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General introduction
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Chapter 1

TRIPLE-NEGATIVE BREAST CANCER

Breast cancer is, besides skin cancer, the most common cancer and causes the most 
cancer-related deaths among women worldwide 1, 2. Now recognized as a heterogeneous 
disease, breast cancer contains multiple subtypes with distinct biological characteristics, 
prognoses, and treatment responses. One of the most widely accepted breast cancer 
classification systems is based on immunohistochemical expression, including the expression 
of estrogen receptor (ER) and progestogen receptor (PR), collectively referred to as hormone 
receptors (HR), and human epidermal growth factor receptor two (HER2). This system classifies 
breast cancer into four subtypes, including HR-positive/ HER2-negative, HR-positive/ 
HER2-positive, HR-negative/ HER2-positive, and HR-negative/ HER2-negative (triple-negative) 3. 

Triple-negative breast cancer (TNBC) represents approximately 10-15% of all breast cancer 
subtypes 4-7. Known for its aggressive nature, TNBC typically presents with a larger tumor size 
and a higher histologic grade at diagnosis compared to other breast cancer subtypes 5. The 
aggressive nature of TNBC also leads to a worse prognosis in the first 5 years after diagnosis 
compared to other breast cancer subtypes. Population-based data suggested that TNBC 
patients have only a 77% of 5-year breast cancer survival rate, compared to the highest 
survival rate of 92% in patients with HR-positive/HER2-negative cancers 8. A similar trend 
was also observed in Dutch patients 7. Furthermore, TNBC patients tend to have early relapse 
within 5 years after diagnosis 9, and the metastases often spread to the lung, liver, and brain 10. 

In addition to the aggressive nature, TNBC is also characterized by its remarkable heterogeneity 
11. The vast majority of TNBCs are invasive ductal carcinoma (or carcinoma of no specific 
type), followed by a small proportion of metaplastic carcinoma, invasive lobular carcinoma, 
medullary carcinoma, apocrine carcinoma, and adenoid cystic carcinoma 12. In terms of 
molecular diversity, TNBC can be classified into several molecular subtypes, including basal-like 
1 and 2, mesenchymal, immunomodulatory, mesenchymal stem-like, and luminal androgen 
receptor group 13. This classification was later refined into four subtypes, showing distinct 
responses to neoadjuvant chemotherapy 14. 

TRIPLE-NEGATIVE BREAST CANCER TREATMENT

Historically, due to the absence of ER, PR, and HER2 expression, chemotherapy in the 
neoadjuvant setting and/or adjuvant setting was the only systemic treatment option for early 
-stage TNBC patients 15-17. In very recent years, targeted therapies such as PARP inhibitors 
(Olaparib) for germline BRCA1/2 mutation carriers and PD-1/PD-L1 inhibitors (pembrolizumab) 
have become available for high-risk, early-stage TNBC patients. However, these therapies are 
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typically, sequentially or concurrent, combined with chemotherapy 18. For germline BRCA1/2 
wild-type TNBC patients with stage I tumors, chemotherapy remains the sole option if omission 
is not viable. Population- and hospital-based cohort studies indicate that over 70% TNBC 
patients received (neo)adjuvant chemotherapy 5, 7, with even higher proportions among 
younger patients 7, 19. 

However, not all early-stage TNBC patients who undergo chemotherapy will derive a survival 
benefit from this treatment. According to the Dutch breast cancer guideline, chemotherapy 
is recommended if the predicted 10-year mortality risk is about 10-15% 16. This recommendation 
indicates that in 100 patients who are recommended chemotherapy, only 10 to 15 may derive 
benefit from treatment, and even then, some may not survive despite the treatment. Evidence 
of clear overtreatment can be observed from the PARADIGM cohort, a Dutch population-based 
cohort with systemic treatment-naïve, node-negative breast cancer patients who were 
diagnosed under 40 years old and treated per guidelines at their diagnosis time 20. In this 
group of 377 patients with grade-3, T1c-T3 TNBCs, over 70% survived at least 10 years without 
chemotherapy 21, suggesting significant overtreatment under current Dutch guidelines, where 
all these patients would have been advised to receive chemotherapy 16. Chemotherapy 
overtreatment provides no survival benefit but exposes patients to an unnecessary risk of 
side effects, including leukemia, cardiotoxicity, fatigue, premature menopause, infertility, and 
impaired sexual functioning 22, 23. These side effects significantly impact quality of life of 
survivors, especially of younger women. 

Therefore, there is a pressing need to better balance potential over- and undertreatment in 
early-stage TNBC patients, emphasizing the importance of precise risk classification. Prognostic 
biomarkers can refine the risk classification by distinguishing patients who are likely to achieve 
excellent survival without chemotherapy or other targeted therapy from those who will likely 
face extremely poor survival without such treatments. 

PROGNOSTIC BIOMARKERS IN TRIPLE-NEGATIVE BREAST 
CANCER 

Definition of prognostic biomarkers and their assessment
In oncology studies, biomarkers are classified into prognostic and predictive biomarkers. 
Prognostic biomarkers play an important role in predicting future clinical outcomes in patients, 
such as risk of disease recurrence or mortality, regardless of intervention or treatment, while 
predictive biomarkers specifically predict the response to a certain treatment 24. Both biomarker 
types are essential when making systemic treatment decisions, with prognostic biomarkers 
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aiding in the identification of high-risk and low-risk patients, and predictive biomarkers 
identifying patients who would respond to a particular treatment 24. 

Ideally, to accurately assess the association between the prognostic biomarkers and the 
disease outcomes, studies should focus on patients who have not undergone any adjuvant 
systemic treatment 25. However, this is particularly challenging in the context of TNBC, where 
(neo)adjuvant chemotherapy is commonly administered. Studies that predominantly involve 
chemotherapy-treated TNBC patients often struggle to differentiate between the biomarkers’ 
prognostic and predictive values. Moreover, selecting patients based on their treatment 
status introduces the risk of indication bias. 

The abovementioned PARADIGM study effectively avoids these challenges. Specifically initiated 
to study prognostic biomarkers, the PARADIGM study includes 2286 young, systemic 
treatment-naïve, lymph node-negative breast cancer patients diagnosed and prospectively 
registered in the Netherlands in the nationwide Netherlands Cancer Registry between 1989 
and 2000, including 485 patients with TNBC 20. Before 2000, chemotherapy and other systemic 
treatments were only recommended to breast cancer patients with positive nodal status, 
minimizing the risk of indication bias within the PARADIGM cohort. The study retrospectively 
collected the formalin fixed paraffin embedded tumor blocks and match normal tissue blocks. 
Fresh tumor slides were then prepared to facilitate the evaluation of histological characteristics 
and biomarkers, providing a unique resource for understanding the prognostic values of 
biomarkers in breast cancer patients without potential mediating or confounding effects of 
systemic treatment. 

BRCA1 related genetic biomarkers 
One of the most widely studied biomarkers in breast cancer is BRCA1 mutation. In 1991, 
geneticist Mary Claire King made a groundbreaking discovery by identifying the association 
between breast cancer and a gene located on chromosome 17 26, later named the BRCA1 
gene. This was soon followed by the discovery of the BRCA2 gene 27. The BRCA1 and BRCA2 
genes play a key role in repairing DNA double-strand breaks through homologous 
recombination, thereby maintaining genome stability 28. Dysfunction in BRCA1/2 leads to the 
increased use of error-prone DNA repair pathways in the cells, resulting in a higher incidence 
of deletions, translocations and chromosomal instability, ultimately promoting tumorigenesis 
28, 29. 

Germline mutations in the BRCA1/2 genes significantly increase cancer risks. By the age of 
80 years, women with a germline BRCA1 mutation face a 72% cumulative risk of developing 
breast cancer, and those with a germline BRCA2 mutation have a 69% risk 30. Despite the 
similar cumulative breast cancer risk associated with these two mutations, they present 
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distinct risk patterns. Women with a germline BRCA1 mutation typically develop breast cancer 
at a younger age than those with germline BRCA2 mutations 30. Furthermore, germline BRCA1 
mutation carriers are significantly more likely to develop TNBCs compared to other breast 
cancer subtypes, with a 40% cumulative risk by the age of 80 years 31. This risk is much higher 
than that for germline BRCA2 mutation carriers and carriers of germline mutations in other 
breast cancer susceptibility genes 31. 

In TNBC patients, germline BRCA1 mutations are present in up to 16% of cases 32-35, and this 
prevalence is even higher in younger TNBC patients 19, 31, 32, 36. However, somatic BRCA1 
mutations are relatively rare, accounting for only 2% to 4% of the cases 37-39. Additionally, 
methylation in the BRCA1 promoter regions is also frequently observed in TNBC patients, 
contributing to about one-third of the cases 40. This methylation, along with mutations in the 
BRCA1 gene, can lead to a complete loss of BRCA1 function during tumorigenesis. Tumor 
cells with such loss often present a specific genomic profile known as “BRCAness” 29, and 
show an increased sensitivity to DNA damaging agents. This sensitivity has led to targeted 
therapies including platinum-based chemotherapy 41 and PARP inhibitors 42. Carboplatin, 
often in combination with anti-PD-(L)1 is currently recommended for patients with high-risk 
early, or metastatic TNBC in Europe and the USA 42. PARP inhibitors are indicated for germline 
BRCA1/2 carriers with high-risk early, or metastatic HER2-negative breast cancer 18. For stage 
I TNBC patients, standard chemotherapy remains the primary treatment. 

The association between the BRCA1-related biomarkers and TNBC prognosis has been 
extensively studied 19, 34, 43, 44. Yet, it is challenging to determine whether these associations 
are prognostic or predictive, or both, as most TNBC patients are treated with chemotherapy 
or targeted therapies. Disentangling the prognostic value of these BRCA1-related biomarkers 
from their predictive value could provide deeper insights into the disease course and find 
more suitable treatment strategies for these patients.

TUMOR-INFILTRATING LYMPHOCYTES 

In addition to genetic biomarkers, immune biomarkers are also extensively studied in TNBC 
due to their prevalence in this subtype of breast cancer, with tumor-infiltrating lymphocytes 
(TILs) emerging as the most important concept. TILs are immune cells that infiltrate tumor 
tissue, which reflect the patient’s adaptive immune response to the tumor and pre-existing 
immunity 45, 46. These cells, comprising mainly cytotoxic T cells along with helper T cells, B 
cells, macrophages, and NK cells 45, infiltrate both the tumor and surrounding microenvironment 
46. The presence and abundance of TILs differs across breast cancer subtypes, with the highest 
levels observed in TNBCs and HR-negative/ HER2-positive breast cancers 47. Notably, about 
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30% TNBC cases show at least 30% stromal TILs 48, suggesting a link between the abundance 
of TILs, genomic instability 46, 49 and a high tumor mutational burden 50, 51. It is therefore 
hypothesized that tumors with BRCA1/2 mutations have higher TILs levels. However, the 
relationship between TILs and BRCA1/2 mutations remains uncertain, with mixed findings 
52-55 potentially influenced by the mediating effect from the age at diagnosis 30, 48, 56.  

TILs offer significant value as a biomarker in oncology, particularly as their assessment can 
be performed on standard hematoxylin and eosin-stained tumor slides. This aligns with 
routine clinical pathology practices at low cost, making TILs assessment accessible even in 
low-income countries. In practice, TILs are divided into stromal TILs and intratumoral TILs, 
where the former are the immune cells infiltrating the fibrous stroma adjacent to tumor cells, 
and the latter refer to the immune cells that has direct contact with tumor cells. The two 
scores are highly correlated, while the stromal TILs show less interobserver variances and 
are thus more reliable to be used 57. Recent research has been trying to use artificial-intelligence 
algorithms for TILs scoring 58, 59, which may further lower the cost and reduce interobserver 
variation among pathologists. 

The very first study describing the positive association between increased TILs and favorable 
breast cancer prognosis was conducted over a century ago by two clinicians at Mayo Clinic 
60. This association was reaffirmed in later years, establishing a link between lymphocyte 
infiltrates and breast cancer prognosis 61, 62. In recent years, a growing body of research has 
delineated the prognostic value of TILs for TNBC and HER2-enriched subtypes 63-65. Notably, 
in early-stage TNBC, numerous studies have consistently demonstrated that higher TILs level 
is associated with improved clinical outcomes 48, 63-67, the results of which are summarized in 
the table below. These studies, mostly adhering to the international standard for stromal 
TILs assessment 57, have revealed remarkably consistent adjusted hazard ratios for TILs on 
overall survival, distant recurrence-free survival (or distant recurrence-free interval), and 
invasive disease-free survival (or disease-free survival) among TNBC patients. However, the 
majority of these studies focused on TNBC patients who received adjuvant chemotherapy, 
with one exception being the study from Park et al, which included a cohort of untreated 
TNBC patients, predominantly diagnosed after 50 years of age 67, thereby underrepresenting 
younger patients. 

Besides the prognostic value, the predictive value of TILs for chemotherapy has been widely 
studied in early-stage TNBC patients, and such value is likely to be regimen-specific. A previous 
study using data from two randomized trials with patients treated with anthracycline-based 
chemotherapy and chemotherapy-naïve patients suggested that no interaction effect was 



77235-233622-bw-Wang77235-233622-bw-Wang77235-233622-bw-Wang77235-233622-bw-Wang
Processed on: 15-1-2026Processed on: 15-1-2026Processed on: 15-1-2026Processed on: 15-1-2026 PDF page: 13PDF page: 13PDF page: 13PDF page: 13

1

13

General introduction 

observed between sTILs and chemotherapy, indicating no predictive effect of TILs towards 
anthracycline-based chemotherapy 65. However, studies involving taxane-based chemotherapy 
with or without carboplatin suggested that higher TILs are associated with a better pathological 
complete response 47, 68. Preclinical research has shown that taxanes can trigger T cells to 
release cytotoxic extracellular vesicles that directly kill cancer cells, giving such predictive 
value a biological mechanism backup 69. This novel finding points to a specific predictive value 
of T cells to taxane-based therapies and has recently been validated using data from the 
MATADOR trial. There was a significant interaction observed between sTILs (≥20%) and 
regimens with or without taxane 70.
 
A summary of adjusted hazard ratios of stromal tumor-infiltrating lymphocytes per 10% increment on different 
clinical outcomes

Author
(year)

Study type HR of 10% 
increment of 
sTILs on OS

HR of 10% 
increment of 
sTILs on iDFS 
or DFS

HR of 10% 
increment of 
sTILs on DDFS, 
DDFI or DRFS

Adjustment set

Loi et al., (2013) Clinical trial 
-based

0.83 
(0.71-0.98)

0.85 
(0.74-0.98)

- Age, tumor size, 
histologic grade, 
positive lymph nodes, 
type of surgery, 
radiotherapy, mode of 
drug administration, 
menopausal status

Adams et al., 
(2014)

Clinical trial 
-based

0.79 
(0.67-0.92)

0.84 
(0.74-0.95)

0.81 
0.68-0.97)

Age, tumor size, nodal 
status

Loi et al., (2014) Clinical trial 
-based

0.81 
(0.61-1.10)

- 0.77 
(0.61-0.98)

Age, tumor size, 
histologic grade, nodal 
status

Dieci et al., 
(2015)

Hospital-based 0.85 
(0.74-0.99)

- - Age, tumor size, 
histologic grade, nodal 
status, chemotherapy

Krishnamurti et 
al., 
(2017)

Hospital-based 0.95 
(0.91-1.00)

0.95 
(0.91-1.00)

- Tumor stage, 
Nottingham histologic 
grade, lymphovascular 
invasion, nodal status

Loi et al., (2019) Clinical 
trial-based

0.84 
(0.79-0.89)

0.87 
(0.83-0.91)

0.83 
(0.79-0.88) 

Age, tumor size, 
histologic grade, 
positive lymph nodes, 
treatment

Park et al., 
(2019)

Clinical trial and 
hospital-based

0.88 
(0.79-0.98)

0.90 
(0.83-0.98)

0.86
(0.77-0.95)

Age, tumor size, 
histologic grade, 
positive lymph nodes, 
radiotherapy

Leo-Ferre et al. 
(2024)

Mostly 
hospital-based

0.88 
(0.85-0.91)

0.92 
(0.89-0.94) 
[iDFS]

0.87 (0.84-0.90) 
[DRFS]

Age, tumor size, 
histologic grade, lymph 
node metastases, and 
radiotherapy

Abbreviation: HR = hazard ratio; sTILs = stromal tumor infiltrating lymphocytes; OS = overall survival; iDFS = invasive 
disease-free survival; DFS = disease-free survival; DDFS = distant disease-free survival; DDFI = distant disease-free 
interval 
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OTHER BIOMARKERS IN TNBC 

Several reviews have introduced a range of biomarkers in TNBC 71-74. These biomarkers, 
reflecting the distinct characteristics of TNBC, can be classified based on their functions and 
potential therapeutic values. For example, genetic biomarkers that regulate homologous 
recombination, including BRCA1-related biomarkers and BRCA2 mutation, are sensitive to 
DNA damaging agents and PARP inhibitors 71-73. Another important group of biomarkers 
includes the immune checkpoints, such as PD-1 and PD-L1, which have been widely recognized 
for their prognostic and predictive value 71, 74. Pembrolizumab, a PD-1 inhibitor, has been 
approved for TNBC in the US and Europe 75. Other biomarkers in TNBC, including epidermal 
growth factor receptor and vascular endothelial growth factor, which regulate cells proliferation 
and angiogenesis, and TP53, which regulates apoptosis, have been extensively reviewed 71-73 
and will not be discussed in this thesis.

PROGNOSTICATION MODELS

Using a single prognostic biomarker to accurately classify patients’ risk is challenging; therefore, 
researchers often combine different biomarkers into a single tool to aid in risk classification. 
For example, the TNM cancer staging system integrates the extent of the tumor, extent of 
spread to the lymph nodes, and presence of metastasis, providing a more comprehensive 
risk classification. Similarly, a statistical model can combine different prognostic biomarkers, 
providing a predicted probability of a clinical outcome. Such predictions about one’s future 
health condition or the outcome of a disease over a specific period are commonly referred 
to as prognosis 66, 76. The statistical model which integrates different clinical characteristics 
to estimate an individual’s prognosis is referred to as a prognostication model 76. Importantly, 
in many countries and regions, including European Union 77 and the United States 78, 
prognostication models are classified as medical devices. Therefore, they must undergo 
extensive evaluation—including model validation, and assessment of clinical utility—to 
demonstrate their positive impact on clinical decisions before being implemented. 

Model validation encompasses both internal and external processes. Internal validation 
evaluates the model’s performance in a population similar to that used during the model’s 
development 79, using approaches such as cross-validation and bootstrapping. This process 
is crucial for preventing overfitting, especially in cases of small sample size and low event 
numbers 80. In contrast, external validation tests the model’s performance in a different 
population, such as different settings, regions, and time periods, thereby assessing the model’s 
generalizability 81. Both internal and external validation focus on calibration and discrimination. 
Calibration measures the concordance between observed outcomes and model predictions, 
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with recommended methods including the observed-to-predicted ratio, calibration slope, 
and calibration plot. Discrimination, on the other hand, reflects the model’s ability to 
differentiate between high- and low-risk patients, typically using metrics like c-index 82, 83, and 
area under the receiver operating characteristic curve 84.

Clinical utility indicates the benefit from model-based decisions to individual patients or to 
the healthcare system compared to the standard of care. The gold standard of showing the 
clinical utility needs randomized trials 85, 86. For example, genomic tests like TAILORx and 
MammaPrint have undergone randomized clinical trials to demonstrate their clinical utility 
87-89. However, such trials are rarely conducted in prognostication models, which might be 
due to substantial demands on time and resources, the necessity for large sample sizes, and 
ethical concerns regarding patient willingness to participate in randomized studies. Therefore, 
theoretical clinical utility based on observational studies can provide valuable insights into 
the actual clinical utility. In the context of a prognostication model designed to facilitate 
therapy de-escalation, the demonstrated theoretical clinical utility of the model may motivate 
a single-arm trial to evaluate the safety of therapy de-escalation. Methods to calculate 
theoretical clinical utilities include using risk reclassification tables to calculate net 
reclassification index 90, decision curve analysis to compare the net benefits 91, 92, and emulating 
target trials 86. 

Breast cancer prognostication models 
In clinical practice, prognostication models can help to identify low-risk patients who have 
good prognosis without systemic treatment, so that these low-risk patients can avoid the 
side effects of the treatment to exchange for the small potential benefit 85. In breast cancer, 
prognostication modeling has been a popular research topic. A recent systematic review 
showed that from 1982 to 2016, 58 breast cancer prognostication models were published, 
predominantly using Cox regression models 93. A more recent scoping review identified 21 
models published since 2008, which aim to support decisions related to surgery, radiation 
therapy, and systemic therapies 94. Both reviews highlighted that age at diagnosis, tumor size, 
tumor grade, and nodal status are the most used predictors in these models 93, 94. 

Among all the published breast cancer prognostication models, AdjuvantOnline 95, CancerMath 
96, and PREDICT 97 have been the most widely recognized and validated tools used by clinicians 
to assess patient outcomes and guide treatment decisions. However, AdjuvantOnline, once 
a popular choice, is no longer available online. Similarly, CancerMath, despite the initial 
promise, has not been updated since its publication in 2009, limiting its applicability in the 
context of current clinical practices and emerging research findings. This makes the PREDICT 
model the most updated and available prognostication model for breast cancer. 
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It is important to note that, while the PREDICT research team refers to the model as a 
prognostic or prognostication model, it offers not only breast cancer prognosis but also 
treatment benefits, albeit using different sources of evidence for prognostication and 
prediction. The model is a cause-specific Cox regression model derived from a UK 
population-based cohort. The model was initially published in 2010 98, followed with multiple 
model updates and recalibration 97, 99, 100. The most used model version 2.2 and 2.3 includes 
separate algorithms for ER-negative and ER-positive tumors. The ER-negative algorithm 
considers age at diagnosis, tumor size, number of positive lymph nodes, tumor grade, and 
HER2 status. The ER-positive algorithm includes these predictors plus detection mode and 
Ki67. Besides, the model extracted the effect of hormone therapy, extended tamoxifen 
therapy, trastuzumab, bisphosphonates, second, and third generation chemotherapy from 
multiple published or unpublished meta-analyses of clinical trials 101-103, and constrained the 
effect in the model. These two algorithms provide predictions for breast cancer-specific 
survival at multiple time points, while non-breast cancer survival is calculated separately 
using age as the sole predictor. Overall survival prediction is then calculated as the product 
of breast and non-breast cancer survivals.

Recent validation studies have shown that PREDICT in general performs reasonable across 
different patient populations 104-109. However, there are notable gaps in its application for 
making treatment decisions. Firstly, most validation studies fall short of directly assessing 
the clinical utility of PREDICT. Theoretical methods such as decision curve analysis could offer 
insights into its potential clinical utility, although it is seldom applied in validation studies. 
Secondly, the predictions of PREDICT for treatment effect for young patients might not be 
entirely accurate, partly due to the scarcity of data from systemic treatment-naïve young 
patients. Lastly, the model’s predictors do not adequately address the diversity found within 
the tumor microenvironment and genomic profiles of TNBC patients, limiting its ability to 
capture the full spectrum of heterogeneity in these patients.

AIM AND THESIS OUTLINE

The goal of this thesis is to improve risk classification regarding prognosis for TNBC patients. 
We focused on young, lymph node-negative TNBC patients due to the potential overtreatment 
in this group and the severe consequences of overtreatment in young women. Meanwhile, 
data from general TNBC patients were also collected for prognostication. The table below 
listed the data sources that were used in this thesis. In Chapter 2, we first externally validated 
the PREDICT model in young, node-negative breast cancer patients who did not receive 
systemic treatment, i.e. the PARADIGM cohort. In Chapter 3, we investigated the prognostic 
value of stromal TILs in the TNBC patients from the PARADIGM cohort. In Chapter 4, we 
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investigated the association between the BRCA1-related biomarkers, including germline 
BRCA1 mutation, somatic BRCA1 mutation and BRCA1 promoter methylation, and long-term 
clinical outcomes in the TNBC patients from the PARADIGM cohort. In addition, we refined 
the analysis in Chapter 3 with more complete data in the BRCA1 status. We also commented 
on a systematic review and meta-analysis on the association between BRCA1/2 mutations 
and breast cancer outcomes, with a summary of results from the systematic reviews and 
meta-analyses published between 2010 and 2021. To make the knowledge we generated 
into practice, in Chapter 5 we incorporate stromal TILs into the PREDICT model to improve 
the model’s performance and clinical utility in TNBC patients. We used data from pooled 
treated and untreated cohorts to update the model and performed leave-one-region-out 
cross-validation. We made our conclusion in Chapter 6, where we summarized the main 
findings in the previous chapters, discussed the strengths, limitations and potential biases 
of the included studies, along with their clinical relevance and future perspectives. 
 
Data sources used in this thesis

The PARADIGM cohort The pooled treated 
cohort

The pooled untreated 
cohort a

Country The Netherlands International International

Study type Population-based Clinical trial and 
hospital-based

Population- and 
hospital-based

Chapter 2, 3, 4, 5 5 5
Number of patients 2286 1806 1892
Number of TNBC 485 1806 1892
Median years of age at 
diagnosis (range)

36
(22 - 39)

50 
(25 - 85)

55
(25 - 85)

Year of diagnosis 1989-2000 - 1980-2020
Chemotherapy treatment
Yes 0% 100% 0%
No 100% 0% 100%

a The pooled untreated cohort includes 443 patients from the PARADIGM cohort
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