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INTRODUCTION
Huntington Disease is an autosomal dominant inherited brain disorder caused by 
a pathologically expanded Cytosine-Adenine-Guanine (CAG)-repeat (≥36) in the 
Huntingtin (HTT) gene on the short arm of chromosome 4 (4p16.3).1 The expanded 
CAG-repeat codes for a polyglutamine (polyQ) stretch in exon 1 of the Huntingtin 
protein which causes the deposition of huntingtin protein (HTT) N-terminal 
fragments.2 The repeat sequence is unstable and therefore prone to expansion, 
resulting in anticipation over subsequent generations.3 This is particularly the case 
when the expanded gene is inherited via the paternal line.4 

HD pathology is characterized by gradual atrophy, reactive changes and aggregates 
in the brain, most prominent in the neostriatum but subsequently evident in other 
deep brain structures, neocortex, brainstem, and cerebellum as well.5,6 As in 
gametogenesis, somatic CAG-repeat instability is seen in all affected brain areas.3,7,8 

HD is a rare disorder, with an estimated prevalence of 4-6 per 100,000 in the 
Caucasian population.9,10 Clinically, patients present with a variety of neurological 
symptoms. These are mainly in motor, neurocognitive and psychiatric domains, but 
can also be experienced in autonomic and metabolic domains.11,12 Being an inherited 
disorder, all HD-Expanded Gene Carriers (HDEGC) carry the expansion in the HTT 
gene ever since conception. Yet the mean age at which HDEGC become clinically 
manifest is between 30-50 years, with a wide range of 1.5 – 90 years.11,13,14 The age 
at disease onset of HD is negatively correlated with the expanded HTT CAG-repeat. 
The mean survival after clinical onset is 17-20 years.11 The most common cause of 
death is pneumonia, followed by suicide.11 Apart from symptomatic treatments that 
may alleviate some of the symptoms that are seen in HD patients, there is currently 
no cure for the disease.15 

Juvenile-onset and Pediatric HD
Juvenile-onset Huntington Disease (JHD) is an arbitrarily defined term that represents 
a small and heterogeneous group of HD patients with motor disease onset ≤20 
years of age, who are thought to represent approximately 1-5% of the total number 
of clinically manifest HD patients.16,17 JHD patients can be grossly subdivided in 
childhood-onset JHD (cJHD; onset between 0-10 years of age) and adolescent-
onset JHD (aJHD; onset between 11 and 20 years of age) based on differences 
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in developmental stage, clinical disease characteristics, disease progression and 
survival (Figure 1).18

In recent years, there has been debate concerning  the definition and use of 
nomenclature for the JHD population, which was mainly driven by the presumed 
number of JHD patients and the forthwith need to come with a pediatric investigation 
plan for therapeutical trials in pediatric HD patients (≤17 years).19 This led to the 
introduction of the new term ‘Pediatric Huntington Disease ‘(PHD), which is used 
to refer to a proportion of JHD patients with clinically manifest disease and who 
are still under the age of 18 years (Figure 1).19  The term PHD therefore excludes 
JHD patients with disease onset in the pediatric age range, but who have aged into 
adulthood. Up to now, it is unknown what proportion of JHD patients falls under the 
PHD category, but based on the prevalence estimates for  the (J)HD population, it is 
expected to be low. In turn, this outcome largely influences the way investigational 
trials should be designed in both the JHD and PHD population. 

Figure 1. Graphic illustration for Pediatric and Age at Onset-defined HD subtypes.
The term JHD relates a certain age at onset of clinical disease characteristics. The JHD population 
can be subdivided in childhood-onset (red bar) and adolescent-onset (green bar) JHD patients. 
Note the steeper slope of disease progression and shorter survival in cJHD patients as compared 
to aJHD and AHD patients (blue bar). cJHD patients do not reach adulthood in many cases. The 
term Pediatric Huntington Disease (PHD) is only classified for clinically manifest JHD patients that 
are still in the pediatric age range. Note the trajectory of aJHD patients that can be referred to as 
a PHD patient at one point in time, and un adult having clinically manifest Huntington Disease in 
another point of time. 
This figure has been created with Biorender.com (2023) by H. Bakels for the purpose of the 
current thesis. 
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Genotype-Phenotype correlation
The age at disease onset and severity of HD is negatively correlated with the expanded 
HTT CAG-repeat, explaining approximately 60% of variability in age onset in Adult-
onset HD (AHD) cohorts and up to 84% in a JHD cohort.20 CAG-repeats ranging 
between 36 and 39 may give rise to an HD phenotype, generally on geriatric age, 
and are referred to as reduced-penetrance HD-causing alleles.21 Assuming a normal 
life span, CAG-repeats ≥40 invariably lead to an HD phenotype. Approximately 50% 
of JHD cases have a CAG ≥60, even exceeding 80 CAGs in ultra-rare cJHD cases.22 
Although JHD cases with CAG-repeats in the lower abnormal CAG-range (CAG 40-
50) have been described,14 the likelihood of developing a JHD phenotype exceeds 
5% in case of a CAG ≥51.23 

Other genetic modifiers influencing age at onset and disease severity consist of 
cis-acting loss-of mHTT CAA-interruption,24 and trans-acting single nucleotide 
polymorphisms (SNPs) in DNA-repair genes (e.g. FAN1, MLH1, MSH3) driving the 
rate of somatic CAG-repeat instability.25 In addition, it has been suggested that 
the relative size of CAG-repeat length on the physiological and mutant HTT allele 
potentially causes dominant negative loss-of normal HTT function and is, therefore, 
another genetic factor affecting the clinical phenotype.26 

Problem definition
JHD is a rare subtype that represents one extreme end of the HD spectrum. As we 
have entered the era of investigational therapies aiming to modify disease progression 
in HD patients,15 there are a number of open questions that require answering so 
that the JHD population is not left behind in the badly needed treatment options 
that are currently being investigated. From what is currently known largely based on 
JHD case series, disease characteristics in the JHD population do not always align 
with what is known in the prototypical adult-onset HD (AHD) form of the disease. 
However, structural comparison between these Age at Onset-defined HD (AO-
HD) subtypes has been sparsely performed. This comparison is needed to better 
understand underlying causes for such differences, to investigate if (standardized) 
investigational methods are reliable in the JHD population and, subsequently, how 
to treat this particular population. Therefore, the main research question driving 
this thesis was: “How do the JHD subtypes relate to the continuum of HD disease 
characteristics and are there instances in which we should address it as a separate 
disease entity?” In the following two paragraphs we will address this research 
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question more specifically in relation to the phenotype of JHD and the function and 
pathomechanisms of the (mutant) Huntingtin gene. 

Clinical phenotype
HD is characterized by motor, neurocognitive, psychiatric and behavioral symptoms, 
leading to loss of independence and eventually death.11 JHD patients are not 
different from AHD patients in this perspective, but differences in the order and 
severity of symptoms and signs are eminent. In addition, certain atypical disease 
characteristics are specifically seen in JHD patients. In general, JHD patients have 
an early onset of hypokinetic-rigid syndrome including dystonia, neurocognitive - 
and behavioral changes.27 In contrast, the prevalence of chorea is lower in the JHD 
population.18 Yet from this clinical perspective, the distinction between the cJHD 
and aJHD subtype becomes more relevant. As said, there are clear differences 
between these JHD subtypes in relation to the developmental stage these patients 
are in, the appearance of clinical disease characteristics and the severity and 
progression of the phenotype. Whereas aJHD patients are thought to be in closer 
clinical resemblance with the AHD population, part of cJHD patients present with 
an atypical and more severe form of the disease in general. This is mirrored by an 
early onset of disease with neurodevelopmental delays or regression as presenting 
disease characteristic, more severe and faster progression of motor symptoms over 
time, epilepsy, and a resulting shorter survival with death often occurring before 
reaching adulthood.14,18,27

There is a lack of data comparing Age at Onset-defined Huntington’s Disease (AO-
HD) subtypes in terms of prevalence, severity, and progression of clinical features. 
Such comparisons are essential to understand the underlying causes of these 
differences, including developmental stage and CAG-repeat length-dependent 
pathomechanisms. These clinical differences have important implications for 
preparing future treatments aimed at modifying disease progression. Key questions 
remain regarding the ability of JHD and PHD populations to participate in therapeutic 
trials, as well as the applicability of prediction models, assessment tools, and 
biomarkers that are only validated for adult HD populations.

Huntingtin
HTT is a highly conserved gene and the HTT protein has an important function in 
neurodevelopment. It has been reported to play a role in neuroectoderm formation,28 
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neurogenesis,29 spindle orientation,30,31 endocytosis,32 transcriptional regulation,33 
functional circuitry orchestration34 and maintenance of cell morphology.35,36 
A neurodevelopmental mechanism-of-interaction involving Brain-Derived 
Neurotrophic Factor (BDNF) has been proposed through the interaction of HTT with 
Huntingtin-associated protein 1.37 BDNF is an important regulator of apoptosis and 
differentiation in neurons.38 The CAG-repeat sequence in the HTT gene is located 
in exon1 and the N-terminus of the protein contains 3 domains. First there is a 17 
amino acid tail H(HTTNT) that is followed by the variable CAGn-CAA-CAG-repeat 
sequence coding for the polyQ domain and thereafter a variably long proline-rich 
domain (PRD).39 Functions thought to relate to HTT exon1 are membrane targeting,40 
chaperone binding,41-43 nuclear export and trafficking,44,45 regulatory post translational 
modifications,46 serving as a structural base for oligomer formation,39,47,48 and 
protein binding.49 It has been hypothesized that increasing the HTT CAG-repeat in 
the physiological human range (13-35) exerts advantageous effects on gene and 
therefore brain function.50-52

A multitude of molecular mechanisms, through which mutant HTT (mHTT) causes 
HD pathogenesis,  have been postulated over the years.53 A dominant toxic gain-
of-function hypothesis of mHTT has been the main line of reasoning and involves 
conformational mHTT protein changes causing the deposition of mHTT N-terminal 
fragments and protein aggregation.2,54,55 This protein accumulation together with 
oxidative stress, inflammation and transcriptional deregulation are thought to be the 
most important mechanisms through which toxicity leads to regional cell dysfunction 
and subsequently loss and atrophy.15,39 From what is known in relation to the JHD 
phenotype, neuropathological disease characteristics are generally more severe and 
widespread when compared to the AHD phenotype.56 Questions remain, however, 
how this relates to clinical measures of disease progression, such as clinical disease 
burden and disease duration. Additionally, loss or modulation of physiological HTT 
function through dominant-negative loss-of-function effects is likely to contribute to 
the clinical picture of HD as well.29,50,57  As described above, HTT function is essential 
for neurodevelopment and aberrations in this process can potentially cause a 
variety of clinical disease characteristics. More importantly, JHD patients not only 
experience clinical disease characteristics during postnatal brain development, 
they also more often experience clinical disease characteristics that relate to faulty 
neurodevelopment, such as developmental delay, epilepsy and behavioral disorders. 
This directly highlights the importance of a pathophysiological perspective to the 
JHD phenotype. This perspective raises questions as to (1) what pathomechanisms 
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contribute to a certain disease characteristic, (2a) how differences between AO-
HD phenotypes are caused by different contributions of pathomechanisms or (2b) 
by differences in the interaction of ongoing neurodevelopmental processes with 
concurrent pathomechanisms in pediatric HD cases.

AIMS
This thesis focuses on the JHD and PHD population, using a translational approach 
to address questions regarding their epidemiology, clinical characteristics, 
neuropathology, and pathophysiology, in comparison to prototypical HD in 
adults. The epidemiology and competence of the JHD and PHD population to 
participate in therapeutical trials was explored (Chapter 2). The known clinical and 
neuropathological differences between JHD subtypes and AHD were reviewed and 
placed in a pathophysiological and neurodevelopmental perspective (Chapter 3). 
We performed comparative analyses on the occurrence, severity and progression of 
clinical characteristics between cJHD, aJHD and AHD cases (Chapter 4). We offer 
insight in the neuropathology of an aJHD brain donor who died mid-stage disease 
(Chapter 5). Subsequently, neuropathologic changes in the glucose transporter 
GLUT1 were found in the brains of cJHD donors, in contrast to findings in aJHD 
and AHD brain donors (Chapter 6). Finally, we discuss our study results in relation 
to the broader overarching perspective and offer future directions for JHD-related 
research (Chapter 7).
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