and for your laugh that brings joy wherever you go. To Sebas, for the money-saving advice, for caring about the new colleagues, and for always being open to a conversation with whoever is feeling alone. To Randy, for the times we have gone out for dinner, for the parties, and for your brilliant jokes. To Toto, for the political discussions, for the cinema sessions, and for all the culture I have learnt from you. To Dyon, for the padel sessions, for bringing me to the top of the foosball championship, for the trips together, and for the honor of letting me be your paranympth. To Garazi, for sharing views, for being there for each other when we had to *desahogarnos*, and for showing me that things can be done in a different way. To Davi, for the fun dinners, parties, and foosball sessions. To Lynn, for organising the junior meeting together and the support you gave me during stressful times. To Nikhil, for the visit to Liverpool and for making foosball a way better experience. To Simona and Jelena, for the protests and parties together. To Léo, for making me a better foosball player, and for that great weekend in the South

of France. To Arjan, for the collaborations, the trips, and your house parties. To Jordi, for the constant opinion and ideas exchange, and for the fun week in Okinawa. To Adam, for the trip to Tenerife, for the nice time together in the office, and for always listening to feelings. To Yanlin, for always asking me how I was doing when you (accurately) thought that I was feeling blue. To Subha, for the dinners and for always giving me confidence when I asked for advice. To Quinten, for always being down for a conversation about any topic. To Luca and Pippo, for the dinners and the time spent sharing the office. To Francesco and Nunzia, for being the social catalyst during your stay at QuSoft. To Philip, for the company during the Networks weeks and the boat trips. To Harold and Joran, for the parties and the good conversations.

I want to continue by thanking all the friends I made outside the office during these four and a half years in Amsterdam. To Ade, Ake, Cris, Johny, Mateo, Nil and Prudi, for the football games, the losses and the trophies. To Chelsea, René, and Marion, for the evenings and trips. To my comrades Aday, Javi, Juanma, Juanjo, Rafa, Rafa Koldo, Sara and Vanesa, who allowed me to keep doing politics in the Netherlands. To Juan Luis, *por tomarnos algo de vez en cuando*. To Cami, Clara, Garazi, Jelena, Lorenzo, Said, Simona, Shane and Toto for protesting together. To Quique, Isa and Marina, for the drinks and the Catan nights. To Natalia, for the museum afternoons together. To Amadeo, for being a good friend and supportive in my first year in the Netherlands. To Robin, for the coffee conversations at Nikhef. To Marta, for the cinema sessions, and for designing the beautiful cover of this thesis. To Fede, for the football, listening, and sharing. To Ric, for always having an original conversation to start. To Angel, for the walks and reflections together. To Milagros, for constantly caring for your friends. To Yasan, for the clothes I have inherited from you, and for always being a good *habibi*. To Eva, for being there in the cinema sessions, the personal conversations, and the parties. To Joie, for bringing me happiness and hope. Dank je dat je me gelukkig maakt. To Bernat, for being the most fun possible roommate ever. To Llorenç, for being my *husband* and my best friend these four years. Also, thanks to Ana, Blair, Carmen, Ferran, Keelan, Matas, Nuria and Ramón. My people from Spain have also supported me during these years, being proud and happy of me every time I saw them. The last pieces of gratitude are for them.

Muchas gracias a mis *Hoplitas*, a mis chicos y chicas de *Mortero*, a mis viajeros de *Siguiente País en Conflicto*, a mis colegas del *Hoy se lía*, y a mis *Camineiros*. También gracias a vosotros: Ach, Benjamín, camaradas del Círculo, Deif, Fer, Fiol, Geri, Igna, Radu, soles de la Conce, y Tamara.

Finalmente, quiero dar muchas gracias a toda mi familia, por vuestro apoyo incondicional durante toda mi vida y este doctorado. Esta tesis está dedicada a vosotros: mamá, papá y Nacho. También a Raquel, por lo orgullosa que siempre estabas de mí, al igual que yo lo estoy y siempre estaré de Rubén.

Contents

1	Introduction	1
1.1	Overview	3
1.2	Relation to literature	4
2	Preliminaries	7
2.1	Notation	7
2.2	Quantum mechanics	9
2.3	Quantum query complexity	10
2.4	Learning theory	13
2.5	Fourier and Pauli analysis	14
2.6	Polynomials	17
2.7	Completely bounded norms	17
2.7.1	Grothendieck inequality	19
2.8	Semidefinite programming	20
2.9	Concentration inequalities	21
I	Quantum query complexity via polynomials	23
3	The quantum polynomial method is complete	25
3.1	Introduction	25
3.2	Quantum lower bounds by polynomials	26
3.2.1	Quantum upper bounds by polynomials	28
3.3	The completely bounded polynomial method	29
3.3.1	Examples of quantum upper bounds by polynomials	32
3.4	From polynomials to quantum algorithms	35
3.4.1	Christensen-Sinclair factorization via SDPs	36

Contents

3.4.2	A hierarchy of SDPs to find quantum algorithms	47
4	Grothendieck inequalities characterizes converses to the polynomial method	51
4.1	Introduction	51
4.2	Preliminaries	54
4.3	$\mathcal{E}(p, t)$ for block-multilinear forms	57
4.4	Separations between infinity and completely bounded norms	61
4.5	Grothendieck inequalities characterize converses to the polynomial method	66
4.5.1	Characterizing $K_G^{\mathbb{R}}$ with 1-query quantum algorithms	66
4.5.2	No converse for the polynomial method	68
5	Towards Aaronson and Ambainis conjecture via Fourier completely bounded polynomials	71
5.1	Introduction	71
5.2	The Fourier completely bounded t -norms	75
5.3	Quantum query algorithms are Fourier completely bounded polynomials	81
5.4	Aaronson and Ambainis conjecture for (Fourier) completely bounded polynomials	84
5.4.1	AA conjecture for block-multilinear completely bounded polynomials	84
5.4.2	AA conjecture for homogeneous Fourier completely bounded polynomials	89
II	Quantum learning theory	93
6	Bohnenblust-Hille inequalities and their applications to learning theory	95
6.1	Introduction	95
6.2	Bohnenblust-Hille Inequality for the completely bounded norm	100
6.3	Bohnenblust-Hille inequality in other contexts	108
6.3.1	Boolean functions	108
6.3.2	A non-commutative BH inequality	110
6.4	Learning low-degree quantum objects	114

7 Testing and learning quantum Hamiltonians	123
7.1 Introduction	123
7.2 Preliminaries	130
7.3 Technical results	131
7.4 Testing Hamiltonians	135
7.4.1 Testing local Hamiltonians	135
7.4.2 Testing sparse Hamiltonians	137
7.5 Learning Hamiltonians	141
7.5.1 Learning unstructured Hamiltonians	141
7.5.2 Learning local Hamiltonians	144
7.5.3 Learning sparse Hamiltonians	146
 III Bonus	 147
8 Cute remarks	149
8.1 Generalizing a work of Kalai and Schulman	149
8.2 The adversary method via Grothendieck's inequality	151
8.3 Average sensitivity lower bounds all reasonable complexity measures .	154
 Bibliography	 157
 Abstract	 175
 Samenvatting	 177
 Curriculum Vitae	 179