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Chapter 6

Triple-negative breast cancer has been recognized as an aggressive subtype that lacks effective
targeted therapies for early-stage patients. Consequently, most women with early-stage
TNBC, regardless of their nodal status, are treated with (neo)adjuvant chemotherapy in
accordance with international guidelines *. This reliance on chemotherapy has led to a scarcity
of unbiased data on chemotherapy-naive TNBC patients, making it challenging to study the
true prognostic values of biomarkers in this population. Moreover, the absence of such data
raises concerns about the potential overtreatment of low-risk patients who might not benefit
from (neo)adjuvant chemotherapy.

TNBC is widely recognized as a heterogeneous disease, with considerable variation in genetic
and immune profiles 2. In very recent years, targeted therapies addressing these profiles have
been incorporated into treatment guidelines for early-stage TNBC patients. For instance,
olaparib has been recommended for patients with germline BRCA1/2 mutations and high-risk
disease, and pembrolizumab has been included for TNBC patients with stage Il to Il tumors
34 Despite these advances, chemotherapy, including taxane-based with or without carboplatin,
is still recommended for most TNBC patients to prevent (distant) recurrences. Furthermore,
the most recent Dutch guideline has not yet included all these novel therapies, leaving
chemotherapy * pembrolizumab as the primary treatment option for most TNBC patients °.

However, chemotherapy de-escalation for TNBC remains largely unexplored. Unnecessary
chemotherapy fails to prevent distant recurrences that may never occur and instead introduces
adverse side effects that can significantly diminish patients’ quality of life or even pose
life-threatening risks such as cardiotoxicity and secondary malignancies ®’. This concern is
particularly relevant for young cancer survivors who have a long-life expectancy after
treatment.

Due to its potential severe side effects, chemotherapy cannot be administered “just in case”
a recurrence might occur ’. Instead, the survival benefits of chemotherapy must be carefully
weighed against its side effects, aiming to strike a balance between the risks of over- and
undertreatment in TNBC patients. For instance, the Dutch breast cancer guideline recommends
adjuvant chemotherapy only when an absolute 10-year survival benefit of at least 3-5% is
anticipated °. This corresponds to an estimated 10-15% 10-year breast cancer-specific mortality
risk, assuming chemotherapy provides a 40-60% relative risk reduction °. Clinicians, therefore,
use these guidelines, which compile a wealth of knowledge from numerous clinical trials and
the collective experience of expert clinicians, to help them evaluate and strike the right
balance. In addition to the guidelines, many breast cancer prognostication models have been
developed using big data to assist clinicians in making informed treatment decisions. Once
the model is widely validated, it can be used alongside treatment guidelines to facilitate
shared decision-making between clinicians and patients.
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The primary aim of this thesis was to improve risk classification for early-stage TNBC patients,
with a particular focus on young patients. We investigated the prognostic values of genetic
and immune biomarkers in young, early-stage TNBC patients. By integrating the knowledge
generated in this thesis with existing evidence from other literature, we aimed to refine risk
classification for early-stage TNBC patients by updating an existing breast cancer prognostication
model. In this Chapter, we discuss the main findings of this thesis and interpret them with a
broader context. We also address the practical and methodological challenges encountered
in these studies, as well as the limitations and strengths of this thesis. Finally, we concluded
with potential clinical implications and suggestions for future research.

MAIN FINDINGS IN CONTEXT OF OTHER LITERATURE

Validity and potential clinical utility of the PREDICT model in young, early-stage breast
cancer patients

As of 2017, at least 58 different breast cancer prognostication tools have been published,
most of which include standard clinicopathological characteristics as predictors, such as nodal
status, tumor size, tumor grade, and age at diagnosis . Among these models, PREDICT remains
one of the most widely used models for early breast cancer prognostication, including breast
cancer-specific survival and overall survival. The predictors of the model (version 2.2 and 2.3)
includes age at diagnosis, estrogen receptor (ER), progesterone receptor (PR), human
epidermal growth factor receptor 2 (HER2), tumor size, grade, number of positive lymph
nodes, screening, and Ki67 (the last two predictors only for ER-positive tumors) °. All these
predictors are routinely collected in a standard manner in clinical practice, making the PREDICT
model easy to use without additional cost. Multiple external validation studies have shown
that PREDICT has a good discrimination and calibration-in-the-large in the overall breast
cancer population °*3, indicating that the model has a good potential to perform risk
classification using classic predictors. However, it remains uncertain whether PREDICT performs
well in more specific and homogenous groups. For example, when focusing on young,
node-negative breast cancer patients—a group where chemotherapy remains the dominant
treatment despite an urgent need for de-escalation—can PREDICT still distinguish between
low-risk and high-risk patients?

In Chapter 2, we evaluated the PREDICT model in a population-based cohort with women
diagnosed with node-negative breast cancer under 40 years of age. These patients did not
receive any systemic treatment, neither chemotherapy, hormone therapy, nor anti-HER2
therapy, following standard practice at the time of their diagnosis. We found that PREDICT
underestimated all-cause mortality in these patients. The discriminative ability of PREDICT
in those with ER-positive tumors was acceptable, while poor in those with ER-negative breast
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cancer. Since PREDICT has been used in clinical practice to aid adjuvant chemotherapy
decision-making, we also evaluated its clinical utility in this context using decision curve
analysis. We found that the model showed a slightly higher clinical utility compared to the
strategy of giving every patient chemotherapy in patients with ER-positive tumors, but no
extra benefit in patients with ER-negative tumors was observed compared to the strategy to
give all of them chemotherapy.

The poor discriminative ability of PREDICT in young, early-stage ER-negative breast cancer
patients and TNBC patients was expected, as the distribution of the predictors for these
patients was homogeneous. This result showed the necessity of updating the PREDICT model
with new predictors to improve its discrimination in this patient group. In the next two
chapters, we investigated a few prognostic biomarkers in TNBC, which can be candidates to
be incorporated into PREDICT.

Prognostic biomarkers in young early-stage TNBC patients

In Chapter 3 and Chapter 4, we investigated the prognostic values of sTILs, germline BRCA1
mutations, and other BRCA1-related biomarkers in young, node-negative TNBC patients who
did not receive chemotherapy. By using this chemotherapy-naive cohort with minimized
indication bias, we were able to examine the prognostic values of the aforementioned
biomarkers without the potential mediating effect from systemic treatment.

Systemic treatment

v

Biomarker Survival

lllustration of the relationships between biomarkers, systemic treatment, and survival. The arrows depict the direct
influence of biomarkers (e.g., sTILs, germline BRCA1 mutations) on both systemic treatment decisions and survival
outcomes, as well as the effect of systemic treatment on survival. In the context of a chemotherapy-naive cohort,
the absence of systemic treatment allows for the assessment of biomarker prognostic value without mediation by
treatment effects

Prognostic value of sTILs
Previous studies have confirmed a positive association between sTILs and survival in TNBC
patients treated with (neo)adjuvant chemotherapy 8. However, it remains unclear whether
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this association reflects the prognostic value of sTILs alone or their predictive value for
response to chemotherapy. To exclude the possibility that sTILs" predictive value is driving
the association, analyses should be restricted to systemic treatment-naive TNBC patients.
Such analyses have been performed in systemic treatment-naive TNBC patients, primarily in
those diagnosed at age 40 or older *°, but evidence for younger patients has been lacking.
In Chapter 3, we addressed this gap by demonstrating the high prognostic value of sTILs in
early-stage chemotherapy-naive TNBC patients diagnosed before 40 years of age. Two recent
studies further corroborated the prognostic value of sTiLs in early-stage TNBC patients across
all age groups in chemotherapy-naive TNBC patients, with findings that strongly aligned with
ours 224,

In this chapter, we also showed how sTILs may improve risk classification in young, early-stage
TNBC patients. Most current treatment guidelines primarily rely on tumor stage, ER, and
HER2 status to guide systemic treatment decisions in breast cancer. For example, the 2024
ESMO guideline suggests that patients with T1a tumors may forgo chemotherapy, while those
with T1b or larger tumors are still recommended to receive 6-8 cycles chemotherapy 2.
However, in Chapter 3, we showed that among T1b/c patients, those with high sTILs had
excellent long-term overall survival. Additionally, patients with stage Il tumors and high sTILs
exhibited better survival outcomes than those with stage IB and low sTILs, suggesting that
the impact of sTILs on survival may be greater than tumor size in young early-stage TNBC
patients. Although the 2024 ESMO guideline acknowledges that sTILs may provide additional
prognostic information, detailed recommendations on how sTILs could influence chemotherapy
decisions remains absent 3.

Prognostic value of germline BRCA1 mutation and other BRCA1-related biomarkers

While immune biomarkers like TILs provide valuable insights in TNBC prognosis, genetic
biomarkers, such as germline BRCA1 mutations, also play a critical role due to their relatively
high prevalence in TNBC patients. Like TILs, the prognostic value of germline BRCAI mutations
remains understudied in systemic treatment-naive breast cancer patients, especially in young
TNBC patients, due to predominant reliance on chemotherapy in this patient population. In
Chapter 4, we expanded our focus to BRCAI-related biomarkers. This chapter includes two
publications: the first is a letter to the editor discussing unresolved questions regarding the
association between germline BRCA1/2 mutations and breast cancer prognosis, while the
second is a study examining the prognostic value of BRCAI-related biomarkers in young
women under 40 years old with node-negative TNBC and their relationship with TILs scores.

In the letter to the editor, we summarized six systematic reviews and meta-analyses published

since 2010 that examined the association between germline BRCA1/2 mutations and survival
in breast cancer patients. Most of these meta-analyses did not stratify their analyses based
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on chemotherapy usage and reported pooled results suggesting worse overall survival in
germline BRCA1 mutation carriers, although not all analyses reached a statistically significant
conclusion 222, More recently, a meta-analysis which combined results from 18 studies that
included patients treated with chemotherapy or non-PARP targeted therapies, found no
differences in overall survival between germline BRCA1/2 mutation carriers and non-carriers
29 Based on these pooled findings, we raised the question: what is the mediating role of
chemotherapy in the prognosis of BRCA1/2 mutation carriers? In other words, what is the
true prognostic value of germline BRCA1/2 mutations in systemic treatment-naive breast
cancer patients, and what is their predictive value for response to chemotherapy and other
targeted therapies in the treated patients?

In the second part of Chapter 4, we investigated the true prognostic value of germline BRCA1
mutation, BRCA1 promoter methylation, and somatic BRCA1 mutation in young, node-negative,
chemotherapy-naive TNBC patients. Our goal was to exclude the mediating effects of
chemotherapy and examine the natural disease course of TNBC patients with different BRCA1
status. We found that young, node-negative, TNBC patients with a germline BRCAI mutation
who did not receive chemotherapy had worse long-term overall survival compared to those
without BRCA1 alteration or those with BRCAI promoter methylation in their tumors. This
poorer overall survival was partly mediated by a higher incidence of second primary tumors,
mostly contralateral breast and ovarian tumors, a finding that aligns with a previous study
3 Furthermore, we showed that the prognostic value of sTILs remained significant in women
with or without germline BRCAI mutation. No statistically significant difference of sTILs scores
was observed in women with germline BRCA1 mutation, BRCA1 promoter methylation,
somatic BRCAI mutation, and BRCA1 non-alteration. So far, only a few studies have compared
TIL abundance in TNBC based on germline BRCA1/2 mutation status. These studies have
reported inconsistent results, potentially due to their small sample sizes and lack of
consideration for patient age during comparison 334, Interestingly, we observed that the
positive association between sTILs and improved overall survival was stronger in women with
BRCA1 promoter methylation than in those without (including both germline BRCA1 mutation
carriers and women without any BRCA1 alterations). This suggested that the composition of
sTILs may vary across TNBCs with different BRCA1 status. However, supporting evidence for
this hypothesis is limited.

The validity of the existing breast cancer prognostic model, and update the model with
TILs

Personalized treatment based on widely validated prognostic biomarkers in early-stage TNBC
patients is highly anticipated by both clinicians and patients. In Chapter 3 and 4, we showed
the independent prognostic values of sTILs and germline BRCAI mutation in young, early-stage
TNBC patients. These new biomarkers have not yet been incorporated into PREDICT, the
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widely-used prognostic model. In Chapter 5, we aimed to translate the knowledge into clinical
applications. Using data from two large, pooled cohorts with individual patient-level data
from early-stage TNBC patients *”2°, we updated the PREDICT model by incorporating sTILs
as an additional predictor. The updated PREDICT model, called PREDICT_sTILs, performed
well in leave-one-region-out cross-validation and showed promising clinical utility, especially
in identifying low-risk women who might safely forgo chemotherapy.

Currently, clinical guidelines recommend chemotherapy for all TNBC patients with or without
targeted therapies, except for those with T1a tumors *“. Compared to the guidelines, PREDICT
not only considers tumor stage but also age at diagnosis and tumor grade. However, since
many TNBC patients have high-grade tumors, the model still classifies most as high-risk and
recommends chemotherapy, in line with existing guidelines. By integrating sTILs into the
PREDICT model, we improved risk classification for early-stage TNBC patients, identifying
those at low risk who might survive with less intense regimens or even without chemotherapy.

In Chapter 5, we presented the first prognostic model to incorporate sTILs for improving risk
classification and assisting clinicians in chemotherapy decision making for early-stage TNBC
patients. However, it is not the only model that considers immune profiles in TNBC patients.
Several other prognostic models have been developed using immune biomarkers, such as
immune signatures and immune multigene predictors 337, One of the main limitations of
these models is the high cost of biomarker measurement, which makes external validation
and routine clinical use expensive. In contrast, sTILs can be easily evaluated in routine clinical
practice using standard H&E slides by a trained pathologist. In addition, a recent study showed
the potential of using Al-based tool to reduce the cost of scoring sTlLs while maintaining
scoring accuracy .

Emerging clinical evidence further strengthens the rationale for integrating sTILs into treatment
decision frameworks. A pooled analysis of two recent trials involving stage Il to stage Ill TNBC
patients with sTILs > 30% showed excellent overall survival when using anthracycline-free
chemotherapy *. Furthermore, recently started clinical trials are now investigating whether
early-stage TNBC patients with high sTILs can safely forgo chemotherapy (NCT06078384,
NCT06476119). These studies, together with our results, could support the notion that sTILs
have the potential to refine personalized treatment in TNBC patients.
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STRENGTHS, LIMITATIONS AND METHODOLOGICAL
CHALLENGES

This thesis aimed to improve the risk classification of TNBC patients through two association
studies exploring potential prognostic biomarkers and two prediction modeling studies to
validate and update the PREDICT model, translating our knowledge into potential clinical
applications. When interpreting the findings of this thesis, it is crucial to consider both the
strengths and limitations of the data and methodologies used in our studies.

In Chapter 2, 3, and 4, we used data from the TNBC patients in the PARADIGM cohort. This
cohort is uniquely suited for evaluating the prognostic value of biomarkers independently of
their potential predictive value, as all patients were systemic treatment naive. Additionally,
since these patients were treated according to guidelines at the time of their diagnosis, we
effectively minimized indication bias. Such dataset is particularly valuable because it is
increasingly difficult to find young breast cancer patients not treated with systemic therapy
today, regardless of nodal status “°**,

However, the PARADIGM cohort also has its limitations. This cohort combined data from
multiple resources, including vital status from CBS (Centraal Bureau voor de Statistiek, the
national registry of vital status of Dutch Inhabitants, treatment, recurrence, and second
primary tumors from IKNL (Integraal Kankercentrum Nederland/ Netherlands Comprehensive
Cancer Organization), and pathological data from PALGA (Pathological-Anatomical National
Automated Archive), which is the nationwide database in the Netherlands that collects and
stores pathology and anatomy data. Pooling these real-world data is challenging, and decisions
based on plausible assumptions within the disease’s context in case of imperfect or missing
data are necessary. In the PARADIGM cohort, recurrence status was missing for some patients
while the death status was complete. Since a recurrence tend to occur within the first 5 years
after diagnosis for TNBC patients *?, and patients typically die within about one year of distant
recurrence *, we assumed that patients who remained alive 5-15 years after diagnosis
according to the CBS database and did not have a registered distant recurrence were free of
this event, although chance of missing a few events may still exist.

In Chapter 5, we collected data of TNBC patients from two large, pooled cohorts to update
the PREDICT model for TNBC patients. These large cohorts provided sufficient sample size
and allowed us to perform leave-one-region-out cross-validation. However, we lacked
information on the cause of death in these cohorts, while breast cancer-specific survival was
the primary outcome in Chapter 5, consistent with the model we aimed to update. We
assumed deaths occurring after distant recurrences or within 5 years of diagnosis breast
cancer-related, which might have led to some misclassification. In addition, 10 to 15% of
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TNBC patients carry BRCA1/2 mutations, which increase the risk of second primary tumors,
such as contralateral breast or ovarian cancers *>#. If a second primary tumors occurred
within 5 years after the TNBC diagnosis, we still attribute the subsequent death to the primary
breast cancer due to missing data on second primary tumors and cause of death. However,
it is difficult to determine the extent of misclassification’s impact, especially it has been shown
that overall survival and breast cancer-specific survival were not significantly different between
BRCA1/2 mutation carriers and non-carriers when treated with chemotherapy *.

Another challenge is identifying TNBC cohorts with sufficient sample sizes and comprehensive
data on both TILs and BRCA1-related biomarkers, along with long-term follow-up and treatment
information. The TlLs-scored TNBC cohorts used in Chapter 5 lack data on BRCA1-related
biomarkers, which limited our ability to incorporate these biomarkers into the PREDICT model,
despite demonstrating their prognostic values in Chapter 4. Additionally, external validation
of the update model across different settings, time periods, and patient ethnicities is highly
challenging due to the lack of suitable datasets. However, these validations are crucial because
variations in settings, time periods, and patient ethnicities are associated with patients’
survival #> . To address this, we have initiated collaborations with the POSH cohort in the
UK % and the FUDAN cohort in China *’ to explore potential external validation of PREDICT _
sTILs in patients from diverse ethnic backgrounds and more recent diagnostic periods. However,
progress has been hindered by the ongoing collection of sTILs data in the POSH cohort and
the insufficient number of events in the FUDAN cohort for robust validation.

One of the challenges shared across all studies in this thesis is the presence of missing data
in key tumor characteristics, such as tumor size, tumor grade, and BRCA1-related biomarkers
in the TNBC subtype of the PARADIGM cohort. Completely excluding these missing values
could lead to insufficient sample size and potentially biased results “¢. Several methods can
help address a large amount of missing data, including multiple imputation and complete
case analysis. Multiple imputation is widely recommended to reduce bias and improve
precision when the missing pattern is missing at random or missing completely at random,
especially when the amount of missing values is high *°. However, when the missing pattern
of the exposure and confounders is missing not at random, complete case analysis might
give more valid results “,

In chapter 4, BRCA1 status was missing in approximately 18% of the patients, and a
missing-at-random mechanism is assumed. BRCAI-related biomarkers were evaluated using
DNA from archived tissues; however, in cases where tumor size was small, the DNA extracted
from the tumor may have been insufficient for conclusive results. This indicates that BRCA1
status was not missing completely at random, as smaller tumor size contributed to the higher
chance of missing data. Furthermore, there is no evidence suggesting that young patients

197




Chapter 6

with BRCA1 mutations exhibit different tumor sizes compared to those without BRCA1
mutations, especially during a time when genetic testing was not widely accessible 34, which
eliminates the possibility of missing not at random. Therefore, we can reasonably assume
that the mechanism for missing BRCA1 status in chapter 4 is missing at random. Nonetheless,
it is impossible to completely rule out the possibility of missing not at random in the data.
In Chapter 2 and 4, in addition to multiple imputation, we performed complete case analysis
as a sensitivity analysis, and the aligned results between the two approaches suggest that
no significant bias was introduced by missing values. In Chapter 3, missing data was not an
issue since the missing percentage was negligible. In Chapter 5, where two pooled cohorts
were used for the main analysis, some variables were completely unavailable in a few datasets.
This type of systemic missing data can also be considered missing at random, as it can be
fully explained by the fact that some studies did not collect such data *°. In Chapter 5, we
addressed this issue using multiple imputation with the study indicator as a covariate.
Additionally, for some continuous variables that were missing, categorical variables provided
information on the range of the continuous variables. For example, a patient with an unknown
tumor size (continuous) but classified as stage T1c would have a tumor size between 10 and
20 mm. To ensure consistency after imputation, we used post parameter in the mice function
(mice package) **, maximizing the available data and avoiding discrepancies between imputed
continuous and categorical variables.

In Chapter 5, we faced a methodology challenge when estimating the baseline hazard in a
Cox regression model with an offset term for chemotherapy. The offset coefficient was
pre-specified based on results from meta-analysis of randomized clinical trials 2. Initially, we
used the coxph function (survival package) in R to fit the Cox regression model, and the survfit
and basehaz function (survival package) to estimate baseline hazards *3. However, the predicted
survival was significantly different from the observed survival in the training cohorts, indicating
a mistake in the model parameters. After reviewing the R source code, we discovered that
survfit ignores the offset term when applied with a coxph object >3. We then compared
baseline hazards calculated using coxph >3 and cph (rms package) **, and cross-checked using
Python and STATA. While the coefficients were consistent across methods, the baseline
hazards from cph aligned with other software. In addition, the predicted survival based on
cph baseline hazards matched the observed survival in the training cohorts. Therefore, in
Chapter 5, all baseline hazards were calculated using the cph in R.
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SUGGESTIONS FOR FUTURE RESEARCH AND CLINICAL
IMPLICATIONS

Composition and spatial perspectives of sTILs, taking BRCA1-related biomarkers into
account

Not all early-stage TNBC patients with high TILs survived, highlighting the need to further
understand TILs, tumor cells, and their interaction. TILs consist of various lymphocytes with
distinct functions; for example, cytotoxic CD8+ T cells and T helper cells of type 1 support
immune surveillance, whereas regulatory T cells (Tregs) counteract the antitumor responses
> The positive association between TILs and breast cancer prognosis is likely primarily driven
by CD8+ T cells and other immune surveillance cells. Refining TILs by counting specific
lymphocytes for optimal prognostic value is an area of interest, although whether these
refined biomarkers show prognostic superiority over TILs alone remains unclear *>8. Examining
the spatial relationship between immune and tumor cells may also improve prognostic
accuracy *°. TNBCs can be divided into four immune phenotypes: immune excluded, immune
deserted, inflamed stroma restricted and inflamed stromal and intratumoral ®°. Small-scale
studies have assessed the prognostic values of these phenotypes with mixed results 6% 2,

The genetic profile of tumors, including BRCA1 status, likely influences immune response.
Tumors with germline BRCA1 mutations or with BRCAness profiles are genomically unstable
and may provoke an active immune response due to the high volume of tumor-associated
antigens ©. Yet, few studies have found a positive association between the abundance of TILs
and germline BRCA1/2 mutation **. Notably, in Chapter 4, we observed a stronger prognostic
value of TILs in young, node-negative TNBC patients with BRCA1 promoter methylation
compared to those with other BRCA1 status. This finding requires validation; if confirmed, it
suggests distinct immune profiles in patients with tumors harbouring BRCAI promoter
methylation. Future research may therefore explore TILs composition and their spatial
relationship with the tumor cells in TNBC patients with different BRCA1 status and provide
valuable insights into personalized treatment.

Including new predictors into the prognostic model

PREDICT _sTILs, like all prediction models, should be continuously updated as new prognostic
or predictive biomarkers emerge and are validated for clinical use. As a prevalence prognostic
biomarker, germline BRCA1/2 mutation could be valuable in future updates once larger
cohorts with both sTILs and germline BRCA1/2 mutation data are available. Germline BRCA1/2
mutation carriers also face higher risks of second primary tumors, adding complexity to
disease progression. Future models may need to account for this by considering second
primary tumors as a transitional state in the disease pathway, offering a deeper understanding
of TNBC progression in mutation carriers .
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Death from
TNBC

Other cause
TNBC death
Second primary Death from second
tumor | primary tumor

Illustrative model of disease progression in TNBC patients, with potential pathways of second primary tumors, which
may contribute to overall mortality alongside death from TNBC. Incorporating second primary tumors as a transitional
state offers insights into the complex progression and survival outcomes for germline BRCA1/2 mutation carriers.

In integrating biomarkers like sTILs and potentially BRCA1/2 mutations, their potential
predictive values should be considered, as these relate to treatment benefits. For example,
HER?2 status in PREDICT was incorporated both for its prognostic value in breast cancer-specific
survival and for its predictive value in response to trastuzumab . PREDICT_sTILs only includes
the prognostic, but not the predictive value of of sTILs. A study based on two randomized
trials showed no statistically significant interaction between TILs, whether assessed
continuously or as binary (using a 50% cutoff), and anthracycline-based chemotherapy versus
no chemotherapy, indicating that sTILs have no predictive value for anthracycline-based
chemotherapy . However, studies have shown a predictive value of sTlILs for taxane-based
chemotherapy, supported by both preclinical and clinical evidence ¢” . In Chapter 5, although
some patients received taxane-based chemotherapy, we did not include an interaction term
for sTILs and taxane-based chemotherapy in the model. This decision is based on a previous
study that analyzed the same data from chemotherapy-treated patients in Chapter 5, which
found no statistically significant interaction term . One potential explanation for the inability
to validate this predictive effect is that taxanes directly activate T cells © while sTILs comprise
not only T cells but also other immune cells, which may attenuate this effect. While the
predictive value of sTILs for taxane-based chemotherapy cannot be entirely dismissed, robust
trial data are required before integrating this predictive value into the model. At this stage,
we recommend focusing on the prognostic aspects of the model, using it solely to identify
low-risk patients who may safely forgo chemotherapy.
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Further validation of PREDICT_sTILs and implementation

Before implementing the PREDICT_sTILs model in clinical management of early-stage TNBC
patients, several steps are necessary. Firstly, further external validation is crucial. Although
Chapter 5 presented good results from leave-one-region-out cross-validation, an external
validation by an independent research group is still needed to evaluate the reproducibility
and transportability of PREDICT _sTILs in different settings ®° These settings include different
ethnicity groups (e.g., Asian and African ancestry), patients diagnosed more recently, those
treated with neoadjuvant chemotherapy, and very importantly, germline BRCA1/2 mutation
carriers. The predictive value of germline BRCA1/2 mutations, alongside these carriers’
elevated risks of second primary cancers, affects survival and warrants careful consideration
for the generalization of breast cancer prognostic models. PREDICT has previously validated
in germline BRCA1/2 mutation carriers, showing a good model fit in those with ER-negative
breast cancers but overestimation of breast cancer mortality, suggesting possible baseline
hazard miscalibration and/or inaccurate chemotherapy benefit estimation 7°. Given the
inclusion of a new predictor and recalibrated baseline hazard in PREDICT _sTILs, external
validation in germline BRCA1/2 mutation carriers is especially important to ensure accuracy
in this high-risk group.

Several results could occur in PREDICT_sTILs external validation. Ideally, PREDICT_sTILs will
show strong calibration, discrimination, and clinical utility, allowing direct application in new
settings. A less ideal outcome is preserved discriminative but weaker calibration. In this case,
model utility should still be evaluated, as calibration accuracy is most crucial at thresholds
that influence clinical decisions. If recalibration is needed, the locally recalibrated model
requires targeted validation before being applied to a new population/setting ”*. Moreover,
constant validation and recalibration are essential even within the same setting, as patient
characteristics can shift over time due to factors like immigration, diet changes, and
implementation of screening programs 72. Prognostic models predicting events over 5- or
10-year period will inherently lag, as they are based on past data for application in present-day
patients. Methods such as discrete updating baseline hazards and Bayesian updating can
help mitigate this delay 2.

After validating PREDICT _sTILs in independent cohorts, the next step is to implement the
model in clinical practice. It is important to note that such a model is considered a medical
device and must receive approval under In Vitro Diagnostic Medical Devices Regulation before
being implemented. Successful implementation requires not only reliable prediction results
but also clear, interpretable outcomes. For instance, displaying probabilities graphically rather
than verbally can improve understanding 7*. To facilitate implementation, we recommend
training sessions for clinicians, covering the model’s development, data sources, outcome
interpretation, and strategies for effectively communicating results to patients °.
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