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Chapter 1

TRIPLE-NEGATIVE BREAST CANCER

Breast cancer is, besides skin cancer, the most common cancer and causes the most
cancer-related deaths among women worldwide 2. Now recognized as a heterogeneous
disease, breast cancer contains multiple subtypes with distinct biological characteristics,
prognoses, and treatment responses. One of the most widely accepted breast cancer
classification systems is based on immunohistochemical expression, including the expression
of estrogen receptor (ER) and progestogen receptor (PR), collectively referred to as hormone
receptors (HR), and human epidermal growth factor receptor two (HER2). This system classifies
breast cancer into four subtypes, including HR-positive/ HER2-negative, HR-positive/
HER2-positive, HR-negative/ HER2-positive, and HR-negative/ HER2-negative (triple-negative) 3.

Triple-negative breast cancer (TNBC) represents approximately 10-15% of all breast cancer
subtypes *7. Known for its aggressive nature, TNBC typically presents with a larger tumor size
and a higher histologic grade at diagnosis compared to other breast cancer subtypes °. The
aggressive nature of TNBC also leads to a worse prognosis in the first 5 years after diagnosis
compared to other breast cancer subtypes. Population-based data suggested that TNBC
patients have only a 77% of 5-year breast cancer survival rate, compared to the highest
survival rate of 92% in patients with HR-positive/HER2-negative cancers 8. A similar trend
was also observed in Dutch patients . Furthermore, TNBC patients tend to have early relapse
within 5 years after diagnosis °, and the metastases often spread to the lung, liver, and brain °.

In addition to the aggressive nature, TNBC is also characterized by its remarkable heterogeneity
1 The vast majority of TNBCs are invasive ductal carcinoma (or carcinoma of no specific
type), followed by a small proportion of metaplastic carcinoma, invasive lobular carcinoma,
medullary carcinoma, apocrine carcinoma, and adenoid cystic carcinoma 2. In terms of
molecular diversity, TNBC can be classified into several molecular subtypes, including basal-like
1 and 2, mesenchymal, immunomodulatory, mesenchymal stem-like, and luminal androgen
receptor group 2. This classification was later refined into four subtypes, showing distinct
responses to neoadjuvant chemotherapy ™.

TRIPLE-NEGATIVE BREAST CANCER TREATMENT

Historically, due to the absence of ER, PR, and HER2 expression, chemotherapy in the
neoadjuvant setting and/or adjuvant setting was the only systemic treatment option for early
-stage TNBC patients >, In very recent years, targeted therapies such as PARP inhibitors
(Olaparib) for germline BRCA1/2 mutation carriers and PD-1/PD-L1 inhibitors (pembrolizumab)
have become available for high-risk, early-stage TNBC patients. However, these therapies are
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typically, sequentially or concurrent, combined with chemotherapy 8. For germline BRCA1/2
wild-type TNBC patients with stage | tumors, chemotherapy remains the sole option if omission
is not viable. Population- and hospital-based cohort studies indicate that over 70% TNBC
patients received (neo)adjuvant chemotherapy 7, with even higher proportions among
younger patients 719,

However, not all early-stage TNBC patients who undergo chemotherapy will derive a survival
benefit from this treatment. According to the Dutch breast cancer guideline, chemotherapy
is recommended if the predicted 10-year mortality risk is about 10-15% *°. This recommendation
indicates that in 100 patients who are recommended chemotherapy, only 10 to 15 may derive
benefit from treatment, and even then, some may not survive despite the treatment. Evidence
of clear overtreatment can be observed from the PARADIGM cohort, a Dutch population-based
cohort with systemic treatment-naive, node-negative breast cancer patients who were
diagnosed under 40 years old and treated per guidelines at their diagnosis time . In this
group of 377 patients with grade-3, T1c-T3 TNBCs, over 70% survived at least 10 years without
chemotherapy ?!, suggesting significant overtreatment under current Dutch guidelines, where
all these patients would have been advised to receive chemotherapy . Chemotherapy
overtreatment provides no survival benefit but exposes patients to an unnecessary risk of
side effects, including leukemia, cardiotoxicity, fatigue, premature menopause, infertility, and
impaired sexual functioning #>2%. These side effects significantly impact quality of life of
survivors, especially of younger women.

Therefore, there is a pressing need to better balance potential over- and undertreatment in
early-stage TNBC patients, emphasizing the importance of precise risk classification. Prognostic
biomarkers can refine the risk classification by distinguishing patients who are likely to achieve
excellent survival without chemotherapy or other targeted therapy from those who will likely
face extremely poor survival without such treatments.

PROGNOSTIC BIOMARKERS IN TRIPLE-NEGATIVE BREAST
CANCER

Definition of prognostic biomarkers and their assessment

In oncology studies, biomarkers are classified into prognostic and predictive biomarkers.
Prognostic biomarkers play an important role in predicting future clinical outcomes in patients,
such as risk of disease recurrence or mortality, regardless of intervention or treatment, while
predictive biomarkers specifically predict the response to a certain treatment . Both biomarker
types are essential when making systemic treatment decisions, with prognostic biomarkers
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aiding in the identification of high-risk and low-risk patients, and predictive biomarkers
identifying patients who would respond to a particular treatment .

Ideally, to accurately assess the association between the prognostic biomarkers and the
disease outcomes, studies should focus on patients who have not undergone any adjuvant
systemic treatment ?°. However, this is particularly challenging in the context of TNBC, where
(neo)adjuvant chemotherapy is commonly administered. Studies that predominantly involve
chemotherapy-treated TNBC patients often struggle to differentiate between the biomarkers’
prognostic and predictive values. Moreover, selecting patients based on their treatment
status introduces the risk of indication bias.

The abovementioned PARADIGM study effectively avoids these challenges. Specifically initiated
to study prognostic biomarkers, the PARADIGM study includes 2286 young, systemic
treatment-naive, lymph node-negative breast cancer patients diagnosed and prospectively
registered in the Netherlands in the nationwide Netherlands Cancer Registry between 1989
and 2000, including 485 patients with TNBC %. Before 2000, chemotherapy and other systemic
treatments were only recommended to breast cancer patients with positive nodal status,
minimizing the risk of indication bias within the PARADIGM cohort. The study retrospectively
collected the formalin fixed paraffin embedded tumor blocks and match normal tissue blocks.
Fresh tumor slides were then prepared to facilitate the evaluation of histological characteristics
and biomarkers, providing a unique resource for understanding the prognostic values of
biomarkers in breast cancer patients without potential mediating or confounding effects of
systemic treatment.

BRCA1 related genetic biomarkers

One of the most widely studied biomarkers in breast cancer is BRCAI mutation. In 1991,
geneticist Mary Claire King made a groundbreaking discovery by identifying the association
between breast cancer and a gene located on chromosome 17 26, later named the BRCA1
gene. This was soon followed by the discovery of the BRCA2 gene . The BRCA1 and BRCA2
genes play a key role in repairing DNA double-strand breaks through homologous
recombination, thereby maintaining genome stability 2. Dysfunction in BRCA1/2 leads to the
increased use of error-prone DNA repair pathways in the cells, resulting in a higher incidence

of deletions, translocations and chromosomal instability, ultimately promoting tumorigenesis
28,29

Germline mutations in the BRCA1/2 genes significantly increase cancer risks. By the age of
80 years, women with a germline BRCAI mutation face a 72% cumulative risk of developing
breast cancer, and those with a germline BRCA2 mutation have a 69% risk *. Despite the
similar cumulative breast cancer risk associated with these two mutations, they present
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distinct risk patterns. Women with a germline BRCA1 mutation typically develop breast cancer
at a younger age than those with germline BRCA2 mutations *. Furthermore, germline BRCA1
mutation carriers are significantly more likely to develop TNBCs compared to other breast
cancer subtypes, with a 40% cumulative risk by the age of 80 years 3. This risk is much higher
than that for germline BRCA2 mutation carriers and carriers of germline mutations in other
breast cancer susceptibility genes 3.

In TNBC patients, germline BRCA1 mutations are present in up to 16% of cases 3°°, and this
prevalence is even higher in younger TNBC patients 3% 3% 3 However, somatic BRCA1
mutations are relatively rare, accounting for only 2% to 4% of the cases ¥3°. Additionally,
methylation in the BRCAI promoter regions is also frequently observed in TNBC patients,
contributing to about one-third of the cases *°. This methylation, along with mutations in the
BRCA1 gene, can lead to a complete loss of BRCAI function during tumorigenesis. Tumor
cells with such loss often present a specific genomic profile known as “BRCAness” ?°, and
show an increased sensitivity to DNA damaging agents. This sensitivity has led to targeted
therapies including platinum-based chemotherapy ** and PARP inhibitors **. Carboplatin,
often in combination with anti-PD-(L)1 is currently recommended for patients with high-risk
early, or metastatic TNBC in Europe and the USA “2. PARP inhibitors are indicated for germline
BRCA1/2 carriers with high-risk early, or metastatic HER2-negative breast cancer . For stage
| TNBC patients, standard chemotherapy remains the primary treatment.

The association between the BRCA1-related biomarkers and TNBC prognosis has been
extensively studied %3444 Yet, it is challenging to determine whether these associations
are prognostic or predictive, or both, as most TNBC patients are treated with chemotherapy
or targeted therapies. Disentangling the prognostic value of these BRCA1-related biomarkers
from their predictive value could provide deeper insights into the disease course and find
more suitable treatment strategies for these patients.

TUMOR-INFILTRATING LYMPHOCYTES

In addition to genetic biomarkers, immune biomarkers are also extensively studied in TNBC
due to their prevalence in this subtype of breast cancer, with tumor-infiltrating lymphocytes
(TILs) emerging as the most important concept. TILs are immune cells that infiltrate tumor
tissue, which reflect the patient’s adaptive immune response to the tumor and pre-existing
immunity * %, These cells, comprising mainly cytotoxic T cells along with helper T cells, B
cells, macrophages, and NK cells %, infiltrate both the tumor and surrounding microenvironment
% The presence and abundance of TILs differs across breast cancer subtypes, with the highest
levels observed in TNBCs and HR-negative/ HER2-positive breast cancers #’. Notably, about
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30% TNBC cases show at least 30% stromal TILs *¢, suggesting a link between the abundance
of TILs, genomic instability ¢ % and a high tumor mutational burden %>, It is therefore
hypothesized that tumors with BRCA1/2 mutations have higher TILs levels. However, the
relationship between TILs and BRCA1/2 mutations remains uncertain, with mixed findings
255 potentially influenced by the mediating effect from the age at diagnosis 348 %6,

TILs offer significant value as a biomarker in oncology, particularly as their assessment can
be performed on standard hematoxylin and eosin-stained tumor slides. This aligns with
routine clinical pathology practices at low cost, making TILs assessment accessible even in
low-income countries. In practice, TILs are divided into stromal TILs and intratumoral TILs,
where the former are the immune cells infiltrating the fibrous stroma adjacent to tumor cells,
and the latter refer to the immune cells that has direct contact with tumor cells. The two
scores are highly correlated, while the stromal TlILs show less interobserver variances and
are thus more reliable to be used *’. Recent research has been trying to use artificial-intelligence
algorithms for TILs scoring *®°°, which may further lower the cost and reduce interobserver
variation among pathologists.

The very first study describing the positive association between increased TILs and favorable
breast cancer prognosis was conducted over a century ago by two clinicians at Mayo Clinic
. This association was reaffirmed in later years, establishing a link between lymphocyte
infiltrates and breast cancer prognosis 2. In recent years, a growing body of research has
delineated the prognostic value of TILs for TNBC and HER2-enriched subtypes 3%, Notably,
in early-stage TNBC, numerous studies have consistently demonstrated that higher TiLs level
is associated with improved clinical outcomes “® 57 the results of which are summarized in
the table below. These studies, mostly adhering to the international standard for stromal
TILs assessment °/, have revealed remarkably consistent adjusted hazard ratios for TILs on
overall survival, distant recurrence-free survival (or distant recurrence-free interval), and
invasive disease-free survival (or disease-free survival) among TNBC patients. However, the
majority of these studies focused on TNBC patients who received adjuvant chemotherapy,
with one exception being the study from Park et al, which included a cohort of untreated
TNBC patients, predominantly diagnosed after 50 years of age ¢, thereby underrepresenting
younger patients.

Besides the prognostic value, the predictive value of TILs for chemotherapy has been widely
studied in early-stage TNBC patients, and such value is likely to be regimen-specific. A previous
study using data from two randomized trials with patients treated with anthracycline-based
chemotherapy and chemotherapy-naive patients suggested that no interaction effect was
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observed between sTILs and chemotherapy, indicating no predictive effect of TILs towards
anthracycline-based chemotherapy . However, studies involving taxane-based chemotherapy

with or without carboplatin suggested that higher TILs are associated with a better pathological

complete response #” . Preclinical research has shown that taxanes can trigger T cells to

release cytotoxic extracellular vesicles that directly kill cancer cells, giving such predictive
value a biological mechanism backup . This novel finding points to a specific predictive value

of T cells to taxane-based therapies and has recently been validated using data from the
MATADOR trial. There was a significant interaction observed between sTILs (>20%) and
regimens with or without taxane 7°.

A summary of adjusted hazard ratios of stromal tumor-infiltrating lymphocytes per 10% increment on different

clinical outcomes

Author Study type HR of 10% HR of 10% HR of 10% Adjustment set
(year) increment of increment of increment of
sTILs on OS sTILs on iDFS sTILs on DDFS,
or DFS DDFI or DRFS
Loi et al., (2013) Clinical trial 0.83 0.85 - Age, tumor size,
-based (0.71-0.98) (0.74-0.98) histologic grade,
positive lymph nodes,
type of surgery,
radiotherapy, mode of
drug administration,
menopausal status
Adams et al., Clinical trial 0.79 0.84 0.81 Age, tumor size, nodal
(2014) -based (0.67-0.92) (0.74-0.95) 0.68-0.97) status
Loi et al., (2014)  Clinical trial 0.81 - 0.77 Age, tumor size,
-based (0.61-1.10) (0.61-0.98) histologic grade, nodal
status
Dieci et al., Hospital-based  0.85 - - Age, tumor size,
(2015) (0.74-0.99) histologic grade, nodal
status, chemotherapy
Krishnamurtiet  Hospital-based 0.95 0.95 - Tumor stage,
al., (0.91-1.00) (0.91-1.00) Nottingham histologic
(2017) grade, lymphovascular
invasion, nodal status
Loi et al., (2019) Clinical 0.84 0.87 0.83 Age, tumor size,
trial-based (0.79-0.89) (0.83-0.91) (0.79-0.88) histologic grade,
positive lymph nodes,
treatment
Park et al., Clinical trial and 0.88 0.90 0.86 Age, tumor size,
(2019) hospital-based  (0.79-0.98) (0.83-0.98) (0.77-0.95) histologic grade,
positive lymph nodes,
radiotherapy
Leo-Ferreetal.  Mostly 0.88 0.92 0.87 (0.84-0.90) Age, tumor size,
(2024) hospital-based  (0.85-0.91) (0.89-0.94) [DRFS] histologic grade, lymph
[iDFS] node metastases, and

radiotherapy

Abbreviation: HR = hazard ratio; sTILs = stromal tumor infiltrating lymphocytes; OS = overall survival; iDFS = invasive
disease-free survival; DFS = disease-free survival; DDFS = distant disease-free survival; DDFI = distant disease-free

interval
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OTHER BIOMARKERS IN TNBC

Several reviews have introduced a range of biomarkers in TNBC /74, These biomarkers,
reflecting the distinct characteristics of TNBC, can be classified based on their functions and
potential therapeutic values. For example, genetic biomarkers that regulate homologous
recombination, including BRCA1-related biomarkers and BRCA2 mutation, are sensitive to
DNA damaging agents and PARP inhibitors 7*73. Another important group of biomarkers
includes the immune checkpoints, such as PD-1 and PD-L1, which have been widely recognized
for their prognostic and predictive value 7*7*. Pembrolizumab, a PD-1 inhibitor, has been
approved for TNBC in the US and Europe 7. Other biomarkers in TNBC, including epidermal
growth factor receptor and vascular endothelial growth factor, which regulate cells proliferation
and angiogenesis, and TP53, which regulates apoptosis, have been extensively reviewed 7+
and will not be discussed in this thesis.

PROGNOSTICATION MODELS

Using a single prognostic biomarker to accurately classify patients’ risk is challenging; therefore,
researchers often combine different biomarkers into a single tool to aid in risk classification.
For example, the TNM cancer staging system integrates the extent of the tumor, extent of
spread to the lymph nodes, and presence of metastasis, providing a more comprehensive
risk classification. Similarly, a statistical model can combine different prognostic biomarkers,
providing a predicted probability of a clinical outcome. Such predictions about one’s future
health condition or the outcome of a disease over a specific period are commonly referred
to as prognosis ® 76, The statistical model which integrates different clinical characteristics
to estimate an individual’s prognosis is referred to as a prognostication model 76. Importantly,
in many countries and regions, including European Union 77 and the United States 7%,
prognostication models are classified as medical devices. Therefore, they must undergo
extensive evaluation—including model validation, and assessment of clinical utility—to
demonstrate their positive impact on clinical decisions before being implemented.

Model validation encompasses both internal and external processes. Internal validation
evaluates the model’s performance in a population similar to that used during the model’s
development 7, using approaches such as cross-validation and bootstrapping. This process
is crucial for preventing overfitting, especially in cases of small sample size and low event
numbers &. In contrast, external validation tests the model’s performance in a different
population, such as different settings, regions, and time periods, thereby assessing the model’s
generalizability 8. Both internal and external validation focus on calibration and discrimination.
Calibration measures the concordance between observed outcomes and model predictions,
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with recommended methods including the observed-to-predicted ratio, calibration slope,
and calibration plot. Discrimination, on the other hand, reflects the model’s ability to
differentiate between high- and low-risk patients, typically using metrics like c-index 8%, and
area under the receiver operating characteristic curve 84,

Clinical utility indicates the benefit from model-based decisions to individual patients or to
the healthcare system compared to the standard of care. The gold standard of showing the
clinical utility needs randomized trials 8. For example, genomic tests like TAILORx and
MammaPrint have undergone randomized clinical trials to demonstrate their clinical utility
878 However, such trials are rarely conducted in prognostication models, which might be
due to substantial demands on time and resources, the necessity for large sample sizes, and
ethical concerns regarding patient willingness to participate in randomized studies. Therefore,
theoretical clinical utility based on observational studies can provide valuable insights into
the actual clinical utility. In the context of a prognostication model designed to facilitate
therapy de-escalation, the demonstrated theoretical clinical utility of the model may motivate
a single-arm trial to evaluate the safety of therapy de-escalation. Methods to calculate
theoretical clinical utilities include using risk reclassification tables to calculate net
reclassification index °, decision curve analysis to compare the net benefits °°2, and emulating
target trials .

Breast cancer prognostication models

In clinical practice, prognostication models can help to identify low-risk patients who have
good prognosis without systemic treatment, so that these low-risk patients can avoid the
side effects of the treatment to exchange for the small potential benefit ®. In breast cancer,
prognostication modeling has been a popular research topic. A recent systematic review
showed that from 1982 to 2016, 58 breast cancer prognostication models were published,
predominantly using Cox regression models °. A more recent scoping review identified 21
models published since 2008, which aim to support decisions related to surgery, radiation
therapy, and systemic therapies **. Both reviews highlighted that age at diagnosis, tumor size,
tumor grade, and nodal status are the most used predictors in these models 9,

Among all the published breast cancer prognostication models, AdjuvantOnline %, CancerMath
%, and PREDICT °” have been the most widely recognized and validated tools used by clinicians
to assess patient outcomes and guide treatment decisions. However, AdjuvantOnline, once
a popular choice, is no longer available online. Similarly, CancerMath, despite the initial
promise, has not been updated since its publication in 2009, limiting its applicability in the
context of current clinical practices and emerging research findings. This makes the PREDICT
model the most updated and available prognostication model for breast cancer.

15




Chapter 1

It is important to note that, while the PREDICT research team refers to the model as a
prognostic or prognostication model, it offers not only breast cancer prognosis but also
treatment benefits, albeit using different sources of evidence for prognostication and
prediction. The model is a cause-specific Cox regression model derived from a UK
population-based cohort. The model was initially published in 2010 °, followed with multiple
model updates and recalibration #%% 1%, The most used model version 2.2 and 2.3 includes
separate algorithms for ER-negative and ER-positive tumors. The ER-negative algorithm
considers age at diagnosis, tumor size, number of positive lymph nodes, tumor grade, and
HER2 status. The ER-positive algorithm includes these predictors plus detection mode and
Ki67. Besides, the model extracted the effect of hormone therapy, extended tamoxifen
therapy, trastuzumab, bisphosphonates, second, and third generation chemotherapy from
multiple published or unpublished meta-analyses of clinical trials >, and constrained the
effect in the model. These two algorithms provide predictions for breast cancer-specific
survival at multiple time points, while non-breast cancer survival is calculated separately
using age as the sole predictor. Overall survival prediction is then calculated as the product
of breast and non-breast cancer survivals.

Recent validation studies have shown that PREDICT in general performs reasonable across
different patient populations 1419, However, there are notable gaps in its application for
making treatment decisions. Firstly, most validation studies fall short of directly assessing
the clinical utility of PREDICT. Theoretical methods such as decision curve analysis could offer
insights into its potential clinical utility, although it is seldom applied in validation studies.
Secondly, the predictions of PREDICT for treatment effect for young patients might not be
entirely accurate, partly due to the scarcity of data from systemic treatment-naive young
patients. Lastly, the model’s predictors do not adequately address the diversity found within
the tumor microenvironment and genomic profiles of TNBC patients, limiting its ability to
capture the full spectrum of heterogeneity in these patients.

AIM AND THESIS OUTLINE

The goal of this thesis is to improve risk classification regarding prognosis for TNBC patients.
We focused on young, lymph node-negative TNBC patients due to the potential overtreatment
in this group and the severe consequences of overtreatment in young women. Meanwhile,
data from general TNBC patients were also collected for prognostication. The table below
listed the data sources that were used in this thesis. In Chapter 2, we first externally validated
the PREDICT model in young, node-negative breast cancer patients who did not receive
systemic treatment, i.e. the PARADIGM cohort. In Chapter 3, we investigated the prognostic
value of stromal TILs in the TNBC patients from the PARADIGM cohort. In Chapter 4, we
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investigated the association between the BRCAI-related biomarkers, including germline
BRCA1 mutation, somatic BRCAI mutation and BRCAI promoter methylation, and long-term
clinical outcomes in the TNBC patients from the PARADIGM cohort. In addition, we refined
the analysis in Chapter 3 with more complete data in the BRCA1 status. We also commented
on a systematic review and meta-analysis on the association between BRCA1/2 mutations
and breast cancer outcomes, with a summary of results from the systematic reviews and
meta-analyses published between 2010 and 2021. To make the knowledge we generated
into practice, in Chapter 5 we incorporate stromal TILs into the PREDICT model to improve
the model’s performance and clinical utility in TNBC patients. We used data from pooled
treated and untreated cohorts to update the model and performed leave-one-region-out
cross-validation. We made our conclusion in Chapter 6, where we summarized the main
findings in the previous chapters, discussed the strengths, limitations and potential biases
of the included studies, along with their clinical relevance and future perspectives.

Data sources used in this thesis

The PARADIGM cohort The pooled treated The pooled untreated

cohort cohort ®

Country The Netherlands International International

Study type Populatior-based ospalbased hospitabased

Chapter 2,3,4,5 5 5

Number of patients 2286 1806 1892

Number of TNBC 485 1806 1892

Median years of age at 36 50 55

diagnosis (range) (22-39) (25- 85) (25- 85)

Year of diagnosis 1989-2000 - 1980-2020

Chemotherapy treatment

Yes 0% 100% 0%

No 100% 0% 100%

2The pooled untreated cohort includes 443 patients from the PARADIGM cohort
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