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mamá, papá y Nacho. También a Raquel, por lo orgullosa que siempre estabas de mı́,

al igual que yo lo estoy y siempre estaré de Rubén.
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Chapter 1

Introduction

Motivated by the necessity to perform calculations, humankind has developed algo-

rithms: sequences of simple computation steps designed to perform (more) complex

computations. Maybe the most basic calculation is the sum of two natural numbers,

and the best-known example of an algorithm is the set of instructions we learn in

primary school to perform this task. A slightly more involved algorithm is the one

to multiply two natural numbers, but it is still taught at primary school. Consider-

ably more difficult is the inverse process of factoring, consisting of writing a natural

number as a product of prime numbers, which are the natural numbers that cannot

be written as the product of two other natural numbers (apart from the product of

1 and themselves). The definition of factoring involves abstract concepts, and thus,

understanding the algorithms for that problem requires elaborate mathematical theo-

ries. Despite what its description might suggest, factoring is a problem with practical

relevance, as cybersecurity is based on the inability of current computers to factor

big natural numbers efficiently. The capacities of these computers are determined by

the behavior of the physical units they are composed of, which are governed by clas-

sical physics, and thus we refer to them as classical computers. By contrast, in the

80’s Yuri Manin and Paul Benioff proposed an idea later popularized by Feynman: to

build computers with quantum particles, described by the richer theory of quantum

mechanics [Ben80, Man80]. This gave birth to the idea of quantum computers, whose

capabilities would exceed those of classical computers. Notably, Peter Shor discovered

a fast algorithm for factoring large numbers in a quantum computer [Sho97]. As of

today, we are on the path towards realizing a fully functional quantum computer.

Factoring is not an isolated case, but rather one of many computational problems

1



1.1.

with practical relevance whose analysis benefits from the use of mathematical struc-

tures. In this thesis, we will approach several of such problems, all related to quantum

computing, from the perspective of theoretical computer science, i.e., establishing rig-

orous guarantees. The questions we will consider fall into two categories. The first is

query complexity, a model of computation where the power and limitations of quan-

tum and classical computers can be rigorously studied. In particular, the foundational

quantum algorithms by Peter Shor, to factor large numbers, and by Lov Grover, to

find a marked element in a list, belong to this model [Gro96, Sho97]. The second cat-

egory is learning theory, where the meta-question is how to characterize an unknown

object to which we have limited access. In contrast with recent breakthroughs in ma-

chine learning, such as ChatGPT, our findings do not focus on immediate applicability

but instead provide rigorous performance guarantees. In other words, our results fit

into the subfield of computational learning theory initiated by Leslie Valiant in 1984

[Val84].

To address these questions, we will borrow and develop tools of non-applied mathe-

matical branches, especially from functional analysis. Functional analysis is the branch

of mathematics that studies functions in a very general way, even when they depend on

an unbounded number of variables. Relevant examples of functions are polynomials,

which can be written as sums of monomials, that are products of numbers and vari-

ables. Thanks to their elementary definition, polynomials are ubiquitous and motivate

deep mathematical questions. Some of these questions are related to the comparison

of norms of polynomials, which are measures of the size of the polynomial. How these

norms relate has motivated many celebrated advances of mathematics during the last

century, such as the works of Alexander Grothendieck, Frederic Bohnenblust and Carl

Einar Hille [Gro53, BH31].

Polynomials have found applications in theoretical computer science, like the poly-

nomial method of query complexity, a tool to prove limitations of quantum computers

[NS94, BBC+01]. Maybe more implicitly, polynomials have also played a role in quan-

tum mechanics, as, for instance, Hamiltonians, which model the interactions between

quantum particles, can be regarded as polynomials [MO08].

In this thesis, as explained in more detail in Section 1.1, we make progress in

the understanding of the polynomial method and propose new algorithms to learn

quantum objects. In parallel, we will prove functional-analytic statements relating

different norms of polynomials.

This thesis is a product of a four-year PhD program developed at the Centrum

Wiskunde & Informatica (CWI) in Amsterdam.

2



Chapter 1. Introduction

1.1 Overview

This thesis is divided into three parts, preceded by a preliminary chapter (Chapter 2)

where we introduce notation, definitions, and basic results.

In Part I, we study several questions related to quantum query complexity and

polynomials. Query complexity is a model of computing where the aim is to approxi-

mate a known function f on a hidden input x. The algorithm can access x via queries

that reveal units of information about x. The goal is to determine how many queries

an algorithm needs to solve such a task. Depending on the nature of these queries,

one can speak about classical or quantum query complexity.

In Chapter 3, we show that the polynomial method is complete. This method

was introduced and successfully applied to show lower bounds on quantum query

complexity [BBC+01, AS04]. Recently, it was refined as a tool to prove upper bounds

[ABP19], which also led to a classical optimization algorithm to determine quantum

query complexity [GL19]. In this chapter, we review these advancements and complete

this picture by proposing a constructive method to design quantum algorithms via

polynomials.

In Chapter 4, we show two technical results. The first is that the Grothendieck

constant, which appears in the celebrated Grothendieck inequality that relates two

norms of polynomials of degree 2, can be characterized in terms of quantum algorithms

that make 1 query. The second result shows that quantum algorithms that make 2

queries are not equivalent to a certain class of polynomials because of the failure

of Grothendieck’s inequality for polynomials of degree greater than 2, answering a

question by Aaronson, Ambainis, Iraids, Kokainis, and Smotrovs [AAI+16].

In Chapter 5, we make progress on the Aaronson and Ambainis (AA) conjecture.

The AA conjecture asserts that certain low-degree polynomials have a very influential

variable [AA09]. Although this is a functional-analytic conjecture, it implies that

quantum query complexity can only be much lower than classical query complexity

for functions where some structure about the hidden input is promised beforehand.

Our contributions in this chapter are formulating a weaker conjecture that retains the

implications for query complexity, and proving it in a particular case.

In Part II, we explore several questions related to learning quantum objects that

can be understood as polynomials. This analogy was pointed out by Montanaro and

Osborne, who showed that polynomials can be embedded into quantum operators

while preserving relevant properties such as the degree [MO08].

In Chapter 6, we prove two new versions of the Bohnenblust-Hille inequality, which

3



1.2. Relation to literature

compares two norms of polynomials. We apply the first of them to learn quantum

query algorithms. Then, we use the second to learn quantum channels, which are the

operations allowed in a quantum computer.

In Chapter 7, we prove some of the first results about learning quantum Hamiltoni-

ans. Due to the Schrödinger equation, Hamiltonians model the evolution of quantum

systems. In this chapter, we design algorithms to infer properties of and, in some

cases, fully characterize an unknown Hamiltonian by accessing the corresponding time

evolution.

Part III is a bonus that just consists of Chapter 8, where we gather three new

proofs, that we find elegant and concise, of known results related to the analysis of

Boolean functions.

1.2 Relation to literature

The content of this thesis is based on the following papers.

• Section 3.4 is a quantum-oriented exposition of the following work, originally

written for a non-applied mathematical audience:

[Esc25] Francisco Escudero Gutiérrez. Christensen-Sinclair factorization via

semidefinite programming. Linear Algebra and its Applications, 714:28–44, 2025.

• Chapter 4 is based on:

[BE22] Jop Briët and Francisco Escudero Gutiérrez. On Converses to the Poly-

nomial Method. In 17th Conference on the Theory of Quantum Computation,

Communication and Cryptography (TQC 2022), volume 232 of Leibniz Interna-

tional Proceedings in Informatics (LIPIcs), pages 6:1–6:10. Schloss Dagstuhl –

Leibniz-Zentrum für Informatik, 2022.

[BEG24] Jop Briët, Francisco Escudero Gutiérrez, and Sander Gribling. Grothendieck

inequalities characterize converses to the polynomial method. Quantum, 8:1526,

2024.

• Chapter 5 is based on:

[Esc24a] Francisco Escudero Gutiérrez. Influences of Fourier completely bounded

polynomials and classical simulation of quantum algorithms. Chicago Journal

of Theoretical Computer Science, 2024.

Also presented at the 18th Conference on the Theory of Quantum Computation,

Communication and Cryptography (TQC 2023).

4



Chapter 1. Introduction

• Chapter 6 is based on:

[ADEP25] Srinivasan Arunachalam, Arkopal Dutt, Francisco Escudero Gutiérrez,

and Carlos Palazuelos. A cb-Bohnenblust–Hille inequality with constant one and

its applications in learning theory. Mathematische Annalen, pages 1–30, 2025.

A complementary version of [ADEP25] also appeared in the proceedings of

ICALP’24:

[ADEP24] Srinivasan Arunachalam, Arkopal Dutt, Francisco Escudero Gutiérrez,

and Carlos Palazuelos. Learning low-degree quantum objects. In 51st Interna-

tional Colloquium on Automata, Languages, and Programming (ICALP 2024),

pages 13–1. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2024.

Also presented at the 19th Conference on the Theory of Quantum Computation,

Communication and Cryptography (TQC 2024).

• Chapter 7 is based on:

[ADE25] Srinivasan Arunachalam, Arkopal Dutt, and Francisco Escudero Gutiérrez.

Testing and learning structured quantum Hamiltonians. In Proceedings of the

57th Annual ACM Symposium on Theory of Computing, STOC ’25, page 1263–1270,

New York, NY, USA, 2025. Association for Computing Machinery.

Also presented at the 20th Conference on the Theory of Quantum Computation,

Communication and Cryptography (TQC 2025). A journal version has already

been accepted in Communications in Mathematical Physics.

Additionally, this thesis contains previously unpublished work. More precisely:

• Chapter 3 contains a new exposition of the (completely bounded) polynomial

method. In particular, we prove that the refinement of polynomial degree pro-

posed in [ABP19] upper bounds quantum query complexity in an almost self-

contained way. For this, we avoid the functional analytic black-boxes of the

original proof, and only use tools from theoretical computer science.

• Chapter 8 contains new proofs of known results, with marginal improvements,

that we find elegant and concise. All of these results are related to the analysis

of Boolean functions f : {−1, 1}n → {−1, 1}.

Finally, the following papers were also completed during my PhD.

• [EFFJ+23] Francisco Escudero Gutiérrez, David Fernández-Fernández, Gabriel

Jaumá, Guillermo F. Peñas, and Luciano Pereira. Hardware-efficient entangled

5



1.2. Relation to literature

measurements for variational quantum algorithms. Physical Review Applied,

20(3), 2023.

• [EM24] Francisco Escudero Gutiérrez and Garazi Muguruza. All Sp notions of

quantum expansion are equivalent. arXiv preprint arXiv:2405.03517, 2024.

• [BE24] Jinge Bao and Francisco Escudero Gutiérrez. Learning junta distribu-

tions, quantum junta states, and QAC0 circuits. arXiv preprint arXiv:2410.15822,

2024.

Presented at the 25th Asian Quantum Information Science Conference (AQIS’25).

• [ACE+25] Amira Abbas, Nunzia Cerrato, Francisco Escudero Gutiérrez, Dmitry

Grinko, Francesco Anna Mele, and Pulkit Sinha. Nearly optimal algorithms to

learn sparse quantum Hamiltonians in physically motivated distances. arXiv

preprint arXiv:2509.09813, 2025.

• [BCE+25] Andreas Bluhm, Matthias C. Caro, Francisco Escudero Gutiérrez,

Aadil Oufkir, and Cambyse Rouzé. Certifying and learning quantum Ising

Hamiltonians. arXiv preprint arXiv:2509.10239, 2025.
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Chapter 2

Preliminaries

2.1 Notation

Vectors. Given z ∈ C, we use z∗ to refer to its complex conjugation. We will

use {e1, . . . , em} to refer to the canonical basis of Kn. We will see Kn as a linear

space equipped with the usual inner product ⟨z, z′⟩ =
∑
i∈[n] z

∗
i z

′
i, where (zi) are the

coordinates of z in the canonical basis. We use Sn−1 to refer to the set of unit vectors

of Kn. For p ∈ [1,∞), the ℓp norms of such vectors are

∥z∥p = ∥z∥ℓp =

∑
i∈[n]

|zi|p
 1

p

.

The ℓ2 norm is the norm induced by the mentioned inner product, and we will often

simply call it ∥z∥. The Lp norms are

∥z∥Lp
=

 1

n

∑
i∈[n]

|zi|p
 1

p

.

For p =∞, ∥z∥∞ = maxi |zi|. Given a normed vector space (V, ∥ ∥) with V ⊆ Kd, the

dual norm of an element v ∈ V is given by

∥v∥∗ = sup{|⟨v, w⟩| | w ∈ V, ∥w∥V ≤ 1}.

7



2.1. Notation

Matrices. Given n ∈ N and K ∈ {R,C}, we use Mn(K) to denote the space of n×n
matrices with entries in K. When K is clear from the context, we will simply write

Mn. Given Z ∈ Mn(C), Z† to denote the adjoint matrix of Z. Given X ∈ Mn(R),

XT to denote the transpose of X We will use Eij to refer to the matrix of Mn whose

(i, j)-entry is 1 and the rest are 0. We will see Mn as a linear space equipped with the

inner product ⟨A,B⟩ = Tr[A†B]. Given n ∈ N, we will use Idn to refer to the identity

matrix of Mn. For p ∈ [1,∞) the Schatten-p norms of a matrix A ∈ Mn, denoted as

∥A∥Sp , are the ℓp norms of their singular values (the singular values are the square

roots of the eigengvalues of A†A). The Schatten infinity norm, ∥A∥S∞ , is the largest

singular value of A. We will often refer to ∥A∥S∞ as ∥A∥op or simply ∥A∥, because it

coincides with the operator norm of A when regarding it as a linear map from ℓ2 to ℓ2,

meaning that ∥A∥S∞ = ∥A∥op = supz ̸=0 ∥Az∥ℓ2/∥z∥ℓ2 . We will refer to the S1 norm as

the trace norm, and denote it as ∥ · ∥tr. We will refer to the S2 norm as the Frobenius

norm, and denote it as ∥ · ∥F . We will say that a matrix A ∈ Mn is a contraction if

∥A∥op ≤ 1. A matrix U ∈ Mn(C) is unitary if U†U = Idn. A matrix O ∈ Mn(R) is

orthogonal if OTO = Idn.

Indices. We write i for a t-tuple i = (it, . . . , it) ∈ [n]t of indices. Given variables

x1, . . . , xn and a t-tuple i ∈ [n]t, we use x(i) to denote the monomial xi1xi2 · · ·xit . Sim-

ilarly, given a matrix-valued map A : [n]→ Rd×d, we write A(i) := A(i1)A(i2) . . . A(it).

Quantum. We write I, X, Y, Z, H to refer to the following 2× 2 matrices.

I =

(
1 0

0 1

)
, X =

(
0 1

1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0

0 −1

)
, H =

1√
2

(
1 1

1 −1

)
.

We will also use σ0 to refer to I, σ1 to X, σ2 to Y and σ3 to Z. Given a matrix A ∈Mn,

its controlled version cA is the matrix of M2n given by

cA =

(
Idn 0

0 A

)
.

A qubit is a 2-dimensional vector space. We will often use n to refer to the number of

qubits, and N to refer to 2n, which is the total dimension of the space of (the tensor

product of) n qubits.

8
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Miscellanea. Given n ∈ N, [n] stands for the set {1, 2, . . . , n}. Sn is the symmetric

group, which is the group of permutations of [n] elements. Given z ∈ Kn and π ∈ Sn,

we define z ◦ π ∈ Kn as (z ◦ π)i = zπ(i). Throughout this thesis we will consider

different constants, all of which will be denoted by C and their value will be clear

from context. We will use Cd to refer to quantities that only depend on d and are

constant with respect to other parameters. We will use δi,j to denote the indicator of

the event i = j. Given a vector z ∈ Kn, Diag(z) is the diagonal matrix of Mn whose

diagonal entries are given by z.

2.2 Quantum mechanics

A n-qubit state ρ is an element of MN that is positive semidefinite and has trace one. A

state ρ is pure if it has rank 1, in which case ρ = |ψ⟩⟨ψ| for some unit vector of MN and

we will also call |ψ⟩ a state. A n-qubit channel Φ : MN →MN is a completely positive

trace preserving linear map. A measurement is a set {Mx}x of positive semidefinite

matrices that sum to the identity. A projector operator valued measurement (POVM)

is a measurement where Mx are projectors. By the postulates of quantum mechanics,

measuring a quantum state ρ with {Mx}x outputs x with probability Tr[ρMx].

We will often use the Choi-Jamiolkowski isomorphism to encode a quantum channel

as a quantum state. We call the resulting state as the Choi-Jamiolkowski state (or CJ

state for short). The CJ representation is given by

J(Φ) =
∑

i,j∈[N ]

Φ (|i⟩⟨j|)⊗ |i⟩⟨j| = (Φ⊗ I)

 ∑
i,j∈[N ]

|i⟩⟨j| ⊗ |i⟩⟨j|

 , (2.1)

which is an element in MN ⊗MN = MN2 . The CJ state v(Φ) is defined to be

v(Φ) =
J(Φ)

Tr[J(Φ)]
=
J(Φ)

N
. (2.2)

According to (2.1), the CJ state v(Φ) can be prepared by first preparing n EPR pairs

(over 2n qubits) and then applying Φ to the n qubits coming from the first half of

each of the n EPR pairs.

Given an d dimensional quantum system, the dynamics of the system are de-

scribed by a Hamiltonian H, which is an self-adjoint matrix of Md(C). For every time

t ∈ [0,∞), a Hamiltonian H defines a time evolution operator U(t) = e−iHt that

determines the time evolution of the quantum system in the following way. If the

9



2.3. Quantum query complexity

system at time t = 0 is described by state ρ, then at time t′ > 0 it will be described

by U†(t′)ρU(t′).

2.3 Quantum query complexity

We will mainly focus on the query complexity of decision problems, those whose answer

is binary: YES or NO, -1 or 1, 0 or 1 . . . These problems can be represented by Boolean

functions f : D ⊆ {−1, 1}n → {−1, 1}. In the setting of query complexity, we are given

a known f and the goal is to compute f on an unknown input x ∈ {−1, 1}n owned by

an oracle. However, we can access this x by making queries/questions to the oracle.

The goal of a good query algorithm is to make as few queries as possible and compute

f(x). We will briefly introduce two models of query complexity, the classical and the

quantum. The interest of quantum query complexity relies on the fact that in it

the strengths and weaknesses of quantum computers can be rigorously studied with

currently-available techniques (see e.g., [Amb18, Aar21, Ham25] for recent surveys).

On the one hand, many of quantum computing’s best-known algorithms, such as for

unstructured search [Gro96], period finding (the core of Shor’s algorithm for integer

factoring) [Sho97] and element distinctness [Amb07], are most naturally described

in the query model. On the other hand, the model admits powerful lower-bound

techniques such as the polynomial method [BBC+01], to which we will devote the first

part of this thesis, and the adversary method, which we will revisit in Section 8.2.

Classical query algorithms

In the classical query model, the queries consist on the most basic questions one could

imagine asking about x, which are asking for entries of x. Formally, a classical query

is an evaluation of the function

ox : [n]→ {−1, 1} : i→ xi.

A classical query algorithm is allowed to do any computation in between queries.

When finished, the algorithm should output −1 or 1. Thus, (deterministic) classical

query algorithms can be represented as decision trees (see Fig. 2.1). On top of this, a

classical query algorithm is also allowed to use randomness, i.e., choosing a decision

tree at random.

Given that for every x the outcome of the algorithm is a binary random variable,

it is characterized by its bias (the difference between the probability of outputting 1

10
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x1

x2

x3

1

1

-1

−1

1

x4

1

1

−1

−1

−1

1

x2

x4

-1

1

1

−1

1

x3

-1

1

1

−1

−1

−1

Figure 2.1: Decision tree representing a 3-query classical algorithm that computes the
function f(x1, x2, x3, x4) = (x1 + x2)x3/2 + (x1 − x2)x4/2.

and the probability of outputting -1). We will thus identify an algorithm A with the

function A : {−1, 1}n → [−1, 1] that maps x to the bias of A on x. Now, we are ready

to define classical query complexity.

Definition 2.1. Given f : D ⊆ {−1, 1}n → {−1, 1} and ε > 0, the randomized

classical query complexity of f with error ε is the minimum number of queries made

by a classical algorithm A such that |A(x)− f(x)| ≤ ε for every x ∈ D. We use Rε(f)

to refer to this quantity. We also use R(f) to refer to R2/3(f) and D(f) to refer to

R0(f).

Remark 2.2. The number 2/3 appearing in the definition of R2/3 is somehow arbitrary,

as for any constant 0 < c < 1 we have that Rc = Θ(R2/3(d)). Indeed, say that c < 2/3.

By definition, we have that R2/3(f) ≤ Rc(f). On the other hand, Rc(f) = O(R2/3(f))

because one can take an algorithm that 2/3-approximates f , run it O(log(1/c)) times

and take the majority outcome, resulting in an algorithm that c-approximates f and

makes O(log(1/c))R2/3(f) queries.

Quantum query algorithms

In a quantum world, the queries to x ∈ {−1, 1}n are evaluations of the controlled

version of the unitary map

Cn → Cn : |i⟩ → xi|i⟩.

11



2.3. Quantum query complexity

U0 U1 UtOx Ox|ψ0⟩

Figure 2.2: Quantum query algorithm.

Thus, it maps |b⟩|i⟩ → (1 + δb,1xi)|b⟩|i⟩ for b ∈ {0, 1} and i ∈ [n], and it can be

represented as the matrix

Ox = Diag(1n, x).

A quantum query algorithm is allowed to use extra quantum memory and to perform

x-independent unitary operations in between queries. Finally, it should perform a

binary measure and output −1 or 1. Thus, before the measurement the state of a

t-query quantum algorithm on input x looks like

|ψt⟩ = Ut(Ox ⊗ Idd)Ut−1 . . . U1(Ox ⊗ Idd)U0|ψ0⟩, (2.3)

where Ut, . . . , U0 are (2nd)-dimensional unitaries and |ψ0⟩ is a fixed (2nd)-dimensional

pure state. Fig. 2.2 Again, we identify a quantum algorithm with its bias. Now, we

can define quantum query complexity.

Definition 2.3. Given f : D ⊆ {−1, 1}n → {−1, 1} and ε > 0, the quantum query

complexity of f with error ε is the minimum number of queries made by a quantum

algorithm A such that |A(x) − f(x)| ≤ ε for every x ∈ D. We use Qε(f) to refer to

this quantity. We also use Q(f) to refer to Q2/3(f).

Remark 2.4. Because of the same reasons as in the classical case, we have that Q(f) =

Θ(Qc(f)) for any constant 0 < c < 1.

Remark 2.5. Although complex numbers are necessary to describe quantum physics

[RTW+21], the quantum query complexity of a function does not change if we assume

that the underlying Hilbert space is real, thanks to the construction in [MMG09].

Furthermore, every real square matrix with operator norm at most 1 (largest singular

value at most 1) is a convex combination of orthogonal matrices. Putting both things

together, we have that for the purpose of quantum query complexity we may assume

that |ψ0⟩ is a unit vector of a real Hilbert space and that U0, . . . , Ut are real square

matrices with operator norm at most 1.

12
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We will also analyze the smallest additive error that a t-query quantum algorithm

can achieve when computing a function f : D ⊆ {−1, 1}n → R, which is given by

E(f, t) := inf
{
ε ≥ 0 | ∃ t-query quantum algorithm A with (2.4)

|f(x)−A(x)| ≤ ε ∀x ∈ D
}
.

Note that E(f, t) and Qε(f) are similar quantities conceptually, as they both encapsu-

late a notion of optimal quantum algorithm, but they do it in different ways. On the

one hand, Qε(f) refers to optimal quantum algorithms to approximate up to a given

error ε. On the other hand, E(f, t) refers to the best t-query quantum algorithm.

2.4 Learning theory

The meta question of learning theory is the following. Given an unknown object from

which we can access expensive units of information, how many of these units do we

need in order to obtain an approximation of the object? This is a broad question, that

has many variants depending on: i) the object to learn; ii) the access model; iii) the

distance with respect to which we can measure what is a good approximation.

In addition, we will also consider the second-most important meta-question of

learning theory, which is the problem of testing. In some cases, the number of units of

information required to learn is prohibitive, but we may only be interested on whether

the unknown object satisfies a certain property or it is far from it, i.e., to test whether

the object satisfies the property.

In the second part of this thesis, we will mainly focus on learning quantum objects:

quantum query algorithms, quantum channels and Hamiltonians. We will also consider

the problem of testing properties of Hamiltonians.

We will need the following well-known result about distribution learning theory.

See [Can20, Theorem 9] for a proof.

Lemma 2.6. Let p = {p(x)}x be a probability distribution over some set X . Let
p′ = (p′(x))x be the empirical probability distribution obtained after sampling T times

from p. Then, for T = O((1/ε)2 log(1/δ)), with probability at least 1− δ, we have that

|p(x)− p′(x)| ≤ ε for every x ∈ X .
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2.5. Fourier and Pauli analysis

2.5 Fourier and Pauli analysis

In this section, we describe Fourier expansion of Boolean functions and of different

quantum objects (states, unitaries, channels) that we consider throughout this work.

Note that the terms Pauli expansion and Fourier expansion will often be used inter-

changeably in the context of quantum objects .

Fourier expansion. In this section we will talk about the space of functions defined

on the Boolean hypercube f : {−1, 1}n → R endowed with the inner product ⟨f, g⟩ =

Ex[f(x)g(x)], where the expectation is taken with respect to the uniform measure of

probability. For s ⊆ {0, 1}n, the Fourier characters, defined by χs(x) =
∏
i∈supp(s) xi,

constitute an orthonormal basis of this space. Hence, every f can be identified with a

multilinear polynomial (a polynomial that is affine on every variable) via the Fourier

expansion

f =
∑

s∈{0,1}n

f̂(s)χs, (2.5)

where f̂(s) are the Fourier coefficients given by

f̂(s) = ⟨χs, f⟩ = Ex[f(x)χs(x)]. (2.6)

The degree of f is the minimum d such that f̂(s) = 0 if |s| > d. We will often use

Parseval’s identity:

∥f∥22 := ⟨f, f⟩ =
∑
s∈[n]

f̂(s)2. (2.7)

We will also consider the ℓp-norms of the Fourier spectrum, which are defined as

∥f̂∥p =

 ∑
s∈{0,1}n

|f̂(s)|p
1/p

.

The supremum, infinity or ℓ∞ norm of such an f is ∥f∥∞ = maxx |f(x)|. The variance

of f is given by

Var[f ] =
∑
|S|≥1

f̂2(S),

and the influence of the i-th variable by

Infi[f ] =
∑
S∋i

f̂2(S) = Ex

[(
f(x)− f(x⊕i)

2

)2
]
,

14
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where given x ∈ {−1, 1}n and i ∈ [n], x⊕i is the element of {−1, 1}n obtained by flip-

ping the ith entry of x. The maximum influence of f is MaxInf[f ] := maxi∈[n] Infi[f ].

One may interpret Var[f ] as the deviation of f from its expectation and Infi[f ] as the

deviation of f from its expectation that is due to varying the i-th variable.

Remark 2.7. We will also use different notation for the indexing of the characters.

Namely, given s ∈ {0, 1}n we will identify it with its support S, so, for example, χS(x)

will be given by
∏
i∈S xi.

Pauli expansion of operators. Here, we introduce the Pauli analysis for opera-

tors, which was first explored by Montanaro and Osborne [MO08]. We consider MN

endowed with the usual inner product ⟨A,B⟩ = 1
N Tr[A†B]. The tensor product of

Pauli operators form an orthonormal basis for this space. The Pauli expansion of a

matrix M of MN is given by

M =
∑

x∈{0,1,2,3}n

M̂(x)σx, (2.8)

where M̂(x) = ⟨σx,M⟩are Pauli coefficients of M . We will refer to the collection

of non-zero Pauli coefficients {M̂(x)}x as the Pauli spectrum of M with the set of

corresponding strings denoted by spec(M). As {σx}x is an orthonormal basis, we

have a version of Parseval’s identity for operators.

∥M∥22 := ⟨M,M⟩ =
∑

x∈{0,1,2,3}n

|M̂(x)|2. (2.9)

In particular, for U ∈ UN , this implies that (|Û(x)|2)x is a probability distribution.

We will also consider the p-norms of the Pauli spectrum, which are defined as

∥M̂∥p =

 ∑
x∈{0,1,2,3}n

|M̂(x)|p
1/p

.

We now define a notion of degree for states and unitaries that generalizes the classical

notion of Fourier degree (see [MO08, Section 5]).

Definition 2.8 (Degree of a matrix). Given M ∈ MN its degree is the minimum d

such that M̂(x) = 0 for any x ∈ {0, 1, 2, 3}n with |x| > d. Here, |x| is the cardinality

of the set {i ∈ [n] : xi ̸= 0}.
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Pauli expansion of superoperators. Here, we introduce the Pauli analysis for

superoperators, which was first explored by Bao and Yao [BY23]. We consider the

space of superoprators (linear maps from MN to MN ) endowed with the inner product

⟨Φ,Ψ⟩ = ⟨J(Φ), J(Ψ)⟩/N2. An orthonormal basis for superoperators is defined using

characters

Φx,y(ρ) = σxρσy, (2.10)

for any x, y ∈ {0, 1, 2, 3}n. The Pauli expansion of superoperators and hence quantum

channels is then defined as

Φ =
∑

x,y∈{0,1,2,3}n

Φ̂(x, y)Φx,y, (2.11)

where Φ̂(x, y) = ⟨Φx,y,Φ⟩ are the Pauli coefficients of the superoperator. As {Φx,y}x
is an orthonormal basis, we have a version of Parseval’s identity for superoperators

∥Φ∥22 := ⟨Φ,Φ⟩ =
∑

x,y∈{0,1,2,3}n

|Φ̂(x, y)|2.

We will also consider the p-norms of the Pauli spectrum of superopertors, which are

defined as

∥Φ̂∥p =

 ∑
x,y∈{0,1,2,3}n

|Φ̂(x, y)|p
1/p

.

If Φ is a channel, then Φ̂ = (Φ̂(x, y))x,y has a couple of important properties [BY23,

Lemma 8].

Fact 2.9. If Φ is a channel, then Φ̂ is a state unitarily equivalent to v(Φ). In particular,

(Φ̂(x, x))x is a probability distribution.

The degree of a superoperator is defined in the analogue way to operators.

Definition 2.10 (Degree of a superoperator). Given a superoperator Φ its degree is

the minimum d such that Φ̂(x, y) = 0 for any x, y ∈ {0, 1, 2, 3}n with |x|+ |y| > d.
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2.6 Polynomials

For p ∈ R[x1, . . . , xn] we define the following quantities, which are seminorms and

norms when restricted to the space of multilinear polynomials,

∥p∥∞ := sup
x∈{−1,1}n

|p(x)|, (2.12)

∥p∥q := (Ex∈{−1,1}n |p(x)|q)
1
q , for q ∈ [1,∞), (2.13)

We will say that a a polynomial p is bounded if its restriction to the Boolean hypercube

takes values in the interval [−1, 1].

Univariate polynomials

We list a few well-known results about univariate polynomials. For K ∈ {R,C}, we will

use K[x1, . . . , xn] to denote the space of polynomials with coefficients in K depending

on variables x1, . . . , xn ∈ K. We will use K[x1, . . . , xn]=t to refer to the space of forms

of degree t (or homogeneous polynomials of degree t), which are those whose only

non-zero coefficients correspond to monomials of degree t. We will use K[x1, . . . , xn]≤t

to refer to the space of polynomials of degree at most t. A polynomial is multilinear

if it is affine on every variable. Given f : {−1, 1}n → R, we will identify f with

the unique multilinear polynomial p ∈ R[x1, . . . , xn] such that f(x) = p(x) for every

x ∈ {−1, 1}n. The latter polynomial is given by the Fourier expansion of f .

Proposition 2.11 (Markov brothers’ inequality). Let p ∈ R[x] have degree at most

d. Then, supx∈[−1,1] |p′(x)| ≤ d2 supx∈[−1,1] |p(x)|.

Definition 2.12. Let p ∈ R[x1, . . . , xn]. Then, p is symmetric if for every π ∈ Sn and

every x ∈ Rn we have that p(x) = p(π ◦ x).

Proposition 2.13 (Minsky-Papert symmetrization principle [MS69]). Consider a

symmetric multilinear polynomial p ∈ R[x1, . . . , xn] of degree d. Then, there is a uni-

variate polynomial q : R→ R of degree d such that supy∈[−1,1] |q(y)| = supx∈{−1,1}n |p(x)|
and q(

∑
i xi/n) = p(x) for every x ∈ {−1, 1}n.

2.7 Completely bounded norms

We will introduce the completely bounded norm of a multilinear form. Informally, it is

a variation of the infinity norm where the supremum is not only evaluated on scalar

inputs, but also on matrix inputs.
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Definition 2.14 (Multilinear forms). Let K ∈ {R,C}. A map T : Kn×· · ·×Kn → K
is a t-linear form if it is linear with respect to every copy of Kn. We will also use

multilinear forms to refer to these functions. We will also identify every t-linear form

with a tensor T ∈ (Kn)t such that

T (x1, . . . , xt) =
∑
i∈[n]t

Tix1(i1) . . . xt(it)

for every x1, . . . , xt ∈ Kn. This tensor is uniquely determined by

Ti = T (ei1 , . . . , eit)

for every i ∈ [n]t.

Throughout this thesis, we will use the notions of multilinear form and tensor

interchangeably.

Definition 2.15. Let K ∈ {R,C}. Let m ∈ N and T : Kn × · · · × Kn = (Kn)t → K
be a t-linear form. We define the t-linear form Tm : Mn

m × · · · ×Mn
m →Mm by

Tm(X1, . . . , Xt) =
∑
i∈[n]t

TiX1(i1) . . . Xt(it)

for every X1, . . . , Xt ∈Mn
m. We define its norm as

∥Tm∥ := sup ∥T (X1, . . . , Xt)∥op,

where the supremum runs over all X1, . . . , Xt ∈Mn
m with ∥X1(i1)∥op, . . . , ∥Xt(it)∥op ≤

1.

Remark 2.16. The supremum of ∥Tm∥ does not change if Xs(is) are not only contrac-

tions but also orthogonal matrices in the real case, or unitary matrices in the complex

case. This follows from the Krein-Milman theorem and the fact that orthogonal (uni-

tary) matrices are the extreme points of the set of real (complex) contractions.

Definition 2.17 (Completely bounded norm of multilinear form). Let T : Kn× · · ·×
Kn = (Kn)t → K be a t-linear form. Its completely bounded norm is given by

∥T∥cb := sup
m∈N
∥Tm∥.

Notably, for the supremum in the completely bounded norm, one can take X1 =
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· · · = Xt. Thus, one could say that polarization constant for the completely bounded

norm is 1.1

Proposition 2.18. Let T ∈ Rn×···×n be a t-tensor. Then,

∥T∥cb = sup
{
∥T (X, . . . ,X)∥op, d ∈ N

}
,

where the supremum runs over all contractions X(1), . . . , X(n) ∈Mm and all m ∈ N.

Proof. Let |||T ||| be the expression in the right-hand side of the statement. Note that it

is the same as the expression of ∥T∥cb, but now the contraction-valued mapsX1, . . . , Xt

are all equal. This shows that |||T ||| ≤ ∥T∥cb. To prove the other inequality, let

X1, . . . , Xt : [n] → BMd
and u, v ∈ Sd−1. Now, define the contraction-valued map X

by X(i) :=
∑
s∈[t] ese

T
s+1 ⊗Xs(i) for i ∈ [n], and define the unit vectors u′ := e1 ⊗ u

and v′ := et+1 ⊗ v. They satisfy

⟨u,X1(i1) . . . Xt(it)v⟩ = ⟨u′, X(i)v′⟩ for all i ∈ [n]t,

so in particular ∑
i∈[n]t

Ti⟨u,X1(i1) . . . Xt(it)v⟩ =
∑
i∈[n]t

Ti⟨u′, X(i)v′⟩.

Taking the supremum over all maps Xs and u, v shows that ∥T∥cb ≤ |||T |||, which

concludes the proof.

2.7.1 Grothendieck inequality

Let K ∈ {R,C}. Given a bilinear form A : Kn × Kn → K, we can write its infinity

norm as

∥A∥∞ = sup
|xi|=|yi|≤1

∣∣∣∣∣∣
∑
i,j∈[n]

Aijxiyj

∣∣∣∣∣∣ .
1In Banach space theory a t-linear map T : X × · · · ×X → Y determines a homogeneous degree-t

polynomial P : X → Y : A → T (A, . . . , A). The operator norms of T and P are equivalent if T is
symmetric: ∥T∥ ≤ ∥P∥ ≤ K(t)∥T∥, where K(t) is the polarization constant of degree t. For a survey
on the topic see [MMFPSS22, Section 5.1].
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For K = R the absolute value inside the supremum is not necessary, and by linearity

we have that the supremum is attained in the extreme points, so

∥A∥∞ = sup
xi,yi∈{−1,1}

∑
i,j∈[n]

Aijxiyj .

For K = C by the maximum modulus principle we have that

∥A∥∞ = sup
|xi|=|yi|=1

∣∣∣∣∣∣
∑
i,j∈[n]

Aijxiyj

∣∣∣∣∣∣ .
Also, note that ∥A∥∞ ≤ ∥A∥cb.

Theorem 2.19 (Grothendieck’s theorem [Gro53]). There exists a constant K < ∞
such that for any n ∈ N and any bilinear form A : Kn ×Kn → K, we have

∥A∥cb ≤ K∥A∥∞. (2.14)

Equivalently,

max
|xi|,|yi|≤1

∣∣∣∣∣∣
∑
i,j∈[n]

Aijxiyj

∣∣∣∣∣∣ ≤ K max
∥ui∥2,∥vj∥2≤1

∑
i,j∈[n]

Aij⟨ui, vj⟩,

where the supremum runs over all d ∈ N and all vectors ui, vj ∈ Kd.

The smallest possible constant K for which Theorem 2.19 holds is known as the

Grothendieck constant, KK
G. Determining the precise value of KK

G is a notorious open

problem posed in [Gro53]. For K = R the best-known lower and upper bounds place

it in the interval (1.676, 1.782) [Dav84, Ree91, BMMN13]. For K = C, we know that

the constant lies in (1.338, 1.405) [Haa87, Dav06].

2.8 Semidefinite programming

Semidefinite programming is an extension of linear programming that includes a bigger

family of problems and can still be efficiently solved up to arbitrary precision (see

[LR05] for an introduction to semidefinite programming). To be more precise, let

Sn be the space of symmetric matrices of Mn and let S+
n be the cone of positive

semidefinite matrices. A collection of matrices C,B1, . . . , Bl ∈ Sn and a vector b ∈ Rl
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define a primal semidefinite program (P) and a dual semidefinite program (D), which

in their canonical form are given by

(P ) inf ⟨C, Y ⟩ (D) sup ⟨b, y⟩ (2.15)

s.t. Y ∈ S+
n s.t. y ∈ Rl

B(Y ) = b C − B∗(y) ∈ S+
n ,

where B : Sn → Rl is given by B(Y ) := (⟨B1, Y ⟩ , . . . , ⟨Bl, Y ⟩), B∗(y) =
∑
i∈[l] yiBi

and ⟨B, Y ⟩ = Tr(BY ). A semidefinite program is feasible if there exists an instance

satisfying its constraints.

Note that if all matrices C,B1, . . . , Bl were diagonal, (P ) and (D) would be linear

programs. Indeed, in that case the value of (P ) would not change if we further impose

that Y is diagonal, which makes (P ) a linear program. Also, the constraint C−B∗(y) ∈
S+
n is equivalent to saying that the diagonal entries of C −B∗(y) are non-negative, so

(D) is also a linear program.

It is always satisfied that the optimal value of (P ) is at least the optimal value

of (D), what is known as weak duality. In addition, under some mild assumptions

provided by Slater’s theorem, both values are equal, what is known as strong duality.

Theorem 2.20 (Slater’s theorem). Let (P ) and (D) be a primal-dual pair of semidef-

inite programs, as in Eq. (2.15). Assume that (P ) is feasible and there exists a strictly

positive instance for (D), i.e., there exists y ∈ Rl such that C − B∗(y) is strictly

positive. Then the optimal values of (P ) and (D) are equal.

2.9 Concentration inequalities

We state a few concentration inequalities that we use often. All of them can be found

in [BLM13].

Lemma 2.21 (Hoeffding bound). Let X1, . . . , Xm be independent-random variables

that satisfy −ai ≤ |Xi| ≤ ai for some ai > 0. Then, for any τ > 0, we have

Pr
[∣∣∣ ∑
i∈[m]

Xi −
∑
i∈[m]

E[Xi]
∣∣∣ > τ

]
≤ 2 exp

(
− τ2

2(a21 + · · ·+ a2m)

)
.

Lemma 2.22 (Bernstein inequality). Let X1, . . . , Xm be independent-random vari-
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ables with |Xi| ≤M for some M > 0. Then,

Pr
[∣∣∣ ∑
i∈[m]

Xi −
∑
i∈[m]

E[Xi]
∣∣∣ > τ

]
≤ 2 exp

(
− τ2/2∑

i∈[m] Var[Xi] + τM/3

)
.

Lemma 2.23 (McDiarmid’s inequality). Let f : {−1, 1}n → R such that |f(x) −
f(x⊕i)| ≤ c for every x ∈ {−1, 1}n and every i ∈ [n]. Then, over a uniformly random

x and for any ε > 0 we have that

Prx[|f(x)− Eyf(y)| ≥ ε] ≤ exp

(
− 2ε2

nc2

)
.
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Part I

Quantum query complexity

via polynomials
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Chapter 3

The quantum polynomial

method is complete

3.1 Introduction

In this chapter, we will review the evolution of the polynomial method in quantum

query complexity. Initially, it was proposed by Beals, Buhrman, Cleve, Mosca and

de Wolf as a tool to lower bound quantum query complexity [BBC+01], who were

inspired by the classical polynomial method of Nisan and Szegedy to lower bound

the randomized query complexity [NS94]. This technique has been proven useful in

many problems, often providing optimal lower bounds (see e.g., [BKT20] and references

therein). More than 15 years after its birth, Arunachalam, Briët and Palazuelos refined

the method using completely bounded polynomials. This way, it became a tool that

potentially allows one to prove upper bounds to quantum query complexity [ABP19].

In this chapter, based on unpublished joint work with Jop Briët, we show how to use

completely bounded polynomials to prove several previously known upper bounds to

quantum query complexity. In particular, we reprove the upper bounds by Grover,

by Deutsch and Jozsa, and by Bernstein and Vazirani [DJ92, BV93, Gro96], and we

show that k-fold forrelation can be computed by k quantum queries [AA15, BS21].

Following the result of Arunachalam et al., Gribling and Laurent proposed a hierarchy

of semidefinite programs to compute quantum query complexity [GL19]. However,

these semidefinite programs do not give any information about how optimal quantum

algorithms look like. Finally, we proposed an alternative hierarchy of semidefinite
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programs, also based on completely bounded polynomials, that not only compute

quantum query complexity, but also output the description of optimal quantum query

algorithms [Esc25]. Putting everything together, we can say that the polynomial

method is complete, in the sense that it has all the capabilities desirable from a method

to understand quantum query complexity; it can be used to show lower bounds and

upper bounds, to compute quantum query complexity, and to extract optimal quantum

algorithms.

A novelty of this chapter is that the exposition of all the results is elementary and

almost self-contained. In particular, we follow [Esc25] and reprove the Christensen and

Sinclair factorization theorem of operator spaces via semidifenite programming [CS87].

This result is the key in the refinement of the polynomial method by Arunachalam

et al., but it does not belong to the usual toolbox of the theoretical computer sci-

entist [ABP19]. Thus, this chapter offers to the computer scientist a way to fully

understand the method of Arunachalam et al. without requiring a background in op-

erator spaces.

3.2 Quantum lower bounds by polynomials

The key observation by Beals et al. that linked quantum query algorithms to polyno-

mials is that the bias of a quantum algorithm that makes t queries is a multilinear

polynomial of degree at most 2t [BBC+01].

Theorem 3.1. Let A : {−1, 1}n → [−1, 1] be the bias of t-query quantum algorithm.

Then, A is a polynomial of degree at most 2t.

Proof. Before the measurement, on input x, the algorithm prepares a pure quantum

state that can be written as

|ψt(x)⟩ = Ut(Ox ⊗ Idd)Ut−1 . . . U1(Ox ⊗ Idd)U0|ψ0⟩

for some fixed unitary matrices U0, . . . Ut and some fixed pure state |ψ0⟩. Note that

by definition of matrix multiplication, the coefficients of |ψt(x)⟩ in the computational

basis are multilinear polynomials of degree at most t. Hence, if {M−1,M1} is the

binary measurement performed by the algorithm, then the bias, ⟨ψt(x)|M1|ψt(x)⟩ −
⟨ψt(x)|M−1|ψt(x)⟩, is a polynomial of degree at most 2t.

A direct consequence of Theorem 3.1 is that to lower bound the quantum query

complexity of a Boolean function f , it suffices to show that it cannot be approximated
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by polynomials of low degree. More formally, we have the following.

Definition 3.2. Let f : D ⊆ {−1, 1}n → {−1, 1} and ε ≥ 0. The ε-approximate

degree of f is the minimum degree of a bounded polynomial p : {−1, 1}n → [−1, 1]

such that |p(x)− f(x)| ≤ ε for every x ∈ D. We use d̃egε(f) to refer to this quantity.

We also use d̃eg(f) to refer to d̃eg2/3(f) and deg(f) to refer to d̃eg0(f).

Corollary 3.3. Let f : D ⊆ {−1, 1}n → {−1, 1} be a Boolean function and let ε ≥ 0.

Then, d̃egε(f)/2 ≤ Qε(f).

As an example of an application of Corollary 3.3, we will show that the quantum

query complexity of the ORn function is Ω(
√
n), which implies that Grover’s algorithm

is optimal [Gro96]. To do that, we prove that d̂eg(ORn) = Ω(
√
n), originally shown

in [NS94], and then apply Corollary 3.7. We define the ORn function as ORn(x) = 1

if x = 1n and ORn(x) = −1 otherwise.

Proposition 3.4. Q(ORn) = Ω(
√
n).

Proof. By Corollary 3.3 it suffices to show that d̃eg(ORn) = Ω(
√
n). Let p : {−1, 1}n →

[−1, 1] be a degree-t polynomial that satisfies

|p(x)−ORn(x)| ≤ 2/3

for every x ∈ {−1, 1}n. Consider the symmetrization p′ of p, given by p′(x) :=∑
π∈Sn

p(π ◦ x)/n!. The symmetric polynomial p′ : {−1, 1}n → R also has degree t,

takes values between −1 and 1 and satisfies that

|p′(x)−ORn(x)| ≤ 2/3.

By the Minsky-Papert symmetrization technique, Proposition 2.13, there is a univari-

ate polynomial q of degree t such that q(x) = p′(
∑
i xi/n) for every x ∈ {−1, 1}n and

q([−1, 1]) ⊆ [−1, 1]. In particular, |q((n − 2)/n) − (−1)| ≤ 2/3 and |q(1) − 1| ≤ 2/3.

Hence, |q((n− 2)/n)− q(1)| ≥ 2/3. By Markov brothers’ inequality, Proposition 2.11,

this implies that

t =

√
2/3

1− (n− 2)/n
= Ω(

√
n),

as desired.
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3.2.1 Quantum upper bounds by polynomials

The two main techniques to prove lower bounds for quantum query complexity are the

polynomial and the adversary method. The latter was proposed in 2000 by Ambainis

[Amb00], and it was quickly refined to also serve as a tool to prove quantum query

upper bounds [HLv07]. However, since 2003 it is known that there are functions f such

that Q(f) > (d̃eg(f))c for some constant c > 1 [Amb03], so the polynomial method

does not provide upper bounds to quantum query complexity. A natural question

was whether a refinement of the polynomial method would allow it to serve as a

tool to prove quantum upper bounds. An attempt of this refinement was proposed

by Aaronson, Ambainis, Iraids, Kokainis, Smotrovs [AAI+16]. They strengthened

Theorem 3.1 by noticing that the bias of every quantum t-query algorithm is not

only a multilinear polynomial of degree at most 2t, but also the amplitudes of such

algorithms are multilinear forms of degree t. This is true because if one looks at the

state prepared by the quantum algorithm after t queries it has the form of

Ut(Ox ⊗ Idd)Ut−1 . . . U1(Ox ⊗ Idd)U0|ψ0⟩.

In particular, if one queried different inputs x1, . . . , xt on every query,

Ut(Oxt
⊗ Idd)Ut−1 . . . U1(Ox1

⊗ Idd)U0|ψ0⟩,

then the amplitudes of the resulting state would be linear in every input. Hence, the

polynomials representing the bias of quantum query algorithms are more structured

than initially noted by Beals et al. [BBC+01]. Unfortunately, as shown in the work by

Aaronson et al., the corresponding notion of polynomial degree also fails to provide

upper bounds to quantum query complexity. However, the idea of Aaronson et al. was

in the correct direction. Shortly after, Arunachalam, Briët and Palazuelos realized that

if instead of querying binary strings the algorithms queried any contractions (matrices

with operator norm at most 1) X1 . . . , Xt the amplitudes of the resulting vector,

UtXtUt−1 . . . U1X1U0|ψ0⟩,

would still be linear in X1, . . . , Xt and bounded by 1 in absolute value [ABP19].

Furthermore, the same is true if one takes tensor products with identity, meaning that

for every m ∈ N, every m-dimensional vector |ϕ⟩ and contractions X1, . . . , Xt we have
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that the amplitudes of

(Ut ⊗ Idm)Xt(Ut−1 ⊗ Idm) . . . (U1 ⊗ Idm)X1(U0 ⊗ Idm)(|ψ0⟩ ⊗ |ϕ⟩)

are linear in every X1, . . . , Xt and bounded by 1. As this is true for every m ∈
N, the bias of quantum query algorithms are, in some sense that we specify below,

completely bounded polynomials. Surprisingly, Arunachalam et al. showed that the

corresponding notion of degree fully characterizes quantum query complexity, enabling

the polynomial method to be a potential tool to prove quantum upper bounds. In the

rest of the section, we will make this idea rigorous, and give examples of quantum

upper bounds by polynomials.

3.3 The completely bounded polynomial method

We start by defining a notion of completely bounded degree, and we will later prove

that it characterizes quantum query complexity.

Definition 3.5. Let f : D ⊆ {−1, 1}n → {−1, 1} and ε ≥ 0. The ε-approximate

completely bounded degree of f is the minimum t ∈ N such that there exists a t-linear

form T : R2n × · · · × R2n → R such that

• ∥T∥cb ≤ 1,

• and |T ((x, 1n), . . . , (x, 1n))− p(x)| ≤ ε ∀ x ∈ D.

We use c̃bdegε(f) to refer to this quantity and c̃bdeg(f) to refer to c̃bdeg2/3(f).

As we argued at the beginning of this section, every t-query quantum algorithm

determines a completely bounded form T , so we have that Qε(f) ≥ c̃bdegε(f)/2.

This strengthens the original polynomial method, because ∥T∥∞ ≤ ∥T∥cb. Given

that there exist separations between the infinity and the completely bounded norms,

see for instance [BP19], it is expected that this refinement of the polynomial method

allows one to prove stronger quantum lower bounds. Additionally, Arunachalam et

al. showed that Qε(f) = c̃bdegε(f)/2, turning the polynomial method into a tool to

prove quantum upper bounds.

Theorem 3.6 (Quantum query algorithms are completely bounded forms [ABP19]).

Let p : {−1, 1}n → R. Then, the following are equivalent;

(a) p is the bias of a t-query quantum algorithm.

29



3.3. The completely bounded polynomial method

(b) There exists a 2t-linear form T : R2n × · · · × R2n → R such that

∥T∥cb ≤ 1 and T ((x, 1n), . . . , (x, 1n)) = p(x) ∀ x ∈ {−1, 1}n.

Corollary 3.7 (The completely bounded polynomial method). Let f : D ⊆ {−1, 1}n →
{−1, 1} and ε ≥ 0. Then, Qε(f) = c̃bdegε(f)72.

In order to prove Theorem 3.6, Arunachalam et al. established a relation between

operator spaces, where the completely bounded norm has been widely studied [Pau03],

and quantum algorithms. In particular, they realized that a seminal result by Chris-

tensen and Sinclair, which asserts that multilinear forms are completely bounded if

and only if they factor in a way resembling the structure of quantum algorithms, allows

one to determine which polynomials can be produced by quantum query algorithms.

Theorem 3.8 (Christensen and Sinclair factorization [CS87]). Let T : Rn×· · ·×Rn →
R be a t-linear form. Then, ∥T∥cb ≤ 1 if and only if there exist d ∈ N, (n + d)-

dimensional contractions A0, . . . , At, an (n+ d)-dimensional unit vector v such that

T (x1, . . . , xt) = ⟨v,At(Diag(xt)⊗ Idd)At−1 . . . A1(Diag(x1)⊗ Idd)A0v⟩,

for every x1, . . . , xt ∈ Rn.

The original statement of Theorem 3.8 works for any operator space, and the one

we use corresponds to the particular case of the natural operator space defined by ℓ∞.

Also, the usual formulation of Theorem 3.8 is for complex operator spaces, which was

the one applied by Arunachalam et al. [ABP19]. However, Theorem 3.1 is sufficient

to prove Theorem 3.6, provided that we assume, without loss of generality, that we

use real numbers for quantum query algorithms (see Remark 2.5). In Section 3.4 we

will give a new proof of Theorem 3.8, based on [Esc25], via semidefinite programming.

Now, we are ready to prove Theorem 3.6.

Proof of Theorem 3.6. We first prove that a) =⇒ b). By Remark 2.5, we have that

the bias of a t-query quantum algorithm can be written as

A(x) =⟨v,AT
0 (Diag(1n, x)⊗ Idd)A

T
1 . . . A

T
t−1(Diag(1n, x)⊗ Idd)A

T
t

· (M1 −M−1)At(Diag(1n, x)⊗ Idd)At−1 . . . A1(Diag(1n, x)⊗ Idd)A0v⟩,

where A0, . . . , AT are (n + d)-dimensional contractions, v is an (n + d)-dimensional

unit vector and {M−1,M1} is a (n + d) POVM. If we define the (2t)-linear form
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T : R2n × · · · × R2n → R given by

T (y1, . . . , y2t) =⟨v,AT
0 (Diag(y2t)⊗ Idd)A

T
1 . . . A

T
t−1(Diag(yt+1)⊗ Idd)A

T
t

· (M1 −M−1)At(Diag(yt)⊗ Idd)At−1 . . . A1(Diag(y1)⊗ Idd)A0v⟩,

we have that T ((1n, x), . . . , (1n, x)) = A(x). Furthermore, as ∥M1 −M−1∥op ≤ 1, by

Theorem 3.8 it follows that ∥T∥cb ≤ 1. Hence, we have showed that a) =⇒ b).

We now prove that b) =⇒ a). Let p : {−1, 1}n → R be such that there exists a

2t-linear form T : R2n × · · · × R2n → R satisfying that

∥T∥cb ≤ 1 and T ((x, 1n), . . . , (x, 1n)) = p(x) ∀ x ∈ {−1, 1}n.

By Theorem 3.8, there exist d ∈ N, (n+ d)-dimensional contractions A0, . . . , A2t and

(n+ d)-dimensional unit vectors u, v such that

T (y1, . . . , y2t) = ⟨v,A2t(Diag(y2t)⊗ Idd)A2t−1 . . . A1(Diag(y1)⊗ Idd)A0v⟩,

for every y1, . . . , y2t ∈ R2n. For every x ∈ {−1, 1}n we define

v1(x) = At(Diag(x, 1n)⊗ Idd)At−1 . . . A1(Diag(x, 1n)⊗ Idd)A0v,

v2(x) = (Diag(x, 1n)⊗ Idd)A
T
t+1 . . . A

T
2t−1(Diag(x, 1n)⊗ Idd)A

T
2tv.

Note that ⟨v2(x), v1(x)⟩ = T ((x, 1n), . . . , (x, 1n)). Hence, it just remains to define a

t-query quantum algorithm whose bias is ⟨v2(x), v1(x)⟩. To do that, we define 2(n+d)-

dimensional contractions

Ã0 = (X ⊗ Idn+d)c-A0(X ⊗ Idn+d)c-A
T
2t(H ⊗ Idn+d),

Ãi = (X ⊗ Idn+d)c-Ai(X ⊗ Idn+d)c-A
T
2t−i, for i ∈ [t− 1],

Ãt = (H ⊗ Idn+d)c-At(X ⊗ Idn+d),

where c-A is the controlled version of A. Then, we have that the vector prepared by

the corresponding quantum query algorithm is

|ψ(x)⟩ = Ãt(Id2 ⊗Diag(x, 1n)⊗ Idd)Ãt−1 . . . Ã1(Id2 ⊗Diag(x, 1n)⊗ Idd)Ã0(|0⟩ ⊗ |v⟩)

=
1

2
(|0⟩ ⊗ (|v1(x)⟩+ |v2(x)⟩) + (|1⟩ ⊗ (|v1(x)⟩ − |v2(x)⟩).

Finally, if we choose the measurement {M−1,M1} to be M1 = |0⟩⟨0| ⊗ Idn+d and
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M−1 = |1⟩⟨1| ⊗ Idn+d, then we have that the bias of the quantum algorithm is

A(x) = ⟨ψ(x)|(M1 −M−1)|ψ(x)⟩ = ⟨v1(x), v2(x)⟩,

as desired.

3.3.1 Examples of quantum upper bounds by polynomials

In this section, we will reprove several quantum upper bounds via the polynomial

method. We will show that certain functions are completely bounded polynomials of

degree 2t, and we will invoke Theorem 3.6, which ensures that they are the bias of a

t-query quantum algorithm.

Interestingly, for all of the examples of this section, the following non-commutative

version of the Cauchy-Schwarz inequality will play a key role.

Lemma 3.9. Let X1, . . . , Xn ∈Mm and let Y1, . . . , Yn ∈Mm. Then,

∥∥∥ n∑
i=1

XiYi

∥∥∥2
op
≤
∥∥∥ n∑
i=1

XiX
T
i

∥∥∥
op

∥∥∥ n∑
i=1

Y T
i Yi

∥∥∥
op
.

Proof. Consider the following matrices

X =


X1 . . . Xn

0 . . . 0
...

...

0 . . . 0

 and Y =


Y1 . . . 0

Y2 . . . 0
...

...

Yn . . . 0

 .

First, we have that ∥XY ∥2op ≤ ∥XXT∥op∥Y TY ∥op. Finally, we have that ∥XY ∥2op =

∥
∑n
i=1XiYi∥2op, ∥XXT∥op = ∥

∑n
i=1XiX

T
i ∥op and ∥Y TY ∥op = ∥

∑n
i=1 Y

T
i Yi∥op.

Reproving Deutsch-Jozsa

Deutsch and Jozsa gave a 1-query quantum algorithm whose bias is a Boolean function

f : D ⊆ {−1, 1}n → {−1, 1} whose classical query complexity is Ω(n) [DJ92]. Here,

D = {x ∈ {−1n, 1n} : x is balanced} ∪ {−1n, 1n},
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where x is balanced if it has the same number of −1’s and 1’s, and f is given by

f(x) =

{
1 if x ∈ {−1n, 1n},
−1 if x is balanced,

Here, we reprove the result by Deutsch and Jozsa showing that there exists a bilinear

form T : R2n × R2n → R such that

∥T∥cb ≤ 1 and T ((x, 1n), (x, 1n)) = f(x) ∀ x ∈ D.

This bilinear form is given by

T ((x, x′), (y, y′)) = 2Ei∈[n]xiEj∈[n]yj − Ei∈[n]xiyi,

where x, x′, y, y′ ∈ {−1, 1}n and the expectation is taken with respect to the uniform

distribution on [n]. (The form T does not depend on the variables x′ and y′, but

we write it like that for consistency with Theorem 3.6). It is routine to check that

T ((x, 1n), (x, 1n)) = f(x) if x ∈ {−1n, 1n} or x is balanced. To show that ∥T∥cb ≤ 1,

note that for any contractions X1, . . . , Xn, Y1, . . . , Yn it follows from Lemma 3.9 that

∥EiXi(2EjYj − Yi)∥2op ≤ ∥EiXiX
T
i ∥op∥Ei(2EjYj − Yi)T(2EkYk − Yi)∥op

≤ ∥4Ej,kY T
j Yk − 2Ei,jY T

j Yi − 2Ei,kY T
i Yk + EiY T

i Yi∥op
= ∥EiY T

i Yi∥op
≤ 1.

Reproving k-fold forrelation

We now consider the problem where, given k-Boolean functions f1, . . . , fk : {0, 1}n →
{−1, 1}, the goal is to compute its k-fold forrelation (standing for Fourier correla-

tion)forrk : {−1, 1}2n × · · · × {−1, 1}2n → R, which is given by

forrk(f1, . . . , fk) =
1

2
n(k−1)

2

∑
x1,...,xk−1∈{0,1}n

f1(x1)(−1)⟨x1,x2⟩f2(x2) . . .

· (−1)⟨xk−2,xk−1⟩fk−1(xk−1)f̂k(xk−1),

where ⟨x, y⟩ =
∑
i xiyi. Here, the queries are made to the truth tables of f1, . . . , fk.

Aaronson and Ambainis introduced this problem as a candidate to witness the largest

possible separation between quantum and query complexities [AA15], which was later

33



3.3. The completely bounded polynomial method

confirmed by Bansal and Sinha [BS21]. Here, we reprove that f can be computed as

the bias of a quantum algorithm that makes k queries, one to each f1, . . . , fk. Note

that this is not the model that we have considered so far, where all the queries where

made to the same input. However, a simple modification of Theorem 3.6 ensures that

such an algorithm exists if forrk, which is a k-linear form, satisfies ∥forrk∥cb ≤ 1.

Thus, it suffices to check the latter. Indeed, for m-dimensional orthogonal matrices

F1(x1), . . . , Fk(xk) we have that

∥(forrk)m(F1, . . . , Fk)∥2op =
1

2n(k−1)
∥
∑
x1

F1(x1)
∑
x2...xn

(−1)⟨x1,x2⟩F2(x2) . . . F̂k(xk−1)∥2op,

where F̂k(xk−1) = Exk
(−1)⟨xk−1,xk⟩Fk(xk) is the matrix-valued Fourier coefficient.

Next,

∥(forrk)m(F1, . . . , Fk)∥2op ≤
1

2n
∥
∑
x1

F1(x1)FT
1 (x1)∥op

· 1

2n(k−2)
∥
∑

x2,...,x′
n

. . . FT
2 (x2)

(∑
x1

(−1)⟨x1,x2⟩(−1)⟨x1,x
′
2⟩

)
︸ ︷︷ ︸

2nδx2,x′
2

F2(x′2) . . . ∥op

︸ ︷︷ ︸
(∗)

≤ 1

2n(k−3)
∥
∑
x2

( ∑
x3,...,xn

(−1)⟨x2,x3⟩F3(x3) . . .

)T

FT
2 (x2)F2(x2)

·

( ∑
x3,...,xn

(−1)⟨x2,x3⟩F3(x3) . . .

)
∥op,

where in the first line we have applied Lemma 3.9, and in the third line that F1(x1)

are orthogonal matrices. Now, as FT
2 (x2)F2(x2) = Idm, we have that

∥(forrk)m(F1, . . . , Fk)∥2op

≤ 1

2n(k−3)
∥

∑
x3,x′

3...,x
′
n,x

′
n

. . . FT
3 (x3)

(∑
x2

(−1)⟨x2,x3⟩(−1)⟨x
′
2,x

′
3⟩

)
F3(x′3) . . . ∥op︸ ︷︷ ︸

(∗∗)

.
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Now, (∗∗) is essentially the same as (∗), so iterating the argument that led us from

(∗) to (∗∗) we arrive at

∥(forrk)m(F1, . . . , Fk)∥2op ≤ ∥
∑
xk−1

F̂T
k (xk−1)F̂k(xk−1)∥op = ∥Ex FT

k (x)Fk(x)∥op = 1,

where in the first equality we have used Parseval identity and in the second that Fk(x)

are orthogonal. Thus, forrk is completely bounded, as desired.

Other examples

One can also reprove other well-known quantum upper bounds using polynomials.

Briët reproved Grover’s upper bound of O(
√
n) quantum queries to compute the ORn

function by showing that the polynomials constructed by Nisan and Szegedy to ap-

proximate ORn are completely bounded [Bri19, NS94]. Also, using a modification of

Theorem 3.6, we could show that there exists an algorithm that with one quantum

query to the truth table of a Boolean function can sample from its Fourier distribution,

reproving Bernstein-Vazirani’s celebrated result [BV93]. We will not prove the latter

claim because it would require introducing more notation and would not add concep-

tual value, as we have already accomplished the purpose of this section: demonstrating

that quantum upper bounds can follow from the polynomial method.

3.4 From polynomials to quantum algorithms

In this section, we will start by giving an alternative proof of the Christensen-Sinclair

factorization theorem, Theorem 3.8, via semidefinite programming. Contrary to the

original proof, ours is elementary, constructive and does not need to use the Hahn-

Banach theorem (just a finite-dimensional separation result). We will follow [Esc25],

where a more general version of Christensen and Sinclair’s result is proven. After,

we will use the fact that this proof is based on semidefinite programming and is

constructive to give a hierarchy of semidefinite programs that computes quantum

query complexity and outputs optimal quantum query algorithms.
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3.4.1 Christensen-Sinclair factorization via SDPs

We will prove an equivalent version of Theorem 3.8. To state it, we should introduce

the representation norm of a t-linear form T : Rn × · · · × Rn → R, which is given by

∥T∥rep = inf w

s.t. T (x1, . . . , xt) = ⟨u,A0(Diag(x1)⊗ Idd)A1 . . . At−1(Diag(xt)⊗ Idd)Atv⟩ ,

∀ x1, . . . , xt ∈ Rn, (3.1)

d ∈ N, u, v ∈ Rd, ∥u∥22 = ∥v∥22 = w,

A0 ∈Md,nd, A1, . . . , At−1 ∈Mnd,nd, At ∈Mnd,d contractions.

Now, we can rewrite Theorem 3.10 in the following way.

Theorem 3.10 (Christensen and Sinclair factorization [CS87]). Let T : Rn × · · · ×
Rn → R be a t-linear form. Then, ∥T∥cb = ∥T∥rep.

We will prove the following result, which is stronger than Theorem 3.10.

Theorem 3.11. Given a t-linear form T : Rn × · · · × Rn → R, there is a pair of

semidefinite programs (PCS) and (DCS) such that

(i) (PCS) optimal value equals ∥T∥rep,

(ii) (DCS) optimal value equals ∥T∥cb,

(iii) (DCS) is the dual of (PCS) and their optimal values are equal.

Theorem 3.11 has three important consequences. The first one is already clear from

the statement, and the other two will become clear later (see Remark 3.12). These

consequences are:

(a) Theorem 3.11 implies Theorem 3.10;

(b) (PCS) and (DCS) have O(poly(n)t) variables, so the known algorithms to approx-

imate semidefinite programs can be used to efficiently compute the completely

bounded norm. This will imply that there is a hierarchy of SDPs to compute

quantum query complexity.

(c) From the solution returned by these algorithms one can extract a description

of the vectors and matrices appearing in a factorization as in Eq. (3.1). This

will imply that optimal quantum query algorithms can be extracted from the

hierarchy of SDPs mentioned in Item (b).
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We divide the proof of Theorem 3.11 in 3 parts. In the first, we introduce (PCS)

and prove Theorem 3.11 (i), in the second we introduce (DCS) and prove Theorem 3.11

(ii), and in the third we show that (PCS) and (DCS) are semidefinite programs and

prove Theorem 3.11 (iii).

The primal semidefinite program

In this section, we introduce (PCS) and prove Theorem 3.11 Item (i). Before doing that,

we give some intuition for why ∥T∥rep can be formulated as a semidefinite program.

Assume that T factors as in Eq. (3.1). Then, we consider the following block structure

for the contractions As:

A0 =
(
A0(1) . . . A0(n)

)
, As =


As(1, 1) . . . As(1, n)

...
. . .

...

As(n, 1) . . . As(n, n)

 , At =

At(1)

. . .

At(n)

 ,

(3.2)

for s ∈ [t− 1]. We also define the following vectors,

vi = At(i)v, for i ∈ [n], (3.3)

vi = At−s((i1, i2)) . . . At−1((is, is+1))At(is+1)v, for i ∈ [n]s+1, s ∈ [t− 1], (3.4)

v′i = A0(i1)A1((i1, i2)) . . . At(it)v, for i ∈ [n]t. (3.5)

We note that Ti = ⟨u, v′i⟩. Hence, Ti is encoded in the entries of Y =Gram{u, vi, v′i}
(which corresponds to (3.7) below). In addition, the fact that the Ai are contractions

can be encoded in the entries of this Gram matrix (which gives rise to Eqs. (3.9)
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to (3.11) below). With these intuitions, we are ready to state (PCS):

inf w (PCS)

s.t. w ≥ 0, Y, Y ′ ⪰ 0, (3.6)

Y ′
0,i = Ti, i ∈ [n]t, (3.7)

Y ′
0,0 = w, (3.8)∑
i∈[n]

Yi,i ≤ w, (3.9)

∑
i∈[n]

(Yij,ij′)j,j′∈[n]s ⪯ ⊕i∈[n](Yij,ij′)j,j′∈[n]s−1 , s ∈ [t− 1], (3.10)

(Y ′
j,j′)j,j′∈[n]t ⪯ ⊕i∈[n](Yij,ij′)j,j′∈[n]t−1 , (3.11)

where Y ∈Mn+···+nt and Y ′ ∈M1+nt . The rows and columns of Y are labeled by the

elements of [n]∪ · · · ∪ [n]t, and for Y ′ they are labeled by the elements of {0} ∪ [n]t. 1

Proof of Theorem 3.11. Assume first that T factors as in Eq. (3.1) for some vectors

with ∥u∥2 = ∥v∥2 = w. Consider the block structure for the contractions As given in

Eq. (3.2), and define the vectors vi and v′i as in Eqs. (3.3) to (3.5). Then, Ti = ⟨u, vi⟩ ,
for every i ∈ [n]t. Consider the positive semidefinite matrices

Y ′ := Gram{u, v′i : i ∈ [n]t} and Y := Gram{vi : i ∈ [n] ∪ · · · ∪ [n]t},

and label the rows and columns corresponding to u with 0 and the ones corresponding

to vi and v′i with i. First, we have that Ti = Y ′
0,i, so Eq. (3.7) is satisfied. Eq. (3.8)

follows from the fact that ∥u∥2 = w. From the fact that At is a contraction, Eq. (3.9)

follows:

∑
i∈[n]

Yi,i =
∑
i∈[n]

⟨vi, vi⟩ =

〈
v,
∑
i∈[n]

At(i)
TAt(i)v

〉
=
〈
v,AT

t Atv
〉
≤ ⟨v, v⟩ = w.

From the fact that As are contractions for s ∈ [t − 1] Eq. (3.10) follows. Indeed, let

1Here, given i ∈ [n] and j ∈ [n]s, ij should be interpreted as the concatenation of i and j, i.e.,
ij = (i, j1, . . . , js).
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λ ∈ Rns

. Then, 〈
λ,
∑
i∈[n]

(Yij,ij′)j,j′∈[n]sλ

〉

=
∑

i∈[n],j,j′∈[n]s

λj ⟨vij, vij′⟩λj′

=
∑

i∈[n],j,j′∈[n]s

λj ⟨At−s(i, j1)vj, At−s(i, j
′
1)vj′⟩λj′

=
∑

i∈[n],j,j′∈[n]s

λj
〈
vj, A

T
t−s(j1, i)At−s(i, j

′
1)vj′

〉
λj′

=
∑

j,j′∈[n]s

λj
〈
vj, (A

T
t−sAt−s)(j1, j

′
1)vj′

〉
λj′︸ ︷︷ ︸

(∗)

,

where in the second equality we have used that vij = A(i, j1)vj, and in the third line

that At−s(i, j)
T = AT

t−s(j, i). Now, if we define wj = (λ1jv1j, . . . , λnjvnj), it follows

that

(∗) =
∑

j,j′∈[n]s−1

⟨wj, A
T
t−sAt−swj′⟩ =

〈∑
j

wj

 , AT
t−sAt−s

∑
j′

wj′

〉 .
Hence, as AT

t−sAt−s ⪯ Id, it is satisfied that

(∗) ≤

〈 ∑
j∈[n]s−1

wj

 ,

 ∑
j′∈[n]s−1

wj′

〉 =
∑

i∈[n],j,j′∈[n]s−1

λij⟨vij, vij′⟩λij′

= ⟨λ,⊕i∈[n](Yij,ij′)j,j′∈[n]×[n])s−1×[n]λ⟩,

as desired. The fact that A0 is a contraction implies Eq. (3.11), and this can be shown

similarly to how we just showed that Eq. (3.10) holds.

Now, assume that there exist Y, Y ′ ⪰ 0, satisfying equations Eqs. (3.7) to (3.11).

Consider d ∈ N and vectors {u, vi, vi} ∈ Rd such that

Y = Gram{vi} and Y ′ = Gram{u, v′i}.

Eq. (3.8) implies that ∥u∥2 = w. We define At through its blocks. Let v ∈ Rd be a

vector with ∥v∥2 = w. We define At(i) ∈ Md as the matrix that maps v to vi and

extend by 0 to the orthogonal complement of span{v}. This way, At is a contraction,
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because

∥At∥2op =
⟨Atv,Atv⟩
⟨v, v⟩

=
1

w

∑
i∈[n]

⟨At(i)v,At(i)v⟩ =
1

w

∑
i∈[n]

⟨vi, vi⟩ =
1

w

∑
i∈[n]

Yi,i ≤ 1,

where in the inequality we have used Eq. (3.9). The definition of At−s for s ∈ [t− 1]

is slightly more complicated. Given (i, j) ∈ [n]× [n], the block At−s(i, j) is defined as

the linear map on span{vjj : j ∈ [n]s−1} by

At−s(i, j)vjj = vijj

and extended by 0 to the orthogonal complement. First, as {vjj : j ∈ [n]s−1} may not

be linearly independent, we have to check that this a good definition, namely that for

every λ ∈ Rns−1 ∑
j∈[n]s−1

λjjvjj = 0 =⇒
∑

j∈[n]s−1

λjjvijj = 0. (3.12)

Indeed, we can prove something stronger. For any λ ∈ Rns−1

, we define λ̃ ∈ Rns

by

λ̃j′j := δj,j′λj, where j is the second index in the pair (i, j) that indexes the block

At−s(i, j). Then, 〈 ∑
j∈[n]s−1

λjjvijj,
∑

j′∈[n]s−1

λjj′vijj′

〉

=
〈
λ, (Y(ijj,ijj′)j,j′∈[n]s−1λ

〉
=
〈
λ̃, (Y(ij,ij′)j,j′∈[n]s λ̃

〉
≤

〈
λ̃,
∑
k∈[n]

(Ykj,kj′)j,j′∈[n]s λ̃

〉

≤
〈
λ̃,⊕k∈[n](Ykj,kj′)j,j′∈[n]s−1 λ̃

〉
=
〈
λ, (Yjj,jj′)j,j′∈[n]s−1λ

〉
=

〈 ∑
j∈[n]s−1

λjjvjj,
∑

j′∈[n]s−1

λjj′vjj′

〉
,

where in the first inequality we have used that (Ykj,kj′)j,j′∈[n]s ⪰ 0 for every k ∈ [n],

and in the second inequality we have used (3.10). Thus, Eq. (3.12) holds. Now, we

have to check that At−s is a contraction. By the definition of At−s, we just have to
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check that for every λ ∈ Rns

,

λv :=


∑

j∈[n]s−1 λ1jv1j
...∑

j∈[n]s−1 λnjvnj


is mapped to a vector with smaller or equal norm. Indeed,

⟨At−sλv,At−sλv⟩ =
∑

i,j,j′∈[n]s

λj ⟨vij, vij′⟩λj′

=

〈
λ,
∑
i∈[n]

(Yij,ij′)j,j′∈[n]sλ

〉

≤
〈
λ,⊕i∈[n](Yij,ij′)j,j′∈[n]s−1λ

〉
= ⟨λv, λv⟩ ,

where in the inequality we have used Eq. (3.10). Finally, we define A0 through its

blocks. A0(i) is defined by A0(i)vij = v′ij for j ∈ [n]t−1 and extended by 0 to the

orthogonal complement of span{vij : j ∈ [n]t−1}. Using Eq. (3.11), we can check that

these blocks are well-defined and that A0 is a contraction using a similar argument to

the one that we have just used to verify the same properties of At−s. It just remains

to show that (u, v,Ai) defines a factorization for T as in (3.1). Eq. (3.1) holds if and

only it holds for a basis of Rn. We verify it for the canonical basis {ei}i∈[n]. On the

one hand, by definition, we have that T (ei1 , . . . , eit) = Ti. On the other hand, a simple

calculation shows that

Y ′
0,i = ⟨u,A0(i1)A1((i1, i2)) . . . At−1((it−1, it))At(it)v⟩

= ⟨u,A0(Diag(ei1)⊗ Idd)A1 . . . At−1(Diag(eit)⊗ Idd)Atv⟩.

Hence, by Eq. (3.7) follows that

T (ei1 , . . . , eit) = ⟨u,A0(Diag(ei1)⊗ Idd)A1 . . . At−1(Diag(eit)⊗ Idd)Atv⟩,

as desired.

Remark 3.12. (PCS) has poly(n)t variables, so Item (b) holds. Item (c) can be inferred

from the second part of the proof of Theorem 3.11 Item (i), where a recipe to extract

a factorization as in Eq. (3.1) for (Y ′
0,i)i satisfying Eqs. (3.8) to (3.11) is given.
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The dual semidefinite program

In this section, we introduce (DCS) and prove Theorem 3.11 Item (ii). (DCS) is given

by:

sup
∑
i∈[n]t

Tiy0,i (DCS)

s.t. y0, y
′
0 ≥ 0,

(
yi,i′
)
i,i′∈[n]s

⪰ 0, for s ∈ [t], (3.13)

y0 + y′0 ≤ 1, (3.14)

y0 ≥ yi,i, for i ∈ [n] (3.15)

(yj, yj′)j,j∈[n]s ≥ (yij, yij′)j,j′∈[n]s for i ∈ [n], s ∈ [t− 1], (3.16)
y′0 . . . (y0,i)i∈[n]t/2 . . .
...

(y0,i)i∈[n]t

2

(
yi,i′
)
i,i′∈[n]t

...

 ⪰ 0, (3.17)

Before diving into the proof, we give some intuition of why the optimal value of (DCS)

is ∥T∥cb. One should note that Eq. (3.17) means that the variables y0,i can be written

as ⟨u, vi⟩ for some vectors u, vi. Then, roughly speaking, Eqs. (3.15) and (3.16)

encode that the vi equal X1(i1) . . . Xt(it)v for some contractions X1(i1), . . . , Xt(it)

and a vector v, and Eq. (3.14) encodes that u and v are bounded vectors.

Proof of Theorem 3.11 Item (ii). First, we note that Eq. (3.13) means that there exist

d ∈ N and vectors {u, v, vi : i ∈ [n]s, s ∈ [t]} ⊂ Rm such that y′0 = ⟨u, u⟩, y0 = ⟨v, v⟩,
and yi,i′ = ⟨vi, vi′⟩ for every i ∈ [n]s and s ∈ [t]. Then, Eq. (3.15) means that

⟨u, u⟩ + ⟨v, v⟩ ≤ 1 and Eq. (3.17) means that y0,i = 2⟨u, vi⟩ for every i ∈ [n]t. Thus,
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we can rewrite Eq. (DCS) as

sup 2
∑
i∈[n]t

Ti⟨u, vi⟩, (3.18)

s.t. m ∈ N, u, v, vi ∈ Rm, i ∈ [n]s, s ∈ [t],

⟨u, u⟩+ ⟨v, v⟩ ≤ 1,

⟨v, v⟩ ≥ ⟨vi, vi⟩, for i ∈ [n] (3.19)

(⟨vj, vj′⟩)j,j∈[n]s ≥ (⟨vij, vij′⟩)j,j′∈[n]s for i ∈ [n], s ∈ [t− 1] (3.20)

(3.21)

Next, we will show that Eqs. (3.19) and (3.20) are equivalent to the existence of

contractions X1, . . . , Xt ∈Mm such that

vi = Xt−s+1(i1) . . . Xt(is)v, (3.22)

for every i ∈ [n]s and every s ∈ [t]. Indeed, assume that Eqs. (3.19) and (3.20) hold.

Then, for every i ∈ [n] and every s ∈ {0} ∪ [t], we define

Xt−s(i)vj := vij

for every j ∈ [n]s and extend it by 0 on the orthogonal complement of span{vj : j ∈
[n]s}. We have to check that the Xt−s(i) are well-defined as linear maps. Namely,

that for every λ ∈ Rns

we have∑
j∈[n]s

λjvj = 0 =⇒
∑

j∈[n]s

λjvij = 0.

In fact, we can prove that the Xt−s(i) are well-defined and contractions at the same

time. Indeed, for λ ∈ Rns

we have that〈 ∑
j∈[n]s

λjvij,
∑

j′∈[n]s

λj′vij′

〉
=

〈
λ,
(
⟨vij, vij′⟩

)
j,j′∈[n]s

λ

〉

≤
〈
λ,
(
⟨vj, vj′⟩

)
j,j′∈[n]s

λ

〉
=

〈 ∑
j∈[n]s

λjvj,
∑

j′∈[n]s

λj′vj′

〉
,
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where we have used Eq. (3.20) (or Eq. (3.19) if s = 0).

On the other hand, if Eq. (3.22) holds, it is a routine check showing that Eqs. (3.19)

and (3.20) hold. Putting everything together, we can rewrite (3.18) as

sup 2
∑
i∈[n]t

TiRi, (3.23)

s.t. R ∈ Rn
t

, m ∈ N, u, v ∈ Rm, Xs ∈Mm contractions for s ∈ [t],

⟨u, u⟩+ ⟨v, v⟩ ≤ 1,

Ri = ⟨u,X1(i1) . . . Xt(it)v⟩ , for i ∈ [n]t.

We finally claim that the above optimization problem is equivalent to

sup 2
∑
i∈[n]t

TiRi, (3.24)

s.t. R ∈ Rn
t

, m ∈ N, u, v ∈ Rm, Xs ∈Mm contractions for s ∈ [t],

⟨u, u⟩ , ⟨v, v⟩ ≤ 1/2,

Ri = ⟨u,X1(i1) . . . Xt(it)v⟩ , for i ∈ [n]t.

We first note that the optimum of Eq. (3.23) is greater or equal than the optimum

of Eq. (3.24), because the feasible region is larger in the case of Eq. (3.23). On the

other hand, if one picks a feasible instance (u, v,X) of Eq. (3.23), one can define the

instance (ũ, ṽ, X) by

ũ =
u
√
∥u∥2 + ∥v∥2√

2∥u∥
, ṽ =

v
√
∥u∥2 + ∥v∥2√

2∥v∥
,

which is feasible for Eq. (3.24) and attains a value greater or equal than (u, v,X),

because∣∣∣∑Ti ⟨ũ, X1(i1) . . . Xt(it)ṽ⟩
∣∣∣ =
∥u∥2 + ∥v∥2

2∥u∥∥v∥

∣∣∣∑Ti ⟨u,X1(i1) . . . Xt(it)v⟩
∣∣∣

≥
∣∣∣∑Ti ⟨u,X1(i1) . . . Xt(it)v⟩

∣∣∣.
Now, the result follows from the fact that the optimal value of Eq. (3.24) is ∥T∥cb.

Strong duality

Finally, we prove Theorem 3.11 Item (iii).
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Proof of Theorem 3.11 Item (iii). First, we show that (PCS) can be expressed as in

the canonical form of (P ) in Eq. (2.15). To do that we introduce the slack matrix

variables Z and Z ′ and write (PCS) as

inf w (P̃CS)

s.t. X :=


w 0 0 0 0

0 Y 0 0 0

0 0 Y ′ 0 0

0 0 0 Z 0

0 0 0 0 Z ′

 ⪰ 0

Y0,i = Ti, i ∈ [n]t, (3.25)

w − Y ′
0,0 = 0, (3.26)

w −
∑
i∈[n]

Yi,i = Z0,0, (3.27)

⊕i∈[n] (Yij,ij′)j,j′∈[n]s−1 −
∑
i∈[n]

(Yij,ij′)j,j′∈[n]s = (Zj,j′)j,j′∈[n]s , s ∈ [t− 1], (3.28)

⊕i∈[n] (Yij,ij′)j,j′∈[n]t−1 − (Y ′
j,j′)j,j′∈[n]t = Z ′, (3.29)

One can regard X as a positive semidefinite matrix with some entries set to 0, which

can be imposed via linear constraints. Additionally, note that the objective function w

is a linear function of the entries of X, and so are the restrictions Eqs. (3.25) to (3.29).

Hence, (PCS) has the form of (P ) in Eq. (2.15).

Second, we show that (DCS) can be expressed as in the canonical form of (D) in

Eq. (2.15). We can rewrite (DCS) as

45



3.4. From polynomials to quantum algorithms

sup
∑
i∈[n]t

TiRi (D̃CS)

s.t. y0, y
′
0, Ri, yi,i′ , i, i

′ ∈ [n]s, s ∈ [t]

y0 ≥ 0, y′0 ≥ 0,
∑

j,j′∈[n]s

yj,j′Ej,j′ ⪰ 0, for s ∈ [t], (3.30)

y0 + y′0 ≤ 1, (3.31)

y0 ≥ yi,i, for i ∈ [n] (3.32)∑
j,j′∈[n]s

(yj,j′ − yij,ij′)Ej,j′ ⪰ 0, for i ∈ [n], s ∈ [t− 1] (3.33)

y′0E0,0 +
∑
j∈[n]t

Rj
E0,j + Ej,0

2
+

∑
i,i′∈[n]t

yi,i′Ei,i′ ⪰ 0. (3.34)

Thus, we have written (DCS) as an optimization problem (D̃CS) on the variables

y0, y
′
0, Ri, yi,i′ . Moreover, the objective function is a linear combination of these vari-

ables. Also, the constraints are positive semidefinite constraints on matrices that are

linear combinations of other matrices, where the coefficients of these linear combina-

tions are y0, y
′
0, Ri, yi,i′ . Putting everything together, it follows that (DCS) is of the

form of (D) in Eq. (2.15).

Third, we show that (DCS) is the dual of (PCS). Equivalently, we prove that (D̃CS)

is the dual of (P̃CS). To take the dual of a primal semidefinite program such as (P̃CS)

it is convenient to assign a dual variable to every linear constraint. We assign Ri to

the constraints in Eq. (3.25), y′0 to Eq. (3.26), y0 to Eq. (3.27), and yi,i to Eqs. (3.28)

and (3.29). In addition, one should note that every variable in the primal corresponds

to a restriction in the dual. With this in mind, from the definition of the dual given

in Eq. (2.15), it follows that (D̃CS) is the dual of (P̃CS), and that the constraints of

Eq. (3.30) correspond to variable Z in (P̃CS), Eq. (3.31) to varible w, and Eqs. (3.32)

to (3.34) to variable Y.

Finally, we show that the conditions of Theorem 2.20 are satisfied by (P̃CS) and

(D̃CS), which implies that their values are equal. (P̃CS) is feasible, as every T factors

as in Eq. (3.1) for some u, v with sufficiently large norm (if this was not true, ∥T∥cb
would not be a norm). In addition, we claim that the following parameters define a
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strictly positive feasible instance for (D̃CS)

y0 = y′0 =
1

3
,

yi,j =
δi,j

3(n+ 1)s
, for i, j ∈ [n]s, s ∈ [t],

Ri = 0, for i ∈ [n]t.

Indeed, with these parameters Eqs. (3.30) to (3.34) read as follows:

1

3
≥ 0, Id ≻ 0

1

3
+

1

3
≤ 1,

1

3
≻ n

3(n+ 1)
,

1

3(n+ 1)s
Idns ≻ n

3(n+ 1)s+1
Idns , for s ∈ [t− 1],(

1
3 0

0 1
3(n+1)t Idnt

)
≻ 0,

and these identities are true because 1 > n/(n+ 1).

3.4.2 A hierarchy of SDPs to find quantum algorithms

To introduce the announced hierarchy of SDPs, we first note that by Theorem 3.6 it

follows that the smallest error that can be achieved when approximating a function

f : D ⊆ {−1, 1}n → R with a t-query quantum algorithm is

E(f, t) = inf
{
ε ≥ 0 | ∃ 2t-linear form T : R2n × · · · × ×R2n → R

|f(x)− T ((x, 1n), . . . , (x, 1n))| ≤ ε ∀x ∈ D,

∥T∥cb ≤ 1}.

Now, an immediate corollary of Theorem 3.11 is the following formulation of E(p, t)

as an SDP.
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Corollary 3.13. Let f : {−1, 1}n → [−1, 1] and t ∈ N. Then,

E(f, t) = inf ε

s.t. ε ≥ 0, Y, Y ′ ⪰ 0,

|p(x)−
∑

i∈[n]2t

Y ′
0,iyi1 . . . yi2t | ≤ ε, y = (x, 1n),∀ x ∈ {−1, 1}n,

Y ′
0,0 = w,∑
i∈[2n]

Yi,i ≤ w,

∑
i∈[2n]

(Yij,ij′)j,j′∈[2n]s ⪯ ⊕i∈[2n](Yij,ij′)j,j′∈[2n]s−1 , s ∈ [2t− 1],

(Y ′
j,j′)j,j′∈[2n]2t ⪯ ⊕i∈[2n](Yij,ij′)j,j′∈[2n]2t−1 ,

We observe that, as a consequence of Corollary 3.13, we have that (E(f, t))t de-

termines a hierarchy of SDPs that computes quantum query complexity. Indeed, to

compute Qε(f) one can solve E(f, 1), E(f, 2), . . . and stop at the smallest t0 satisfy-

ing E(f, t0) ≤ ε. Then, we will have that t0 = Qε(f). Additionally, from an optimal

solution to E(f, t0) one can obtain an optimal quantum algorithm. This can be easily

(but tediously) done following the constructions in the proofs of Theorem 3.6 and

Theorem 3.11 Item (i),

Comparison with other methods

There are other formulations of E(f, t) as a SDP: the aforementioned work by Gribling

and Laurent [GL19] and by Barnum, Saks, and Szegedy [BSS03]. We will compare

these three methods with ours, and also with the adversary method, which does not

compute E(f, t), but provides a SDP that directly computes the quantum query com-

plexity. We remark the following:

• The method of Gribling and Laurent does not provide a description of the ap-

proximating quantum algorithm, while the others method do.

• The sizes of the SDPs differ, as shown in Table 3.1. The ones of Corollary 3.13

are considerably smaller than the ones in [BSS03] and the size of the SDP of the

adversary method, but they are slightly bigger than the ones in [GL19].

• The adversary method loses constant factors in the characterization of quantum

query complexity, and it does not work for exact quantum query complexity. On
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# blocks block size # lin. ineq. # lin. eq.
Adversary method [HLv07] n |D| 0 |f−1(1)||f−1(0)|

Barnum-Saks-Szegedy [BSS03] nt+ 2 |D| |D| Θ(t|D|2)
Gribling-Laurent [GL19] 1 Θ(nt) 2|D|+ 1 Θ(n2t)

Corollary 3.13 4t− 2 Θ((2n)2t) 2|D|+ 3 Θ(2t(2n)2t)

Table 3.1: A comparison of the sizes of the SDPs to compute quantum query complexity.
We count the number of linear equalities, inequalities, and PSD blocks, keeping track of the
size of the largest block.

the other hand, the other three hierarchies of SDPs do characterize quantum

query complexity, including the exact case, without losing constant factors.
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Chapter 4

Grothendieck inequalities

characterizes converses to the

polynomial method

4.1 Introduction

For a Boolean function f : D → {−1, 1} defined on a set D ⊆ {−1, 1}n, the cele-

brated polynomial method of Beals, Buhrman, Cleve, Mosca and de Wolf [BBC+01],

introduced in Chapter 3, gives a lower bound on the quantum query complexity of f

in terms of the approximate degree. Using this method, many well-known quantum

algorithms were proved to be optimal in terms of query complexity (see e.g., [BKT20]

and references therein).

Since polynomials are simpler objects than quantum query algorithms, it is of in-

terest to know how well approximate degree approximates quantum query complexity.

There are total functions f that satisfy Q(f) ≥ d̃eg(f)c for some absolute constant

c > 1 [Amb06, ABDK16]; the second reference gives an exponent c = 4− o(1), which

was shown to be optimal in [ABDK16]. For partial functions it was recently shown

that this separation can even be exponential [AB23]. These separations rule out a

direct converse to the polynomial method, whereby a given bounded degree-2t poly-

nomial p can be computed by a t-query quantum algorithm A. However, since these

results concern functions whose approximate degree grows with n, they leave room for

the possibility that such an A approximates p with some error that depends on t.
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For bounded polynomials of degree at most 2, a multiplicative converse to the

polynomial method was proved in [AAI+16], showing that up to an absolute con-

stant scaling, quadratic polynomials can indeed be computed by 1-query quantum

algorithms.

Theorem 4.1 (Quadratic multiplicative converse [AAI+16]). There exists an absolute

constant C ∈ (0, 1] such that E(Cp, 1) = 0 for every bounded polynomial p of degree at

most 2.

This result directly implies the following additive version.

Corollary 4.2 (Quadratic additive converse). There exists an absolute constant ε ∈
(0, 1) such that the following holds. For every bounded polynomial p of degree at most 2,

we have E(p, 1) ≤ ε. In particular, one can take ε = 1−C for the constant C appearing

in Theorem 4.1.

In light of the polynomial method, Corollary 4.2 shows that one-query quantum

algorithms are roughly equivalent to bounded quadratic polynomials. The authors

of [AAI+16] asked whether this result generalizes to higher degrees. Two ways to

interpret this question are that for any k, any bounded degree-2k polynomial p satisfies:

(a) Multiplicative converse: E(Cp, k) = 0 for some C = C(k) > 0, or;

(b) Additive converse: E(p, k) ≤ ε for some ε = ε(k) < 1.

The dependence on the degree k in these options is necessary due to the known sep-

arations between bounded-error quantum query complexity and approximate degree.

Option (a), the higher-degree version of Theorem 4.1, was ruled out in [ABP19].

Theorem 4.3. For any C > 0, there exist an n ∈ N and a bounded quartic n-variable

polynomial p such that no two-query quantum algorithm A satisfies E[A(x)] = Cp(x)

for every x ∈ {−1, 1}n.

Note that Option ((a)) with C implies Option ((b)) with 1− C, but Theorem 4.3

does not rule out Option ((a)).

Contributions of this chapter

Our first contribution concerns an error in the original proof of Theorem 4.3, which

was based on a probabilistic example. Here, we show that Theorem 4.3 holds as

stated, both by considering a slightly modified probabilistic example and by giving

a completely explicit example. More importantly, we prove a stronger result that

subsumes Theorem 4.3: we rule out the possibility of Option ((b)).
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Theorem 4.4. There is no constant ε ∈ (0, 1) such that for every bounded polynomial

p of degree at most 4, we have E(p, 2) ≤ ε.

In the context of quantum query complexity of Boolean functions, this rules out

arguably the most natural way to upper bound Q(f) in terms of d̃eg(f): First, ε-

approximate f by a degree-2t polynomial p, then ε′-approximate p with a t-query

quantum algorithm A, with ε + ε′ < 1, and finally boost the success probability of

A so that it approximates f , for instance by taking the majority of independent runs

of A. Corollary 4.2 gives the only exceptional case where this is possible in general.

Our second contribution concerns 1-query quantum algorithms. For the case of

bilinear forms, Theorem 4.1 was proved using a surprising application of the famous

Grothendieck theorem (see Section 2.7.1). The general form of Theorem 4.1 follows

from decoupling techniques. In this chapter, we show that the additive approximation

implied by Theorem 4.1 is optimal.

Theorem 4.5. The worst-case minimum error for one-query quantum algorithms

satisfies

sup
p
E(p, 1) = 1− 1

KR
G

,

where the supremum is taken over the set of bounded bilinear forms.

This complements another well-known characterization of KR
G in terms of the

largest-possible Bell-inequality violations in two-player XOR games [Tsi80].

The main technical result of this chapter

Both Theorems 4.3 and 4.4 are in fact corollaries of our main result (Theorem 4.13

below), which gives a formula for E(p, t) when p is a block-multilinear form. Block-

multilinear forms already played an important role in other works related to quan-

tum query complexity [OZ15, AAI+16, BSdW22], theoretical computer science [KN07,

Lov10, KM13] and in the polarization theory of functional analysis [BH31, Har72].

The formula characterizes E(p, t) in terms of a ratio of norms appearing naturally

in Grothendieck’s theorem for bilinear forms (see Section 2.7.1). The dual formulation

of Grothendieck’s theorem asserts that for any bilinear form A : Rn × Rn → R,

∥A∥∞,∗ ≤ KR
G∥A∥cb,∗.

Similar norms can be defined for block-multilinear forms of higher degree. Endowing

the space of polynomials with the standard inner product of the coefficient vectors in
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the monomial basis, our formula for E(p, t) is as follows.

Theorem 4.6 (Informal version of Theorem 4.13). For a block-multilinear form p of

degree 2t, we have

E(p, t) = sup
q

⟨p, q⟩ − ∥q∥cb,∗
∥q∥∞,∗

.

where the supremum runs over all block-multilinear forms q of degree 2t.

The proof of Theorem 4.6 uses a characterization of quantum query algorithms in

terms of completely bounded polynomials [ABP19].

Theorems 4.4 and 4.5 follow from Theorem 4.6 by taking suprema over particular

sequences of bounded degree-2t block-multilinear forms. From Theorem 4.6 it follows

that

sup
p
E(p, t) = sup

q

[(
sup
p

⟨p, q⟩
∥q∥∞,∗

)
− ∥q∥cb,∗
∥q∥∞,∗

]
= 1− inf

q

∥q∥cb,∗
∥q∥∞,∗

. (4.1)

Now, Theorem 4.5 follows from Eq. (4.1) and the dual version of Grothendieck’s

inequality (Section 4.1). Similarly, Theorem 4.4 is proven by using Eq. (4.1) and

constructing a family of degree-4 polynomials (pn)n that witnesses the failure of

Grothendieck inequality. By this we mean that (pn)n exhibit the separation

∥pn∥cb
∥pn∥∞

→∞. (4.2)

By duality this implies that there is a sequence (rn)n with ∥rn∥cb,∗/∥rn∥∞,∗ → 0,

which alongside Eq. (4.1) implies that supp E(p, 2) = 1, as desired.

4.2 Preliminaries

Polynomials, norms and quantum query complexity

As usual we let R[x1, . . . , xn] be the ring of n-variate polynomials with real coefficients,

whose elements we write as

p(x) =
∑
α∈Zn

≥0

cαx
α, (4.3)

where xα = xα1
1 · · ·xαn

n and cα ∈ R. We define the support of p by

supp(p) = {α ∈ Zn≥0 | cα ̸= 0}.
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For α ∈ Zn≥0, write |α| = α1 + · · · + αn, which is the degree of the monomial xα. A

form of degree d is a homogeneous polynomial of degree d, i.e., a polynomial whose

support consists of α for which |α| = d. Denote by R[x1, . . . , xn]=d the space of forms

of degree d. For p as in Eq. (4.3), define its homogeneous degree-d part by

p=d(x) =
∑
|α|=d

cαx
α.

We endow R[x1, . . . , xn] with the inner product given by

⟨p, q⟩ =
∑
α∈Zn

≥0

cαc
′
α,

where cα and c′α are the coefficients of p and q, respectively.

We recall the definition of ∥ · ∥1 and ∥ · ∥∞, which are seminorms of polynomials in

R[x1, . . . , xn], and norms on the space of multilinear polynomials.

∥p∥∞ := sup
x∈{−1,1}n

|p(x)|,

∥p∥1 := Ex∈{−1,1}n |p(x)|,

where the expectation is taken with respect to the uniform probability measure.

We will work with a reformulation of the completely bounded polynomial method,

Theorem 3.6. To state it, we define the completely bounded norm of a form p.

Definition 4.7. Let p ∈ R[x1, . . . , xn]=t. Then, its completely bounded norm is

defined by

∥p∥cb = inf
{
∥T∥cb | p(x) = T (x, . . . , x) ∀x ∈ Rn

}
,

where the infimum runs over all t-linear forms T : Rn × · · · × Rn → R.

Note that we are slightly abusing notation because we have introduced two notions

of completely bounded norm for t-linear forms T : Rn × · · · × Rn → R. The first one

in Definition 2.17, where we regard T as a multilinear form. Furthermore, such T can

also be regarded as a homogeneous polynomial in nt variables, so we have defined a

second notion of completely bounded norm for it in Definition 4.7. For the rest of the

chapter, we will use the definition of Definition 4.7. However, to prove Theorem 4.5

we should show that for bilinear forms both norms are equal (see Proposition 4.25

below).
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Now, we can restate Theorem 3.6.1

Theorem 4.8 (Completely bounded polynomial method). Let p : {−1, 1}n → [−1, 1]

and let t ∈ N. Then,

E(p, t) = inf ∥p− q∥∞
s.t. h ∈ R[x1, . . . , xn+1]=2t with ∥h∥cb ≤ 1

q : {−1, 1}n → R, with q(x) = h(x, 1) ∀ x ∈ {−1, 1}n.

Block-multilinear forms

Theorem 4.13 is stated for a special kind of polynomials, which are the block-multilinear

forms.

Definition 4.9. Let P = {I1, . . . , It} be a partition of [n] into t (pairwise disjoint)

non-empty subsets. Define the set of block-multilinear polynomials with respect to P
to be the linear subspace

VP = Span
{
xi1 · · ·xit | i1 ∈ I1, . . . , it ∈ It

}
.

We also work with the larger space of polynomials spanned by monomials where

in the above we replace linearity by odd degree.

Definition 4.10. For a family Q ⊆ 2[m] of pairwise disjoint subsets, let WQ ⊆
R[x1, . . . , xm] be the subspace of polynomials spanned by monomials xα with α ∈ Zm≥0

satisfying ∑
i∈I

αi ≡ 1 mod 2 ∀I ∈ Q. (4.4)

We use ΠQ : R[x1, . . . , xm]→WQ to refer to the projector onto WQ.

Remark 4.11. Given a partition P of [n], we have VP ⊂WP . In particular, VP consists

of precisely the multilinear polynomials in WP .

Although the projector ΠQ onto WQ is properly defined on the space of polynomials

of n variables, we will slightly abuse notation and let it act on a t-tensor T ∈ Rn×···×n

as follows. Define IQ ⊆ [n]t to be the set of t-tuples that contain an odd number of

1A direct reformulation of Theorem 3.6 would be with the polynomial h below belonging to
R[x1, . . . , x2n]=2t, instead of R[x1, . . . , xn+1]=2t, However, in [GL19] it was observed that only one
extra variable is needed.
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elements from each set in Q. Then, we let ΠQT be the tensor given by

(ΠQT )i :=

{
Ti if i ∈ IQ,
0 otherwise.

(4.5)

It is not hard to see that if p is a polynomial satisfying T (x, . . . , x) = p(x) for every

x ∈ {−1, 1}n, then ΠQT (x, . . . , x) = ΠQp(x) for every x ∈ {−1, 1}n.

We note that all the norms and seminorms we have mentioned are norms on the

space VP for any partition P of [n]. Hence, we can take the dual of these norms with

respect to this subspace, so from now on ∥p∥∞,∗ and ∥p∥cb,∗ will be the dual of ∥p∥∞
and ∥p∥cb of VP , respectively. By contrast, when we write ∥R∥cb,∗ for some t-tensor

Rn×···×n we refer to the dual norm of the completely bounded norm of R with respect

to the whole space of t-tensors.

We stress that ∥ · ∥∞,∗ need not be equal to ∥ · ∥1. This is because we are taking

the dual norms with respect to VP and not with respect to the space of all multilinear

maps, in which case the dual norm would be ∥p∥1. The following example shows that

∥p∥∞,∗ ̸= ∥p∥1 in general.

Example 4.12. Consider n = 3, t = 1 and p = (x1 + x2 + x3)/3. Then, ∥p∥1 > 1/3,

but ∥p∥∞,∗ ≤ 1/3. Indeed, as |p(x)| ≥ 1/3 for every x ∈ {−1, 1}3 and |p(x)| > 1/3 for

some x ∈ {−1, 1}3, we have that ∥p∥1 > 1/3. On the other hand, in this case P = {[3]}
so VP is the set of linear polynomials. Note that if q is linear, then ∥q̂∥1 = ∥q∥∞, where

q̂ is the Fourier transform of q. Hence

∥p∥∞,∗ = sup
q∈VP ,∥q∥∞≤1

⟨p, q⟩ = sup
q∈VP ,∥q̂∥1≤1

⟨p̂, q̂⟩ ≤ sup
∥q̂∥1≤1

∥p̂∥∞∥q̂∥1 =
1

3
,

where in second equality we used Parseval’s identity.

4.3 E(p, t) for block-multilinear forms

In this section we formally state and prove our main result:

Theorem 4.13. Let P be a partition of [n] in 2t subsets and p ∈ VP . Then,

E(p, t) = sup {⟨p, r⟩ − ∥r∥cb,∗ | r ∈ VP , ∥r∥∞,∗ ≤ 1} .

For the proof, we use more convenient expressions for the completely bounded

norms and the fact that the projector ΠQ is contractive under several norms.
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Contractivity of the projector ΠQ.

A key element of the proof of Theorem 4.13 is that can restrict the infimum in Theo-

rem 4.8 to the space of polynomials WQ given in Definition 4.10. To do that, we prove

that the orthogonal projector onto this space, ΠQ is contractive in several norms.

This will follow from the fact that ΠQ has a particularly nice structure in the form

of an averaging operator. Let Q be a family of disjoint subsets of [n]. For each

I ∈ Q let zI be a random variable that takes the values −1 and 1 with probability

1/2 and let z = (zI)I∈Q. For a bit string x ∈ {−1, 1}n, we define the random variable

x · z ∈ {−1, 1}n as

(x · z)(i) :=

{
xizI if i ∈ I for some I ∈ Q,
xi otherwise.

For a matrix-valued map A : [n] → M(d) we define the random variable A · z in an

analogous way.

Proposition 4.14. For any p ∈ R[x1, . . . , xn] and x ∈ Rn, we have that

ΠQp(x) = Ez
[
p(x · z)

∏
I∈Q

zI

]
.

Similarly, for any t-tensor T ∈ Rn×···×n, positive integer d and matrix-valued map

A : [n]→M(d), we have that

ΠQT (A) = Ez

[
T (A · z)

∏
I∈Q

zI

]
.

Proof. By linearity, it suffices to prove the equality for monomials. Let α ∈ Zn≥0. Then

we have

(x · z)α
∏
I∈Q

zI = xα
∏
I∈Q

z
1+

∑
i∈I αi

I .

It follows that

Ez
[
(x · z)α

∏
I∈Q

zI

]
=

xα if 1 +
∑
i∈I αi = 0 mod 2 ∀I ∈ Q,

0 otherwise.

It remains to observe that this is precisely the projection of xα on WQ. The statement

for tensors follows analogously.
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Finally, we prove that ΠQ is contractive with respect to the relevant norms.

Lemma 4.15. Let Q be a family of disjoint subsets of [n] and p ∈ R[x1, . . . , xn] and

let norm ∈ {cb,∞, 1} where for the cb-norm we moreover require p to be homogeneous.

Then

∥ΠQp∥norm ≤ ∥p∥norm.

Proof. First, we consider the ∥ · ∥∞ norm. For every x ∈ {−1, 1}n, we have that

x · z ∈ {−1, 1}n, so

|ΠQp(x)| ≤ Ez|p(x · z)
∏
I∈Q

zI | = Ez|p(x · z)| ≤ Ez∥p∥∞ = ∥p∥∞,

where in the first inequality we used Proposition 4.14 and the triangle inequality.

Second, we consider ∥ · ∥cb. Arguing as in the ∥ · ∥∞ case and using Definition 4.7,

it follows that for any t-tensor T ∈ Rn×···×n we have that ∥ΠQT∥cb ≤ ∥T∥cb. Given

that ΠQp(x) = ΠQT (x) if p(x) = T (x), it follows that

∥ΠQp∥cb ≤ ∥ΠQT∥cb ≤ ∥T∥cb

for every t-tensor T ∈ Rn×···×n such that T (x) = p(x). Taking the infimum over all

those T we arrive at ∥ΠQp∥cb ≤ ∥p∥cb.

Finally, for ∥ · ∥1 we have

∥ΠQp∥1 = Ex|Ezp(x · z)
∏
I∈Q

zI | ≤ ExEz|p(x · z)| = EzEx|p(x)| = ∥p∥1,

where in the first equality we have used Proposition 4.14 and in the third we have used

the fact that the uniform measure is invariant under multiplication by z ∈ {−1, 1}n.

Putting everything together

We are now ready to prove Theorem 4.13. To this end, we start from the expression

given in Theorem 4.8 for E(p, t) and let h ∈ R[x1, . . . , xn+1]=2t with ∥h∥cb ≤ 1 and let

q : {−1, 1}n → R be defined by q(x) = h(x, 1) for every x ∈ {−1, 1}n.

We first show that we can project q (and h) onto WP and obtain a feasible solution

whose objective value is at least as good as q. Since P is a partition of [n], it defines a

family of disjoint subsets of [n+ 1], so by Lemma 4.15, we have ∥ΠPh∥cb ≤ ∥h∥cb ≤ 1.

Since the degree of h is at most 2t, the polynomial ΠPh has degree at most 2t.
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This shows that each monomial in its support contains exactly one variable from

each of the 2t sets in P. We can therefore observe that ΠPh does not depend on

xn+1. Since h(x, 1) = q(x), we have ΠPh(x, 1) = ΠPq(x) and therefore ΠPq ∈ VP .

From Definition 4.7 follows that ∥ΠPq∥cb ≤ 1. Indeed, applying ΠP to a 2t-tensor

T ∈ R(n+1)×···(n+1) that certifies ∥h∥cb ≤ 1 results in a tensor ΠPT that satisfies

ΠPT (i) = 0 whenever i contains an index equal to n + 1. So, ΠPT (x, 1) = ΠPq(x)

for every x ∈ {−1, 1}n and thus ΠPT , viewed as a 2t-tensor in Rn×···×n, certifies

∥ΠPq∥cb ≤ 1. For the objective value of ΠPq we finally observe that

∥p−ΠPq∥∞ = ∥ΠP(p− q)∥∞ ≤ ∥p− q∥∞,

where we used that p ∈ VP in the equality and Lemma 4.15 in the inequality. This

shows that

E(p, t) ≥ inf{∥p− q∥∞ | q ∈ VP with ∥q∥cb ≤ 1}.

To show that the above inequality is in fact an equality it suffices to observe that given

a polynomial q ∈ VP , we can define h ∈ R[x1, . . . , xn+1] as h(x, xn+1) = q(x) and then

we have ∥h∥cb ≤ ∥q∥cb.

Finally, in the above reformulation of E(p, t), we can express ∥p− q∥∞ in terms of

its dual norm and obtain

E(p, t) = inf
q

sup
r
⟨p− q, r⟩

s.t. q ∈ VP with ∥q∥cb ≤ 1,

r ∈ VP with ∥r∥∞,∗ ≤ 1.

Finally, we need the von Neumann’s minimax theorem (see [Nik54] for a proof).

Theorem 4.16 (Minimax). Let X and Y convex compact sets. Let f : X × Y → R
such that f is concave in the first variable and convex in the second. Then,

sup
x∈X

inf
y∈Y

f(x, y) = inf
y∈Y

sup
x∈X

f(x, y).

The desired result then follows by exchanging the infimum and supremum, which we

are allowed to do by Theorem 4.16.
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4.4 Separations between infinity and completely bounded

norms

In this section we show that the completely bounded norm of a degree 4 bounded

polynomial can be unbounded. In other words, we prove the following Theorem.

Theorem 4.17. There is a sequence pn ∈ R[x1, . . . , xn]=4 such that

∥pn∥cb
∥pn∥∞

→∞.

To prove Theorem 4.17 we first provide a framework to lower bound the completely

bounded norm inspired on a technique due to Varopoulos [Var74].2 Second, we con-

struct two sequences of bounded polynomials, one random and one explicit, that fit in

that framework and have unbounded completely bounded norm.

Lower bounding the completely bounded norm

We will first talk about general cubic forms, that is polynomials given by:

p(x) =
∑

S∈([n]
3 )

cS
∏
i∈S

xi, (4.6)

where the cS are some real coefficients. We will lower bound its completely bounded

norm. Then, we will extent this lower bound to an associated quartic form, given by

x0p(x). For i ∈ [n], define the ith slice of p to be the symmetric matrix Mi ∈ Rn×n

with (j, k)-coefficient equal to c{i,j,k} if i, j, k are pairwise distinct and 0 otherwise.

Then, define

∆(p) = max
i∈[n]
∥Mi∥op.

Lemma 4.18 (tri-linear Varopoulos decomposition). Let p be an n-variate multilinear

cubic form as in (4.6). Then, for some d ∈ N, there exist contractions A(1), . . . , A(n) ∈

2We use the same construction as the one proposed by Varopoulos, but we apply it to multilinear
polynomials, which gives it the extra property displayed in Eq. (4.7)
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Md and orthogonal vectors u, v ∈ Sd−1 such that [A(j), A(i)] = 0, and

A(i)2 = 0 (4.7)

⟨u,A(i)v⟩ = 0 (4.8)

⟨u,A(i)A(j)v⟩ = 0 (4.9)

⟨u,A(i)A(j)A(k)v⟩ =
c{i,j,k}

∆(p)
(4.10)

for all pairwise distinct i, j, k ∈ [n].

Proof. For each i ∈ [n], define Mi as above. Define Wi = ∆(p)−1Mi and note that Wi

has operator norm at most 1. For each i ∈ [n], define the (2n + 2) × (2n + 2) block

matrix

A(i) =

 ei

WT
i

eTi

,
where the first and last rows and columns have size 1, the second and third have

size n and where the empty blocks are filled with zeros. Define u = e2n+1 and v = e1.

The rest of the proof is identical to the proof of [BP19, Lemma 2.11], except for the

property that A(i)2 = 0. This follows from the fact that

A(i)2 =

 WT
i ei

eTi W
T
i


and that the ith row and ith column of Mi (and hence Wi) are zero.

Corollary 4.19. Let p be an n-variate multilinear cubic form as in (4.6). Sup-

pose that an (n + 2)-variate quartic form h ∈ R[x0, x1, . . . , xn, z] satisfies h(x, 1) =

x0p(x1, . . . , xn) for every x ∈ {−1, 1}n+1. Then,

∥h∥cb ≥
∥p∥22
∆(p)

.

Proof. From the orthonormality of the characters, it follows that h and x0p have

equal coefficients for each quartic multilinear monomial in the variables x0, . . . , xn,

which are cS for x0χS with S ∈
(
[n]
3

)
and 0 otherwise. Let A(1), . . . , A(n) ∈ BMd

and u, v ∈ Sd be as in Lemma 4.18, and extend A by A(0) = I, A(n + 1) = 0.
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Commutativity and properties (4.7)–(4.9) imply that if a quartic monomial expression

A((i, j, k, l)) with i, j, k, l ∈ {0, . . . , n + 1} has repeated indices or an index equal

to n+ 1, then ⟨u,A((i, j, k, l))v⟩ = 0. With this, it follows that, for every Th such that

Th(x, . . . , x) = h(x), we have

∥Th∥cb ≥
∑

i∈({0}∪[n+1])4

Ti

〈
u,A(i)v

〉
=

∑
S∈([n]

3 )

cS

〈
u, A(0)

∏
i∈S

A(i)v
〉
. (4.11)

Finally, if we use that A(0) = Id, property (4.10) and Parseval’s identity, we obtain

the desired result:

∥h∥cb = inf ∥Th∥cb ≥
∑

S∈([n]
3 )

cS⟨u,
∏
i∈S

A(i)v⟩ = ∆(p)−1
∑

S∈([n]
3 )

c2S =
∥p∥22
∆(p)

.

A separation based on a random example

We begin by defining a random cubic form as in (4.6) where the coefficients cS are

chosen to be independent uniformly distributed random signs. Parseval’s identity then

gives ∥p∥22 =
(
n
3

)
. We now use a standard random-matrix inequality to upper bound

∆(p) (see [Tao12, Corollary 2.3.6] for a proof).

Lemma 4.20. There exist absolute constants C, c ∈ (0,∞) such that the following

holds. Let n be a positive integer and let M be a random n × n symmetric random

matrix such that for j ≥ i, the entries Mij are independent random variables with

mean zero and absolute value at most 1. Then, for any τ ≥ C, we have

Pr
[
∥M∥op > τ

√
n
]
≤ Ce−cτn.

Applying Lemma 4.20 to the slices Mi and the union bound then imply that ∆(p) ≤
C
√
n with probability 1−exp(−Cn). By Hoeffding’s inequality [BLM13, Theorem 2.8]

and the union bound, we have that ∥p∥∞ ≤ Cn2 with probability 1 − exp(−Cn).

Rescaling p then gives that there exists a bounded multilinear cubic form such that

∥p∥22/∆(p) ≥ C
√
n. Now Theorem 4.17 follows from Corollary 4.19.
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A construction based on an explicit example

We also give an explicit construction using techniques from [BP19], which were used

there to disprove a conjecture on a tri-linear version of Grothendieck’s theorem. We do

not exactly use the construction from that paper because it involves complex functions.

Instead, we will use the Möbius function (defined below), which is real valued and has

the desired properties.

The construction uses some notions from additive combinatorics. For a function

f : Zn → [−1, 1] (on the cyclic group of order n), define the 3-linear form

p(x1, x2, x3) =
∑

a,b∈Zn

x1,ax2,a+bx3,a+2bf(a+ 3b).

where x1, x2, x3 ∈ {−1, 1}n and the sums of a and b are done in Zn.

We begin by upper bounding ∆(p). The polynomial p has 3n slices, Mi,a ∈ R[3]×Zn

for each i ∈ [3] and a ∈ Zn, which we view as 3×3 block-matrices with blocks indexed

by Zn. The slice M1,a is supported only on the (2, 3) and (3, 2) blocks, which are each

others’ transposes. On its (2, 3) block it has value f(a+3b) on coordinate (a+b, a+2b)

for each b. In particular, this matrix has at most one nonzero entry in each row and

column. It follows that a relabeling of the rows turns M1,a into a diagonal matrix

with diagonal entries in [−1, 1], and therefore ∥M1,a∥op ≤ 1. Similarly, we get that

∥Mi,a∥op ≤ 1 for i = 2, 3. Hence,

∆(p) ≤ 1. (4.12)

for any choice of f .

Now we will choose a specific f for which we will be able to upper bound ∥p∥∞ and

lower bound ∥p∥22. Identify Zn with {0, 1 . . . , n−1} in the standard way. We choose f

to be the Möbius function restricted to this interval. That is, set f(0) = 0 and for

a > 0, set

f(a) =


1 if a is square-free with an even number of prime factors

−1 if a is square-free with an odd number of prime factors

0 otherwise.

The infinity norm of p can be upper bounded in terms of the Gowers 3-uniformity
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norm of f . This norm plays a central role in additive combinatorics and is defined by

∥f∥U3 =
(
Ea,b1,b2,b3∈Zn

∏
c∈{0,1}3

f(a+ c1b1 + c2b2 + c3b3)
) 1

8

.

The proof of the announced bound can be found in [Gre07, Proposition 1.11].

Lemma 4.21 (generalized von Neumann inequality). Suppose that n is coprime to 6.

Then, for any f : Zn → [−1, 1], we have that

∥p∥∞ ≤ n2∥f∥U3 .

A recent result by Tao and Teräväinen [TT23] given an upper bound to the Gowers

3-uniformity norm of the Möbius function.

Theorem 4.22. Let f : Zn → R be the Möbius function. Then,

∥f∥U3 ≤ 1

(log log n)C
.

for some constant C > 0.

Combining Lemma 4.21 and Theorem 4.22 it follows that

∥p∥∞ ≤
n2

(log log n)C
(4.13)

for some constant C > 0.

To lower bound ∥p∥22 we begin using Parseval’s identity, which implies that

∥p∥22 = n
∑
a∈Zn

f(a)2. (4.14)

Given that |f(a)|2 is 1 if a is square-free and 0 otherwise, we can use a classical result

of number theory to lower bound ∥p∥22 (see [HW+79, page 269] for a proof).

Proposition 4.23. There are 6
π2n − O(

√
n) natural numbers between 1 and n that

are square-free.

From Eq. (4.14) and Proposition 4.23 follows that

∥p∥22 =
6

π2
n2 −O(

√
n3). (4.15)
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Finally, we substitute p by p/(n2/(log log n)C), and it follows from Eqs. (4.12),

(4.13) and (4.15) that p is bounded and

∥p∥22
∆(p)

≥ 6

π2
(log log n)C − o(1).

Again, Theorem 4.17 now follows from Corollary 4.19.

Remark 4.24. The jointly completely bounded norm of p is given by

∥p∥jcb = sup
d∈N
∥
∑

a,b∈Zn

A(1, a)A(2, a+ b)A(3, a+ 2b)f(a+ 3b)∥,

where the supremum is taken over maps A : [3]× [n]→ Cd×d such that ∥A(i, a)∥op ≤ 1

and [A(i, a), A(j, b)] = [A(i, a), A(j, b)†] = 0 for all i ̸= j and a, b ∈ Zn. This norm can

also be stated in terms of tensor products and the supremum is attained by observable-

valued maps. As such, this norm appears naturally in the context of non-local games.

It was shown in [BBB+19] that Proposition 4.21 also holds for the jointly completely

bounded norm, that is ∥p∥jcb ≤ n2∥f∥U3 . The proof of Corollary 4.19 easily implies

that ∥p∥cb ≥ ∥p∥22/∆(p). This was used in [BP19] to prove that the jcb and cb norms

are inequivalent.

4.5 Grothendieck inequalities characterize converses

to the polynomial method

In this section, we show, as a corollary of Theorem 4.13, that Grothendieck inequal-

ities characterize converses to the polynomial method. By this we mean that: i) for

1-query algorithms an additive converse is possible and moreover this converse char-

acterizes KR
G; and ii) for 2-query algorithms no additive converse is possible, because

Grothendieck’s inequality fails for 3-linear forms.

4.5.1 Characterizing KR
G with 1-query quantum algorithms

Here we prove Theorem 4.5. Before doing that, we should prove Definition 2.17 and

Definition 4.7 coincide for bilinear forms, so we can apply Grothendieck’s Theorem,

which uses Definition 2.17, into Theorem 4.13, which uses Definition 4.7.

Proposition 4.25. For bilinear forms Definitons 2.17 and 4.7 coincide.
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Proof. Let T : Rn × Rn → R be a bilinear form. In this proof we will use ∥T∥cb
to refer to the quantity defined in Definition 2.17, and we will write the quantity of

Definition 4.7 as

∥T∥c̃b = inf
{
∥R∥cb | T (x) = R(x, x) ∀ x ∈ Rn × Rn

}
,

where the infimum runs over all bilinear forms R : (Rn × Rn)× (Rn × Rn)→ R.

We first prove that ∥T∥c̃b = ∥Tsym∥cb, where Tsym : (Rn×Rn)× (Rn×Rn)→ R is

the only symmetric bilinear form such that T (x) = Tsym(x, x) for every x ∈ Rn ×Rn.
On the one hand, by definition, it follows that ∥T∥c̃b ≤ ∥Tsym∥cb. On the other hand,

consider a bilinear form R : (Rn×Rn)× (Rn×Rn)→ R such that T (x) = R(x, x) for

every x ∈ Rn × Rn. We define RT : (Rn × Rn)× (Rn × Rn)→ R as the bilinear form

obtained by transposing the matrix associated to R as in Definition 2.14. We have that

Tsym = (R+RT)/2 and that T (x) = RT(x, x) for every x ∈ Rn ×Rn. Furthermore, it

is satisfied that

∥RT∥cb = sup
{
∥
∑
i,j

Rj,iA(i)B(j)∥ | A(i), B(j) ∈ BMd

}
(4.16)

= sup
{
∥
∑
i,j

Rj,iB(j)TA(i)T∥ | A(i), B(j) ∈ BMd

}
= ∥R∥cb,

where we use (twice) that for any matrix M we have ∥M∥ = ∥MT∥. Thus, we have

that ∥R∥cb ≥ ∥Tsym∥cb, so ∥T∥c̃b ≥ ∥Tsym∥cb.

Second, we prove that ∥T∥cb = ∥Tsym∥cb. We observe that Tsym = 1
2

(
0 T

TT 0

)
.

Thus, we immediately have that ∥T∥cb ≤ ∥Tsym∥cb. Also, it is satisfied that

∥Tsym∥cb ≤
1

2

(∥∥∥(0 T

0 0

)∥∥∥
cb

+
∥∥∥( 0 0

TT 0

)∥∥∥
cb

)

≤ 1

2

(
∥T∥cb + ∥TT∥cb

)
= ∥T∥cb,

where the last equality uses (4.16).

We recall that it was shown in [AAI+16] that for every bilinear form there exists

a 1-query quantum algorithm that makes additive error at most 1 − 1/KR
G. It thus
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remains to show the lower bound.

Theorem 4.5. The worst-case minimum error for one-query quantum algorithms

satisfies

sup
p
E(p, 1) = 1− 1

KR
G

,

where the supremum is taken over the set of bounded bilinear forms.

Proof. Theorem 4.13 shows the following:

sup
p∈BB

E(p, 1) = sup
∥p∥∞≤1

sup
∥r∥∞,∗≤1

⟨p, r⟩ − ∥r∥cb,∗ (4.17)

= sup
∥r∥∞,∗≤1

∥r∥∞,∗ − ∥r∥cb,∗ (4.18)

= sup
∥r∥∞,∗=1

1− ∥r∥cb,∗.

It thus remains to show that for bilinear forms ∥r∥∞,∗ ≤ KR
G∥r∥cb,∗. We do so start-

ing from Grothendieck’s theorem for matrices. It states that for A ∈ Rn×n we have

∥A∥cb ≤ KR
G∥A∥∞. Each bilinear form q : {−1, 1}n × {−1, 1}n → R uniquely corre-

sponds to a matrix A ∈ Rn×n such that q(x, y) = xTAy. Moreover, for such q and A

one has ∥q∥∞ = ∥A∥∞ (immediate) and in Proposition 4.25 we showed ∥q∥cb = ∥A∥cb,

so ∥q∥cb ≤ KR
G∥q∥∞. A duality argument then concludes the proof:

∥r∥∞,∗ = sup
∥q∥∞≤1

⟨r, q⟩ ≤ sup
∥q∥cb≤KR

G

⟨r, q⟩ = KR
G∥r∥cb,∗.

Remark 4.26. If in Theorem 4.5 we restrict the supremum to bilinear forms on n+ n

variables, for a fixed n, then we obtain a characterization of KR
G(n) instead of KR

G.

Here, KR
G(n) = sup ∥A∥cb/∥A∥∞, where the supremum is taken over all non-zero n×n

real matrices.

4.5.2 No converse for the polynomial method

In this section we show that there is no additive nor multiplicative converse for polyno-

mials of degree 4 and 2-query algorithms. In other words, we will prove Theorems 4.3

and 4.4. Before doing that, we explain what was the error in the proof of Theorem 4.3

given in [ABP19].
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Their proof arrives at the equation∑
α,β∈{0,1,2,3,4}n:|α|+|β|=4

d′α,βx
α = C

∑
α∈{0,1}n:|α|=4

dαx
α ∀ x ∈ {−1, 1}n, (4.19)

where d′α,β , dα and C are some real numbers, xα stands for
∏n
i=1 x

αi
i and |α| for∑n

i=1 αi. It follows from the orthogonality of the characters that d′α,0 = Cdα for all

α ∈ {0, 1}n such that |α| = 4. What is used, however, is that d′α,0 = Cdα for all

α ∈ {0, 1, 2, 3, 4}n such that |α| = 4, which is not true in general. For instance if

n = 1, C = 1 and d′(2,0),(0,2) = −d′(0,0),(4,0) = 1 and the rest of the coefficients set to 0,

then (4.19) becomes x2 − 1 = 0, ∀ x ∈ {−1, 1}.

We now prove that there is no additive converse, from which the non-multiplicative

converse result quickly follows.

Theorem 4.4. There is no constant ε ∈ (0, 1) such that for every bounded polynomial

p of degree at most 4, we have E(p, 2) ≤ ε.

Proof. For any partition P of {0} ∪ [3n] in 2t subsets, Theorem 4.13 shows that

sup
p∈VP ,∥p∥∞≤1

E(p, t) = sup
p∈VP ,∥p∥∞≤1

sup
r∈VP ,∥r∥∞,∗≤1

⟨p, r⟩ − ∥r∥cb,∗

= sup
r∈VP ,∥r∥∞,∗≤1

∥r∥∞,∗ − ∥r∥cb,∗

= sup
r∈VP ,∥r∥∞,∗=1

1− ∥r∥cb,∗.

Consider now the case t = 2 and the partition Pn = {{0}, {1, . . . , n}, {n+ 1, . . . , 2n},
{2n + 1, . . . , 3n}} of {0} ∪ [3n]. In Theorem 4.17 a sequence of forms pn ∈ VPn was

constructed with the property that

∥pn∥cb
∥pn∥∞

→∞. (4.20)

Hence, by a duality argument we get that there is a sequence rn ∈ VPn
such that

∥rn∥cb,∗/∥rn∥∞,∗ → 0. Indeed, suppose towards a contradiction that there is a K > 0

such that for every n ∈ N and every r ∈ VPn
we have that ∥r∥cb,∗ ≥ K∥r∥∞,∗. Then,

∥p∥cb = sup
∥r∥cb,∗≤1

⟨r, p⟩ ≤ 1

K
sup

∥r∥∞,∗≤1

⟨r, p⟩ =
1

K
∥p∥∞,
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which contradicts Eq. (4.20). The sequence rn shows that

sup
p∈VPn ,∥p∥∞≤1,n∈N

E(p, 2) = 1,

which implies the stated result.

Theorem 4.3. For any C > 0, there exist an n ∈ N and a bounded quartic n-variable

polynomial p such that no two-query quantum algorithm A satisfies E[A(x)] = Cp(x)

for every x ∈ {−1, 1}n.

Proof. First note that we can assume C ≤ 1, because |E[A(x)]| ≤ 1 for any algorithm

A and any x ∈ {−1, 1}n. Assume that there exists 0 < C ≤ 1 such that for every

bounded p of degree 4 there is a 2-query algorithm A with E[A(x)] = p(x) for every

x ∈ {−1, 1}n. We claim that that A approximates p up to an additive error 1− 1/C,

which contradicts Theorem 4.4. Indeed,

|p(x)− E[A(x)]| = |p(x)(1− C)| ≤ 1− C.
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Chapter 5

Towards Aaronson and

Ambainis conjecture via

Fourier completely bounded

polynomials

5.1 Introduction

Understanding the quantum query complexity of Boolean functions f : D → {−1, 1},
where D is a subset of {−1, 1}n, has been a crucial task of quantum information

science [Amb18]. Many celebrated quantum algorithms show an advantage in terms of

query complexity, for example in unstructured search [Gro96], period finding [Sho97],

Simon’s problem [Sim97], NAND-tree evaluation [FGG07] and element distinctness

[Amb07]. However, these advantages are limited to be polynomial in the case of

total functions (those with D = {−1, 1}n), while they can be exponential for highly

structured problems (informally, this means that |D| = o(2n)), such as for Simon’s

problem [Sim97], period finding [Sho97] or k-fold forrelation [AA15, Tal20, BS21,

SSW21]. It is widely believed that a lot of structure is necessary for superpolynomial

speedups1. The following folklore conjecture, which has circulated since the late 90s,

1Recently, Yamakawa and Zhandry showed that superpolynomial speedups can be attained in
unstructured search problems. That does not contradict that structure is needed to achieve super-
polynomial speedups in decision problems, which are those modeled by Boolean functions [YZ22].
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but was first formally posed by Aaronson and Ambainis [AA09], formalizes this idea.

Conjecture 5.1 (Folklore). The biases of t-query quantum algorithms can be simu-

lated with error at most ε on at least a (1−δ)-fraction of the inputs using poly(t, 1/ε, 1/δ)

classical queries.

In other words, it is believed that quantum query algorithms can be approximated

almost everywhere by classical query algorithms with only a polynomial overhead.

A route towards proving Conjecture 5.1 was designed by Aaronson and Ambainis

using that the bias of quantum query algorithms are polynomials. Indeed, Beals et al.

[BBC+01], proved that the bias of a t-query quantum algorithm is a bounded polyno-

mial p : {−1, 1}n → R of degree at most 2t. Based on this observation, Aaronson and

Ambainis conjectured in [AA09] that every bounded polynomial of bounded degree

has an influential variable.

Conjecture 5.2 (Aaronson-Ambainis (AA)). Let p : {−1, 1}n → R be a polynomial

of degree at most t with ∥p∥∞ ≤ 1. Then, p has a variable with influence at least

poly(Var[p], 1/t).

The argument of [AA09, Theorem 7] to show that Conjecture 5.2 would imply

Conjecture 5.1 works as follows. Let p the bounded polynomial of degree at most 2t

that represents the bias of t query quantum algorithm. Say that we want to approx-

imate p(y) for some y ∈ {−1, 1}n. First, query an influential variable i of y. Then,

the restricted polynomial p|x(i)=y(i) would also be a bounded polynomial of degree

at most 2t, so we can query again an influential variable. Given that the influences

of these variables are big, after a small number of queries the remaining polynomial

would have a low variance, so if we output its expectation it would be close to p(y)

with high probability.

A few reductions to other conjectures have been made. The first one is that is

sufficient to prove the conjecture for one-block decoupled polynomials [OZ15]. Very

recently, Lovett and Zhang stated two conjectures related to fractional certificate com-

plexity that, if true, would imply the AA conjecture [LZ22]. Also recently, Austrin

et al. showed a connection of the AA conjecture with cryptography: they proved

that if the AA conjecture is false, then there is a secure key agreement in the quan-

tum random oracle model that cannot be broken classically [ACC+22]. The most

recent work in this line of research is the one by Bhattacharya, who showed that

the conjecture is true for random restrictions of the polynomial [Bha25]. Regarding

particular cases, it is only known to be true in a few scenarios: Boolean functions
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f : {−1, 1}n → {−1, 1} [Mid05, OSSS05, JZ11], symmetric polynomials [Iva19], mul-

tilinear forms whose Fourier coefficients are all equal in absolute value [Mon12] and

block-multilinear completely bounded polynomials [BSdW22].

The last result is relevant in this context because Arunachalam, Briët and Palazue-

los showed that the biases of quantum query algorithms are polynomials that are not

only bounded, but also completely bounded [ABP19] (see Theorem 3.6). This is a

more restricted normalization condition, which can be informally understood as the

polynomial taking bounded values when evaluated not only on bounded scalars, but

also on bounded matrix inputs. This way, one could try to use this extra condition to

prove results about quantum query algorithms.

This idea was first put in practice by Bansal, Sinha and de Wolf [BSdW22]. They

showed that the AA conjecture holds for completely bounded block-multilinear forms,

which implies an almost everywhere classical simulation result, similar to Conjec-

ture 5.1, for the amplitudes of certain quantum query algorithms. These algorithms

query different (non-controlled) bit strings on every query, while Conjecture 5.1 con-

cerns algorithms that query the same controlled bit string on every query.

Results of this chapter

We follow that line of work and use the characterization of [ABP19] to design a route

towards Conjecture 5.1. Our first result is a new presentation of that characteriza-

tion that is more convenient for our purposes. To do this we introduce the Fourier

completely bounded t-norms (∥ · ∥fcb,t), which are relaxations of the supremum norm.

In these norms we not only take the supremum of the values that the polynomial

takes over Boolean strings as in Eq. (2.12), but also on matrix inputs that behave like

Boolean strings. We will not include formal definitions in the introduction, but we

illustrate the concept of having Boolean behavior of degree t with an example. For

m ∈ N, we denote the m×m real matrices by Mm. Say that t = 4 and n = 6, then if a

pair of vectors u, v ∈ Rm and a string of matrices A ∈ (Mm)6 have Boolean behaviour

of degree 4, they satisfy, for instance,

⟨u,A(1)A(1)A(2)A(3)v⟩ = ⟨u,A(5)A(2)A(3)A(5)v⟩,

because they should simulate the relation x(1)x(1)x(2)x(3) = x(5)x(2)x(3)x(5) sat-

isfied by any Boolean string {−1, 1}6. As the reader might guess, (u, v,A) will have

Boolean behavior of degree t if it simulates the relations of Fn2 that involve product of

t of the canonical generators.

73



5.1. Introduction

Using the Fourier expansion of polynomials defined on the Boolean hypercube

we will introduce a natural way of evaluating polynomial in matrix inputs that have

Boolean behavior, which allows us to introduce the Fourier completely bounded t-

norm.

Definition 5.3. (Informal version of Definition 5.10) Let p : {−1, 1}n → R be a

polynomial of degree at most t. Its Fourier completely bounded t-norm is given by

∥p∥fcb,t := sup |p(u, v,A)| (5.1)

where the supremum is taken over all (u, v,A) that have Boolean behavior of degree t.

After a reinterpretation of the semidefinite programs proposed in [GL19] to char-

acterize quantum query complexity, based on [ABP19], we show that the Fourier

completely bounded t-norms are those that characterize quantum query algorithms.

Theorem 5.4. Let p : {−1, 1}n → R. Then, p is the bias of a t-query quantum

algorithm if and only if its degree is at most 2t and ∥p∥fcb,2t ≤ 1.

This new presentation of the main result of [ABP19] is more compact than the

original one. It is presented directly in terms of polynomials of the Boolean hypercube,

does not involve a minimization over possible completely bounded extensions of p as

in Definition 4.7, and eludes the use of tensors/multilinear forms.

Given that the Fourier completely bounded t-norms are at least the supremum

norm2, Theorem 5.4 suggests that Conjecture 5.2 may be more general than necessary.

Hence, we propose the following weaker conjecture, that would also imply Conjecture

5.1.

Conjecture 5.5. Let p : {−1, 1}n → R be a polynomial of degree at most t with

∥p∥fcb,t ≤ 1. Then, p has a variable with influence at least poly(Var[p], 1/t).

Using a generalization through creation and annihilation operators of the con-

struction used by Varopoulos to rule out a von Neumann’s inequality for degree 3

polynomials [Var74], we can prove a particular case of Conjecture 5.5.

Theorem 5.6. Let t ∈ N. Let p : {−1, 1}n → R be a homogeneous polynomial of

degree t and with ∥p∥fcb,t ≤ 1. Then, the maximum influence of p is at least Var[p]2.

2From the results of [BP19] it can be inferred that there is a sequence of polynomials pn of degree
3 such that ∥pn∥fcb,3/∥pn∥∞ →n ∞.
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The proof of the homogeneous case does not straightforwardly generalize (see Re-

mark 5.20), but it suggests a way to solve the general case (see Remark 5.21). In

particular, we propose Question 5.22 (that reminds of tensor networks and almost-

quantum correlations), which if answered affirmatively would imply Conjecture 5.5.

Theorem 5.6 is the first result concerning the AA conjecture whose constant has

no dependence on the degree (to prove Conjecture 5.1 we could afford a polynomial

dependence on the degree). Also, it requires considerably fewer algebraic constraints

than the other particular cases for which we know AA conjecture to hold. In addition,

thanks to Theorem 5.4, it can be interpreted directly in terms of quantum query

algorithms.

Corollary 5.7. Let t ∈ N. Let A be a t-query quantum algorithm whose bias is a

homogeneous polynomial p : {−1, 1}n → R of degree 2t. Then, the maximum influence

of p is at least Var[p]2.

With a similar construction as the one we used for Theorem 5.6, we can reprove the

results of [BSdW22] regarding the influence of block-multilinear completely bounded

polynomials. These polynomials have a particular algebraic structure and also a nor-

malization condition when evaluated on matrix inputs (see Section 5.4.1 below).

Theorem 5.8. Let t ∈ N. Let p : {−1, 1}n×t → R be a block-multilinear degree t

polynomial with ∥p∥cb ≤ 1. Then, p has a variable of influence at least (Var[p]/t)2.

What is more, if p is homogeneous of degree t, then it has a variable of influence at

least Var[p]2.

Theorem 5.8 corresponds to [BSdW22, Theorem 1.4], where Bansal et al. proved

the same result but with influences at least Var[p]2/[e(t+ 1)4] in the general case and

with Var[p]2/(t+1)2 in the homogeneous degree t case. Their proofs involve evaluating

p in random infinite dimensional matrix inputs, which they can control using ideas of

free probability. However, our proof evaluates p in explicit finite dimensional matrix

inputs, is shorter and obtains better constants. In particular, our constant for the

homogeneous case is optimal.

5.2 The Fourier completely bounded t-norms

There is a vast theory concerning the properties of multilinear maps T : Rn×· · ·×Rn →
R that are completely bounded, i.e., bounded when they are extended to matrix do-

mains [Pau03]. However, to the best of our knowledge, there is no notion of being

75



5.2. The Fourier completely bounded t-norms

completely bounded for polynomials p : {−1, 1}n → R defined on the Boolean hyper-

cube. Here, we propose a matrix notion of behaving like a Boolean string. Then, using

the Fourier expansion of these polynomials we define the evaluation of the polynomi-

als on these matrix inputs that behave like Boolean strings. Finally, we introduce the

Fourier completely bounded t-norms and prove a few of their properties.

We recall that every p : {−1, 1}n → R can be written as

p(x) =
∑
S⊆[n]

p̂(S)
∏
i∈S

x(i), (5.2)

where p̂(S) are the Fourier coefficients of p. We say that p has degree at most t if

p̂(S) = 0 for every |S| > t, where |S| denotes the cardinality of S.

We will be interested on simulating the behavior of bit strings x ∈ {−1, 1}n × {1}
with one extra frozen variable3. Given t ∈ N and i, j ∈ [n+ 1]t we say that i ∼ j, if

x(i1) . . . x(id) = x(j1) . . . x(jd) for every x ∈ {−1, 1}n × {1}. (5.3)

In other words, if we define

Si := {k ∈ [n] : k occurs an odd number of times in i},

then i ∼ j if and only if Si = Sj. Note that n + 1 does not belong to these sets Si.

Given S ⊆ [n] with |S| ≤ t, we write [iS ] to denote the equivalence class of indices i

such that Si = S.

Definition 5.9. Let n, t,m ∈ N. Let u, v ∈ Sm−1 and let A ∈ (Bm)n. We say that

(u, v,A) has Boolean behavior of degree t if

⟨u,A(i1) . . . A(id)v⟩ = ⟨u,A(j1) . . . A(jd)v⟩

for all i, j ∈ [n+ 1]t such that i ∼ j. We call BBt to the set of (u, v,A) with Boolean

behavior of degree t.

Informally, having Boolean behavior of degree tmeans that the relations of Eq. (5.3)

and some normalization conditions are satisfied. In particular, for any bit string

x ∈ {−1, 1}n × {1} and any t ∈ N, we have that (1, 1, x) has Boolean behavior of

degree t.

3The extra variable set to 1 is there because quantum query algorithms query a controlled bit
string. A non-controlled version, which would not require that extra variable.
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Also note that given t ∈ N, for every S ⊆ [n] with |S| ≤ t there is at least one

i ∈ [n + 1]t such that Si = S. Thus, given (u, v,A) with Boolean behavior of degree

t, for every |S| ≤ t the product
∏
i∈S x(i) can be simulated (in a unique manner) by

⟨u,A(iS1 ) . . . A(iSd )v⟩. In particular, this means that for a polynomial p of degree at

most t, we can define through Eq. (5.2) an evaluation of p on every (u, v,A) that has

Boolean behavior of degree t, which leads to the definition Fourier completely bouded

t-norm.

Definition 5.10. Let p : {−1, 1}n → R be a polynomial of degree at most t. Then,

its Fourier completely bounded t-norm is defined by

∥p∥fcb,t = sup
(u,v,A)∈BBt

∑
S⊆[n],|S|≤t

p̂(S)⟨u,A(iS1 ) . . . A(iSd )v⟩.

The rest of the section is devoted to prove a few results concerning the Fourier

completely bounded t-norms. First of all we show that, indeed, they are norms.

Proposition 5.11. Let t ∈ N. Then, ∥ · ∥fcb,t is a norm in the space of polynomials

p : {−1, 1}n → R of degree at most t.

Proof. It clearly satisfies the triangle inequality and is homogeneous. Also, if p = 0

then ∥p∥fcb,t = 0, and vice versa, because ∥p∥∞ ≤ ∥p∥fcb,t.

One nice property of these norms is that they can be computed as semidefinite

programs.

Proposition 5.12. Let p : {−1, 1}n → R be a polynomial of degree at most t. Then,

its Fourier completely bounded t-norm can be written as the following SDP

∥p∥fcb,t = sup
∑

S∈[n],|S|≤t

p̂(S)⟨u, viS ⟩, (5.4)

u, v, vi ∈ Rm, m ∈ N, i ∈ [n+ 1]s, s ∈ [t],

⟨u, vi⟩ = ⟨u, vj⟩, if i ∼ j, i, j ∈ [n+ 1]t, (5.5)

⟨u, u⟩ = ⟨v, v⟩ = 1, (5.6)

Gramj∈[n+1]s,
s∈[t−1]0

{vij} ≼ Gramj∈[n+1]s,
s∈[t−1]0

{vj}, for i ∈ [n+ 1], (5.7)

where we by vj with j ∈ [n + 1]0 we mean v, Gram denotes the gram matrix and the

symbol ‘≼’ the usual matrix inequality.
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Proof. Let |||p||| be the expression on the right-hand side of Eq. (5.4). Note that

Eq. (5.5) represents the relations of bit strings of Eq. (5.3), while Eqs. (5.6) and (5.7)

encode normalization conditions.

On the one hand, every (u, v,A) ∈ BBt defines a feasible instance for |||p||| through

vi := A(i1) . . . A(is)v

for every i ∈ [n+ 1]s and every s ∈ [t]. Given that the value of this instance is∑
S⊆[n],|S|≤t

p̂(S)⟨u,A(iS1 ) . . . A(iSd )v⟩

we have that |||p||| ≥ ∥p∥fcb,t.

On the other hand, let u, v, vi ∈ Rm be a feasible instance of |||p|||. For i ∈ [n+ 1]

define A(i) ∈ Mm as the linear map from Rm to Rm that takes vj to vij for every

j ∈ [n + 1]s and every s ∈ [t − 1]0, and it is extended to the orthogonal complement

as 0. First of all, we should check that this is a correct definition, meaning that for

every λ ∈ Rm, with m = (n+ 1)t−1 + · · ·+ (n+ 1)0, we have that∑
j

λjvj = 0 =⇒
∑
j

λjvij = 0.

Indeed, we can prove something stronger:

(
∑
j

λjvij)
T
∑
j′

λj′vij′ = λTGramj∈[n+1]s,
s∈[t−1]0

{vij}λ ≤ λTGramj∈[n+1]s,
s∈[t−1]0

{vj}λ

= (
∑
j

λjvj)
T
∑
j′

λj′vj′ .

The above calculation also proves that the A(i)’s are contractions, and thanks to

Eq. (5.5) it follows that (u, v,A) has Boolean behavior of degree t. Finally, note that

the value of this (u, v,A) for ∥p∥fcb,t is the same as the value of (u, v, vj) for |||p|||, so

∥p∥fcb,t ≥ |||p|||.

Given t, t′ ∈ N with t′ > t and a polynomial p : {−1, 1}n → R of degree at most t,

∥p∥fcb,t and ∥p∥fcb,t′ have different definitions, but they are comparable. In particular,

we prove that the Fourier completely bounded t-norms are not increasing.
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Proposition 5.13. Let p : {−1, 1}n → R be a polynomial of degree at most t. Then,

∥p∥fcb,t+1 ≤ ∥p∥fcb,t.

Remark 5.14. Proposition 5.13 is coherent with Theorem 5.4 (proved below), because

allowing more queries to quantum algorithms only increases their power. Theorem 5.4

also suggests that ∥p∥fcb,n = ∥p∥∞ should hold, because n quantum queries should

be enough to output any bounded polynomial. If true, alongside Propositions 5.12

and 5.13, it would mean that (∥p∥fcb,t)t∈[n] is a decreasing hierarchy of SDPs that

tend to ∥p∥∞.

Proof of Proposition 5.13. Let (u, v,A) have Boolean behavior of degree t+ 1. Then,

(ũ, ṽ, Ã) = (u,
A(n+ 1)v

∥A(n+ 1)v∥
, A) (5.8)

has Boolean behavior of degree t. Also, given that t + 1 > t, we have that for every

S ⊆ [n] with |S| ≤ t, there exists i ∈ [n+ 1]t+1 such that Si = S, it+1 = n+ 1, and

⟨u,A(i1) . . . A(it+1)v⟩ = ∥A(n+ 1)v∥⟨ũ, Ã(i1) . . . Ã(id)ṽ⟩. (5.9)

This way,

∥p∥fcb,t+1 = sup
(u,v,A)∈BBt+1

∑
S⊆[n],|S|≤t

p̂(S)⟨u,A(iS1 ) . . . A(iSt+1)v⟩

= sup
(u,v,A)∈BBt+1

∥A(n+ 1)v∥
∑

S⊆[n],|S|≤t

p̂(S)⟨ũ, Ã(iS1 ) . . . Ã(iSd )ṽ⟩

≤ sup
(u,v,A)∈BBt+1

∑
S⊆[n],|S|≤t

p̂(S)⟨ũ, Ã(iS1 ) . . . Ã(iSd )ṽ⟩

≤ sup
(u′,v′,A′)∈BBt

∑
S⊆[n],|S|≤t

p̂(S)⟨u′, A′(iS1 ) . . . A′(iSd )v′⟩

= ∥p∥fcb,t,

where in the second line we have used Eq. (5.9), and in the third line that ∥A(n+1)v∥ ≤
1, and in the fourth that (ũ, ṽ, Ã) has Boolean behavior of degree t.

The next proposition states that ∥ ·∥fcb,t does not increase after restrictions, which

is a relevant feature to ensure that Conjecture 5.5 implies Conjecture 5.1. Given a

polynomial p : {−1, 1}n → R and i ∈ [n], the restriction of p to the i-th variable
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being set to y ∈ {−1, 1} is the polynomial q : {−1, 1}n−1 → R (whose variables we

index with x(1), . . . , x(i − 1), x(i + 1), . . . , x(n) for convenience) defined by q(x) :=

p(x(1), . . . , x(i− 1), y, x(i+ 1), . . . , x(n)).

Proposition 5.15. Let p : {−1, 1}n → R be a polynomial of degree at most t and let

i ∈ [n]. Let q : {−1, 1}n−1 → R be the restriction of p to the i-th variable being set to

y ∈ {−1, 1}. Then,

∥q∥fcb,t ≤ ∥p∥fcb,t.

Proof. Consider a pair of vectors and a string of matrices (u, v,A(1), . . . , A(i−1), A(i+

1), . . . , A(n + 1)) with Boolean behavior of degree t. Define ũ := u, ṽ := v and Ã(j)

for j ∈ [n+ 1] as

Ã(j) =

{
A(j) if j ̸= i,

yA(n+ 1) if j = i.

It can be verified that (ũ, ṽ, Ã(1), . . . , Ã(n+1)) has Boolean behavior of degree t. Now

note that for every S ⊆ [n]− {i}, it is satisfied that

q̂(S) = p̂(S) + yp̂(S ∪ {i}). (5.10)

Also, for every S ⊆ [n]− {i} with |S| ≤ t− 1, it is satisfied that

⟨ũ, Ã(jS1 ) . . . Ã(jSd )ṽ⟩ = y⟨ũ, Ã(j
S∪{i}
1 ) . . . Ã(j

S∪{i}
d )ṽ⟩. (5.11)
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Thus,

∥q∥fcb,t = sup
(u,v,A(j))∈BBt

j∈[n+1]−{i}

∑
S⊆[n]−{i},|S|≤t

q̂(S)⟨u,A(jS1 ) . . . A(jSt )v⟩

= sup
(u,v,A(j))∈BBt

j∈[n+1]−{i}

∑
S⊆[n]−{i},|S|≤t

p̂(S)⟨u,A(jS1 ) . . . A(jSd )v⟩

+
∑

S⊆[n]−{i},|S|≤t−1

yp̂(S ∪ {i})⟨u,A(jS1 ) . . . A(jSd )v⟩

= sup
(u,v,A(j))∈BBt

j∈[n+1]−{i}

∑
S⊆[n]−{i},|S|≤t

p̂(S)⟨ũ, Ã(jS1 ) . . . Ã(jSd )ṽ⟩

+
∑

S⊆[n]−{i},|S|≤t−1

p̂(S ∪ {i})⟨ũ, Ã(j
S∪{i}
1 ) . . . Ã(j

S∪{i}
d )ṽ⟩

≤ sup
(u′,v′,A′(j))∈BBt

j∈[n+1]

∑
S⊆[n],|S|≤t

p̂(S)⟨u′, A′(jS1 ) . . . A′(jSd )v′⟩

= ∥p∥fcb,t,

where in the second line we have used Eq. (5.10), in the fourth line Eq. (5.11), and in

the sixth line that (ũ, ṽ, Ã) has Boolean behavior.

5.3 Quantum query algorithms are Fourier completely

bounded polynomials

Now we are ready to prove Theorem 5.4, that fully characterizes quantum query

algorithms in terms of the Fourier completely bounded t-norms.

Theorem 5.4. Let p : {−1, 1}n → R. Then, p is the bias of a t-query quantum

algorithm if and only if its degree is at most 2t and ∥p∥fcb,2t ≤ 1.

To prove Theorem 5.4 we reinterpret the semidefinite programs of [GL19], based

on [ABP19].

Theorem 5.16 (Gribling-Laurent). Let p : {−1, 1}n → R. Then, p is the bias of

t-query quantum algorithm if and only if its degree is at most 2t and the value of the
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following semidefinite program is at most 0,

max − w +
∑

x∈{−1,1}n

p(x)ϕ(x)

2n
(5.12)

s.t. w ≥ 0, m ∈ N, As ∈ (Bm)n+1, u, v ∈ Rm, s ∈ [2t],

∥ϕ∥1 = 1, ∥u∥2 = ∥v∥2 = w,

ϕ̂(Si) = ⟨u,A1(i1) . . . A2t(i2t)v⟩, i ∈ [n+ 1]2t,

where ∥ϕ∥1 =
∑
x∈{−1,1}n

|ϕ(x)|
2n .

Remark 5.17. Theorem 5.16 corresponds to [GL19, Equation (24)]. There, the authors

not only ask for the As(i) to be contractions, but also unitaries. However, that extra

restriction does not change the value of the semidefinite program because we can

always block-encode a contraction in the top left corner of an unitary (see for instance

[AAI+16, Lemma 7]). We also want to remark that As(i) can be taken to be equal

to As′(i) for every s, s′ ∈ [2t] and every i ∈ [n + 1], as this extra restriction does not

change value of the semidefinite program. Indeed, let (u, v,As, w, ϕ) be part of feasible

instance of Eq. (5.12). Define now

ũ := u⊗ e1,

ṽ := v ⊗ e2t+1,

A(i) :=
∑
s∈[2t]

As(i)⊗ eseTs ,

where {es}s∈[2t+1] is an orthonormal basis of R2t+1. Then,

⟨u,A1(i1) . . . Ad(i2t)v⟩ = ⟨ũ, Ã(i1) . . . Ã(i2t)ṽ⟩,

for every i ∈ [n + 1]2t. Hence, (ũ, ṽ, Ã, w, ϕ) is a feasible instance for Eq. (5.12) that

attains the same value as (u, v,As, w, ϕ).

Proof of 5.4. Thanks to Theorem 5.16 and Remark 5.17, we know that p is the output

of t-query quantum algorithm if and only if its degree is at most 2t and the following
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constraint is satisfied ∑
x∈{−1,1}n

p(x)ϕ(x)

2n
≤ w (5.13)

s.t. w ≥ 0, m ∈ N, A ∈ (Bm)n+1, u, v ∈ Rm,

∥ϕ∥1 = 1, (5.14)

∥u∥2 = ∥v∥2 = w,

ϕ̂(Si) = ⟨u,A(i1) . . . A(i2t)v⟩, i ∈ [n+ 1]2t.

Now, note that if (u, v,A, ϕ,w) satisfies all conditions of Eq. (5.13) except for Eq. (5.14),

then (u/
√
∥ϕ∥1, v/

√
∥ϕ∥1, A, ϕ/∥ϕ∥1, w/∥ϕ∥1) would be a feasible instance. Further-

more, given that

∑
x∈{−1,1}n

p(x)ϕ(x)

2n
≤ w ⇐⇒ 1

∥ϕ∥1

∑
x∈{−1,1}n

p(x)ϕ(x)

2n
≤ w

∥ϕ∥1
,

we can write Eq. (5.13) forgetting about the normalization condition of Eq. (5.14). In

other words, Eq. (5.13) is equivalent to

∑
x∈{−1,1}n

p(x)ϕ(x)

2n
≤ w (5.15)

s.t. w ≥ 0, m ∈ N, A ∈ (Bm)n+1, u, v ∈ Rm,

∥u∥2 = ∥v∥2 = w, (5.16)

ϕ̂(Si) = ⟨u,A(i1) . . . A(i2t)v⟩, i ∈ [n+ 1]2t.

In addition, by homogeneity we can assume w = 1, as if (u, v,A, ϕ,w) is a feasible

instance, then (u/
√
w, v/

√
w,A, ϕ/w, 1) also is, and Eq. (5.15) is satisfied for the first

instance if and only if is satisfied for the second instance. Also note, that if (u, v,A)

are part of a feasible instance of Eq. (5.15), then it automatically has Boolean behavior

of degree 2t, and any (u, v,A) defines a feasible instance for Eq. (5.15). Finally, by

Parseval’s identity we can rewrite
∑
x∈{−1,1}n

p(x)ϕ(x)
2n as

∑
S⊆[n] p̂(S)ϕ̂(S). Putting

altogether we get that p is the output of t-query quantum algorithm if and only if its
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degree is at most 2t and ∑
S⊆[n],|S|≤2t

p̂(S)⟨u,A(iS1 ) . . . A(iS2t)v⟩ ≤ 1

s.t. (u, v,A) has Boolean behavior of degree 2t,

which is the same as saying that ∥p∥fcb,2t ≤ 1.

5.4 Aaronson and Ambainis conjecture for (Fourier)

completely bounded polynomials

In this section we prove Theorem 5.6 and Theorem 5.8. Both are based on the con-

struction used by Varopoulos to disprove a degree 3 von Neumann’s inequality [Var74].

5.4.1 AA conjecture for block-multilinear completely bounded

polynomials

Before proving Theorem 5.8, we shall specify what is a block-multilinear completely

bounded polynomial. A block-multilinear polynomial of degree t is a polynomial p :

{−1, 1}n×t → R such that if we divide the variables x ∈ {−1, 1}n×t in t blocks of n

coordinates each, then the every of the monomials of p has at most one coordinate of

each of the blocks. In other words, the block-multilinear polynomials of degree t are

those that can be written as

p(x1, . . . , xd) = p̂(∅) +
∑
s∈[t]

∑
b∈[t]s

b1<···<bs

∑
i∈[n]s

p̂({(b1, i1), . . . , (bs, is)})xb1(i1) . . . xbs(is),

(5.17)

for every (x1, . . . , xd) ∈ ({−1, 1}n)t. For this kind of polynomials, there is a very

natural way of evaluating them in matrix inputs,

p(A1, . . . , Ad) = p̂(∅)Idm+
∑
s∈[t]

∑
b∈[t]s

b1<···<bs

∑
i∈[n]s

p̂({(b1, i1), . . . , (bs, is)})Ab1(i1) . . . Abs(is),

(5.18)
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for every As ∈ (Mm)n, s ∈ [t] and m ∈ N. The completely bounded norm of a

block-multilinear polynomial is defined as4

∥p∥cb := sup{∥p(A1, . . . , Ad)∥ : m ∈ N, As ∈ (Bm)n, s ∈ [t]}. (5.19)

Concerning these polynomials, we can show the following.

Theorem 5.8. Let t ∈ N. Let p : {−1, 1}n×t → R be a block-multilinear degree t

polynomial with ∥p∥cb ≤ 1. Then, p has a variable of influence at least (Var[p]/t)2.

What is more, if p is homogeneous of degree t, then it has a variable of influence at

least Var[p]2.

Remark 5.18. With our proof of the homogeneous case of Theorem 5.8 we can show

that for the case of p : {−1, 1}n×t → R being a homogeneous degree t block-multinear

polynomial we have the following non-commutative root influence inequality

∥p∥cb ≥
∑
i∈[n]

√
Infs,i[p], (5.20)

for any s ∈ [t]. This improves [BSdW22, Theorem 1.4] in two ways. First, we can

allow s to be any number in [t], while they only prove the result of s ∈ {1, t}. Second,

they prove a weaker statement that depends on t, namely,

∥p∥cb ≥
∑
i∈[n]

√
Infs,i[p]√
e(t+ 1)

,

for s ∈ {1, t}.
Remark 5.19. Given that p(x1, . . . , xd) = x1(1) . . . xd(1) is a homogeneous degree t

block-multilinear completely bounded polynomial with Var[p]2 = MaxInf[p] = 1, we

have that the homogeneous case of Theorem 5.8 is optimal.

Proof of the homogeneous degree t case of Theorem 5.8. Let p be a homogeneous de-

gree t block-multilinear polynomial. Let s ∈ [t]. We label the coordinates by (r, i),

where r ∈ [t] indicates the block, and i ∈ [n]. Our goal is defining A ∈ (Bm)n and

f∅, e∅ ∈ Sm−1 such that

⟨f∅, A(i1) . . . A(id)e∅⟩ =
p̂({(1, i1), . . . , (t, id)})√

Infs,is [p]
. (5.21)

4We abuse notation here, as, for the case of homogeneous block-multilinear polynomials, this
definition conflicts with the one given in Definition 4.7. For the rest of the chapter, we will use the
one in Eq. (5.18).
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Once we are there, we can prove the announced root-influence inequality Eq. (5.20).

Indeed,

∥p∥cb ≥
∑

i1,...,id∈[n]

p̂({(1, i1), . . . , (t, id)})⟨f∅, A(i1) . . . A(id)e∅⟩

=
∑

i1,...,id∈[n]

p̂({(1, i1), . . . , (t, id)})
p̂({(1, i1), . . . , (t, id)})√

Infs,is [p]

=
∑
is∈[n]

1√
Infs,is [p]

∑
i1,...,is−1,is+1,id∈[n]

p̂({(1, i1), . . . , (t, id)})2︸ ︷︷ ︸
Infs,i[p]

=
∑
i∈[n]

√
Infs,i[p].

Finally, the statement about the maximal influence quickly follows from the root-

influence inequality

∥p∥cb ≥
∑
i∈[n]

√
Infs,i[p] ≥

∑
i∈[n]

Infs,i[p]√
MaxInf[p]

=
Var[p]√

MaxInf[p]
,

which after rearranging yields

MaxInf[p] ≥
(

Var[p]

∥p∥cb

)2

.

Hence, it suffices to design (f∅, e∅, A) ∈ Sm−1×Sm−1×(Bm)n satisfying Eq. (5.21).

Let S := {{(r, ir), . . . , (t, it)} : ir, . . . , it ∈ [n], s+1 ≤ r ≤ t} and S ′ := {{(1, i1), . . . , (r, ir)} :

i1, . . . , ir ∈ [n], r ≤ s−1}. Let m := 2+|S|+|S ′|. Let {e∅, eS , f∅, fS′ : S ∈ S, S′ ∈ S ′}
be an orthonormal basis of Rm, and define A(i) ∈Mm by

A(i)eS := eS∪{(t−|S|,i)}, for 0 ≤ |S| ≤ t− s− 1, S ∈ S,

A(i)eS :=
∑
S′∈S′

|S′|=s−1

p̂(S′ ∪ S ∪ {(s, i)})√
Infs,i(p)

fS′ , for |S| = t− s, S ∈ S,

A(i)fS′ := δ(|S′|,i)∈S′fS′−{(|S′|,i)}, S
′ ∈ S ′.

We claim that (f∅, e∅, A(i)) satisfies Eq. (5.21). This is because the first applica-

tions of the A(i)’s act like a creation operator and the last as annihilation operators.

The first t− s− 1 of the matrices on e∅ create a vector that stores the indices of these
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first t− s− 1 applications, namely

A(s+ 1) . . . A(t)e∅ = e{((s+1,is+1),...,(t,id))}.

The t − s application has a unique behavior, as it maps the previous vector to a

superposition of f· vectors, namely

A(is)e{((s+1,is+1),...,(t,id))} =
∑
S′∈S′

|S′|=s−1

p̂(S′ ∪ ((s, is), . . . , (t, id)))√
Infs,i(p)

fS′ .

Finally, the last s − 1 applications of the matrices act like annihilation operators,

meaning that

A(i1) . . . A(is−1)fS′ = δS′,((1,i1),...,(s−1,is−1))f∅.

Putting everything together we conclude that indeed Eq. (5.21) is satisfied.

Finally, we claim that A(i) are contractions. Given that {eS : 0 ≤ |S| ≤ t − s −
1, S ∈ S}, {eS : |S| = t− s, S ∈ S} and {fS′ : S′ ∈ S ′} are mapped to orthogonal

spaces, we just have to check than when A(i) is a contraction when it is restricted to

the span of each of these 3 sets. For the first and third sets of vectors that is clear.

For the second is true because for any λ ∈ [n]t−s

∥A(i)
∑
S∈S

|S|=t−s

λSeS∥ = ∥
∑
S∈S

|S|=t−s

∑
S′∈S′

|S′|=s−1

p̂(S′ ∪ S ∪ {(s, i)})√
Infs,i[p]

λSfS′∥

=

√√√√√√∑ S′∈S′

|S′|=s−1

(∑
S∈S

|S|=t−s
p̂(S′ ∪ S ∪ {(s, i)})λS

)2

Infs,i[p]

≤

√√√√√∑ S′∈S′

|S′|=s−1

(∑
S∈S

|S|=t−s
p̂(S′ ∪ S ∪ {(s, i)})2

)(∑
S∈S

|S|=t−s
λ2S

)
Infs,i[p]

=

√
Infs,i[p]

Infs,i[p]

√√√√ ∑
S∈S

|S|=t−s

λ2S

= ∥
∑
S∈S

|S|=t−s

λSeS∥,

where in the inequality we have used Cauchy-Schwarz.
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Proof of the general case of Theorem 5.8. Let p : {−1, 1}n×t → R be a block-multilinear

degree t polynomial. For every s ∈ [t], let p=s be its degree s part. Let D ∈ [t] be such

that Var[p=D] ≥ Var[p]/t, which exists because Var[p] =
∑
s∈[t] Var[p=s]. We will now

divide the proof in two parts. One is showing that

∥p=D∥cb ≤ ∥p∥cb, (5.22)

and the other is proving that

MaxInf(p=D) ≥
(

Var[p=D]

∥p=D∥cb

)2

. (5.23)

Once we had done that, the result will easily follow:

MaxInf(p) ≥ MaxInf(p=D) ≥
(

Var[p=D]

∥p=D∥cb

)2

≥
(

Var[p]

t∥p∥cb

)2

,

where in the second inequality we have used Eq. (5.23), and in the third we have used

Eq. (5.22) and that Var[p=D] ≥ Var[p]/t.

First, we prove Eq. (5.22). Let B ∈ Bt+1 be defined by B :=
∑
s∈[D] ese

T
s+1, where

{es}s∈[D+1] is an orthonormal basis of RD+1. Note that ⟨e1, BseD+1⟩ = δs,D for all

s ∈ [t]0. Hence,

∥p=D∥cb = sup
u,v∈Sm−1, A∈(Bm)n

m∈N

∑
b∈[t]D

b1<···<bD

∑
i∈[n]D

p̂=D({(b1, i1), . . . , (bD, iD)})

· ⟨u,Ab1(i1) . . . AbD (iD)v⟩

= sup
u,v∈Sm−1, A∈(Bm)n

m∈N

∑
s∈[t]

∑
b∈[t]s

b1<···<bs

∑
i∈[n]s

p̂({(b1, i1), . . . , (bs, is)})

· ⟨u⊗ e1, (Ab1(i1)⊗B) . . . (Abs(is)⊗B)v ⊗ eD+1⟩

≤ ∥p∥cb.

Second, we prove Eq. (5.23). Let S := {{(b1, i1), . . . , (bD−1, iD−1)} : bs ∈ [t], b1 <

· · · < bD−1, is ∈ [n], s ∈ [D − 1]}. Let m := 2 + |S|. Let {v, f∅, fS : S ∈ S} be an

88



Chapter 5. Towards Aaronson and Ambainis conjecture via Fourier
completely bounded polynomials

orthonormal basis of Rm. For b ∈ [t], i ∈ [n], define Ab(i) ∈Mm by

Ab(i)v :=
∑
S∈S

|S|=D−1

p̂=D(S ∪ {(b, i)})√
MaxInf[p=D]

fS ,

Ab(i)fS := δ(b,i)∈SfS−{(b,i)}, for S ∈ S ∪ ∅.

Ab(i) are contractions because they map the vectors of an orthonormal basis to or-

thogonal vectors without increasing their norms. Note that for b1 < · · · < bD and

i ∈ [n]D we have that

⟨f∅, Ab1(i1) . . . AbD (iD)v⟩ =
p̂=D({(b1, i1), . . . , (bD, iD)})√

MaxInf[p=D]
.

Thus,

∥p=D∥cb ≥
∑

b∈[t]D

b1<···<bD

∑
i∈[n]D

p̂=D({(b1, i1), . . . , (bD, iD)})⟨f∅, p(A1, . . . , Ad)v⟩

=
Var[p=D]√

MaxInf[p=D]
,

which after rearranging yields Eq. (5.23).

5.4.2 AA conjecture for homogeneous Fourier completely bounded

polynomials

Finally, we prove a new case of the AA conjecture.

Theorem 5.6. Let t ∈ N. Let p : {−1, 1}n → R be a homogeneous polynomial of

degree t and with ∥p∥fcb,t ≤ 1. Then, the maximum influence of p is at least Var[p]2.

Proof. Let m := 1 +
(
n
0

)
+ · · ·+

(
n
t−1

)
. Let {v, f∅, fS : S ⊆ [n], 1 ≤ |S| ≤ t− 1} be an

orthonormal basis of Rm. Define the matrices A(i) ∈Mm as

A(i)v :=
∑
S∋i
|S|=t

p̂(S)√
MaxInf[p]

fS−{i},

A(i)fS := δS∋ifS−{i}, for S ⊆ [n], 0 ≤ |S| ≤ t− 1,
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for i ∈ [n] and A(n + 1) := 0. We claim that (f∅, v, A(i)) has Boolean behavior of

degree t. A(n + 1) is clearly a contraction. For i ∈ [n], A(i) is a contraction, as it

maps vectors of the orthonormal basis to orthogonal vectors without increasing the

norm, because

∥A(i)v∥2 =
∑
S∋i

p̂(S)2

MaxInf[p]
=

Infi[p]

MaxInf[p]
≤ 1.

On the other hand, if S ⊆ [n] satisfies |S| ≤ t − 1, then any i ∈ [n + 1]t with Si = S

either has a repeated element of [n] or has an appearance of the index n + 1, which

implies that ⟨f∅, A(i1) . . . A(id)⟩ = 0 = p̂(S). If |S| = t, then any i ∈ [n + 1]t with

Si = S has t different indices in [n] (corresponding to the elements of S), so in that

case

⟨f∅, A(i1) . . . A(id)v⟩ =
p̂(S)√

MaxInf[p]
. (5.24)

Putting everything together we conclude that (f∅, v, A(i)) has Boolean behavior of

degree t, so

∥p∥fcb,t ≥
∑
S⊆[n]

p̂(S)⟨f∅, A(i1) . . . A(id)v⟩ =
∑
S⊆[n]

p̂(S)2√
MaxInf[p]

=
Var[p]√

MaxInf[p]
,

where in the first equality we have used Eq. (5.24). After rearranging, the above

expression yields

MaxInf[p] ≥
(

Var[p]

∥p∥fcb,t

)2

.

Remark 5.20. Sadly, we could not extend the proof of Theorem 5.6 to the general

case. Now, we aim to illustrate what would go wrong with our technique.

For example, consider a polynomial p : {−1, 1}3 → R with deg(p) = 1 and

∥p∥fcb,3 ≤ 1. Ideally, we would want to define unit vectors u and v and contractions

A(i) such that for every S ⊆ [3] and every i ∈ [iS ] they satisfied

⟨u,A(i1)A(i2)A(i3)v⟩ =
p̂(S)√

MaxInf[p]
. (5.25)

If we emulated the strategy of the proof of Theorem 5.6, then A(1)v should be a

normalized superposition of orthogonal vectors whose amplitudes are all possible p̂(Si)
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that have i3 = 1. In particular, all p̂(S) with |S| = 1 must be included among these

amplitudes, because if S = {i}, then S = S(i,1,1). Hence, the normalizing factor of

A(1)v should be
√

Var p, instead of
√

MaxInf(p). Note that this extra normalization

comes from the fact that given that given (i1, i2, i3), it may happen that i3 /∈ S(i1,i2,i3)

and p̂(S(i1,i2,i3)) ̸= 0, because p is not homogeneous of degree-3. If we mimic the rest

of the proof after this first step that we were forced to modify, we would reach

⟨u,A(i1) . . . A(i3)v⟩ =
p̂(S)√
Var[p]

instead of Eq. (5.25), which would lead to ∥p∥fcb,3 ≥
√

Var p, that is trivially true,

because ∥p∥fcb,3 ≥ ∥p∥∞ and ∥p∥∞ ≥
√

Var p.

Remark 5.21. However, there might be a different way of, given a polynomial p of

degree at most t, choosing (u, v,A) with Boolean behavior of degree t such that

⟨u,A(i1) . . . A(id)v⟩ =
p̂(Si)

poly(t,MaxInf[p])
,

for any i ∈ [n+1]t. If that was true, one could copy and paste the proof of Theorem 5.6

and conclude Conjecture 5.5.

This reduces Conjecture 5.5 to a question with flavor of tensor networks (see

[CPGSV21] for an introduction to the topic). In particular, the central questions

in matrix product states theory is, given a t-tensor T ∈ Cn×···×n, to find matrices

A1, . . . , At of low dimension such that Ti = Tr[A(i1) . . . A(it)] for every i ∈ [n]t. Thus,

we are asking the same question, but with a different goal: to minimize the operator

norm of the matrices, instead of their dimensions.

It also has the flavor of almost-quantum correlations [NGHA15]. Almost-quantum

correlations are a model for multiparty quantum mechanics that eludes tensor products

and commutativity of the observables: it only imposes the commutativity on the

correlations. For example, in a bipartite scenario, valid correlations would be those

determined by observables {Ax}x∈X and {By}y∈Y and a state |ψ⟩ such that

⟨ψ|AxBy|ψ⟩ = ⟨ψ|ByAx|ψ⟩, for all x ∈ X , y ∈ Y.

In other words, almost-quatum correlations impose the commutativity conditions with

respect to the sandwiches with |ψ⟩, instead of directly imposing them to the observ-

ables, Similarly, we would like to find matrices that satisfy certain Boolean relations

with respect to the product with two vectors u and v.
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Question 5.22. Given a polynomial p of degree at most t, is there (u, v,A) ∈ BBt

such that

⟨u,A(i1) . . . A(id)v⟩ =
p̂(Si)

poly(t,MaxInf[p])
,

for any i ∈ [n+ 1]t?
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Chapter 6

Bohnenblust-Hille inequalities

and their applications to

learning theory

6.1 Introduction

The Bohnenblust-Hille inequality states that for any d ∈ N there exists a constant

Cd such that every d-homogeneous polynomial P : Cn → C, defined as P (z) =∑
|α|=d aαz

α, satisfies the following inequality:

∥P̂∥ 2d
d+1
≤ Cd∥P∥∞, (6.1)

where ∥P̂∥ 2d
d+1

denotes the ℓ 2d
d+1

sum of the coefficients (aα)α and ∥P∥∞ = supz∈Dn |P (z)|
is the infinity norm of P [BH31].

This inequality, which generalizes the well-known Littlewood’s 4/3-Inequality [Lit30],

has proven to be extremely useful in the study of the convergence of Dirichlet series

and was crucial in determining the asymptotic behaviors of Bohr’s radius obtained

in [DFOC+11]. In this regard, the authors demonstrated that the constant Cd can

be taken equal to Cd, for a certain constant C. The work in [DFOC+11] motivated

numerous subsequent studies, where the search focused on the upper and lower bounds

for Cd. The best known upper bound was given in [BPSS14], where it was proved that

Cd can be actually taken to be C
√
d log d.
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Interestingly, in recent years, the Bohnenblust-Hille inequality has proven to be

useful in learning theory. This is perfectly illustrated in the striking work [EI22],

where the authors used a version of the Bohnenblust-Hille inequality for functions

defined on the hypercube f : {−1, 1}n → R, as established in [DMP19], to enhance the

seminal Low-Degree Algorithm of Linial, Mansour, and Nisan [LMN93]. After that,

the applications of the Bohnenblust-Hille inequality to learning theory have reached

the quantum computing community, motivating the study of this inequality in the non-

commutative realm ([HCP23a, RWZ24, VZ23]). In particular, in the work [VZ23], a

version of the Bohnenblust-Hille inequality is proven for N ×N -dimensional matrices,

which can be understood as a generalization of quantum Boolean functions [MO08].

In this chapter, we explore Bohnenblust-Hille inequalities from three different an-

gles: considering the completely bounded norm instead of the infinity norm, extending

the non-commutative variant proved in [VZ23], and determining the exact constants

for the case of Boolean functions.

The completely bounded Bohnenblust-Hille inequality

The completely bounded norm of a d-homogeneous polynomial P as above is defined

as

∥P∥cb = sup
∥∥∥ ∑

|α|=d

aαZ
α1
1 · · ·Zαn

n

∥∥∥
op
,

where this supremum runs over all m ∈ N and all contractions Z1, . . . , Zn in Mm(C).

This norm can be understood as a non-commutative version of the infinity norm and it

clearly provides an upper bound for it. Thus, one might expect that the corresponding

Bohnenblust-Hille inequality involves a better constant than in the classical case. On

the other hand, note that by the triangle inequality, we have that ∥P∥cb ≤
∑
α |aα|.

Simultaneously, the completely bounded norm has proven particularly suitable in the

study of quantum algorithms, providing a notion of polynomial degree that gives a

tight characterization of quantum query complexity (see Chapter 5) [ABP19]. Hence,

a Bohnenblust-Hille inequality for the completely bounded norm is also motivated

by its potential applications in quantum learning theory. The results of this chapter

rigorously fulfill these expectations. Indeed, the main result of this chapter is that the

Bohnenblust-Hille inequality holds with the optimal constant C = 1 when the infinity

norm is replaced by the completely bounded norm. Additionally, we demonstrate

that the exponent 2d/(d + 1) is also optimal in the new scenario considered here,

meaning that for p < 2d/(d + 1) there is no quantity Cd independent of n such that
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∥P̂∥2d/(d+1) ≤ Cd∥P∥cb for every d-homogeneous polynomial P , as it happens with

the original Bohnenblust-Hille inequality Eq. (6.1).

Theorem 6.1. For every d-homogeneous polynomial P : Cn → C, defined as P (z) =∑
|α|=d aαz

α, the following inequality is satisfied:

∥P̂∥ 2d
d+1
≤ ∥P∥cb.

Moreover, both the constant 1 in the inequalities and the exponent 2d
d+1 are optimal.

In particular, our main result holds for multilinear forms. Moreover, we will also

show that in the case of general (non-necessarily homogeneous) polynomials of degree

d we have

∥P̂∥ 2d
d+1
≤
√
d+ 1∥P∥cb.

The optimality of Theorem 6.1 shows that the completely bounded norm fits per-

fectly into the study of the Bohnenblust-Hille inequality. In fact, Theorem 6.1 moti-

vates the study of the optimality of the Bohnenblust-Hille inequality from an angle

not explored to date. Rather than focusing on determining the optimal constant that

satisfies the inequality (6.1), it is possible to examine the norms that satisfy the asso-

ciated Bohnenblust-Hille inequality with a constant value of one. It is plausible that

the second problem sheds light on the first; particularly, in the problem of finding new

lower bounds for the constant Cd. Indeed, in order to find good lower bounds for the

classical BH inequality, we must consider polynomials for which the infinity norm is

very different from any norm for which a BH inequality with constant 1 can be proven.

Theorem 6.1 entails interesting consequences in learning theory. In particular, it

allows us to improve the estimates in [EI22] when we restrict ourselves to certain

functions arising in quantum computing. Indeed, in that work, it is proven that it is

possible to learn any bounded function f : {−1, 1}n → [−1, 1] of degree at most d with

L2-accuracy ε and confidence 1−δ by using O(ε−2(d+1)Cd
3/2√log d log(n/δ)) uniformly

random samples on the function. A particularly interesting type of these functions are

those that arise from a quantum algorithm with d queries. More precisely, we consider

here quantum query algorithms that prepare a state

|ψx⟩ = Ud(Oxd
⊗ Idm)Ud−1 · · ·U1(Ox1

⊗ Idm)U0|ψ0⟩, (6.2)

where m is an integer, x stands for (x1, . . . , xd), Oy is the n-dimensional matrix

that maps |i⟩ to yi|i⟩, U1, . . . , Ud are (n + m)-dimensional unitaries and |ψ0⟩ is an
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(n + m)-dimensional unit vector. The algorithm succeeds according to a projective

measurement that measures the projection of the final state onto some fixed (n+m)-

dimensional unit vector |v⟩. Hence, the amplitude of |v⟩ is given by T (x) = ⟨v|ψx⟩,
so that |T (x)|2 is the acceptance probability of the algorithm. These quantum algo-

rithms have been considered in the quantum computing literature; for example, k-fold

forrelation, that witnesses the biggest possible quantum-classical separation, has this

structure [AA15]. As we will explain in Section 6.4, the argument in [EI22] alongside

the Bohnenblust-Hille inequality for (bounded) multilinear forms [BPSS14] imply that

the amplitudes T can be learned from O(ε−2(d+1)poly(d)d log(n/δ)) samples. Further-

more, using Theorem 6.1 instead of [BPSS14] allows us to obtain the following result

for learning d-query quantum algorithms which, in particular, requires a number of

samples that is polynomial in n when ε and δ are constants and d = log(n).

Corollary 6.2. Consider a quantum algorithm that makes d queries as explained

above. Then, its amplitudes can be learned with L2
2-accuracy ε and confidence 1 − δ

from O(ε−2(d+1)d2 log(n/δ)) uniform random samples.

Extending the non-commumative Bohnenblust-Hille inequality.

Motivated by the applications to learning quantum channels, we extend the non-

commutative version of the BH inequality proved in [VZ23]. This generalization con-

cerns the Pauli coefficients of linear maps Φ : MN →MN , where let N = 2n and n is

a natural number. These maps can be expressed as

Φ(ρ) =
∑

x,y∈{0,1,2,3}n

Φ̂(x, y) · σxρσy, (6.3)

where σx = ⊗i∈[n] σxi
and σi for i ∈ {0, 1, 2, 3} are the Pauli matrices

σ0 =

(
1 0

0 1

)
, σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
;

and Φ̂(x, y) are the Pauli coefficients of the map. Given x ∈ {0, 1, 2, 3}n, |x| is the

number of non-zero entries of x. The degree of Φ is the minimum integer d such that

Φ̂(x, y) = 0 if |x|+ |y| > d.

We show that we can upper bound the ℓ2d/(d+1)-sum of the Pauli coefficients of Φ̂

in a Bohnenblust-Hille way.
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Theorem 6.3. Let Φ : MN →MN be a linear map of degree d. Then,

∥Φ̂∥ 2d
d+1
≤ Cd∥Φ : SN1 → SN∞∥,

where C is a universal constant and SN1 and SN∞ denote the spaces of one and infinity

Schatten classes respectively.

The proof of Theorem 6.3 follows a similar approach to the one in [VZ23] and, in

fact, extends their result. Indeed, if one considers a matrix A ∈ MN , the main result

in [VZ23] follows from the application of Theorem 6.3 to the linear map Φ(X) = XA.

We use our extension to improve the current results on learning quantum chan-

nels. From a physical perspective, quantum channels describe the transformations be-

tween quantum systems. Since quantum systems are represented by quantum states,

which correspond to non-commutative probability distributions, specifically positive

semidefinite matrices with trace 1, quantum channels map one set of non-commutative

probabilities to another. Mathematically, quantum channels on n-qubits are maps

Φ : MN →MN that are completely positive and trace-preserving. In particular, they

satisfy ∥Φ : SN1 → SN∞∥ ≤ 1 and Theorem 6.3 applies to them. Learning an n-qubit

quantum channel is in general challenging and is known to require Θ(4n) applica-

tions (queries) of the channel [GJ14]. This exponential complexity can be drastically

improved when prior information on the structure of the channel is available. For ex-

ample, a recent work of Bao and Yao [BY23] considered k-junta quantum channels, i.e.,

n-qubit channels that act non-trivially only on at most k of the n (unknown) qubits

leaving the rest of qubits unchanged. These channels were shown to be learnable using

Θ̃(4k) queries to the channel [BY23].

Using the same learning model as the recent work of Bao and Yao (see Section

6.4 for details) we prove the following result for learning low-degree channels, which

contrary to the other applications of BH inequality in quantum learning theory, it has

a query complexity independent of n [HCP23a, SVZ23a, SVZ23b, VZ23].

Theorem 6.4. Let Φ be a n-qubit degree-d quantum channel. Then it can be learned

in L2-accuracy ε and confidence ≥ 1− δ by making exp
(
Õ(d2 + d log(1/ε))

)
· log(1/δ)

queries to Φ. Here, we use the notation Õ to hide logarithmic factors in d, 1/ε, and

1/δ.
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Boolean functions

Since boolean functions f : {−1, 1}n → {−1, 1} are particularly important in many

contexts, we also analyze this case. Remember that the classical Fourier expansion in

the hypercube allows one to write any function as

f =
∑

s∈{0,1}n

f̂(s)χs, (6.4)

where χs(x) =
∏
i∈supp(s) xi for s ∈ {0, 1}n and (f̂(s))s are the Fourier coefficients of

f . Then, the degree of f is the minimum d such that f̂(s) = 0 if |s| > d.

In this chapter, we show how the granularity property of these functions allows us

to prove the corresponding optimal Bohnenblust-Hille inequality.

Proposition 6.5. Let f : {−1, 1}n → {−1, 1} be a function of degree at most d.

Then, ( ∑
s∈{0,1}n

|f̂(s)|
2d

d+1

) d+1
2d ≤ 2

d−1
d .

The equality is witnessed by the address function.

The previous proposition might be of interest in functional analysis for two reasons.

First, it is conjectured that the value of the BH constant for real d-linear forms is

2
d−1
d [PT18], so this fact proves the conjecture for the particular case of d-linear

Boolean forms. Second, the address function, that saturates the inequality, is a d-linear

form that gives a lower bound for the BH constant for multilinear forms of 2
d−1
d , which

matches the best lower bound known so far for the BH inequality for real multilinear

forms [DMFPSS14]. Together with Proposition 6.5 about Boolean functions, in this

chapter we also study the complexity of these functions from the learning theoretical

point if view and improve previous estimates in [NPVY23, Corollary 34] and [EIS22,

Corollary 4] (see Section 6.3.1 for details).

6.2 Bohnenblust-Hille Inequality for the completely

bounded norm

In this section we will prove those results concerning the Bohnenblust-Hille Inequality

for the completely bounded norm. We will first prove a general result for tensors, from

where Theorem 6.1, as well as some other results will follow straightforwardly.
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cb-BH inequality for d-tensors

We consider K ∈ {R,C} and a d-tensor T = (Ti)i∈[n]d ∈ Kn × · · · ×Kn. Equivalently,

T can be regarded as the d-linear form T : Kn × · · · ×Kn → K given by

T (z1, . . . , zd) =
∑

i∈[n]d

Tiz1(i1) . . . zd(id).

For one such tensor, we denote

∥T̂∥ 2d
d+1

:=

 ∑
i∈[n]d

|Ti|
2d

d+1


d+1
2d

, (6.5)

The main result of the section is the following cb-BH inequality for d-tensors.

Theorem 6.6. Let T ∈ Kn × · · · ×Kn be a d-tensor. Then,

∥T̂∥ 2d
d+1
≤ ∥T∥cb.

We will make use of the following lemma, originally due to Blei [Ble79]. A simple

proof can be found in [BPSS14, Theorem 2.1].

Lemma 6.7 (Blei’s inequality). Given a d-tensor T ∈ Kn × · · · ×Kn, we have

∥T̂∥ 2d
d+1
≤

∏
s∈[d]

∑
is∈[n]

√ ∑
i1,...,is−1,is+1,...,id∈[n]

|Ti|2

 1
d

.

Now, we prove the key technical lemma, from where Theorem 6.6 will follow.

Lemma 6.8. Let T ∈ Kn × · · · ×Kn be a d-tensor and s ∈ [d]. Then,

∑
is∈[n]

√ ∑
i1,...,is−1,is+1,...,id∈[n]

|Ti1,...,is−1,is,is+1,...,id |2 ≤ ∥T∥cb.

Proof. We fix s ∈ [d]. The proof consists of evaluating T on an explicit set of contrac-

tions. In order to define these contractions, we denote m =
∑d−s
r=0 n

r +
∑s−1
r=0 n

r and

let {ei, fj : i ∈ [n]r, r ∈ {0} ∪ [d − s], j ∈ [n]t, t ∈ {0} ∪ [s − 1]} be an orthonormal

basis of ℓm2 (K), where we identify [n]0 with ∅. For every i ∈ [n] we define the matrix
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Zi ∈Mm as:

Ziej = e(i,j), if j ∈ [n]r, r ∈ {0} ∪ [d− s− 1],

Ziej =

∑
k∈[n]s−1 T ∗

(k,i,j)fk√∑
k1,...,ks−1,ks+1,...,kd∈[n] |T(k1,...,ks−1,i,ks+1,...,kd)|2

, if j ∈ [n]d−s,

Zifj = δi,jtf(j1,...,jt−1), if j ∈ [n]t, t ∈ {0} ∪ [s− 1],

Zif∅ = 0.

Assume for the moment that Zi are contractions. One can easily check that

⟨f∅, Zi1 . . . Zide∅⟩ =
T ∗
i1,··· ,id√∑

k1,...,ks−1,ks+1,...,kd∈[n] |Tk1,...,ks−1,is,ks+1,...,kd |2
.

Hence, by assuming that Zi are contractions, we can conclude

∥T∥cb ≥ ∥
∑

i∈[n]d

TiZi1 . . . Zid∥B(ℓm2 (K)) ≥
∑

i∈[n]d

Ti⟨f∅|Zi1 . . . Zid |e∅⟩

≥
∑

i∈[n]d

Ti
T ∗
i√∑

k1,...,ks−1,ks+1,...,kd∈[n] |Tk1,...,ks−1,is,ks+1,...,kd |2

=
∑
is∈[n]

√ ∑
i1,...,is−1,is+1,...,id∈[n]

|Ti1,...,is−1,is,is+1,...,id |2,

as desired.

Thus, it remains to prove that the matrices Zi are contractions. Given that Zi

maps the sets {ei : i ∈ [n]r, r ∈ {0} ∪ [d − s − 1]}, {ei : i ∈ [n]d−s} and {fi : i ∈
[n]t, t ∈ {0} ∪ [s − 1]} to orthogonal subspaces, it suffices to show that the Zi are

contractions when restricted to those subspaces. For the first and third sets that is

clear since Zi maps each basis vector of those sets either to a different basis vector or
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to 0. For the second set, just note that for every λ ∈ Knd−s

we have

∥Zi
∑

j∈[n]d−s

λjej∥22 = ∥

∑
k∈[n]s−1

(∑
j∈[n]d−s λjT

∗
kij

)
fk√∑

k1,...,ks−1,ks+1,...,kd∈[n] |Tk1,...,ks−1,i,ks+1,...,kd |2
∥22

=

∑
k∈[n]s−1 |

∑
j∈[n]d−s λjT

∗
kij|2∑

k1,...,ks−1,ks+1,...,kd∈[n] |Tk1,...,ks−1,i,ks+1,...,kd |2

≤

(∑
k∈[n]s−1

∑
j∈[n]d−s |Tkij|2

)(∑
j∈[n]d−s |λj|2

)
∑
k1,...,ks−1,ks+1,...,kd∈[n] |Tk1,...,ks−1,i,ks+1,...,kd |2

=
∑

j∈[n]d−s

|λj|2 = ∥λ∥22,

where we have used Cauchy-Schwarz for the sum over j.

Proof of Theorem 6.6. According to Lemma 6.7 and Lemma 6.8 we have

∥T̂∥ 2d
d+1
≤

∏
s∈[d]

∑
is∈[n]

√ ∑
i1,...,is−1,is+1,...,id∈[n]

|Ti|2

 1
d

≤

∏
s∈[d]

∥T∥cb

 1
d

= ∥T∥cb.

cb-BH inequality for polynomials

Now we consider the case of polynomials. Given any (not necessarily homogeneous)

polynomial of degree d in n variables P : Kn → K, we can write it as

P =
∑

s∈{0}∪[d]

Ps, (6.6)

where Ps : Kn → K is a s-homogeneous polynomial. We denote, given s ∈ [d],

J (s, n) = {(j1, . . . , js) ∈ [n]s : j1 ≤ · · · ≤ js}.

Then, Ps can be written uniquely as

Ps(x) =
∑

j∈J (s,n)

ajxj, (6.7)

103



6.2. Bohnenblust-Hille Inequality for the completely bounded norm

where we denote xj = xj1 · · ·xjs . Hence, we can define the completely bounded norm

of P as

∥P∥cb = sup
∥∥∥ ∑
s∈{0}∩[d]

∑
j∈J (s,n)

ajZj1 · · ·Zjs
∥∥∥
op
,

where the supremum runs over all (real/complex) contractions of Mm and m ∈ N.
Theorem 6.1, which refers to the d-homogeneous case, follows easily from Theorem

6.6.

Proof of Theorem 6.1. Given a d-homogeneous polynomial P : Kn → K as above, we

want to prove that ( ∑
j∈J (d,n)

|aj|
2d

d+1

) d+1
2d ≤ ∥P∥cb.

To do that, we reduce it to the case of tensors. We define Tj = aj for every j ∈ J (d, n)

and Tj = 0 for ever j ∈ [n]d \ J (d, n). By Proposition 2.18, the tensor T satisfies

( ∑
j∈J (d,n)

|aj|
2d

d+1

) d+1
2d

=
( ∑

j∈[n]d

|Tj|
2d

d+1

) d+1
2d

and ∥T∥cb = ∥P∥cb.

Hence, the result follows from Theorem 6.6.

We will now turn our attention to the case of general polynomials. To this end, we

first prove the following result:

Lemma 6.9. Let P : Kn → K be a polynomial of degree d. Then,

∥P∥cb ≥
1√
d+ 1

sup
∑

s∈[d]∪{0}

∣∣∣〈u, ∑
α∈Nn

0∑
i αi=s

aαZ
α1
1 . . . Zαn

n vs

〉∣∣∣,
where the supremum runs over all (real/complex) contractions Z1, . . . , Zn in Mm, all

m-dimensional vectors u, vs with norm less than or equal one, and all m ∈ N.

Proof. Let m ∈ N, Z1, . . . , Zn ∈ Mm be contractions and u, vs be m-dimensional

vectors with norm less than or equal one. For s ∈ {0} ∪ [d], let bs ∈ K be such that

|bs| = 1 and∣∣∣〈u, ∑
α∈Nn

0∑
i αi=s

aαZ
α1
1 . . . Zαn

n vs

〉∣∣∣ = bs

〈
u,

∑
α∈Nn

0∑
i αi=s

aαZ
α1
1 . . . Zαn

n vs

〉
.
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Let {e0, . . . , ed} be the canonical basis of Kd+1. We define the unitary operator

B : Kd+1 → Kd+1 such that B(ep+1) = ep for every p ∈ [d] and B(e0) = ed. We also

define the unit vectors

ξ =
1√
d+ 1

∑
q∈[d]∪{0}

bqvq ⊗ eq ∈ Km ⊗Kd+1 and η = u⊗ e0 ∈ Km ⊗Kd+1.

Finally, we consider the new contractions Z̃i = Zi⊗B ∈Mm(d+1) for i = 1, · · · , n.

Then, one can easily check that〈
ũ,

∑
s∈[d]∪{0}

∑
α∈Nn

0∑
i αi=s

aαZ̃
α1
1 . . . Z̃αn

n ξ
〉

=
1√
d+ 1

∣∣∣〈u, ∑
α∈Nn

0∑
i αi=s

aαZ
α1
1 . . . Zαn

n vs

〉∣∣∣,
from where the statement follows.

We can now prove a cb-BH inequality for general polynomials of degree d.

Corollary 6.10. Let P : Kn → K be a polynomial of degree d. Then,

∥P̂∥ 2d
d+1
≤
√
d+ 1∥P∥cb.

Proof. Let Q : Kn+1 → K be the s-homogeneous polynomial defined by

Q(x, xn+1) :=
∑

s∈{0}∪[d]

Ps(x)xd−sn+1,

where x = (x1, · · · , xn) and Ps is the d-homogeneous part of P .

It is clear that ∥Q̂∥ 2d
d+1

= ∥P̂∥ 2d
d+1

. On the other hand, we have

∥Q∥cb = sup
〈
u
∣∣∣ ∑
s∈{0}∩[d]

∑
α∈Nn+1

0∑
i αi=s

aαZ
α1
1 . . . Zαn

n Zd−sn+1

∣∣∣v〉,
where the sup is taken over all (real/complex) contractions Z1, . . . , Zn+1 ∈ Mm, all

m-dimensional unit vectors u and v and all m ∈ N. Then, by defining vs = Zd−sn+1|v⟩
we can use Lemma 6.9 to deduce

∥Q∥cb ≤
√
d+ 1∥P∥cb.
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Hence, applying Theorem 6.1 to Q concludes the proof.

Optimality of the cb-BH inequality

We conclude this section by proving the optimality of Theorem 6.1. We will actu-

ally prove the optimality of Theorem 6.6, from where the optimality in the exponent

for the corresponding cb-BH inequality for d-multilinear forms and d-homogeneous

polynomials follows.

First of all, note that constant one is the best possible in the inequality since the

d-linear form T (x1, · · · , xn) = x1 satisfies ∥T̂∥2d/(d+1) = ∥T∥cb = 1. Regarding the

optimality in the exponent, it follows from the next statement.

Theorem 6.11. Let d ∈ N, let K ∈ {R,C} and let q ≥ 1. For infinitely many n ∈ N,
there exists a d-tensor T ∈ Kn × · · · ×Kn such that ∥T∥q = n

d
q and ∥T∥cb ≤ n

d+1
2 .

The optimality in the exponent of Theorem 6.6 follows easily from the previous

statement. Indeed, suppose that there is a constant Cd > 0 such that

∥T∥q ≤ Cd∥T∥cb.

Then, it follows that

n
d
q ≤ Cdn

d+1
2

for every n ∈ N. Therefore, q ≥ 2d/(d + 1). In order to see that this last estimate

implies the optimality for the BH inequality for d-homogeneous polynomials (Theorem

6.1) just note that for any d-linear form T : Kn × · · ·Kn → K, we can define a

d-homogeneous polynomial in d× n variables P : (Kn)d → K defined as

P
(
(x1(i1))i1 , · · · , (xd(id))id

)
=

n∑
i1,··· ,id=1

Ti1,··· ,idx1(i1) · · ·xd(id).

The optimality of Theorem 6.1 follows because if we consider the lexicographical order

in [n]d, then ∥P∥2d/(d+1) = ∥T∥2d/(d+1) and ∥P∥cb = ∥T∥cb.

Our proof is based on the proof of the optimality of the exponent in the classical

BH inequality (see [DGMP19, Chapter 4]).

Proof of Theorem 6.11. Let n ∈ N and let N = 2n. We will identify [N ] with P(n)

(the family of subsets of n elements) and {−1, 1}n in an arbitrary bijective way. In
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this sense, we define the matrix a ∈ RN×N via

a(x,S) =
∏
i∈S

xi,

for every x ∈ {−1, 1}n and S ⊆ [n]. This matrix satisfies that

|a(x,S)| = 1, (6.8)∑
x∈{−1,1}n

a(x,S)a(x,S′) = NδS,S′ . (6.9)

We define the d-tensor T ∈ Kn × · · · ×Kn by

T =
∑

i∈[N ]d

a(i1,i2) . . . a(id−1,id).

According to Eq. (6.8) we immediately deduce that ∥T∥q = N
d
q .

In order to prove the upper bound for ∥T∥cb we can restrict to unitary/orthogonal

matrices, thanks to Remark 2.16. Now, given arbitrary unitary matrices U1
i1
, . . . , Udid ,

if we denote

Ri1 =
∑

j∈[N ]d−1

a(i1,j2) . . . a(jd−1,jd)U
2
j2 . . . U

d
jd
,

we can apply Lemma 3.9 to write

∥∥∥ ∑
i∈[N ]d

a(i1,i2) . . . a(id−1,id)U
1
j1 . . . U

d
jd

∥∥∥ ≤ ∥∥∥ ∑
i1∈[N ]

U1
i1(U1

i1)†
∥∥∥ 1

2
∥∥∥ ∑
i1∈[N ]

R†
i1
Ri1

∥∥∥ 1
2

= N
1
2

∥∥∥ ∑
i1∈[N ]

R†
i1
Ri1

∥∥∥ 1
2

.

Now, we note that
∑
i1∈[N ]R

†
i1
Ri1 can be written as

∑
j,k∈[N ]d−1

( ∑
i1∈[N ]

a(i1,j2)a(i1,k2)

)
a(j2,j3) · · · a(jd−1,jd)a(k2,k3) · · · a(kd−1,kd)

· (Udjd)† · · · (U2
j2)†U2

k2 · · ·U
d
kd
.
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By using Eq. (6.9) and that U2
i = Id, for i ∈ [N ], the previous expression equals

N
∑
i2∈[N ]

∑
j,k∈[N ]d−2

a(i2,j3) · · · a(jd−1,jd)a(i2,k3) · · · a(kd−1,kd)(U
d
jd

)† · · · (U3
j3)†U3

k3 · · ·U
d
kd

= N
∑

j,k∈[N ]d−2

( ∑
i2∈[N ]

a(i2,j3)a(i2,k3)

)
a(j3,j4) · · · a(jd−1,jd) · · · a(k3,k4)a(kd−1,kd)

· (Udjd)† · · · (U3
j3)†U3

k3 · · ·U
d
kd
.

We see that we can iterate this process to obtain∥∥∥ ∑
i1∈[N ]

R†
i1
Ri1

∥∥∥ ≤ Nd−1
∥∥∥ ∑
id∈[N ]

(Udid)†Udid

∥∥∥ = Nd.

Therefore, we conclude that
∥∥∥∑i∈[N ]d a(i1,i2) . . . a(id−1,id)U

1
i1
. . . Udid

∥∥∥ ≤ N d+1
2 .

Remark 6.12. The d-linear form used in the proof of Theorem 6.11 also plays a central

role in quantum query complexity. Indeed, it is the linear form determined by the d-

forrelation problem, that optimally separates quantum and classical query complexity

and we already introduced in Section 3.2.1 [AA15, BS21]. We recall that, given d

Boolean functions f1, . . . , fd : {0, 1}n → {−1, 1}, its d-forrelation is defined as

forrd(f1, . . . , fd) =
1

2n
d+1
2

∑
x1,...,xd∈{0,1}n

f(x1)(−1)⟨x1,x2⟩ . . . f(xd−1)(−1)⟨xd−1,xd⟩f(xd).

Thus, if we consider the d-linear form T defined in the proof of Theorem 6.11 and we

identify the d functions f1, . . . , fd with the elements of {−1, 1}2n determined by their

truth table, we have

T (f1, . . . , fd) = 2n
d+1
2 forrd(f1, . . . , fd).

6.3 Bohnenblust-Hille inequality in other contexts

6.3.1 Boolean functions

We determine the exact value of the BH constant for Boolean functions. This result

follows from the well-known fact that the Fourier coefficients of Boolean functions

are multiples of 21−dZ. This property is usually referred to as the granularity of
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Boolean functions [O’D09, Exercise 1.11]. We sketch the proof below for the sake of

completeness.

Lemma 6.13. Let f : {−1, 1}n → {−1, 1} with degree at most d. Then, f̂(s) ∈ 21−dZ
for every s ∈ {0, 1}n.

Proof. Recall that f : {−1, 1}n → {−1, 1}. We define g : {0, 1}n → {0, 1} by

g(z) =
1

2

(
1− f((1− 2z1), . . . , (1− 2zn))

)
.

It is not difficult to see that g can be written in a unique way as

g(z) =
∑

s∈{0,1}n

cs
∏
i:si=1

zi

for some coefficients cs ∈ R such that cs = 0 for every s with |s| > d. By applying

induction on |s|, one can actually prove that cs ∈ Z for every s. Indeed, we first note

that for s = ∅, one has c0n = g(0n) ∈ {0, 1}. For s with |s| = t+ 1 > 0, assuming that

cs ∈ Z for every s with |s| ≤ t, we have

cs = g(s)−
∑

|s′|<|s|,s′i≤si

cs′ ,

so cs belongs to Z. Finally, the statement for f can be obtained by just noticing that

f(x) = 1− 2g

(
1− x1

2
, . . . ,

1− xn
2

)
= 1− 2

∑
|s|≤d

cs
∏
i:si=1

1− xi
2

.

Proposition 6.14. Let f : {−1, 1}n → {−1, 1} of degree at most d. Then,

( ∑
s∈{0,1}n

|f̂(s)|
2d

d+1

) d+1
2d ≤ 2

d−1
d .

The equality is witnessed by the address function.

Proof. Since for Boolean functions one has ∥f∥2 = 1, Lemma 6.13 and Parseval’s

identity imply that f has at most 22(d−1) non-zero Fourier coefficients. Indeed, this

immediately follows from the identity
∑
s |f̂(s)|2 = 1 and the fact that |f̂(s)| ≥ 21−d

109



6.3. Bohnenblust-Hille inequality in other contexts

for every non-zero coefficient. Hence, Hölder’s inequality implies that, for p ∈ [1, 2),

∑
s:f̂(s) ̸=0

|f̂ |p · 1 ≤
( ∑
s∈{0,1}n

f̂2(s)
) p

2
(

22(d−1)
) 2−p

2

= 2(d−1)(2−p).

Taking p = 2d/(d+ 1) the claimed inequality follows.

The equality is witnessed by the address function f : ({−1, 1}n)d → {−1, 1} of

degree d and n = 2d−1, which is defined as

f(x) =
∑

a∈{−1,1}d−1

x1(1)− a1x1(2)

2
. . .

xd−1(1)− ad−1xd−1(2)

2︸ ︷︷ ︸
ga(x1,...,xd−1)

xd(a), (6.10)

where we identify {−1, 1}d−1 with [2d−1] in the canonical way. The address function

is Boolean because for every (x1, . . . , xd−1) ∈ ({−1, 1}n)d−1 there is only one a ∈
{−1, 1}d−1 such that ga(x1, . . . , xd−1) is not 0, in which case it takes the value ±1.

Given that it has 22(d−1) Fourier coefficients and all of them equal 21−d, we have that

( ∑
s∈{0,1}n

|f̂(s)|
2d

d+1

) d+1
2d

= 21−d22(d−1)· d+1
2d = 2

d−1
d ,

as promised.

6.3.2 A non-commutative BH inequality

In this section, we prove a Bohnenblust-Hille inequality for linear maps that are

bounded in the S1 to S∞ norm, such as quantum channels. Recall from Eq. (6.4)

that any such a function can be written as

f =
∑

s∈{0,1}n

f̂(s)χs,

and it has degree d if this is the minimal number for which f̂(s) = 0 if |s| > d.

The following result was proved originally in [Ble01], and with a better constant in

[DMP19].

Theorem 6.15. Let f : {−1, 1}n → R be a function of degree at most d. Then,

∥f̂∥ 2d
d+1
≤ C

√
d log d∥f∥∞,
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where C > 0 is a constant.

In order to prove Theorem 6.3 we follow a similar argument to the one used in

[VZ23]. However, we need to modify their argument in order to consider maps from

S1 to S∞ and not just matrices in MN . In fact, as we explain in Remark 6.18,

Theorem 6.3 generalizes the non-commutative BH inequality proved in [VZ23].

For every Φ : MN →MN , we will assign it a function fΦ : {−1, 1}3n×{−1, 1}3n →
C whose Fourier spectrum will be closely related to the one of Φ̂, as shown in Lemma 6.16,

and then we will be able to reduce to Theorem 6.15. The function fΦ is defined as

follows. For a = (a1, a2, a3), b = (b1, b2, b3) ∈ {−1, 1}n × {−1, 1}n × {−1, 1}n and

s, t ∈ {1, 2, 3}n, define the following matrices (which are not necessarily states)

|as⟩⟨bt| = ⊗
i∈[n]
|χs(i)
a
s(i)
i

⟩⟨χt(i)
b
t(i)
i

|,

Here |χsa⟩ is the eigenvector of σs with eigenvalue a. The function fΦ : {−1, 1}3n ×
{−1, 1}3n → C is then given by

fΦ(a, b) =
1

9n

∑
s,t∈{1,2,3}n

Tr[Φ
(
|as⟩⟨bt|

)
|bt⟩⟨as|].

We recall the reader that any function Φ : MN →MN can be expressed as

Φ(ρ) =
∑

x,y∈{0,1,2,3}n

Φ̂(x, y) · σxρσy, (6.11)

where σx = ⊗i∈[n] σxi
and σi for i ∈ {0, 1, 2, 3} are the Pauli matrices. We also recall

that, if |x| denotes the number of non-zero entries of x ∈ {0, 1, 2, 3}n, the degree of Φ

is the minimum integer d such that Φ̂(x, y) = 0 if |x|+ |y| > d.

In the following lemma, the key properties of the function f are presented.

Lemma 6.16. Let Φ : MN → MN be a function of degree at most d. Then, fΦ has

also degree d. Moreover, |fΦ(a, b)| ≤ ∥Φ∥S1→S∞ for all a, b and ∥Φ̂∥p ≤ 3d∥f̂Φ∥p.

Proof. We first show the bound on |fΦ|. Given that |as⟩⟨bt| is a rank one operator

such that ∥|as⟩∥2 = ∥|bt⟩∥2 = 1, we conclude that

∥|as⟩⟨bt|∥S1
= 1. (6.12)
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Thus, we have that:

|fΦ(a, b)| ≤ 1

9n

∑
s,t∈{1,2,3}n

|Tr[Φ
(
|as⟩⟨bt|

)
|bt⟩⟨as|]|

≤ 1

9n

∑
s,t∈{1,2,3}n

∥Φ
(
|as⟩⟨bt|

)
∥S∞∥|bt⟩⟨as|∥S1

≤ 1

9n

∑
s,t∈{1,2,3}n

∥Φ∥S1→S∞∥|as⟩⟨bt|∥S1
∥|bt⟩⟨as|∥S1

≤ 1

9n

∑
s,t∈{1,2,3}n

∥Φ∥S1→S∞ = ∥Φ∥S1→S∞ ,

where in the first inequality we have used the triangle inequality, in the second in-

equality the duality between S1 and S∞, in the third the definition of S1 → S∞ norm

and in the fourth inequality we have used Eq. (6.12).

We now prove the estimate ∥Φ̂∥p ≤ 3−d∥f̂Φ∥p and also that the degree of fΦ is d.

To this end, it suffices to show that

fΦ(a, b) =
∑

x,y∈{0,1,2,3}n

Φ̂(x, y)

3|x|+|y|

∏
i∈supp(x)

∏
j∈supp(y)

a
x(i)
i b

y(j)
j , (6.13)

where supp(x) = {i ∈ [n] : xi ̸= 0} and |x| is the size of supp(x). Indeed, this

follows from the fact that
∏
i∈supp(x)

∏
j∈supp(y) a

x(i)
i b

y(j)
j can be read as χSx,y

(a, b) for

a certain Sx,y ∈ {−1, 1}6n satisfying that Sx,y ̸= Sx′,y′ whenever (x, y) ̸= (x′, y′), for

for every x, y ∈ {0, 1, 2, 3}n.

To prove Eq. (6.13) the key is observing that for every s, t ∈ {1, 2, 3}, x, y ∈
{0, 1, 2, 3} and a, b ∈ {−1, 1}, we have that

Tr[σx|χsa⟩⟨χtb|σy|χtb⟩⟨χsa|] =



0 if (s ̸= x and x ̸= 0) or (t ̸= y and y ̸= 0),

1 if x = 0 and y = 0,

a if s = x and y = 0,

b if x = 0 and t = y,

ab if s = x and y = t.

Hence, taking tensor products we have that for every s, t ∈ {1, 2, 3}n, x, y ∈ {0, 1, 2, 3}n

and a = (a1, a2, a3), b = (b1, b2, b3) ∈ {−1, 1}n × {−1, 1}n × {−1, 1}n, it holds that

Tr[σx|as⟩⟨bt|σy|bt⟩⟨as|] = ⟨χsa|σx|χsa⟩⟨χtb|σy|χtb⟩ =
∏

i∈supp x

∏
j∈supp y

a
x(i)
i b

y(j)
j δx(i),s(i)δy(j),t(j).
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In particular, it follows that

fΦx,y (a, b) ≡ 1

9n

∑
s,t∈{1,2,3}n

Tr[σx|as⟩⟨bt|σy|bt⟩⟨as|]

=
1

9n

∏
i∈supp x

∏
j∈supp y

a
x(i)
i b

y(j)
j

∑
s∈X ,t∈Y

1,

where X = {s ∈ {1, 2, 3}n : s(i) = x(i) ∀ i ∈ supp(x)}. Since |X | = 3n−|x|, Eq. (6.13)

follows for Φx,y. Finally, Eq. (6.13) follows in general because

fΦ(a, b) =
∑

x,y∈{0,1,2,3}n

Φ̂(x, y)fΦx,y
(a, b).

Proof of Theorem 6.3. Let ℜfΦ : {−1, 1}6n → R be defined as (ℜfϕ)(x) = ℜ(fΦ(x))

and ℑfΦ : {−1, 1}6n → R as (ℑfϕ)(x) = ℑ(fΦ(x)). Note that we have that f̂ϕ =

ℜ̂fΦ + iℑ̂fΦ. By Lemma 6.16,

|(ℜfϕ)(a, b)|, |(ℑfϕ)(a, b)| ≤ |fΦ(x)| ≤ ∥Φ∥S1→S∞ ,

and that the degree of both the real and imaginary part is at most d. Hence, by the

triangle inequality and Theorem 6.15 we have

∥f̂Φ∥ 2d
d+1
≤ ∥ℜ̂fΦ∥ 2d

d+1
+ ∥ℑ̂fΦ∥ 2d

d+1
≤ C

√
d log d∥Φ∥S1→S∞ .

Thus, as ∥Φ̂∥2d/(d+1) ≤ 3d∥f̂Φ∥2d/(d+1), we have that ∥Φ̂∥2d/(d+1) ≤ Cd∥Φ∥S1→S∞ .

Corollary 6.17. Let Φ : MN →MN be an n-qubit quantum channel of degree at most

d. Then

∥Φ̂∥2d/(d+1) ≤ Cd,

Proof. We just have to show that if Φ is a quantum channel, then ∥Φ∥S1→S∞ ≤ 1. This

is true since ∥Φ∥S1→S∞ ≤ ∥Φ∥S1→S1 and Φ† is a completely positive and unital map

between C∗-algebras, so we have ∥Φ∥S1→S1 = ∥Φ†∥S∞→S∞ = 1 [Pau03, Proposition

3.2].

Remark 6.18. Theorem 6.3 generalizes the non-commutative BH inequality proved by

Volberg and Zhang in [VZ23]. Indeed, given M =
∑
x M̂(x)σx ∈MN the main result
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of [VZ23] is recovered when one applies Theorem 6.3 to ΦM (·) = (·)M , which satisfies

Φ̂M (x, y) = δx,0nM̂(y) and ∥ΦM∥S1→S∞ = ∥M∥.

6.4 Learning low-degree quantum objects

This section is devoted to explaining the applications of the results developed in the

previous section to learning theory.

Why are BH inequalities useful for learning?

We start by recalling a classical problem in learning theory which includes some of

the results we present next and serves as motivation for other problems that are

explained further below. Consider a function f : {−1, 1}n → R to which we only have

access through random samples. Here, a random sample means that we have access to

(x, f(x)) for an element x chosen uniformly at random from {−1, 1}n. Assume that we

fix ε > 0 and δ > 0. Then, we want to devise an algorithm such that, by having access

to T (n, ε, δ) random samples, produces another function f ′ : {−1, 1}n → R satisfying,

with probability at least 1 − δ, that ∥f − f ′∥2 < ε. In this case, we say that f can

be learned within L2-error ε by using T (n, ε, δ) samples.1 The goal is to minimize the

number of samples needed to learn the function.

A relevant instance of the problem we just have introduced is learning a bounded

function f : {−1, 1}n → [−1, 1] of degree at most d. The seminal low-degree algorithm

by Linial, Mansour and Nisan solves it with Od,ε(n
d) samples [LMN93].2 Their algo-

rithm is based on learning the relevant part of the Fourier spectrum of the function f

which, thanks to Parseval’s identity, allows us to learn the function. More precisely,

if f ′ has also degree at most d, we then have that

∥f − f ′∥22 =
∑

s∈{0,1}n,|s|≤d

|f̂(s)− f̂ ′(s)|2.

Hence, in order to learn f up to error ε, it suffices to learn each of its Fourier coefficients

f̂(s) with |s| ≤ d up to error ε/
√
nd. Indeed, since there are at most O(nd) of these

coefficients, this immediately implies that ∥f − f ′∥22 < ϵ2.

Now, we explain how to learn the Fourier coefficients f̂(s) for |s| ≤ d with probabil-

ity ≥ 1− δ and by just using T = O(nd log(nd/δ)/ε2) random samples (xi, f(xi))i∈[T ].

1Despite we don’t mention δ explicitly, this parameter is implicit in the problem. Sometimes, one
fixes δ = 2/3.

2Here and below, we use Od,ε to hide factors that depend on d and 1/ε and are independent of n.

114



Chapter 6. Bohnenblust-Hille inequalities and their applications to
learning theory

To this end, let us consider the empirical Fourier coefficients, defined as

f̂ ′(s) =
1

T

∑
i∈[T ]

f(xi)χs(xi).

Note that, for a fixed s, f̂ ′(s) can be seen as the average of T independent random

variables distributed identically to the random variable hs : {−1, 1}n → [−1, 1] given

by hs(·) = f(·)χs(·). Fixing s, since Ehs = f̂(s), we can apply the Hoeffding bound

to state that

Pr
(
|f̂ ′(s)−f̂(s)| > ε√

nd

)
= Pr

( 1

T

∣∣∣ ∑
i∈[T ]

(
f(xi)χs(xi)−f̂(s)

)∣∣∣ > ε√
nd

)
≤ exp

(
−Tϵ

2

2nd

)
.

A union bound can then be applied to upper bound the probability that |f̂ ′(s)−f̂(s)| ≤
ε√
nd

for every |s| ≤ d by

1− exp
(
− Tϵ2

2nd
+ d log n

)
.

Hence, by choosing T = 2nd log(nd/δ)/ε2, we make this upper bound equal to 1 − δ
as we wanted.

The algorithm by Linial et al. was the state of the art until recently, when Eskenazis

and Ivanisvili showed that a function of degree d can actually be learnt by using only

Od,ε(log n) random samples [EI22]. Their key insight was to use a Bohnenblust and

Hille inequality for functions defined on the hypercube f : {−1, 1}n → R, proved in

[DMP19], which can be used to upper bound the contribution of the small Fourier

coefficients. To illustrate this, we consider the sum of the squares of the Fourier

coefficients which are smaller than a certain parameter ε′, which will be fixed later;

namely ∑
s∈{0,1}n, |f̂(s)|≤ε′

|f̂(s)|2.

To upper bound this quantity, one can use that 2 = 2/(d+ 1) + 2d/(d+ 1), so∑
s∈{0,1}n, |f̂(s)|≤ε′

|f̂(s)|2 ≤ ε′
2

d+1

∑
s∈{0,1}n, |f̂(s)|≤ε′

|f̂(s)|
2d

d+1 .

Now one can use the aforementioned BH inequality, which states that ∥f̂∥2d/(d+1) ≤
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C
√
d log d∥f∥∞, to obtain ∑

s∈{0,1}n, |f̂(s)|≤ε′

|f̂(s)|
2d

d+1 ≤ ε′
2

d+1C
√
d log d.

Therefore, by setting ε′ = εd+1C−(d+1)
√
d log d/2, it follows that∑

s∈{0,1}n, |f̂(s)|≤ε′

|f̂(s)|2 ≤ ε2. (6.14)

From Eq. (6.14), Eskenazis and Ivanisvili essentially followed the ideas of Linial et

al., but now they just needed to learn every low-degree Fourier coefficient up to error

ε′ = εd+1C−(d+1)
√
d log d/2, which is much bigger than ε/

√
nd and, in particular, inde-

pendent of n. Using this approach, they proved that these functions can be learned

with L2-error ε and confidence 1− δ by using

O
(
ε−2(d+1)∥f̂∥2d2d

d+1
d2 log

(n
δ

))
(6.15)

random samples.

Learning quantum query algorithms

In particular, the result of Eskenazis and Ivanisvili applies to the amplitudes of quan-

tum query algorithms as in Eq. (6.2) which, since the early days of quantum query

complexity, are known to be bounded d-linear forms T : {−1, 1}n×{−1, 1}n → [−1, 1]

[EI22, BBC+01]. In addition, for d-linear forms it is known that the BH inequal-

ity holds with a polynomial constant, ∥T∥2d/(d+1) ≤ poly(d)∥T∥∞ [BPSS14]. Hence,

it follows from Eq. (6.15) that the amplitudes of quantum query algorithms can be

learned from

O(ε−2(d+1)poly(d)d log(n/δ)) (6.16)

samples.

A key observation here, proved in [ABP19], is that those d-linear forms arising

from quantum algorithms actually satisfy that ∥T∥cb ≤ 1 [BBC+01]. Hence, Theorem

6.1 implies the following improvement with respect to Eq. (6.16).

Corollary 6.2. Consider a quantum algorithm that makes d queries as explained

above. Then, its amplitudes can be learned with L2
2-accuracy ε and confidence 1 − δ

from O(ε−2(d+1)d2 log(n/δ)) uniform random samples.
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Note that this result requires a number of samples that is polynomial in n when

ε and δ are constants and d = log(n), while using (6.16) one would get O(nlog logn)

samples as an upper bound.

Learning low-degree Boolean functions

In this section we propose almost optimal classical and quantum algorithms to learn

low-degree Boolean functions. While we have already explained the classical access

model (via random samples), we will also need to know what we mean by a quantum

access model. The quantum counterpart of these samples are the quantum uniform

samples, defined via the (n+ 1)-qubit states

|f⟩ =
1√
2n

∑
x∈{−1,1}n

|x⟩ ⊗ |f(x)⟩ ∈ (C2)n ⊗ C2 = (C2)n+1,

where {|−1⟩, |1⟩} is the canonical (or computational) basis of C2 and we have denoted

|x⟩ = |x1⟩ ⊗ · · · ⊗ |xn⟩ ∈ (C2)n for every x ∈ {−1, 1}n. Quantum uniform samples are

at least as powerful as classical samples. Indeed, if one measures the first n qubits of

|f⟩ in the basis {|x⟩}x, then the last qubit collapses to |f(x)⟩ for a uniformly random

x. However, they are actually strictly more powerful, as they allow one to sample

from the Fourier distribution (|f̂(s)|2)s. For a proof of this well-known result, see for

instance [ACL+21, Lemma 4].

Lemma 6.19 (Fourier sampling). Let f : {−1, 1}n → {−1, 1} be a Boolean function.

There is an algorithm that inputs |f⟩, succeeds with probability 1/2 and, in this case,

samples a string s ∈ {0, 1}n according to the probability distribution (|f̂(s)|2)s.

We now state the main result of this section on Boolean functions.

Proposition 6.20. Let f : {−1, 1}n → {−1, 1} be a degree-d function. There is a

quantum algorithm that learns f exactly with probability 1− δ using O
(
4dd log (1/δ)

)
uniform quantum samples. Also, there is a classical algorithm that uses O

(
4dd log (n/δ)

)
uniform samples for this task.

Despite the simplicity of the proof of Proposition 6.20, we include it for com-

pleteness and because it seems not to be well-known. See for instance [NPVY23,

Corollary 34], which proposes a quantum algorithm for the same problem that re-

quires O(nd) samples, or [EIS22, Corollary 4] that proposes a classical algorithm that

requires O(2d
2

log n) samples. Proposition 6.20 highly improves those estimates. We
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also remark that a classical lower bound of Ω(2d log n) samples was recently proved,

making our classical result nearly optimal [EIS22]. Regarding the tightness of our

quantum result, since learning functions f : {−1, 1}d → {−1, 1} of degree d requires

Ω(2d) uniform quantum samples (which is folklore and follows from example from

[AdW18]), our quantum estimate is almost optimal too.

Proof. For the classical upper bound we propose the following algorithm. We take

T = 2 · 4d log(nd/δ) uniform samples (xi, f(xi)) and use them to define the empirical

Fourier coefficients as

f̂ ′(s) =
1

T

∑
i∈[T ]

f(xi)χs(xi),

for every s ⊆ [n]. Define now the event E = {|f̂(s)− f̂ ′(s)| < 2−d ∀ |s| ≤ d}. Then, one

can argue exactly in the same way as in Section 6.4 to conclude that Pr[E ] ≥ 1− δ.

Once we have computed the coefficients f̂ ′(s), we round every of them to the closest

number f̂ ′′(s) ∈ 2d−1Z. If E occurs, by granularity we have that f̂ ′′(s) = f̂(s) for every

|s| ≤ d, so f =
∑
s f̂

′′(s)χs, as desired.

For the quantum upper bound we begin by sampling N = 4d log(4d/δ) times

from (f̂(s)2)s∈{0,1}n . This can be done, with probability ≥ 1 − δ, by using T1 =

O(4d log(4d/δ)) quantum uniform samples, thanks to Lemma 6.19 and a Hoeffding

bound. Now, given s such that f̂(s) ̸= 0, the probability that a sample s′ according

to the distribution (f̂(s)2)s∈{0,1}n satisfies s′ ̸= s is given by 1 − f̂(s)2 ≤ 1 − 41−d,

where we have used that f̂(s)2 ≥ 41−d by Lemma 6.13. Hence, if s1, . . . , sN are the

N samples, then the probability that we have si ̸= s for every i = 1, . . . , N is upper

bounded by

(1− 41−d)N ≤ δ

4d
.

Thus, taking a union bound over the at most 4d−1 non-zero Fourier coefficients

(due to Lemma 6.13 and
∑
s |f̂(s)|2 = 1), it follows that, with probability 1 − δ, we

will have sampled every non-zero Fourier coefficient.

In the second part of the algorithm we use T2 = O(4d log(4d/δ)) quantum uni-

form samples and measure them in the computational basis, which generates classical

uniform samples. From here, we can argue as in the classical upper bound and learn

f exactly. The quantum advantage comes from Fourier sampling, that allows us to

detect the non-zero Fourier coefficients, and apply the union bound only over those,

that are at most 4d−1.
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Learning low-degree quantum channels

First of all, we define the access model we use. Given a channel Φ, a learning algorithm

is allowed to make queries to Φ as follows: it can choose a state ρ, feed ρ to the channel

to obtain Φ(ρ) and measure Φ(ρ) in any basis.

The goal here, as in the previous sections, is to produce a classical description of a

map Φ̃ that is close to Φ in the ℓ2-distance defined by the usual inner product for maps

from MN to MN , i.e., ⟨Φ, Φ̃⟩ = Tr[J(Φ)J(Φ̃)]/4n, where J(Φ) is the Choi-Jamiolkowski

(CJ) representation of Φ.

For a reader not familiar with quantum computing, we remark that the proof of the

main result of this section does not require prior knowledge of quantum computing, if

one uses Lemmas 6.21 and 6.23 in a black-box manner. The reader can find in [NC10]

an excellent reference to learn about quantum computing.

An important fact for our learning algorithm is that Φ̂ = (Φ̂(x, y))x,y is a state

that can be prepared with 1 query to Φ (see [BY23, Lemma 8]). This is the content

of the following statement.

Lemma 6.21. If Φ is a quantum channel, then Φ̂ is a state unitarily equivalent to

v(Φ). In particular, one query to Φ suffices to sample once from (Φ̂(x, x))x, which is

a probability distribution.

We will also make use of the following lemma, proved in [KMY03, Proposition 7].

Lemma 6.22. Let ρ, ρ′ be two states. Then, one can estimate Tr[ρρ′] up to error ε

with probability 1− δ, by using O((1/ε)2 log(1/δ)) copies of ρ and ρ′.

Before proving the main theorem of the section, we show that for a given x, y ∈
{0, 1, 2, 3}n, the corresponding Pauli coefficient Φ̂(x, y) can be efficiently learned.

Lemma 6.23 (Pauli coefficient estimation for channels). Let Φ : MN → MN be a

quantum channel and let x, y ∈ {0, 1, 2, 3}n. Then, Φ̂(x, y) can be estimated with error

ε and probability 1− δ using O((1/ε)2 log(1/δ)) queries to Φ.

Proof. If x = y, we just have to prepare Φ̂ and apply Lemma 6.22 to Φ̂ and the state

ρ = |x⟩⟨x|. If x ̸= y, one first learns Φ̂(x, x) and Φ̂(y, y) with error ε as before. On

the one hand, one can learn Φ̂(x, x) + Φ̂(y, y) + 2ℜΦ̂(x, y), with error ε by applying

Lemma 6.22 to Φ̂ and |ξ⟩⟨ξ|, where |ξ⟩ = 1/
√

2(|x⟩+ |y⟩). Hence, one learns ℜΦ̂(x, y)

with error 3ε/2. On the other hand, one can learn Φ̂(x, x) + Φ̂(y, y) + 2ℑΦ̂(x, y), with

error ε by applying Lemma 6.22 to Φ̂ and |η⟩⟨η|, where |η⟩ = 1/
√

2(|x⟩ + i|y⟩), and

one can then learn ℑΦ̂(x, y) with error 3ε/2.
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Now, we are ready to prove Theorem 6.4, which we restate for the convenience of

the reader.

Theorem 6.4. Let Φ be a n-qubit degree-d quantum channel. Then it can be learned

in L2-accuracy ε and confidence ≥ 1− δ by making exp
(
Õ(d2 + d log(1/ε))

)
· log(1/δ)

queries to Φ. Here, we use the notation Õ to hide logarithmic factors in d, 1/ε, and

1/δ.

Proof. The algorithm consists of 2 steps. In the first one we detect the relevant Pauli

coefficients, while in the second step we learn the few Pauli coefficients detected as

relevant.

Step 1. Detect the big Pauli coefficients. Let c > 0 be a parameter to

be determined later. We invoke Lemma 6.21 to sample T1 times from (Φ̂(x, x))x by

making T1 queries to Φ. Let (Φ̂′(x, x))x be the empirical distribution obtained from

these samples. We store the big Pauli coefficients in the set Xc = {x : Φ̂′(x, x) ≥ c}.
Note that, since

∑
x∈Xc

Φ̂′(x, x) ≤ 1, we know that

|Xc| ≤
1

c
. (6.17)

Step 2. Learn the big Pauli coefficients. We invoke Lemma 6.23 to state

that, by querying Φ just

T2 = O((1/c)4(1/ε)2 log((1/c)2(1/δ)))

times, we can find approximations Φ̂′′(x, y) of Φ(x, y) for the at most (1/c)2 pairs

(x, y) ∈ Xc, such that

sup
(x,y)∈Xc×Xc

|Φ̂(x, y)− Φ̂′′(x, y)| ≤ cε. (6.18)

happens with probability ≥ 1− δ.

Output. We output Φ′′(·) =
∑
x,y∈Xc

Φ̂′′(x, y)σx(·)σy as our approximation for

Φ.

Correctness analysis. We consider the event E = {|Φ̂(x, x)− Φ̂′(x, x)| ≤ c ∀x ∈
{0, 1, 2, 3}n}. By Lemma 2.6, taking T1 = O((1/c)2 log(1/δ)) ensures that

Pr[E ] ≥ 1− δ.
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Assuming the event E holds, we have that

x /∈ Xc =⇒ |Φ̂(x, x)| ≤ |Φ̂′(x, x)|+ ||Φ̂(x, x)| − |Φ̂′(x, x)|| ≤ 2c. (6.19)

In particular, it follows that

x /∈ Xc =⇒ |Φ̂(x, y)| ≤
√
|Φ̂(x, x)||Φ̂(y, y)| ≤

√
2c ∀ y ∈ {0, 1, 2, 3}n, (6.20)

where in the first inequality we have used that Φ̂ is positive semidefinite and in the

second inequality we have used Eq. (6.19) and that Φ̂(y, y) ≤ 1.

Assuming that both parts of the algorithm succeed, we have that Φ′′ is close to Φ.

Indeed,

∥Φ− Φ′′∥22 =
∑

x,y∈Xc

|Φ̂(x, y)− Φ̂′′(x, y)|2 +
∑

x∨y/∈Xc

|Φ̂(x, y)|2

≤ ε2 +
∑

x∨y/∈Xc

|Φ̂(x, y)|
2

d+1 |Φ̂(x, y)|
2d

d+1

≤ ε2 + (2c)
1

d+1 ∥Φ̂∥
2d

d+1
2d

d+1

≤ ε2 + c
1

d+1Cd.

Here, in the equality we have used Parseval’s identity, in the first inequality we

used Eq. (6.17), Eq. (6.18) and that 2 = 1/(d + 1/2) + 2d/(d + 1/2); in the second

inequality we have used Eq. (6.20) and in the third inequality we used the Bohnenblust-

Hille inequality for channels (Corollary 6.17). Hence, by choosing

c = ε2d+2C−d(d+1)

we obtain the desired result.

Complexity analysis. Note that T2 > T1, so the complexity T2 dominates the

complexity of the first part of the algorithm. Hence, the total number of queries made

is

O
(
C4d(d+1)(1/ε)8d+10 log(C2d(d+1)(1/ε)4d+4(1/δ))

)
.
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Chapter 7

Testing and learning quantum

Hamiltonians

7.1 Introduction

A fundamental and important challenge with building quantum devices is being able to

characterize and calibrate its behavior. One approach to do so is Hamiltonian learning

which seeks to learn the Hamiltonian governing the dynamics of a quantum system

given finite classical and quantum resources. Beyond system characterization, it is

also carried out during validation of physical systems and designing control strategies

for implementing quantum gates [IBF+20]. However, learning an n-qubit Hamiltonian

is known to be difficult, requiring complexity that scales exponential in the number of

qubits unless a coarse metric is used [Car23].

In practice, however, prior knowledge on the structure of Hamiltonians is available

e.g., those of engineered quantum devices [SMCG16] where the underlying Hamilto-

nians primarily involve local interactions with few non-local interactions, and even

naturally occurring physical quantum systems such as those with translationally in-

variant Hamiltonians. To highlight these structural properties, consider an n-qubit

Hamiltonian H (which is a self-adjoint operator acting on (C2)⊗n) expanded in terms

of the n-qubit Pauli operators:

H =
∑

x∈{0,1,2,3}n

λxσx,
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We call the set of Paulis with non-zero coefficients λx as the Pauli spectrum of the

Hamiltonian denoted by S = {x ∈ {0, 1, 2, 3}n : λx ̸= 0}. Of particular relevance are

k-local Hamiltonians which involve Pauli operators that act non-trivially on all but at

most k qubits and s-sparse Hamiltonians whose Pauli expansion contains at most s

non-zero Pauli operators i.e., |S| ≤ s.
There has thus been a growing suite of Hamiltonian learning results that have

shown that when the underlying n-qubit Hamiltonian H satisfies these structural

properties, learning can be performed with only poly(n) query complexity, either by

making “queries” to the unitary evolution operator U(t) = exp(−iHt) [dSLCP11,

HBCP15, ZYLB21, HKT22, YSHY23, DOS23, HTFS23, LTN+23, SFMD+24, GCC24,

Zha24, HMG+25], or by assuming one has access to Gibbs state [AAKS21, HKT22,

RSF23, ORSFW23, BLMT23, GCC24]. Notably, [BLMT24] considered the problem of

learning Hamiltonians that are both local and sparse, without prior knowledge of the

support. Several of the learning algorithms mentioned above however require assump-

tions on the support of the Hamiltonian beyond locality or sparsity, such as [HTFS23]

which considers geometrically-local Hamiltonians (a subset of local Hamiltonians) and

[YSHY23] which requires assumptions on the support.

Moreover, before learning, it might be desirable to uncover what is the struc-

ture of an unknown Hamiltonian in order to choose specialized learning algorithms.

Even deciding if a Hamiltonian has a particular structure is a fundamental challenge

and constitutes the problem of testing if an unknown Hamiltonian satisfies a certain

structural property. This line of investigation is nascent with only a few works on

Hamiltonian property testing [SY23, ACQ22, LW22] with Blum et al. [BCO24b] hav-

ing considered the problem of testing local Hamiltonians and the problem of testing

sparse Hamiltonians yet to be tackled. This leads us to the motivating question of

this chapter:

What is the query complexity of learning and testing structured

Hamiltonians?

Problem statement

Before we state our results answering the question above, we clearly mention our

learning and testing problems first. If H is the Hamiltonian describing the dynamics

of a certain physical system, then the state of that system evolves according to the

time evolution operator U(t) = e−iHt. This means that if ρ(0) is the state at time 0,

at time t the state would have evolved to ρ(t) = U(t)ρ(0)U†(t). Hence, to test and

124



Chapter 7. Testing and learning quantum Hamiltonians

learn a Hamiltonian one can do the following: prepare a desired state, apply U(t) or

tensor products of U(t) with identity to the state, and finally measure in a chosen

basis. From here onwards, this is what we mean by querying the unitary U(t). It

is usual to impose the normalization condition ∥H∥op ≤ 1 (i.e., that the eigenvalues

of H are bounded in absolute value by 1). We will assume this normalization unless

otherwise stated, but we will also work out the dependence on ∥H∥op for our learning

algorithms. Throughout this paper, we will consider the normalized Frobenius norm

as the distance between Hamiltonians, unless otherwise stated. This distance is

d(H,H ′) = ∥H −H ′∥2 =

√
Tr[(H −H ′)2]

2n
,

and it equals the ℓ2-norm of the Pauli spectrum, d(H,H ′) =
√∑

|λx − λ′x|2. A

property of a Hamiltonian, denoted H is a class of Hamiltonians that satisfy the

property (here we will be interested in sparse and local properties). We say that H

is ε-far from having a property H if d(H,H ′) > ε for every H ′ ∈ H, and otherwise is

ε-close. Now, we are ready to state the testing and learning problems.

Let H be a property and let H be an unknown Hamiltonian with ∥H∥op ≤ 1

and Tr[H] = 0.

Problem 7.1 (Tolerant testing). Promised H is either ε1-close or ε2-far from

satisfying property H, decide which is the case by making queries to U(t).

Problem 7.2 (Hamiltonian learning). Promised H ∈ H, output a classical

description of H̃ ∈ H such that ∥H − H̃∥2 ≤ ε by making queries to U(t).

Summary of results

The main results of this chapter are query-efficient algorithms for testing and learning

Hamiltonians that are local and/or sparse. We summarize our results in Table 7.1 (for

simplicity we state our results for constant accuracy). Before we discuss our results in

more detail, we make a few remarks about our main results.

Testing Learning

s-sparse poly(s) poly(s)

k-local O(1) exp(k2)

Table 7.1: Query complexity for learning and testing n-qubit structured Hamiltonians.
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(i) As far as we know, by the time of the publication, the results of this chapter are

the first: (a) with complexities that are independent of n 1, and (b) that does

not assume knowledge of the support.2

(iv) We give the first learning algorithm for Hamiltonians that are only promised to

be sparse, and not necessarily local. Similarly, our local Hamiltonian learning

problem doesn’t assume geometric locality which was assumed in several prior

works.

(iii) Our testing algorithms are tolerant, i.e., they can handle the setting where ε1 ̸=
0. As far as we know, there are only a handful of polynomial-time tolerant testers

for quantum objects.

(iv) Our learning algorithms are based on a subroutine that learns arbitrary n-qubit

Hamilotmians with O(1/ε4) queries, albeit in the coarser metric of the ℓ∞-norm

of the Pauli coefficients. As far as we know, this is the only best result for

unstructured Hamiltonians. Notably, it is also the first time-efficient proposal

for this problem.

We remark that most previous works on Hamiltonian learning (that we highlighted

earlier) are done under the distance induced by the supremum norm of the Pauli spec-

trum and with extra constraints apart from locality [dSLCP11, HBCP15, ZYLB21,

HKT22, WKR+22, YSHY23, Car23, DOS23, HTFS23, LTN+23, SFMD+24, GCC24].

When transformed into learning algorithms under the finer distance induced by the

ℓ2-norm of the Pauli spectrum, these proposals yield complexities that depend polyno-

mially on nk and only work for a restricted family of k-local Hamiltonians. The works

that explicitly consider the problem of learning under the ℓ2-norm have complexities

depending on n and assume a stronger access model [CW23, BLMT24].

Results

Testing. Recently, Bluhm, Caro and Oufkir proposed a non-tolerant testing algo-

rithm, meaning that it only works for the case ε1 = 0, whose query complexity is

O(n2k+2/(ε2− ε1)4) and with total evolution time O(nk+1/(ε2− ε1)3). They posed as

1There are a few works that achieve n-independent complexities for learning local Hamiltoni-
ans in the ∞-norm of the Pauli coefficients, but when transformed into 2-norm learners they yield
complexities depending on nk.

2Soon after [Esc24b], Bakshi et al. [BLMT24] presented a learning algorithm that does not require
prior knowledge of the support, achieving Heisenberg scaling using heavy machinery.
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open questions whether the dependence on n could be removed and whether an effi-

cient tolerant-tester was possible [BCO24a, Section 1.5]. Our first result gives positive

answer to both questions.

Result 7.3. There is an algorithm that solves Problem 7.1 for k-local Hamiltonians by

making poly(1/(ε2 − ε1)) queries to the evolution operator and with poly(1/(ε2 − ε1))

total evolution time.

See Theorem 7.12 for a formal statement of this result. Our algorithm to test for

locality is simple. It consists of repeating the following process 1/(ε2 − ε1)4 times:

prepare n EPR pairs, apply U(ε2 − ε1)⊗ Id2n to them and measure in the Bell basis.

Each time that we repeat this process, we sample from the Pauli sprectrum of U(ε2−
ε1).3 As ε2−ε1 is small, Taylor expansion ensures that U(ε2−ε1) ≈ Id2n−i(ε2−ε1)H,

so sampling from the Pauli spectrum of U(ε2− ε1) allows us to estimate the weight of

the non-local terms of H. If that weight is big, we output that H is far from k-local,

and otherwise we conclude that H is close to k-local.

Despite the numerous papers in the classical literature studying the problems of

testing and learning sparse Boolean functions [GOS+11, NS12, YZ20, EIS22], there

are not many results on learning Hamiltonians that are sparse (and not necessarily

local) and the only testing result that we are aware of requires O(sn) queries [BCO24b,

Remark B.2]. Here, we present the first sparsity testing algorithm whose complexity

does not depend on n and the first learning algorithm for sparse Hamiltonians which

does not make any assumptions regarding the support of the Hamiltonian beyond

sparsity.

Result 7.4. There is an algorithm that solves Problem 7.1 for s-sparse Hamiltonians

by making poly(s/(ε2−ε1)) queries to the evolution operator and with poly(s/(ε2−ε1))

total evolution time.

See Theorem 7.15 for a formal statement. This testing algorithm consists on per-

forming Pauli sampling of U(
√

(ε22 − ε21)/s) a total of O(s4/(ε22 − ε21)4) times. From

these samples one can estimate the sum of the squares of the top s Pauli coefficients of

U . If this quantity is big enough, we output that the Hamiltonian is close to s-sparse,

and otherwise that is far. Although from this high-level description the algorithm

seems similar to the locality testing one, the analysis is more involved and requires

taking the second order Taylor expansion, which is the reason why the dependence on

(ε2 − ε1) is worse in this case.

3The Pauli spectrum of a unitary U =
∑

x Ûxσx determines a probability distribution because∑
x |Ûx|2 = 1.
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Additionally, we provide a sparsity tester (Theorem 7.16) that only makes O(s2/ε42)

queries with O(s1.5/ε32) total evolution time, but only works in the regime ε1 =

O(ε2/
√
s).

Learning. We first propose a protocol to learn unstructured Hamiltonians efficiently

in the coarser ℓ∞ norm of the Pauli coefficients. Then, we turn it into a learner in the

ℓ2 norm for local and sparse Hamiltonians.

Result 7.5. There is an algorithm that outputs estimates λ̃x such that |λx − λ̃x| ≤ ε
for every x ∈ {0, 1, 2, 3}n by making O(1/ε4) queries to the evolution operator with

O(1/ε3) total evolution time.

See Theorem 7.18 for a formal result. The learning algorithm has two stages.

In the first stage one samples from the Pauli distribution of U(ε), as in the testing

algorithm, and from that one can detect which are the big Pauli coefficients of H. In

the second stage we learn the big Pauli coefficients via a novel subroutine based on

Clifford Shadows (see Lemma 7.17) and set the small to 0.

For Hamiltonians that are k-local, we have the following learning result in the

ℓ2-norm.

Result 7.6. There is an algorithm that solves Problem 7.2 for k-local Hamiltonians by

making exp(k2 +k log(1/ε)) queries to the evolution operator with exp(k2 +k log(1/ε))

total evolution time.

See Theorem 7.19 for a formal statement of this result. In the case that the

Hamiltonian is k-local, one can ensure that the coefficients not detected as big in

the first stage of the algorithm of Result 7.5 have a neglectable contribution to the

ℓ2-norm, from which Result 7.6 follows. To argue this formally, we use the non-

commutative Bohnenblust-Hille inequality, which has been used recently for various

quantum learning algorithms [HCP23b, VZ23].

For Hamiltonians that are s-sparse, we have the following learning result in the

ℓ2-norm.

Result 7.7. There is an algorithm that solves Problem 7.2 for s-sparse Hamiltonians

by making poly(s/ε) queries to the evolution operator with poly(s/ε) total evolution

time.

See Theorem 7.21 for a formal statement. Result 7.7 follows by adding a round-

ing step to the algorithm of Result 7.5 that ensures that all zero coefficients of the

Hamiltonians are also zero for the approximating Hamiltonian.
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Direct comparison to previous work. Comparing the plethora of Hamilto-

nian learning algorithms can be challenging due to the different assumptions on the

structure of the Hamiltonians (local, sparse, geometrical structures, etc.), the different

distances to measure the error (ℓ∞ norm of the coefficients, ℓ2 norm, etc.), the different

complexity measures (queries, total evolution time, number of experiments, etc.), the

different access models (coherent/non-coherent queries, with/without memory, etc.)

and the different goals of the algorithm (minimizing the dependence on the dimen-

sion parameters like n, s, k, achieving the Heisenberg scaling 1/ε, etc.). Thus, we only

include a direct comparison in Table 7.2 with the works that explicitly consider the

same structure and the same error metric as us. As a summary, one can say that

for constant ε our results achieve better dependence on the parameters n, s, k than

previous work, while also using the weaker model of incoherent queries, where one can

perform only one query before measuring, as opposed to the coherent query model.

We also want to remark that our result for learning unstructured Hamiltonian is time

efficient, while the, to the best of our knowledge, only previous one is not [Car23].

Hamiltonians Reference ttotal Queries Access model

Unstructured, ℓ∞ error
[Car23] n/ϵ4 n/ϵ4 Coherent queries

Theorem 7.18 1/ε3 1/ϵ4 Incoherent queries

s-sparse, ℓ∞ error
[Zha24]∗ 1/ϵ4 1/ϵ8 Coherent queries

[HMG+25]† s2/ϵ s2/ϵ Coherent queries
Theorem 7.21 1/ε3 1/ϵ4 Incoherent queries

k-local, ℓ2 error
[CW23] nk/ϵ2 nk/ϵ2 Controlled and inverse queries

[MFPT24]◦ (9n)k/ϵ (27n3)k/ϵ2 Coherent queries
Theorem 7.19 exp(k2)/εk exp(k2)/εk Incoherent queries

Table 7.2: Comparison of algorithms for learning Hamiltonians with ∥H∥op ≤ 1.
* It can be improved to O(1/ε2+o(1)) total evolution time and O(1/ε6+o(1)) queries by paying huge
constant factors.
† This algorithm works for Hamiltonians with supx |λx| ≤ 1, a weaker constraint than ∥H∥op ≤ 1.
◦ This algorithm is the only one in the table that uses no quantum memory. We provide an
algorithm with no quantum memory for k-local learning that performs as the one in the last row,
but with an extra factor logn.

Note added. After sharing Theorem 7.12 with Bluhm et al., they independently

improved the analysis of their testing algorithm and showed that it only requires

O(1/(ε2− ε1)3ε2) queries and O(1/(ε2− ε1)2.5ε0.52 ) total evolution time, which is very

similar to our Theorem 7.12 [BCO24b]. In addition, for a wide range of k = O(n),

their algorithm does not require the use of auxiliary qubits.

129



7.2. Preliminaries

7.2 Preliminaries

Notation

Every n-qubit operator H can be written down in its Pauli decomposition as

H =
∑

x∈{0,1,2,3}n

λxσx,

where the real-valued coefficients λx are given by λx = 1
2n Tr(Hσx). Parseval’s identity

states that the normalized Frobenius norm of H (denoted as ∥H∥2) equals the ℓ2-norm

of its Pauli spectrum, i.e.,

∥H∥2 =

√
Tr[H†H]

2n
=

√ ∑
x∈{0,1,2,3}n

|λx|2.

We will repeatedly use that ∥H∥2 ≤ ∥H∥op, which holds because ∥H∥22 is the average

of the squares of the eigenvalues of H. We will also consider the ℓ∞ norm of the Pauli

coefficients of an operator, which is given by

∥H∥ℓ∞ = sup
x
|hx|.

Additionally, we will use ∥H∥ := max{∥H∥op, 1}.
Given x ∈ {0, 1, 2, 3}n, define |x| as the number of indices i ∈ [n] where xi ̸=

0, define

H>k =
∑
|x|>k

λxσx

and H≤k as
∑

|x|≤k λxσx. From the formulation of the 2-norm in terms of the Pauli

coefficients it follows that ∥H>k∥2 ≤ ∥H∥2. We note that the distance of a Hamiltonian

H from the space of k-local Hamiltonians is given by ∥H>k∥2, as H≤k is the k-local

Hamiltonian closest to H. The ℓ2-distance of H to being s-sparse also has a nice

expression. Assign labels from [4n] to x ∈ {0, 1, 2, 3}n in a way that and |λx1
| ≥

|λx2
| · · · ≥ |λx4n

|. Then,
∑
i∈[s] λxi

σxi
is the closest s-sparse Hamiltonian to H, so the

ℓ2-distance of H to the space of s-sparse Hamiltonians is
√∑

i>s |λxi |2.

Necessary subroutines

Suppose U is a unitary and we write out its Pauli decomposition as U =
∑
x Ûxσx,

then by Parseval’s identity
∑
|Ûx|2 = Tr[U†U ]/2n = 1, i.e., {|Ûx|2}x is a probability
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distribution. We will be using the fact below extensively.

Fact 7.8. Given access to a unitary U , one can sample from the distribution {|Ûx|2}x.

Proof. The proof simply follows by applying U ⊗ Id2n to n EPR pairs (i.e., preparing

the Choi-Jamiolkowski state of U) and measuring in the Bell basis, because

U ⊗ Id2n |EPRn⟩ =
∑

x∈{0,1,2,3}n

Ûx
⊗
i∈[n]

(σxi
⊗ Id2|EPR⟩),

and the Bell states can be written as σx ⊗ Id2|EPR⟩ for x ∈ {0, 1, 2, 3}.

We will also use that given a Hamiltonian H, the Taylor expansion of the expo-

nential allows us to approximate the time evolution operator as

U(t) = e−itH = Id2n − itH + ct2R1(t)∥H∥2op (7.1)

for t ≤ 1/2, where the first order remainder R1(t) is bounded ∥R1(t)∥op ≤ 1 and c > 1

is a universal constant.

We will also use the celebrated Classical Shadows by Huang, Chen and Preskill.

Theorem 7.9 (Clifford shadows [HKP20]). Let ρ be an n-qubit state and let {Oi}i∈[M ]

be n-qubit traceless observables. Assume that supi Tr[O2
i ] = O(1). Then, Algorithm 1

obtains estimates Õi,ρ such that, with probability 1− δ, satisfy

|Tr[Oiρ]− Õi,ρ]| ≤ ε

for every i ∈ [M ]. The algorithm uses O
(

log(M/δ)
ε2

)
copies of ρ.

7.3 Technical results

In this section, we will first prove our main structural theorems for Hamiltonians

and provide subroutines which will be used later for testing and learning these struc-

tured Hamiltonians.

Structural lemma for local Hamiltonians

First, we prove a lemma regarding the discrepancy on the weights of non-local terms

of the short-time evolution operator for close-to-local and far-from-local Hamiltonians.
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Algorithm 1 Clifford shadows

Input: Copies of a quantum state ρ, target set of observables {Oi}i∈[M ], error pa-
rameter ε ∈ (0, 1), and failure parameter δ ∈ (0, 1)

1: Set T = O(log(M/δ)/ε2) and J = O(log(M/δ))
2: for j ∈ [J ] do
3: for k ∈ [T/J ] do
4: Apply a uniformly random Clifford gate C to a copy of ρ
5: Measure in the computational basis. Let |bj,k⟩ be the outcome
6: for i ∈ [M ] do

7: Let Õi,j,k = (2n + 1)⟨bj,k|C−1OiC|bj,k⟩
8: end for
9: end for

10: for i ∈ [M ] do

11: Let Õi,j = Mean((Õi,j,k)k)
12: end for
13: end for
14: for i ∈ [M ] do

15: Set Õi := Median((Oi,j)j)
16: end for

Output: (Õi)i∈[M ]

Lemma 7.10. Let 0 ≤ ε1 < ε2. Let α = (ε2 − ε1)/(3c) and H be an n-qubit Hamil-

tonian with ∥H∥op ≤ 1, where c is the constant appearing in Taylor expansion (see

Eq. (7.1)). If H is ε1-close k-local, then

∥U(α)>k∥2 ≤ (ε2 − ε1)
2ε1 + ε2

9c
,

and if H is ε2-far from being k-local, then

∥U(α)>k∥2 ≥ (ε2 − ε1)
ε1 + 2ε2

9c
.

Proof. Recall that U(α) = Id2n − iαH + cα2R(α) by Eq (7.1) where ∥R∥op ≤ 1. For

simplicity, we set U = U(α) and R = R1(α). First, assume that H is ε1-close k-local,

then by definition we have that ∥H>k∥2 ≤ ε1. Then

∥U>k∥2 ≤ α∥H>k∥2 + cα2∥R>k∥2 ≤
ε2 − ε1

3c
ε1 + c

(
ε2 − ε1

3c

)2

= (ε2 − ε1)
2ε1 + ε2

9c
,

where in the first inequality we have used the triangle inequality, and in the second

that H is ε1-close to k-local and that ∥R>k∥2 ≤ ∥R∥2 ≤ ∥R∥op ≤ 1. Now, assume
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that H is ε2-far from being k-local (i.e., ∥H>k∥2 ≥ ε2). Then

∥U>k∥2 ≥ α∥H>k∥2 − cα2∥R>k∥2 ≥
ε2 − ε1

3c
ε2 − c

(
ε2 − ε1

3c

)2

≥ (ε2 − ε1)
ε1 + 2ε2

9c
,

where in first inequality we have used triangle inequality on iαH = ct2R(α) − U(α)

to conclude α∥H>k∥2 ≤ ∥U>k∥2 + cα2∥R>k∥2, and in the second the fact that H is

ε2-far from k-local.

Structural lemma for sparse Hamiltonians

Similar to local Hamiltonians, we show a discrepancy in the sum of the top Pauli

coefficients of the short-time evolution operator for close-to-sparse and far-from-sparse

Hamiltonians. To formally state this result we need to introduce the concept of top

energy. Let U(t) the time evolution operator at time t and let {Û(t)}x be its Pauli

coefficients. We assign labels from {x0, . . . , x4n−1} to x ∈ {0, 1, 2, 3}n in a way that

Ûx0
= Û0n and |Ûx1

| ≥ |Ûx2
| ≥ · · · ≥ |Ûx4n−1

|. Now, we define the top energy at time

t as

TopEnergy(t; s) := |Ûx0
(t)|2 +

∑
i∈[s]

|Ûxi
(t)|2,

Lemma 7.11. Let H be a n-qubit Hamiltonian with ∥H∥op ≤ 1 and Tr[H] = 0. Let

t ∈ (0, 1). On the one hand, if H is ε1-close to s-sparse, then

TopEnergy(t; s) ≥ 1− ε21t2 −O(t3s).

On the other hand, if H is ε2-far from s-sparse, then

TopEnergy(t; s) ≤ 1− ε22t2 +O(t3s).

Proof. For this proof we need to consider the 2nd order Taylor expansion of U(t),

U(t) = Id− itH − t2H2/2 +O(t3)R2,

where R2 is the remainder of the series of order 2 that satisfies ∥R2∥op ≤ 1, because

∥H∥op ≤ 1. Since Tr[H] = 0 (so λ0n = 0), we have

Û0(t) = 1− t2

2
·

∑
x∈{0,1,2,3}n

λ2x +O(t3),
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so, using that |a2 − b2| = |a− b||a+ b|, we have that∣∣∣|Û0(t)|2 −
(
1− t2

∑
x∈{0,1,2,3}n

λ2x
)∣∣∣ = O(t3). (7.2)

To control |Ux(t)| for x ̸= 02n, we use the first order Taylor expansion of U(t) =

Id2n − itH + ct2R1(t) and get

∣∣|Ûx(t)| − |tλx|
∣∣ ≤ |Ûx(t)− (−itλx)| ≤ ∥U(t)− (−itH)∥2 ≤ O(t2)∥R1∥2 ≤ O(t2),

(7.3)

where we again used that ∥R1∥2 ≤ 1. From this it follows that

∣∣|Ûx(t)|2 − t2λ2x
∣∣ =

∣∣∣(|Ûx(t)| − |tλx|
)
·
(
|Ûx(t)|+ |tλx|

)∣∣∣ = O(t2)(|Ux|+ |tλx|)

= O(t2)(2|tλx|+O(t2)) = O(t3),

(7.4)

where the second and third equality both used Eq. (7.3); and in the last line used

|λx| ≤ ∥H∥op ≤ 1. In particular, the above implies that

|Ûx(t)|2 ≥ t2|λx|2 −O(t3) (7.5)

Now we will define a quantity similar to the top energy, but now we will define

the top coefficients as the top coefficients of H. To be precise, we assign labels to

{y0, . . . , y4n−1} to the elements of {0, 1, 2, 3}n in a way such that y0 = 02n and |λy1 | ≥
· · · ≥ |λy4n−1

|. We now define

TopEnergyH(t; s) :=
(

1− t2
∑

x∈{0,1,2,3}n

λ2x

)
+
∑
i∈[s]

(tλyi)
2.

If the top s Pauli coefficients of H coincided with the ones of U(t) and there was no

error in the Taylor expansion, then TopEnergyH(t; s)(t) = TopEnergy(t; s). However,

this may not be true in general. Nevertheless, we show that both quantities are close
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to each other. To this end,

TopEnergy(t; s) = |Ûx0
(t)|2 +

∑
i∈[s]

|Ûxi
(t)|2

≥ |Ûy0(t)|2 +
∑
i∈[s]

|Ûyi(t)|2

≥
(
1− t2

∑
x∈{0,1,2,3}n

λ2x
)

+
∑
i∈[s]

(tλyi)
2 − (s+ 1)O(t3)

= TopEnergyH(t; s)− (s+ 1)O(t3),

where in the first inequality we used that x1, . . . , xs correspond to the s largest coeffi-

cients of U(t), so
∑
i∈[s] |Ûxi

(t)|2 is larger than the sum of the squares of any other s

coefficients of U ; in the second inequality we used Eqs. (7.2) and (7.5). Similarly, one

can check that TopEnergyH(t; s) ≥ TopEnergy(t; s)− (s+ 1)O(t3), so

|TopEnergyH(t; s)− TopEnergy(t; s)| ≤ O(st3).

Now, the claimed result follows by noticing that

TopEnergyH(t; s) = 1− t2
∑
i>s

|λyi |2,

and that
∑
i>s |λyi |2 is the square of the ℓ2-distance of H to the space of s-sparse

Hamiltonians, because
∑
i∈[s] λyiσyi is the s-sparse Hamiltonian closest to H.

7.4 Testing Hamiltonians

In this section, we give our testing algorithms for local Hamiltonians.

7.4.1 Testing local Hamiltonians

We now state our locality testing algorithm and prove its guarantees.

Theorem 7.12. Algorithm 2 solves the locality testing problem (Problem 7.1 with the

property of being k-local) with probability ≥ 1− δ, by making O(1/(ε2− ε1)4 · log(1/δ))

queries to the evolution operator and with O(1/(ε2 − ε1)3 · log(1/δ)) total evolution

time.

Proof. Let t = (ε2 − ε1)/(3c) and let U = U(t). For notational simplicity, let αk :=
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Algorithm 2 Locality tester

Input: Query access to the time evolution of U(t) = e−itH , closeness and farness
parameters ε1, ε2 ∈ (0, 1), locality parameter k ∈ N and failure parameter δ ∈ (0, 1)

1: Set T = O(log(1/δ)/(ε2 − ε1)4)
2: Let t = (ε2 − ε1)/(3c) and U = U(t)
3: Initialize α′

k = 0
4: for i = 1, ..., T do
5: Perform Pauli sampling from U . Let x ∈ {0, 1, 2, 3}n be the outcome.
6: if |x| > k then
7: α′

k ← α′
k + 1/T

8: end if
9: end forSet α′′

k = 0
10: for i = 1, ..., T do
11: Perform Pauli sampling from U . Let x ∈ {0, 1, 2, 3}n be the outcome.
12: If |x| > k, α′′

k ← α′′
k + 1/T

13: end for

Output: If α′
k ≥ (3/4)(ε2 − ε1)2 or α′′

k ≥ (ε2 − ε1)(ε1 + 2ε2)/(9c)− (ε2 − ε1)2/(18c)
output that H is far from local, and close to local otherwise

∥U>k∥22. We will first estimate αk upto error (ε2− ε1)2/4. To do that we sample from

{|Ûx|2}x using Fact 7.8 a total of T = O(1/(ε2 − ε1)4 log(1/δ)) times, which can be

done with T queries. If x1, . . . , xT are the outcomes of those samples, we define our

estimate as

α′
k :=

1

T

∑
i∈[T ]

[|xi| > k].

By the Hoeffding bound, we have that indeed |α′
k−αk| ≤ (ε2−ε1)2/4 with probability

≥ 1− δ/2.

If α′
k ≥ (3/4)(ε2 − ε1)2, then αk ≥ (ε2 − ε1)2/2, so by Lemma 7.10 we conclude

that H is far from k-local. Otherwise, if α′
k ≤ (3/4)(ε2 − ε1)2, then αk ≤ (ε2 − ε1)2.

Now we take again T samples from y1, . . . , yT from {|Ûx|2}x and define a new estimate

α′′
k =

1

T

∑
i∈[T ]

[|yi| > k].

By definition α′′
k equals αk in expectation. Furthermore, αk is the empirical average

of random variables whose variance is considerably small, because

E[[|y| > k]2] = E[[|y| > k]] = ∥U>k∥22 ≤ (ε2 − ε1)2.

136



Chapter 7. Testing and learning quantum Hamiltonians

Then, an application of Bernstein’s inequality (Lemma 2.22) shows that α′′
k approxi-

mates ∥U>k∥22 up to error ((ε2− ε1)2/(18c))2 with success probability 1− δ/2. At this

point, using our structure Lemma 7.10, this is sufficient for testing k-locality.

Remark 7.13. We remark that the algorithm for testing locality can be used in more

generality for testing if the support of the Hamiltonians is a given S ⊆ {0, 1, 2, 3}n.

Also, by a union bound one can test for M supports S1, . . . ,SM by paying a factor

log(M).

Theorem 7.14. Let H be a n-qubit Hamiltonian and let S1, . . . ,SM ⊆ {0, 1, 2, 3}n.
Then, with O(1/(ε2 − ε1)4 log(M/δ)) queries and O(1/(ε2 − ε1)3 log(M/δ)) total evo-

lution time one can simultaneously, for every i ∈ [M ], test if H is ε1-close or or ε2-far

from being supported on Si.

Theorem 7.12 is one case of Theorem 7.14 where M = 1 and S1 = {x ∈ {0, 1, 2, 3}n :

|x| ≤ k}.

7.4.2 Testing sparse Hamiltonians

Now we state our sparsity testing algorithm and prove its guarantees.

Algorithm 3 Fully tolerant sparsity tester

Input: Query access to the time evolution of U(t) = e−itH , closeness and farness
parameters ε1, ε2 ∈ (0, 1), sparsity parameter s ∈ N and failure parameter δ ∈ (0, 1)

1: Set T = O(s6/(ε22 − ε21)6 · log(1/δ))
2: Let t = O((ε22 − ε21)/s) and U = U(t)
3: Perform Pauli sampling from U a total of T times. Let (|αx|2)x∈{0,1,2,3}n the

empirical estimate of (|Ûx|2)x obtained this way.
4: Let |αx1

|2, . . . , |αxs
|2 the s-biggest elements of (|αx|2)x∈{0,1,2,3}n−{0n}

5: Set Γ = |α0n |2 +
∑
i∈[s] |αxi

|2.

Output: If Γ ≥ 1 − ε21
(ε22−ε

2
1)

2

s2 − 1
2
(ε22−ε

2
1)

3

s2 output that H is close to sparse, and far
from sparse otherwise

Theorem 7.15. Algorithm 3 solves the s-sparsity testing problem with probability

≥ 1 − δ, by making O(s6/(ε22 − ε21)6 · log(1/δ)) queries to the evolution operator and

with O(s5/(ε22 − ε21)5 · log(1/δ)) total evolution time.

Proof. Let t = O((ε22 − ε21)/s). By Lemma 7.11 we have that if H is ε1-close to being

sparse, then

TopEnergy(t; s) ≥ 1− ε21
(ε22 − ε21)2

s2
− 1

3

(ε22 − ε21)3

s2
,
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while if H is ε2-far from s-sparse, then

TopEnergy(t; s) ≤ 1− ε22
(ε22 − ε21)2

s2
+

1

3

(ε22 − ε21)3

s2
.

From here, it follows that to test it suffices to estimate TopEnergy(t; s) up to error

ε =
1

2

(
1− ε21

(ε22 − ε21)2

s2
− 1

3

(ε22 − ε21)3

s2
−
{

1− ε22
(ε22 − ε21)2

s2
+

1

3

(ε22 − ε21)3

s2

})
=

(ε22 − ε21)3

6s2
.

To do that we will obtain an estimate ({|αx|2}x of {|Ûx|2}x and use it to approximate

TopEnergy(t; s). Using Fact 2.6, we obtain an empirical distribution {|αx|2}x that is

obtained after T = O(s2 log(1/δ)/ε2) samples from {|Ûx|2}x (which can be performed

with T queries to U(t) thanks to Fact 7.8) satisfies that

∣∣|αx|2 − |Ûx|2∣∣ ≤ ε

2s+ 1
(7.6)

for all x ∈ {0, 1, 2, 3}n with probability ≥ 1− δ. We assign new labels y0, y1, . . . , y4n−1

to {0, 1, 2, 3}n in a way such that |αy0 |2 = |α0n |2 and |αy1 |2 ≥ · · · ≥ |αy4n−1
|2. Now,

we define our estimate for TopEnergy(t; s) as

TopEnergy′(t; s) = |αy0(t)|2 + 2
∑
i∈[s]

|αyi(t)|2.

It only remains to show that TopEnergy′(t; s) ε-approximates TopEnergy(t; s). We will

see that in two steps. First,

TopEnergy′(t; s) = |αy0(t)|2 + 2
∑
i∈[s]

|αyi(t)|2

≥ |αx0(t)|2 + 2
∑
i∈[s]

|αxi(t)|2

≥ |ux0(t)|2 + 2
∑
i∈[s]

|uxi(t)|2 − ε

= TopEnergy(t; s)− ε,

where the second line is true by definition of y0, . . . , y4n−1 and the third line is true

because Eq. (7.6). Switching the roles of TopEnergy′(t; s) and TopEnergy(t; s), one can
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prove that TopEnergy(t; s) ≥ TopEnergy′(t; s)− ε.
Complexity analysis. We have queried U(t) a total of T = O(s2 log(1/δ)/ε2)

times with ε = (ε22 − ε21)3/6s2 and t = O((ε22 − ε21)/s), so the number of queries is

O

(
s6

(ε22 − ε21)6
log(1/δ)

)
and the total evolution time

O

(
s5

(ε22 − ε21)5
log(1/δ)

)
.

Furthermore, for the regime where ε1 = O(ε2/s
0.5) we propose a more efficient

testing algorithm.

Algorithm 4 Not that tolerant sparsity tester

Input: Query access to the time evolution of U(t) = e−itH , sparsity parameter s ∈ N,
closeness and farness parameters ε1, ε2 ∈ (0, 1) satisfying ε1 = O(ε2/

√
s) and failure

parameter δ ∈ (0, 1)

1: Set T = O(s2/ε42 · log(1/δ))
2: Let t = Ω(ε2/

√
s) and U = U(t)

3: Perform Pauli sampling from U a total of T times. Let X the set of sampled
Paulis.

Output: If |X − {02n}| ≤ s output that H is close to sparse, and far from sparse
otherwise

Theorem 7.16. Let H be a traceless Hamiltonian with ∥H∥op ≤ 1. Provided that

ε1 = O(ε2/s
0.5), Algorithm 4 solves the s-sparsity testing problem with probability

≥ 1 − δ. The algorithm makes O(s2/ε42 · log(1/δ)) queries to the evolution operator

and uses O(s1.5/ε32 · log(1/δ)) total evolution time.

Proof. Let C > 1 be a constant that appears in the first-order Taylor expansion,

U(t) = Id− itH + Ct2R1(t)

with ∥R1∥op ≤ 1 for t ∈ (0, 1). We will assume that δ = 1/3, as the case δ ∈ (0, 1/3)

follows by a standard majority voting argument. Algorithm 4 is simple. One just

performs Pauli sampling of U = U(t) a number of T times, for some t and T to be

determined later. Let X be the labels of the Pauli strings sampled in this process. If
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|X − {02n}| ≤ s we output that H is sparse, and otherwise we output that is far from

sparse. It remains to analyze the correctness.

Correctness. In the case that H is ε1-close s-sparse, there exists S ⊂ {0, 1, 2, 3}n

of size s where H is ε1-concentrated. Then, by Taylor expansion,√ ∑
x/∈(S∪{02n})

|Ûx|2 ≤ t
√ ∑
x/∈(S∪{02n})

|λx|2 + Ct2 ≤ tε1 + Ct2 ≤ 2Ct2,

where in the last inequality we have assumed that

ε1 ≤ Ct. (7.7)

Hence, the probability of sampling an element outside S ∪ {02n} in one sample is at

most 4C2t4. Thus, the probability of not sampling an element outside S ∪ {02n} in T

samples is at least

(1− 4C2t2)T ≥ 1− 4C2t4T.

In particular, if

T ≤ 1

3

1

4C2t4
(7.8)

it will be satisfied that |X − {02n | ≤ s with probability ≥ 2/3, as desired.

In the case that H is ε2-far from s-sparse, we will perform an analysis similar to

the coupon collector problem. By Taylor expansion we have that for every set S of

size s, √ ∑
x/∈(S−{02n})

|Ûx|2 ≥ ε2t− Ct2 ≥
ε2t

2
, (7.9)

where we have assumed that

Ct ≤ ε2/2. (7.10)

LetXi the random variable that accounts for the number of samples between the (i−1)-

th sampled non-02n-Pauli and the i-th sampled non-02n-Pauli. Applying Eq. (7.9) to

every Xi, it follows that E[Xi] ≤ 4/ε22t
2 for every i ∈ [s+ 1], so

E[X1 + · · ·+Xs+1] ≤ 4(s+ 1)

ε22t
2

.
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Hence, by Markov’s inequality, if

T ≥
√

34(s+ 1)

ε22t
2

(7.11)

it will be satisfied that |X − {02n}| ≥ s+ 1 with probability ≥ 2/3, as desired.

Finally, we note that we have assumed conditions Eqs. (7.7), (7.8), (7.10) and (7.11)

to ensure the correctness of the algorithm. All these equations are satisfied provided

that

t =
ε2√

50C2(s+ 1)
= Ω

(
ε2√
s

)
,

T =
1

12C2t4
= O

(
s2

ε42

)
,

ε1 ≤
ε2√

50(s+ 1)
= O

(
ε2√
s

)
.

7.5 Learning Hamiltonians

7.5.1 Learning unstructured Hamiltonians

We start by showing how to efficiently learn an arbitrary n-qubit Hamiltonian in ℓ∞

error. To do that, we propose a protocol to estimate a given set of Pauli coefficients

X of a Hamiltonian via Shadow tomography. To describe the protocol, we introduce

the following 2n-qubit observables. Given x ∈ {0, 1, 2, 3}n, we define

Rx :=
1

2
(|Bell02n⟩⟨Bellx|+ |Bellx⟩⟨Bell02n |),

Ix :=
1

2
(−i|Bell02n⟩⟨Bellx|+ i|Bellx⟩⟨Bell02n |).

Lemma 7.17. Let H be an n-qubit traceless Hamiltonian and X ⊆ {0, 1, 2, 3}n. Then,
Algorithm 5 allows one to estimate the Pauli coefficients corresponding to X with suc-

cess probability ≥ 1−δ. It uses O((log |X |/δ)∥H∥4/ε4) queries and O(log(|X |/δ)∥H∥2/ε3)

total evolution time. The minimum evolution time is ε/∥H∥2, the number of ancillas

is n, and the time complexity is O(poly(n)|X |∥H∥4/ε4 · log(|X |/δ)).

Proof. Correctness of the algorithm: Let t0 = Θ(ε/∥H∥2) and U = U(t0). As

141



7.5. Learning Hamiltonians

Algorithm 5 Estimating a given set of Pauli coefficients of a Hamiltonian

Input: Query access to the time evolution of U(t) = e−itH , target set of Pauli co-
efficients X ⊆ {0, 1, 2, 3}n − {0n}, error parameter ε ∈ (0, 1), and failure parameter
δ ∈ (0, 1)

1: Set T = O(∥H∥4/ε4 · log(|X |/δ)) and t0 = Θ(ε/∥H∥2)
2: Set U = U(t0)
3: for j ∈ [T ] do
4: Prepare |J(U)⟩ = (U ⊗ Id2n)|Belln⟩
5: Apply a uniformly random Clifford gate C
6: Measure in the computational basis. Let |bj⟩ be the outcome
7: for x ∈ X do
8: Let Rx,j = (2n + 1)⟨bj |C−1RxC|bj⟩ and Ix,j = (2n + 1)⟨bj |C−1IxC|bj⟩
9: end for

10: end for
11: for x ∈ X do
12: Set R̃x := MedianOfMeans(Rx,j)j and Ĩx := MedianOfMeans(Ix,j)j
13: end for

Output: ((R̃x + iĨx)/(−it))x∈X

Tr[R2
x] = Tr[I2x] = 2, by Theorem 7.9, the numbers R̃x and Ĩx that Algorithm 5

outputs satisfy

|Tr[Rx|J(U)⟩⟨J(U)|]− R̃x| ≤
ε2

∥H∥2
, |Tr[Ix|J(U)⟩⟨J(U)|]− Ĩx| ≤

ε2

∥H∥2
, (7.12)

for every x ∈ X with probability ≥ 1− δ. By Taylor expansion, as λ02n = 0, we have

that |Û02n − 1| ≤ O(t20∥H∥2). Thus,

Tr[Rx|J(U)⟩⟨J(U)|] =
1

2
(ÛxÛ

∗
02n + Û02nÛ

∗
x) = Re(ÛxÛ

∗
0 ) = Re(Ûx)±O(t20∥H∥2),

(7.13)

and similarly Tr[Ix|J(U)⟩⟨J(U)|] = Im(Ûx)±O(t20∥H∥2). Hence, combining Eqs. (7.12)

and (7.13) we have that

|Ûx − (R̃x + iĨx)| ≤ ε2

∥H∥2
+O(t20∥H∥2) ≤ O

(
ε2

∥H∥2

)
,

for every x ∈ X . Finally, by Taylor expansion we have that |Ûx/(−it0) − λx| ≤
O(t0∥H∥2), so ∣∣∣∣∣λx − R̃x + iĨx

−it0

∣∣∣∣∣ ≤ O
(

ε2

t0∥H∥2

)
+O(t0∥H∥2) = O(ε),
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for every x ∈ X , as claimed.

Time complexity: The time complexity is dominated by the first loop in Al-

gorithm 5, whose time complexity is O(|X | · T · (test + poly(n)), where the poly(n)

comes from applying a random Clifford gate and test is the time taken to compute

⟨b|C−1RxC|b⟩ for an n-qubit Clifford gate C and a computational basis state |b⟩. Now,

expanding Rx one can write ⟨b|C−1RxC|b⟩ as an algebraic expression of a finite num-

ber of terms of the kind ⟨y|D|z⟩, where |y⟩ and |z⟩ are computational basis states and

D a Clifford gate. Hence, via Gottesman-Knill theorem [Got98, AG04] follows that

test = O(n2), so the total time complexity is O(poly(n)|X |∥H∥4/ε4 · log(|X |/δ)).

Now, we are ready to present our learning algorithm for arbitrary Hamiltonians

with no promise about its structure.

Algorithm 6 Learning unstructured Hamiltonians

Input: Query access to the time evolution of U(t) = e−itH , error parameter ε ∈ (0, 1),
and failure parameter δ ∈ (0, 1)

1: Set T = O(∥H∥4/ε4 · log(∥H∥2/ε2δ)) and t0 = Θ(ε/∥H∥2)
2: Set U = U(t0)
3: Set X = ∅
4: for j ∈ [T ] do
5: Prepare |J(U)⟩ = (U ⊗ Id2n)|Belln⟩
6: Measure in the Bell basis and add the outcome x ∈ {0, 1, 2, 3}n to X if x ̸= 02

n

7: end for
8: Run Algorithm 5 run with U(t), X , ε and δ as inputs. Let (λ̃x)x∈X the output.

Output: H̃ =
∑
x∈X λ̃xσx

Theorem 7.18 (Learning unstructured Hamiltonians). Let H be an n-qubit and trace-

less Hamiltonian. Then, Algorithm 6 ε-learns all Pauli coefficients of H with suc-

cess probability ≥ 1 − δ. It uses Õ((∥H∥/ε)4) queries to the evolution operator and

Õ(∥H∥2/ε3) total evolution time. The minimum evolution time is Θ(ε/∥H∥2), the al-

gorithm uses n ancilla qubits and only one round of adaptivity, and the time complexity

is poly(n, 1/ε, ∥H∥).

Proof. Let t0 = Θ(ε/∥H∥2) and U = U(t0) and let T = O(∥H∥4/ε4 · log(∥H∥2/ε2δ)),
as in Algorithm 6.

Correctness: We claim that with probability ≥ 1 − δ the set X generated in

Algorithm 6 contains all x such that

|λx| ≥ ε, (7.14)
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and that

|X | ≤ Õ
(
∥H∥4

ε4

)
. (7.15)

To show Eq. (7.14) we note that by Taylor expansion, if |λx| ≥ ε, then |Ûx| =

Ω((ε2/∥H∥2)), so |Ûx|2 = Ω((ε4/∥H∥4)). Hence, the probability that such an x does

not belong to X , which stores the non-02n outcomes of sampling from (|Ûx|2)x, is at

most (
1− |Ûx|2

)T
≤ e−T |Ûx|2 ≤ ε2δ

∥H∥2
.

Hence, as there is at most ∥H∥2/ε2 coefficients with |λx| ≥ ε, because
∑
x |λx|2 ≤

∥H∥2, Eq. (7.14) follows from a union bound. Eq. (7.15) holds because |X | ≤ T.
Now, if Eqs. (7.14) and (7.15) are satisfied, Algorithm 5 provides estimates of the

coefficients of X , which contains all labels x of coefficients |λx| ≥ ε.
Complexities: The query complexity is 2T = Õ(∥H∥4/ε4), the minimum evolu-

tion time t0 = Θ(ε/∥H∥2) and the total time evolution 2Tt0 = Õ(∥H∥2/ε3). Ad-

ditionally, the time complexity of Algorithm 6 is dominated by the call to Algo-

rithm 5, which runs in time O(poly(n)|X |∥H∥2/ε2), which thanks to Eq. (7.15) is

poly(n, 1/ε, ∥H∥).

7.5.2 Learning local Hamiltonians

We now introduce our local Hamiltonian learner and prove its guarantees.

Algorithm 7 Local Hamiltonian learner

Input: Query access to the time evolution of U(t) = e−itH , error parameter ε ∈ (0, 1),
locality parameter k ∈ N and failure parameter δ ∈ (0, 1)

1: Set T = exp(O(k2 + k log(1/ε)) log(1/δ)
2: Let t = εk+1 exp(−k(k + 1)/2) and U = U(t)
3: Set γ = (ε/∥H∥2)k+1 exp(−k(k + 1)/2) and β = γε/∥H∥
4: Learn β-estimates λ′x of λx via Algorithm 6
5: for |x| ≤ k do
6: if |λ′x| ≤ γ then

7: λ̃x = 0
8: else
9: λ̃x = λ′x

10: end if
11: end for

Output:
∑
x≤k λ̃xσx
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Theorem 7.19. Given a n-qubit k-local Hamiltonian H, Algorithm 7 outputs H̃

such that with probability ≥ 1 − δ satisfies ∥H − H̃∥ℓ2 ≤ ε. The algorithm makes

exp(O(k2 + k log(∥H∥2/ε)) log(1/δ) queries to the evolution operator with exp(O(k2 +

k log(∥H∥2/ε)) log(1/δ) total evolution time.

To prove this theorem, we use the non-commutative Bohnenblust-Hille inequality

by Volberg and Zhang [VZ23].

Theorem 7.20 (Non-Commutative Bohnenblust-Hille inequality). Let H =
∑
x λxσx

be a k-local Hamiltonian. Then, there is a universal constant C such that

H̃ =
∑

x∈{0,1,2,3}n

|λx|
2k

k+1 ≤ Ck∥H∥.

Proof of Theorem 7.19. We only analyze the correctness of Algorithm 7, as the com-

plexity quickly follows from Theorem 7.18. In this proof we also use the notation of

Algorithm 7. The ℓ2-error of approximating H with H̃ is

∥H̃ −H∥2ℓ2 =
∑

|λ′
x|≤γ

|λx|2 +
∑

|λ′
x|≥γ,|x|≤k

|λx − λ′x|2. (7.16)

We show separately that the two terms are at most O(ε2). To bound the contribution

of the small Pauli coefficients, we first note that by Theorem 7.18 we have that

|λ′x| ≤ γ =⇒ |λx| ≤ γ + β = O(γ). (7.17)

Hence,∑
|λ′

x|≤γ

|λx|2 ≤
∑

|λx|≤O(γ)

|λx|2 ≤ O(γ
2

k+1 )
∑

x∈{0,1,2,3}n

|λx|
2k

k+1 ≤ γ
2

k+1 (Ck∥H∥2)
2k

k+1 = O(ε),

(7.18)

where in the first inequality we have used Eq. (7.17), in the third inequality we have

used Theorem 7.20 and in the last inequality that γ = (ε/∥H∥2)k+1 exp(−k(k+ 1)/2).

To bound the contribution of the coefficients |λx| ≥ γ we notice that there is at most

∥H∥2/γ2 of them, because
∑
x |λx|2 ≤ ∥H∥2. Thus,

∑
|λ′

x|≥γ,|x|≤k

|λx − λ′x|2 ≤
∥H∥2

γ2
sup
x
|λx − λ′x|2 ≤

∥H∥2β2

γ2
= ε2,
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where in the second inequality we use the λ′x are β-estimates of λx and in the last

equality we use that β = γε/∥H∥.

7.5.3 Learning sparse Hamiltonians

In this section we introduce our sparse Hamiltonian learner and prove its guarantees.

Algorithm 8 Sparse Hamiltonian learner

Input: Query access to the time evolution of U(t) = e−itH , error parameter ε ∈ (0, 1),
sparsity parameter s ∈ N and failure parameter δ ∈ (0, 1)

1: Learn (ε/2)-estimates λ′x of λx via Algorithm 6
2: for x ∈ {x : λx ̸= 0} do
3: if λ′x ≤ ε/2 then

4: λ̃x = 0
5: elseλx > ε/2

6: λ̃x = λ′x
7: end if
8: end for

Output: H̃ =
∑
x λ̃xσx

Theorem 7.21 (Sparse Hamiltonian learning). Given an n-qubit, s-sparse Hamil-

tonian H, Algorithm 8 outputs another Hamiltonian H̃ =
∑
λ̃xσx such that with

probability ≥ 1− δ satisfies ∥H − H̃∥ℓ∞ ≤ ε, The algorithms uses Õ(∥H∥4/ε4) queries

and Õ(∥H∥2/ε3) total evolution time.

Furthermore, if λx = 0, then λ̃x = 0. This implies that running Algorithm 8 with

ε = ε′/
√
s outputs H̃ such that ∥H − H̃∥ℓ2 ≤ ε′. In this case, the algorithm uses

Õ(∥H∥4s2/ε′4) queries and Õ(∥H∥2s1.5/ε′3) total evolution time.

Proof. The first part, concerning learning in the ℓ∞ error follows from Theorem 7.18.

The fact that λx = 0, then λ̃x = 0 follows from Line 3 of Algorithm 8. Finally, we

note that having λx = 0 =⇒ λ̃x = 0 and |λx − λx| ≤ ε′/
√
s, implies ∥H − H̃∥ℓ2 ≤ ε′.

Indeed,

∥H − H̃∥ℓ2 =
∑
λx ̸=0

|λx − λ̃x|2 ≤ s sup
x
|λx − λ̃x|2 = ε′2,

where in the first step we have used that λx = 0 =⇒ λ̃x = 0, in the second that

|λx − λx| ≤ ε′/
√
s and in the third that H is s-sparse.
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Chapter 8

Cute remarks

In this chapter, we gather new proofs of known results that we find elegant and concise.

All of them relate to functions defined on the Boolean cube.1

8.1 Generalizing a work of Kalai and Schulman

Kalai and Schulman studied the influences of multilinear polynomials with {−1, 0, 1}-
valued coefficients [KS19] (we refer to their work for motivation). They showed an

upper bound of
∑
i∈[n]

√
Infi[p] in terms of ∥p∥∞. They proved that

∑
i∈[n]

√
Infi[p] ≤ 3dd5/2∥p∥∞

for unimodular polynomials. We can improve this bound, generalize it to arbitrary

polynomials (not necessarily unimodular), and show that the exponential dependence

on d is necessary. Our proof is simple, short and based on hypercontractivity [Bon70]

and a bound on the sum of L1 influences [BB14, FHKL16].

Before diving into the proof of the main result of this section, Proposition 8.3, we

need to the define the Lq influences and state two results that we use as lemmas. The

Lq influence is defined by

Infqi [p] = Ex
[∣∣∣∣p(xi→1)− p(xi→−1)

2

∣∣∣∣q] ,
1The results of Section 8.1 were derived in a conversation with Miquel Saucedo during a research

stay in Hausdorff Institute for Mathematics, in Bonn, Germany.
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where the expectation is taken with respect to the uniform distribution on {−1, 1}n.

Note that Inf2[p] equals the Inf[p] defined in Section 2.5. In the Boolean case, Inf2i [p] =

Infqi [p] for every q ∈ [1,∞).

Theorem 8.1 (Hypercontractivity). Let p : {−1, 1}n → R be a polynomial of degree

at most d. Then, √
Ex |p(x)|2 ≤ edEx|p(x)|.

Theorem 8.2 (Bound on sum of L1 influences). Let p : {−1, 1}n → R be a polynomial

of degree at most d. Then, ∑
i∈[n]

Inf1i [p] ≤ d2∥p∥∞.

Proposition 8.3. Let p : {−1, 1}n → R be a polynomial of degree d. Then,

∑
i∈[n]

√
Inf2i [p] ≤ edd2∥p∥∞.

In addition, there is a unimodular degree d polynomial p such that

∑
i∈[n]

√
Inf2i [p] ≥

√
2
d−2
∥p∥∞.

Proof. By Theorem 8.1 it follows that for every i ∈ [n]√
Inf2i [p] ≤ edInf1i [p].

Now, taking the sum over i ∈ [n] and applying Theorem 8.2 we arrive at the claimed

result.

Let n = 2d−1. The (unnormalized) address function of p : ({−1, 1})n)d → R of

degree d is defined as

p(x) =
∑

a∈{−1,1}d−1

(x1(1)− a1x1(2)) . . . (xd−1(1)− ad−1xd−1(2))︸ ︷︷ ︸
ga(x1,...,xd−1)

xd(a), (8.1)

where we identify {−1, 1}d−1 with [2d−1]. It is satisfied that ∥p∥∞ = 2d−1, because

given (x1, . . . , xd−1) ∈ ({−1, 1}n)d−1 there is only one a ∈ {−1, 1}d−1 such that

ga(x1, . . . , xd−1) is not 0, in which case it takes the value ±2d−1. For every of the

2d−1 variables xd(a) we have that Inf2d,a[p] = 2d−2, so
∑√

Inf2i [p] ≥ (2d−2)3/2.
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8.2 The adversary method via Grothendieck’s in-

equality

In the first part of this thesis, we have focused on the polynomial method. Here, we will

revisit the other main method to prove quantum query lower bounds: the adversary

method [Amb00, HLv07] (see [LS21] for a survey). To define the adversary bound we

must introduce some notation. Let f : {−1, 1}n → {−1, 1}. A matrix Γ ∈ M2n(C) is

an adversary matrix for f if it is Hermitian and for every x, y ∈ {−1, 1}n such that

f(x) = f(y) we have that

⟨x|Γ|y⟩ = 0,

where {|x⟩} is an orthonormal basis of C2n . Given i ∈ [n], Di ∈ M2n is the matrix

defined by

⟨x|Di|y⟩ =

{
0 if xi = yi,

1 if xi ̸= yi.

The adversary bound of f is defined by

Adv(f) := sup
Γ

∥Γ∥op
maxi∈[n] ∥Γ ◦Di∥op

, (8.2)

where the supremum runs over all adversary matrices Γ and ◦ denotes the entry-wise

matrix product, namely (A ◦B)ij = AijBij . In this section, we will give a, to the best

of our knowledge, novel proof of the following result via Grothendieck’s inequality (see

Section 2.7.1).

Proposition 8.4. Let f : {−1, 1}n → {−1, 1}. Then, Q(f) = Ω(Adv(f)).

Before diving into the proof, we give an intuition of why such a result holds. Con-

sider an algorithm whose bias approximates f with high probability. Before making

any query, the algorithm prepares a state that does not depend on the input x. In

terms of adversary matrices Γ, this will mean that some closeness measure, to be

defined below, will have value ∥Γ∥op before making any query. Also, at the end of

the algorithm, the state prepared on a pair of inputs x and y such that f(x) ̸= f(y)

must be far away, so the algorithm can distinguish them with a measurement. In

terms of Γ, this will be formalized via Grothendieck’s inequality and will mean that

the closeness measure will have value ≤ KG/5 · ∥Γ∥op at the end of the algorithm.

Finally, it will follow from a simple argument that the algorithm can only separate

the states prepared when querying x and y a bounded amount per query. In terms of
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Γ, this will mean that the closeness measure can only decrease 2maxi ∥Γ ◦Di∥op per

query. Putting everything together we have that the algorithm must make at least

∥Γ∥op − KG

5 ∥Γ∥op
2 maxi∈[n] ∥Γ ◦Di∥op

queries.

Proof. We will show that Q2/100(f) = Ω(Adv(f)). Let A be an algorithm that makes

t queries and whose bias 2/100 approximates f(x). This means, that A fails with

probability ∥Π−f(x)|ψtx⟩∥22 ≤ 1/100. Let Γ be an adversary matrix for f . Let |δ⟩ be

such that |⟨δ|Γ|δ⟩| = ∥Γ∥op. We define the closeness measure at step s ∈ {0, . . . , t} as

Cs := |
∑
x,y

Γxyδ
∗
xδy⟨ψsx|ψsy⟩|,

where |ψsx⟩ is the state prepared by the algorithm on input x just after the sth query.

We divide the rest of the proof in three steps. First, we note that

C0 = |
∑
x,y

Γxyδ
∗
xδy⟨ψ0

x|ψ0
y⟩| = |

∑
x,y

Γxyδ
∗
xδy| = |⟨δ|Γ|δ⟩| = ∥Γ∥op,

where we have used that |ψ0
x⟩ does not depend on x because no queries have been

made.

Second, we claim that

Ct ≤ KG

5
∥Γ∥op

where KG is the (complex) Grothendieck’s constant, which is strictly smaller than 5.

Indeed, let Π−1,Π1 be the measurement performed by the algorithm, then

Ct = |
∑
x,y

Γxyδ
∗
xδy⟨ψtx|ψty⟩| = |

∑
x,y:f(x)̸=f(y)

Γxyδ
∗
xδy⟨ψtx|(Π−1 + Π1)|ψty⟩|

≤ |
∑

x,y:f(x)̸=f(y)

Γxyδ
∗
xδy(⟨ψtx|Π−f(x))|ψty⟩|+ |

∑
x,y:f(x) ̸=f(y)

Γxyδ
∗
xδy⟨ψtx|(Π−f(y)|ψty⟩)|

≤ 2

10
sup

∥ux∥2,∥vy∥2≤1

|
∑
x,y

Γxyδ
∗
xδy⟨ux, vy⟩|

≤ 2KG

10
sup

αx,βy∈{−1,1}
|
∑
x,y

Γxyδ
∗
xδyαxβy|

=
KG

5
∥Γ∥op,
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where in the first line we have used that Γ is an adversary matrix; in the third line

that ∥Π−f(x)|ψtx⟩∥22 is the failure probability, so it is smaller than 1/100; and in the

fourth line we have used Grothendieck’s inequality, Theorem 2.19.

Finally, we claim that

Cs − Cs−1 ≤ 2 max ∥Γ ◦Di∥op

for s ∈ [t]. Let Us be the unitary in between the (s − 1)th and the sth queries.

Recall that Ox acts as the controlled version of |i⟩ → xi|i⟩, so Ox|0⟩|i⟩ = |0⟩|i⟩ and

Ox|1⟩|i⟩ = xi|1⟩|i⟩. Let d be the extra dimensions of the algorithm as in Eq. (2.3).

Then,

Cs − Cs−1 ≤ |
∑
x,y

Γxyδ
∗
xδy(⟨ψsx|ψsy⟩ − ⟨ψs−1

x |ψs−1
y ⟩)|

= |
∑
x,y

Γxyδ
∗
xδy⟨ψs−1

x |(Ox ⊗ Idd)U
†
sUs︸ ︷︷ ︸

Id2nd

(Oy ⊗ Idd)− (Id2nd)|ψs−1
y ⟩|

= |
∑
ij

∑
x,y

Γxyδ
∗
xδy⟨ψs−1

x |(|1i⟩⟨1i| ⊗ Idd) (xiyj − 1)︸ ︷︷ ︸
−2(Di)xy

(|1j⟩⟨1j| ⊗ Idd)|ψs−1
y ⟩|

= 2|
∑
i

∑
x,y

(Γ ◦Di)xyδ
∗
x⟨ψs−1

x |(|1i⟩ ⊗ Idd)(⟨1i| ⊗ Idd)|ψs−1
y ⟩δy|.

Now, if we define Γ̃ as the block diagonal matrix with Γ ◦ Di as diagonal blocks for

i ∈ [n], and G as the block diagonal matrix whose blocks are the Gram matrices of

{δx(⟨1i| ⊗ Idd)|ψs−1
x ⟩}x, we have that

Cs − Cs−1 = 2|⟨Γ̃, G⟩| ≤ 2∥Γ̃∥op∥G∥tr

= 2 max
i∈[n]
∥Γ ◦Di∥op

∑
i

tr[Gram({δx(⟨1i| ⊗ Idd)|ψs−1
x ⟩}x)]

= 2 max
i∈[n]
∥Γ ◦Di∥op

∑
x

|δx|2︸ ︷︷ ︸
=⟨δ,δ⟩=1

∑
i

⟨ψs−1
x |(|1i⟩⟨1i| ⊗ Idd)|ψs−1

x ⟩︸ ︷︷ ︸
≤⟨ψs−1

x |ψs−1
x ⟩=1

= 2 max
i∈[n]
∥Γ ◦Di∥op.

Putting everything together, it follows that

t ≥ Ct − C0

2 maxi∈[n] ∥Γ ◦Di∥op
= Ω

(
∥Γ∥op

maxi∈[n] ∥Γ ◦Di∥op

)
.

153



8.3. Average sensitivity lower bounds all reasonable complexity
measures

8.3 Average sensitivity lower bounds all reasonable

complexity measures

We will show that the average sensitivity s(f) of a Boolean function lower bounds

all the reasonable complexity measures of a Boolean function, which is the list of

well-studied complexity measures considered in [ABDK+21]. For total Boolean func-

tions, all of these measures are polynomially related to classical and quantum query

complexity. In particular, we will show that the average sensitivity lower bounds the

spectral sensitivity of a Boolean function λ(f). This is enough, as λ(f) lower bounds,

up to constant factors, all the reasonable complexity measures. From there, we can

easily show that all reasonable complexity measures are Ω(n) for almost all Boolean

functions, concisely reproving previous results such as Q(f) = Ω(n) for almost all total

Boolean functions [Amb99, ABSdW13]. More formally, given f : {−1, 1}n → {−1, 1}
its average sensitivity is defined by

s(f) := Ex
∑
i∈[n]

[(
f(x)− f(x⊕i)

2

)2
]
,

which also equals the sum of the influences,
∑
i∈[n] Inf2i [f ]. Its spectral sensitivity is

given by

λ(f) := sup
Γ

∥Γ∥
maxi∈[n] ∥Γ ◦Di∥

,

where the supremum runs over all adversary matrices that satisfy Γ[x, y] = 0 if the

Hamming distance between x and y is not 1 (see Section 8.2 for the definitions of

adversary matrix and Di).

Proposition 8.5. Let f : {−1, 1}n → {−1, 1}. Then, s(f) ≤ λ(f). Furthermore, the

inequality is tight for f = χ[n].

Proof. Let Γ be the adversary matrix such that Γx,y = 1 if the Hamming distance

between x and y is exactly one and f(x) ̸= f(y) and 0 in the other case. Note that Γ

can be written as

Γx,y = δx⊕i,yδf(x),f(x⊕i) = δx⊕i,y

(
f(x)− f(x⊕i)

2

)2

.

For this matrix, we can see that ∥Γ∥op ≥ s(f) and ∥Γ ◦ Di∥op = 1 for all i ∈ [n].
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Indeed,

∥Γ∥op ≥
∑

x,y∈{−1,1}n

1

2n
Γx,y =

∑
x,y∈{−1,1}n

1

2n
δx⊕i,y

(
f(x)− f(x⊕i)

2

)2

=
∑
i∈[n]

Ex
(
f(x)− f(x⊕i)

2

)2

= s(f).

On the other hand,

∥Γ ◦Di∥op = sup
∥u∥2=1

∑
x∈{−1,1}n

uxux⊕iδf(x),f(x⊕i) ≤ sup
∥u∥2=1

∑
x∈{−1,1}n

|uxux⊕i |

≤ sup
∥u∥2=1

∥u∥22 = 1.

Finally, for f = χ[n] we have that λ(f) = s(f) = n.

Corollary 8.6. Let CM be any reasonable complexity measure. For a 1−exp(− exp(n))

fraction of all Boolean functions f : {−1, 1}n → {−1, 1} we have that CM(f) = Ω(n).

Proof. If we pick a uniformly random Boolean function f : {−1, 1}n → {−1, 1}, then

Efs(f) = Ex
∑
i

Ef
1− f(x)f(x⊕i)

2
= Ex

∑
i

1

2
=
n

2
.

Now, note that changing the value of f on one input makes s(f) change at most 2n/2n.

Then, by McDiarmid’s inequality, Lemma 2.23, we have that

Pr
[
s(f) ≤ n

3

]
≤ exp(− exp(n)).

Now, the statement follows from Proposition 8.5 and the fact that λ(f) lower bounds,

up to constant factors, all reasonable complexity measures [ABDK+21].
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fourier spectrum of functions on boolean cubes. Mathematische An-

nalen, 374(1):653–680, 2019.

164

https://link.aps.org/doi/10.1103/RevModPhys.93.045003
https://doi.org/10.1103/RevModPhys.93.045003
http://arxiv.org/abs/2308.13020
https://doi.org/10.1098/rspa.1992.0167


[DOS23] Alicja Dutkiewicz, Thomas E. O’Brien, and Thomas Schuster. The ad-

vantage of quantum control in many-body hamiltonian learning, 2023.

arXiv:2304.07172.

[dSLCP11] Marcus P. da Silva, Olivier Landon-Cardinal, and David Poulin. Prac-

tical characterization of quantum devices without tomography. Physi-

cal Review Letters, 107(21):210404, 2011. doi:10.1103/PhysRevLett.

107.210404.

[EFFJ+23] Francisco Escudero Gutiérrez, David Fernández-Fernández, Gabriel
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JB Seoane-Sepúlveda. Similarities and differences between real and

complex banach spaces: an overview and recent developments. Revista

de la Real Academia de Ciencias Exactas, F́ısicas y Naturales. Serie
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Abstract

In this thesis, Quantum computing, norms, and polynomials, we investigate the inter-

play between quantum mechanics, complexity theory, and functional analysis, three

central areas of physics, computer science, and mathematics, respectively. The unify-

ing theme throughout the thesis is the dynamic exchange between quantum computing

and functional analysis: we explore new applications of functional inequalities in quan-

tum computing, and, in the process, establish novel results in functional analysis itself.

In the first part, we study quantum query algorithms through their correspon-

dence with completely bounded polynomials, as established in earlier work. We begin

by revisiting this correspondence, extending it, and presenting it in a new form. Build-

ing on this foundation, we draw an analogy between quantum query algorithms and

the Grothendieck inequality. Finally, we conclude this part by employing completely

bounded polynomials to solve a special case of one of the main open problems in quan-

tum query complexity, the Aaronson–Ambainis conjecture.

In the second part, we turn to quantum learning theory, which seeks to determine

how much information must be extracted from a quantum system to fully characterize

it. We begin by applying existing versions of the Bohnenblust–Hille inequalities and

deriving new ones to obtain results in the learning of low-degree quantum objects. We

conclude by presenting some of the first results in the emerging area of Hamiltonian

testing and learning.

We also include a third part, as a bonus, where we gather three new proofs, that we

find elegant and concise, of known results related to the analysis of Boolean functions.
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Samenvatting

In dit proefschrift, Quantum computing, normen en polynomen, onderzoeken we wis-

selwerking tussen de kwantummechanica, complexiteitstheorie en functionaalanalyse

— drie centrale deelgebieden binnen respectievelijk de natuurkunde, de informatica

en de wiskunde. Het overkoepelende thema van dit werk is de dynamische interactie

tussen kwantumcomputing en functionaalanalyse: we verkennen nieuwe toepassingen

van functionale ongelijkheden binnen de context van kwantumcomputing en bewijzen

daarbij tevens nieuwe resultaten in de functionaalanalyse zelf.

In het eerste deel bestuderen we kwantumquery-algoritmen via hun corresponden-

tie met volledig begrensde polynomen, zoals vastgesteld in eerder werk. We beginnen

met het herzien, uitbreiden en in een nieuwe vorm presenteren van deze corresponden-

tie. Op basis hiervan leggen we een analogie tussen kwantumquery-algoritmen en de

ongelijkheid van Grothendieck. Ten slotte besluiten we dit deel met het gebruik van

volledig begrensde polynomen om een speciaal geval te bewijzen van een van de belan-

grijkste open problemen in de kwantumquery-complexiteit: het Aaronson–Ambainis-

vermoeden.

In het tweede deel richten we ons op de kwantumleertheorie, die probeert te bepalen

hoeveel informatie uit een kwantumsysteem moet worden gehaald om het volledig te

kunnen karakteriseren. We beginnen met het toepassen van bestaande versies van de

Bohnenblust–Hille-ongelijkheden en het afleiden van nieuwe versies om resultaten te

verkrijgen voor het leren van laaggradige kwantumobjecten. We concluderen dit deel

met enkele van de eerste resultaten op het opkomende onderzoeksgebied van Hamil-

toniaantesten en -leren.

Tot slot voegen we een derde deel toe, een bonus, waarin we drie nieuwe, naar ons
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oordeel elegante en beknopte bewijzen presenteren van bekende resultaten die verband

houden met de analyse van Booleaanse functies.
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