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ABSTRACT

Tuberculosis (TB) continues to pose a global threat for millennia, currently affecting 
over 2 billion people and causing 10.6 million new cases and 1.3 million deaths annually. 
The only existing vaccine, Mycobacterium Bovis Bacillus Calmette-Guérin (BCG), 
provides highly variable and inadequate protection in adults and adolescents. This 
study explores newly developed subunit tuberculosis vaccines that use a multistage 
protein fusion antigen Ag85b-ESAT6-Rv2034 (AER). The protection efficacy, as well as 
in vivo induced immune responses, were compared for five vaccines: BCG; AER-CpG/
MPLA mix; poly(D,L-lactic-co-glycolic acid) (PLGA); lipid-PLGA hybrid nanoparticles 
(NPs); and cationic pH-sensitive liposomes (the latter three delivering AER together 
with CpG and MPLA). All vaccines, except the AER-adjuvant mix, induced protection 
in Mycobacterium tuberculosis (Mtb)-challenged C57/Bl6 mice as indicated by a 
significant reduction in bacterial burden in lungs and spleens of the animals. Four 
AER-based vaccines significantly increased the number of circulating multifunctional 
CD4+ and CD8+ T-cells producing IL-2, IFNγ, and TNFα, exhibiting a central memory 
phenotype. Furthermore, AER-based vaccines induced an increase in CD69+ B-cell 
counts as well as high antigen-specific antibody titers. Unexpectedly, none of the 
observed immune responses were associated with the bacterial burden outcome, 
such that the mechanism responsible for the observed vaccine-induced protection 
of these vaccines remains unclear.  These findings suggest the existence of non-
classical protective mechanisms for Mtb infection, which could, once identified, 
provide interesting targets for novel vaccines.
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1. INTRODUCTION

The WHO estimates that approximately one quarter of the world’s human population 
is latently infected with TB.1 Dubbed the ‘white plague’, pulmonary TB is the primary 
transmissible form caused by Mycobacterium tuberculosis (Mtb).2 In 2022, 1.3 million 
died from TB, including 167,000 with HIV, making it a leading cause of death in this 
group of patients, and the second leading infectious disease killer after COVID-19, with 
the major cause of death due to antibiotic resistance.1 TB is curable and preventable, 
but multidrug-resistant TB (MDR-TB) is an increasing public health threat.1 The WHO 
aims to end the TB epidemic by 2030 as part of the United Nations’ Sustainable 
Development Goals (SDGs).3,4 As outlined by the End TB Strategy and the Western 
Pacific regional framework to end TB: 2021-2030,5 the main tools to achieve this goal 
involve point-of-care approaches, early and easily accessible diagnostics, shorter 
and more effective treatment regiments, comprehensive treatment of all people 
with TB, including those with MDR-TB, management of co-morbidities, preventative 
treatment, and vaccination.3,5

Vaccination is indispensable for preventing infectious diseases like TB. Vaccines 
have enabled the eradication of smallpox and rinderpest and, more recently, have 
been essential in the fight against SARS-CoV-2.6–8 The only licensed TB vaccine 
Mycobacterium Bovis Bacillus Calmette-Guérin (BCG), unfortunately offers highly 
variable and often insufficient protection.9–11 Therefore, there is an unmet demand 
for better vaccines against TB.9

Subunit vaccines, produced with synthesized or purified antigens, DNA, or RNA, are 
safe and suitable for use in wide populations, including those with compromised 
immunity.12,13 This broad applicability is especially important for TB in countries 
with high HIV rates.5 However, they often lack immunogenicity, making further 
improved delivery system development essential for subunit vaccines.14,15 Vaccine 
delivery systems use biocompatible nanoparticles (NPs) that prevent or limit antigen 
degradation and elimination, allow co-encapsulation of antigens with (molecular) 
adjuvants, and enhance uptake by antigen-presenting cells (APCs).16–19 The work 
presented in this paper investigates and compares the immunological and biological 
effects of poly(D,L-lactic-co-glycolic acid) (PLGA), lipid-PLGA hybrid NPs, and cationic 
pH-sensitive liposomes as particulate delivery systems for protein-based TB vaccines.
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PLGA is one of the most extensively studied polymers for numerous biomedical 
applications. It is available in varied compositions and molecular weights. Its 
versatile characteristics make it suitable for tissue engineering and sustained-
release drug and vaccine delivery systems. PLGA has excellent safety records, 
tunable degradation, release properties, and high versatility. This has led to its wide 
adoption in several biomedical applications and longstanding approval by the US 
Food and Drug Administration for human use including drug delivery, and various 
biomedical products ranging from sutures to implants.16,20–25 It biodegrades through 
hydrolysis into non-toxic metabolic by-products lactic and glycolic acid.22 Previous 
studies have demonstrated the efficacy of antigen- and adjuvant-loaded PLGA 
nanoparticles in enhancing cell-mediated immune response in mice.26–33 

Cationic liposomes are potent delivery systems that serve as particulate 
adjuvants.12,18,34–36 Several liposome-based vaccines have been approved for clinical 
use.37–39 Specifically, cationic liposomes can enhance immune responses, inducing 
the maturation of DCs and triggering T-cell responses, making them a versatile 
vaccination platform.40–42 

pH-sensitive liposomes are a subclass of (cationic) liposomes that respond to pH 
changes by altering their molecular bilayer organization upon a decrease in pH. 
When exposed to an acidic environment, bilayers destabilize, which results in a 
fusion of the liposome with the endosomal membrane, thus releasing their cargo. 
This allows them to deliver antigens and adjuvants into a cell’s cytosol, avoiding 
endosomal degradation.43–47 This unique ability to escape rapid degradation has 
potential vaccination benefits.48 Unlike non-pH-sensitive liposomes that degrade 
inside the endosome,49,50 pH-sensitive liposomes can protect antigens and facilitate 
cross-priming,49,51 which could significantly impact the type of immune responses 
induced by a vaccine.52 

Lipid-PLGA hybrid NPs are complex nanostructures that have been successfully 
used in drug and vaccine delivery in preclinical research.53–57 These hybrid NPs 
comprise a biodegradable PLGA core enveloped in a lipid shell that encapsulates 
drugs or antigens. They combine the properties of both PLGA NPs and liposomes. 
PLGA provides a rigid and solid core that allows sustained controlled release of 
antigens and adjuvants whereas the (cationic) lipid shell overcomes the lack of 
the immunogenicity of PLGA, facilitates uptake by APCs, reduces the degradation 
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rate of the PLGA core by limiting water diffusion into the particle, thus ensuring 
controlled release kinetics.56–59 In vaccine applications, cationic lipid-PLGA hybrid 
NPs have demonstrated enhanced immunogenicity and induced humoral and 
cellular immune responses.59–65 

In this study, the immunogenicity and effectiveness of tuberculosis vaccines 
prepared with NP-based delivery systems were compared to the antigen-adjuvant 
mixture in mice. The fusion protein antigen Ag85B-ESAT6-Rv2034 (AER) combined 
with adjuvants monophosphoryl lipid A (MPLA), cytosine-phosphate-guanine motifs 
oligodeoxynucleotides (CpG ODN) were used in the formulation. AER consists of 
Ag85B, an immunodominant antigen rich in epitopes offering enhanced protection 
when combined with other antigens;66 ESAT6 which is a potent immunomodulatory 
antigen that is not expressed by BCG;21,67 both used in vaccines currently in clinical 
trials: H1:IC31,68 and H56:IC31;69 and Rv2034 which is a potent in vivo expressed Mtb 
antigen.70 AER mixed with CAF09 adjuvant induced protection in HLA-DR3 transgenic 
mice and in guinea pigs.71 CpG is a Toll-like receptor (TLR) 9 ligand that induces 
robust Th1 responses, and MPLA, a TLR4 agonist, induces Th1 and Th17 responses.72–74 
A combination of both has been successfully used in several phase II and III clinical 
trials, and it was demonstrated safe and effective in the induction of robust T-cell 
and antibody responses.75–79 The novel tuberculosis subunit vaccines developed in 
this research were tested in vitro on primary human APCs for immunogenicity and 
in vivo on C57Bl/6 mice with intranasal H37Rv Mtb infection to quantify protection, 
specifically CFU reduction in lungs and spleens. Immune responses in vaccinated, 
non-Mtb challenged mice were analyzed using a 27-marker spectral flow cytometry 
for CD4+, CD8+ T-cells, and B-cell responses. Additionally, serum antigen-specific 
antibody titers were measured. 

2. MATERIALS AND METHODS

2.1 Materials

1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), 1,2-dioleoyl-sn-glycero-3-ethyl-
phosphocholine chloride salt (EPC), 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine 
(DOPE), N-(4-carboxybenzyl)-N,N-dimethyl-2,3-bis(oleoyloxy)propan-1-aminium 
(DOBAQ), and monophosphoryl lipid A, PHAD (MPLA) were purchased from Avanti 
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Polar Lipids, Inc. in the USA. Figure S1 illustrates the chemical structures of these 
lipids. Class B CpG oligonucleotide ODN1826 was acquired from InvivoGen (the 
Netherlands).

PLGA (acid terminated, lactide:glycolide 50:50, Mw 24,000-38,000) was purchased 
from Merck Chemicals B.V. (the Netherlands). Interconnect tees for use with 360 μm 
outer diameter capillaries, one-piece fittings (for 360 μm capillaries and for 1/16” 
tubings), two-piece adapters (360-  μm-to-1.6-mm and 1.6-mm-to-360-  μm), and 
Luer-lock adapters (for use with 360 μm capillaries and 1/16” tubings), were obtained 
from Mengel Engineering (Denmark).  Polyether ether ketone capillary tubing (inner 
diameter of 0.02” and outer diameter of 1/16”), was bought from Fisher Emergo B.V. 
(the Netherlands). A Teflon tube (1/16”) was sourced from Waters Chromatography 
B.V. (the Netherlands). TSP Standard polyimide-coated fused silica tubings, (75 μm 
and 250 μm inner diameters, and 360 μm outer diameter) were obtained from BGB 
Analytik Benelux B.V. (the Netherlands).  Polytetrafluoroethylene Leur-lock Hamilton 
gastight (1710TLL 100 μL, 1001TLL 1 ml, and 1010TLL 10 ml) syringes were purchased 
from Merck (Germany). 

Recombinant fusion protein AER was produced as described by Franken et al.80 
Briefly, genes from Mtb (lab strain H37Rv) were amplified using PCR with genomic 
DNA. The amplified genes were cloned into bacteria using an N-terminal hexa-
histidine (His) tag utilizing Gateway technology (Invitrogen, USA), and their 
successful insertion was confirmed through sequencing. The antigen AER was then 
expressed in Escherichia coli strain BL21 (DE3) and purified. Its quality was assessed 
through gel electrophoresis followed by Coomassie brilliant blue staining and 
with an anti-His antibody (Invitrogen, USA) Western blotting, which evaluated the 
size and purity of the protein. The ToxinSensor Chromogenic Limulus Amebocyte 
Lysate (LAL) Endotoxin Assay Kit (GenScript, USA) was employed to determine the 
endotoxin contamination level in the protein, revealing levels below 50 endotoxin 
units per 1 mg of protein. 

2.2 Liposome production

Liposomes were made using the thin-film hydration method, as described 
previously.81 Lipids were dissolved in chloroform and diluted from 25 mg/ml stocks 
to 10 mg per batch. The composition used was DOPC:DOPE:DOBAQ:EPC in a molar 
ratio 3:5:2:4. The lipid solution was placed in a flask and chloroform was removed 
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using a Buchi rotavapor R210 (Switzerland). The lipid film was then rehydrated with 
1 ml of 200 μg/ml AER in 10 mM phosphate buffer (PB) at pH 7.4 to create AER-
containing liposomes. These were downsized with Branson sonifier 250 (US) using 
an eight-cycle sonication program comprising 30 seconds of sonication at 10  % 
amplitude, followed by a 60-second break, and centrifuged (at 500 g for 3 min) to 
remove metal particles. The liposomal suspensions (5 mg/ml lipids) were transferred 
to new tubes and stored at 4 °C overnight. The final product contained 40 μg/ml 
AER and 2 mg/ml lipids after dilution with 10 mM PB.

2.3 PLGA NP preparation

The PLGA NPs were produced using a modular microfluidic system. A three-
component system was used for PLGA NPs. Briefly, the contents of two syringes, 
Syringe 1 and 2, met each other in a T-flow, subsequently, the combined fluid met 
the contents of a third syringe, Syringe 3, in a co-flow, where the combined fluid 
constitutes the inner flow and the content of Syringe 3 constitutes the outer flow. 
The three syringes contained: 1) 3.33 mg/ml AER solution and 1 mg/ml CpG in water 
for injection, 2) 5 mg/ml PLGA and 12.5 μg/ml MPLA in acetonitrile, and 3) water for 
injection. The flow rates for the fluids in Syringe 1, 2, and 3 were set to 37.5, 1250, 
and 4955 μl/min, respectively, obtaining a total flow rate of 6242.5 μl/min, and final 
concentrations of 20 μg/ml AER, 6 μg/ml CpG, 2 mg/ml PLGA, and 2.5 μg/ml MPLA. 
The suspensions were set under a stream of nitrogen to evaporate the acetonitrile 
and concentrate the formulations. Before the characterization of particles and 
further use in vitro and in vivo, a concentrated solution of PB was added to obtain a 
concentration of 10 mM PB in the final product (40 μg/ml AER, 12 μg/ml CpG, 2 mg/
ml PLGA, and 5 μg/ml MPLA). 

2.4 Lipid-PLGA hybrid NP preparation

The lipid-PLGA NPs were produced using the same method as PLGA NPs with 
modifications. A four-component system was used in this case. As described above, 
AER solution with CpG was combined with PLGA (without MPLA) solution in an 
interconnected tee. The combined flow (1287.5 μl/minute) was then directed into 
another tee, where it was combined with water for injection (at 3712 μl/minute), and 
5 mg/ml lipid solution of DOPC:DOPE:DOBAQ:EPC (3:5:2:4) containing 12.5 μg/ml 
MPLA in ethanol at a flow rate of 1250 μl/minute. The total flow rate was 6249.5 μl/
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minute. The produced suspension was then evaporated and twice up-concentrated 
under nitrogen flow. The final product contained 40 μg/ml AER, 12 μg/ml CpG, 2 
mg/ml PLGA, 2 mg/ml lipids, 5 μg/ml MPLA, and 10 mM PB.

2.5 Determination of size and Zeta-potential

The hydrodynamic diameter (Z-average size) and polydispersity index (PDI) of the 
liposomal formulations were determined with dynamic light scattering (DLS), and 
zeta potential was measured using laser Doppler electrophoresis as described 
previously.81 Liposomes were diluted to 0.25 mg/ml lipid in 10 mM PB at pH 7.4 and 
added to 1.5 ml VWR Two-Sided Disposable PS Cuvettes (VWR, the Netherlands). 
Measurements, conducted in triplicates with at least ten runs at 20  °C, were 
performed using a Nano ZS Zetasizer with 633 nm laser and 173° optics (Malvern 
Instruments, UK). The data were analyzed with Zetasizer Software v7.13 (Malvern 
Instruments).

2.6 Differentiation of human monocyte-derived dendritic cells 
(MDDCs) and macrophages (MDMFs)
After written informed consent, PBMCs were obtained from healthy donors’ 
buffy coats (Sanquin Blood Bank, Netherlands) as described previously.81 Using 
the Ficoll-based density gradient centrifugation method, PBMCs were separated, 
and CD14+ cells were isolated via the magnetic cell isolation method (MACS) with 
an autoMACS Pro Separator (Miltenyi Biotec BV, the Netherlands). These cells 
were then differentiated into DCs, and type 1 and 2 (M1 and M2, respectively) 
macrophages over six days using cytokines. MDDCs were generated with 10 ng/ml 
recombinant human granulocyte-macrophage colony-stimulating factor (GM-CSF; 
Miltenyi Biotec BV, the Netherlands) and 10 ng/ml recombinant human interleukin 
4 (IL-4; Peprotech, USA). For M1 macrophages we used 5 ng/ml GM-CSF, and for 
M2 macrophages we used 50 ng/ml macrophage colony-stimulating factor (M-CSF; 
Miltenyi Biotec BV, the Netherlands) (Verreck et al., 2006). Cells were cultured at 37 °C 
/ 5 % CO2 in Roswell Park Memorial Institute (RPMI) 1640 medium, supplemented 
with 10 % fetal bovine serum (FBS), penicillin (100 units/ml), streptomycin (100 μg/
ml), and 2mM GlutaMAX (Gibco, Belgium). MDDCs were harvested through 
pipetting, while for macrophages, we used trypsinization (Gibco, Belgium). 
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2.7 Uptake study

To assess the uptake of liposome, MDDCs, M1, and M2 MDMFs were cultured in 
96-well plates with round bottoms (CELLSTAR, Greiner Bio-One GmbH, Germany), 
each well containing 30,000 cells. These cells were then treated with 1  % (v/v) 
empty fluorescent liposomes containing 0.1 % mol% of 1,2-dioleoyl-sn-glycero-3-
phosphoethanolamine-N-(Cyanine 5) (18:2 PE-Cy5) sourced from Avanti Polar Lipids, 
Inc., USA, for 1 hour. Following exposure, the cells were washed three times with 
FACS buffer to eliminate any free liposomes. Flow cytometry data collection was 
collected using a BD FACSLyric Flow Cytometer (BD Biosciences, Belgium), and the 
analysis of this data was conducted using the FlowJo software, version 10.6 (FlowJo 
LLC, BD, USA).81

2.8 Activation study

The adjuvant properties of formulations loaded with AER were investigated using 
MDDCs as described previously.83 To 30,000 cells/well in MDDCs seeded in 96-
well plates with round bottoms (CELLSTAR, Greiner Bio-One GmbH, Germany), 
at a density of 30,000 cells per well, with lipid concentrations ranging from 25 to 
250  μg/ml in 200  μl of medium. The cells were incubated for 1 hour at 37  °C / 
5 % CO2. Subsequent to this incubation, cells were rinsed with a complete RPMI 
medium and then cultured overnight. The following day, cells were centrifuged, 
the supernatants collected and stored at -20 °C for later use. For flow cytometry, 
cells were washed with FACS buffer (PBS with 0.1 % bovine serum albumin; Merck, 
Germany) and blocked for 5 minutes with 5  % human serum (Sanquin Blood 
Bank, the Netherlands) in PBS to prevent non-specific Fc-receptor binding. After 
blocking, cells were stained for 30 minutes with monoclonal antibodies targeting 
various cell surface markers: CCR7-BB515 (clone 3D12, catalog 565870), CD83-PE 
(clone HB15e, catalog 556855), CD40-APC (clone 5C3, 555591), CD80-APC-R700 
(clone L307.4, catalog 565157), HLA-DR-V500 (clone G46-6, 561225) from BD 
Biosciences, Belgium, and CD86-BV421 (clone IT2.2, 305426) from BioLegend, the 
Netherlands, all at a dilution of 1:200 in FACS buffer. Post-staining, cells were again 
washed three times and resuspended in FACS buffer. Flow cytometry data was 
acquired using a BD FACSLyric Flow Cytometer and analyzed with FlowJo software. 
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2.9 Luminex assay

According to the manufacturer’s protocols, supernatants were tested in two Bio-
Plex panels (Bio-Rad, Veenendaal, the Netherlands). In total, 16 analytes were 
measured. The chemokine panel consisted of CXCL9, CXCL11, CCL8, and CCL22. The 
cytokine panel included CCL11 (Eotaxin), GM-CSF, IFN-α2, IL-1β, IL-1rα, IL-6, CXCL10, 
CCL2(MCP-1), CCL3, CCL4, RANTES and TNF-α. Samples were acquired on a Bio-Plex 
200 system and analyzed with Bio-Plex manager software version 6.1.

2.10 Mice

All mouse experiments were individually designed, reviewed, ethically approved, and 
registered by the institutional Animal Welfare Body of the Leiden University Medical 
Center (LUMC). The study was conducted under project license AVD116002017856, 
issued by the Netherlands’s Central Authority for Scientific Procedures on Animals 
(CCD). The experiments adhered to the Dutch Act on Animal Experimentation and 
EU Directive 2010/63/EU for animal experiments.

The Jackson Laboratory (USA) provided C57Bl/6 mice (stock number SC1300004), 
which were housed in the LUMC animal facility. Female mice, aged 6-8 weeks and 
matched for age (17-18 g weight), were utilized for each experiment. Mice were 
housed in a specific pathogen-free, temperature-controlled environment (20 °C ± 
1  °C; humidity 55 % ± 15 %) including a controlled day-night cycle (12 hours per 
day; 60-300 lux), in individually ventilated cages containing bedding and nesting 
materials and as enrichment a tunnel and gnawing wood with no more than six mice 
per cage. Food and drinking water ad libitum. Mice were acclimatized for one week 
following transport before the experiments began.

Two independent experiments were performed. The experimental groups, 
summarized in Table 1, included naïve (unimmunized) mice as a negative control 
and a BCG immunized group as a control group using the licensed TB vaccine. Each 
mouse was considered an experimental unit, and mice in the same experimental 
group were housed together in one cage. Each group consisted of six mice, and a 
total of 36 mice were used per experiment. The results from the two experiments 
were combined for statistical analysis, increasing the number of mice to 12 per 
group and 72 in total.
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2.11 Immunizations

C57Bl/6 mice were randomly allocated to six groups (6 mice per group). The naïve 
group served as the unimmunized control. Mice in the remaining groups were 
vaccinated with either BCG or AER combined with CpG (ODN1826) and MPLA 
(PHAD) or with AER together with CpG and MPLA delivered in PLGA NPs, cationic 
pH-sensitive liposomes or pH-sensitive lipid PLGA hybrid NPs. For immunizations 
that involved nanoparticle-based delivery systems, mice were given 3 subcutaneous 
(s.c.) injections in the right flank every 2 weeks with appropriate formulations (Table 
1). Four weeks post-final immunization, mice were either sacrificed or infected with 
live Mtb. When AER was mixed with adjuvants, mice received 3 injections every 2 
weeks with a solution of 25 μg AER, 50 μg CpG, and 1 μg MPLA in 200 μl PBS. For 
BCG vaccination, mice were given a single s.c. injection with 106 CFU live BCG (Danish 
strain 1331) 12 weeks prior to sacrifice or Mtb infection. BCG bacterial counts were 
determined by placing the suspension on 7H10 agar plates (Difco, BD, Franklin Lakes, 
NJ USA) supplemented with BBL Middlebrook OADC enrichment (BD, Franklin Lakes, 
NJ USA) and counting colonies after a 3-week incubation at 37 °C. Doses, frequency, 
and routes of administration were selected based on previous research.71,81,84

Table 1. Summary of vaccination groups and doses of vaccine constituents administrated 
to a mouse in a single immunization. Each group consists of 6 mice per experiment. All 
adjuvanted systems also contained CpG and MPLA.

Group Description AER  
(μg)

Lipid  
(μg)

PLGA 
(μg)

CpG  
(μg)

MPLA 
(μg)

Naïve Unimmunized NA NA NA NA NA
BCG Approved vaccine NA NA NA NA NA
Ag Antigen-adjuvant mix 25 NA NA 50 1
PLGA PLGA NPs 8 NA 400 2.5 1
Hybrid Lipid-PLGA hybrid NPs 8 400 400 2.5 1
pH pH-sensitive liposome 8 400 NA 2.5 1

2.12 Intranasal infection with H37Rv Mtb

Unimmunized and immunized mice were infected with live Mtb H37Rv either 4 
weeks post-AER vaccination or 12 weeks after BCG vaccination. Mice were sedated 
using isoflurane (Pharmachemie BV, The Netherlands) and received an intranasal 
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dose of 105 CFU Mtb sourced from glycerol stocks kept at at -80 °C.85 The bacterial 
count was measured using 7H10 agar plates. The bacterial colonies were counted 
after incubation for 3 weeks at 37 °C.

Six weeks following the Mtb infection, the mice were humanely euthanized using 
CO2. Their spleens and lungs were aseptically extracted. These tissues were then 
processed using 70 μM mesh strainers (Corning, USA) in a sterile PBS solution. The 
counts of bacteria were evaluated by serial dilutions on 7H11 agar plates (procured 
from BD Bioscience, USA), which were supplemented with OADC and PANTA 
(sourced from BD, Franklin Lakes, NJ USA).

2.13 Splenocyte cultures

Splenocytes from immunized uninfected mice were resuspended at 3×106 cells/ml 
in Iscove’s Modified Dulbecco’s Medium (IMDM; Lonza, Switzerland) with 2 mM 
GlutaMAX™, 100 U/100 μg/ml penicillin-streptomycin (both purchased from Gibco, 
Paisley, UK), and 8 % heat-inactivated fetal bovine serum (FBS; Greiner, Frickenhausen, 
Deutschland), and stimulated in vitro with 5 μg/ml of AER or its single components 
at 37 °C and 5 % CO2. After 6 days, the splenocytes were restimulated with the same 
protein for 5 hours, and 2.5 μg/ml Brefeldin A (Sigma, Merck, Darmstadt, Germany) 
was added overnight. They were then harvested and stained for intracellular 
cytokines and surface markers the next day, as described previously.84

2.14 Antibody enzyme-linked immunosorbent assay (ELISA)

Blood was drawn from immunized, uninfected mice via heart puncture and cooled 
on ice. It was then centrifuged at 15,000 rpm for 10 minutes to obtain sera. ELISA 
was used to determine antibodies against proteins in sera, as described previously.84 
Plates were coated overnight with AER (5 μg/ml) or PBS/0.4 % BSA (Sigma, Merck, 
Darmstadt, Germany) at 4  °C and blocked for 2 hours with PBS/1  % BSA/1  % 
Tween-20. Serum dilutions (100 μl/well) were kept at 37 °C for 2 hours, followed by 
a wash (PBS, 0.05 % Tween-20) and incubation with horse radish peroxide (HRP)-
labeled rabbit-anti-mouse antibodies: total IgG, IgG1, IgG2a, IgG2b, IgG2c, IgG3 
and IgM (Dako, Denmark). After a 2-hour incubation at 37 °C, plates were washed 
and treated with 100  μl/well tetramethylbenzidine substrate (TMB; Sigma) for 15 
minutes. Then H2SO4 was added, and OD450 was measured using a Spectramax i3x 
spectrometer Molecular Devices, CA, USA).
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2.15 Antibody staining and flow cytometry

Surface and intracellular staining procedures were described elsewhere.84 In short, 
splenocytes were transferred to 96-well plates and washed with PBS. They were 
stained with Zombie UV Fixable Viability Kit (BioLegend, the Netherlands), diluted 
1:250 in PBS, and incubated with 100 μl of dye per well for 30 minutes. The cells 
were washed twice with FACS buffer (PBS with 0.1 % BSA), blocked with 20 μl of 
5 % normal mouse serum (Thermo Fisher Scientific Inc., Bleiswijk, the Netherlands) 
in FACS buffer, then washed and stained with CCR7 for 30 minutes at 37 °C. The 
full list of antibodies used is summarized in Table S1. Lastly, the cells were washed 
twice and stained with a 50 μl/well antibody mix containing 10 μl/well of BD Horizon 
Brilliant Stain Buffer Plus (BD Biosciences, Belgium). Cells were incubated at 4  °C 
for 30 minutes, washed twice with FACS buffer, and then fixated and permeabilized 
with eBioscience Foxp3/Transcription Factor Staining Buffer Set (Invitrogen, Thermo 
Fisher Scientific, Belgium) at 4  °C for 60 minutes. Following a wash, intracellular 
staining was performed using a diluted antibody mix in permeabilization buffer. 
Cells were incubated with 50 μl/well antibody mix for 45 minutes, washed twice with 
FACS buffer, and resuspended in 100 μl/well FACS buffer. They were then stored at 
4 °C until measured with a Cytek Aurora spectral flow cytometer (Cytek Biosciences, 
Fremont, CA, USA) at the Flow Cytometry Core Facility of Leiden University Medical 
Center in the Netherlands.

2.16 Flow cytometry data analysis

Data were analyzed with FlowJo v10.8.0 and OMIQ (www.omiq.ai) software, as 
described previously.84 The analysis strategy is shown in Figure S2. In brief, data 
were first manually gated in FlowJo to remove debris, doublets, and acquisition-
disturbed cells. Cells were then gated on CD3 vs CD19, and T-cells (CD3+ CD19-) 
and B-cells (CD3- CD19+) were separately exported (min. 20,000 events each) to 
OMIQ. The imported data were further cleaned with FlowAI in OMIQ, and single 
marker gates were created. Using Boolean gating, gate combinations were made. 
Counts for all Boolean gates were exported, and statistical analysis was conducted. 
Uniform manifold approximation and projection (UMAP) was performed on digitally 
concatenated cells from all mice in each group.



206

Chapter 5

2.17 Cryo-Electron Microscopy

Cryo-electron microscopy was performed as described previously.86 Quantifoil 2/2 
electron microscopy grids were glow discharged in 0.2 mbar air, at 25 mA, and for 
30 seconds using an Easyglow (Pelco). A 3 μl droplet of the sample was added to 
the glow discharged grids, and blotted away using filter paper (Whatman no.4) for 
3 seconds at 85-95 % humidity and room temperature, using an EM GP (Leica). The 
grid was subsequently plunged into liquid ethane/propane (2:1) at -196  °C. Grids 
were transferred into a Talos Arctica (Thermo Fisher Scientific) and images were 
acquired using EPU (Thermo Fisher Scientific) in multi-grid mode, at 0.55 nm/pixel, 
15000x nominal magnification. Images were recorded on a K3 direct electron detector 
(Gatan) in counting mode and ZLP imaging in movie mode, a defocus of -5 micron, 
and an electron dose of ~4 e/A2/s with 8 seconds exposure time (corresponding to 
a total dose of 35 e/A2). Using this magnification/pixel size and electron dose, the 
full 2-micron hole is visible in one image, and the vesicle bilayer (at 4 nm) can be 
discerned. Movies (80 frames in total) were aligned using MotionCor2 and converted 
to tiff using EMAN2.

2.18 Statistical analysis

Mann-Whitney statistical test with Benjamini Hochberg FDR correction was carried 
out using R87 and RStudio,88 to identify differentially abundant populations of cells. 
Statistical analyses to compare vaccination groups were performed in GraphPad 
Prism, version 8.01 (GraphPad Software, Prism, USA), using the Kruskal-Wallis test 
and an uncorrected Dunn’s posthoc test for non-parametric comparisons of three 
or more groups to the control group, where cutoff of P < 0.05 was selected as 
statistically significant (*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001). Bar values 
represent the median and error bars the interquartile range (IQR) unless indicated 
otherwise.

3. RESULTS

3.1 In vitro testing of vaccine formulations

Formulations were prepared using three types of nanoparticle-based vaccine 
delivery systems: PLGA NPs, lipid-PLGA hybrid NPs, and cationic pH-sensitive 
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liposomes. Both hybrid NPs and liposomes shared the same lipid composition 
DOPC:DOPE:DOBAQ:EPC (3:5:2:4). We performed the initial immunogenicity tests in 
primary human MDDCs, including the performance of PLGA NPs. 

First, we examined the uptake of PLGA NPs (Figure S2). The uptake was assessed using 
primary human MDDCs (IL-4 and GM-CSF-induced), as well as pro-inflammatory M1 
(GM-CSF-induced) and anti-inflammatory (M-CSF-induced) MDMFs. The uptake of 
empty PLGA NPs in MDDCs was much lower compared to the uptake observed in 
type 1 and 2 MDMFs (Figure S2a). Because the PLGA NPs were not positively charged 
and no targeting moieties were used, it was expected that the uptake in DCs would 
be low. Subsequently, the uptake of empty PLGA and empty cationic lipid-PLGA 
hybrid NPs was compared in MDDCs only (the primary APCs of our interest) (Figure 
S2b). A significantly higher uptake was measured for the lipid-PLGA hybrid NPs 
compared to the PLGA NPs. Similarly to our previous work, pH-sensitive liposomes 
were efficiently taken up by all three types of APCs (manuscript submitted). These 
results thus show that professional APCs relatively poorly take up PLGA NPs without 
any adjuvants. 

Subsequently, we examined the activation of primary human MDDCs in terms of 
the expression of cell-surface activation markers and cytokine production (Figure 
S3 and S4). Unadjuvanted PLGA, lipid-PLGA NPs, and pH-sensitive liposomes were 
tested, as well as their counterparts formulated with CpG and MPLA adjuvants. 
Unadjuvanted PLGA NPs, as expected, were weakly immunogenic, failed to increase 
activation marker expression, and induced weak or non-detectable cytokine 
production. Unadjuvanted lipid-PLGA hybrid NPs were more efficient in activating 
MDDCs in terms of cell surface markers and cytokine production than the PLGA NPs. 

Table 2. Physicochemical properties of liposomes used for immunization of mice. Results 
represent a mean of n = 6 batches (3 batches used in 2 experiments, each batch value is a 
mean of a triplicate) and standard deviation. 

Formulation Z-average size 
(nm)

PDI  
(-)

Zeta-potential 
(mV)

AER/PLGA 83.9 ± 17.8 0.25 ± 0.10 -49.6 ± 11.2

AER/DOPC:DOPE:DOBAQ:EPC/PLGA 139.7 ± 8.0 0.19 ± 0.03 25.1 ± 1.8

AER/DOPC:DOPE:DOBAQ:EPC 166.9 ± 41.6 0.34 ± 0.09 21.5 ± 3.2
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Cationic pH-sensitive liposomes induced CD40, CD83, and CCR7 expression but did 
not induce cytokine production. However, PLGA and lipid-PLGA NPs adjuvanted 
with CpG and MPLA induced both cell-surface markers expression and cytokine 
production. These results indicated that inert PLGA NPs, when formulated with 
potent adjuvants, can induce robust immune responses in vitro and, therefore, are 
promising delivery systems.

3.2 Physicochemical characterization of vaccine formulations and 
mouse study design
PLGA, lipid-PLGA hybrid NPs, and cationic pH-sensitive liposomes formulated with 
AER antigen, CpG, and MPLA adjuvants were prepared and characterized (Table 2). 
PLGA NPs had the smallest size about 85 nm, and very low Zeta-potential of about 
-50 mV. Lipid-PLGA hybrid NPs and liposomes had higher sizes of about 140 nm and 
170 nm, respectively, as well as Zeta-potential between 20 ÷ 25 mV. Cryo-electron 
microscopy (Figure S5A) revealed spherical PLGA NPs in the size range between 50 
and 100 nm with unsharp edges. Cryo-electron images of lipid-PLGA hybrid NPs 
(Figure S5B) revealed spherical NPs with clear lipid bilayer-resembling features. 
Subsequently, formulations were administrated subcutaneously to mice three times 
two weeks apart. Naïve (unimmunized) mice and BCG and AER mixed with CpG and 
MPLA were used as control groups. The immunization groups are summarized in 
Table 1. In the AER-adjuvant mix group, higher doses of antigen (25 μg compared to 
8 μg) and CpG (50 μg compared to 2.5 μg) were used.

3.3 Nanoparticle-based subunit vaccines induce protection against 
Mtb in mice
The bacterial burden in lungs and spleens of infected mice was examined six weeks 
after the infection, which corresponds to ten weeks after the last immunizations 
(Figure 1). Bacterial counts from mice vaccinated with PLGA, lipid-PLGA, and pH-
sensitive liposomal formulations as well as BCG were all significantly reduced 
compared to unimmunized mice and mice vaccinated with AER-adjuvant mix both 
in lungs and spleens, mounting to 2-3 log differences. Mice vaccinated with PLGA 
NPs had lower median CFUs, both in spleens and lungs, compared to BCG and the 
other two NP-based vaccines; however, the difference was not statistically significant 
between these groups. Noteworthy, NP-based vaccines used much lower doses of 
the antigen (8 μg vs 25 μg) and CpG (2.5 μg vs 50 μg) compared to the antigen-
adjuvant mix.
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Figure 1. Bacterial burden in spleens (a) and lungs (b) of challenged mice represented by 
colony forming units (CFU) of Mtb. Each point represents CFU obtained from a single mouse. 
Colors indicate mice used in the same experiment. Groups: naïve – unimmunized mice; 
BCG – live BCG; Ag –antigen (25 μg Ag85B-ESAT6-Rv2034, AER) adjuvant mix (50 μg CpG, 
1 μg MPLA), NP-free; PLGA – antigen (8 μg AER) and adjuvants (2.5 μg CpG, 1 μg MPLA) 
delivered in PLGA (400 μg) NPs; Hybrid – antigen (8 μg AER) and adjuvants (2.5 μg CpG, 1 μg 
MPLA) delivered in lipid (400 μg DOPC:DOPE:DOBAQ:EPC, 3:5:2:4)-PLGA (400 μg) NPs; pH – 
(8 μg AER) antigen and adjuvants (2.5 μg CpG, 1 μg MPLA) delivered in cationic pH-sensitive 
liposomes (400 μg DOPC:DOPE:DOBAQ:EPC, 3:5:2:4). n = 12. Bars represent median ± IQR. 
*p < 0.05, **p< 0.01, ***p < 0.001, ****p < 0.0001 (Kruskal-Wallis with an uncorrected Dunn’s 
posthoc test).

3.4 AER-specific CD4+ and CD8+ T-cell responses in splenocytes ex 
vivo
Splenocytes from immunized (but non-Mtb-challenged mice) were collected and 
restimulated with AER. The cells were then stained with a 27-color panel and analyzed 
using spectral flow cytometry to evaluate the immune responses. Concatenated 
flow cytometry events of CD3+ CD19- T-cells were examined following uniform 
manifold approximation and projection (UMAP) dimensionality reduction (Figure 
2). UMAP was employed to evaluate global qualitative changes across experimental 
groups, utilizing all CD3+ CD19- events simultaneously. The visual inspection of the 
data revealed differences in the abundance of T-cells between the groups. Major 
differences in the abundances of CD4+ and CD8+ cells, especially cells expressing 
IL-2, INFγ, and TNFα, were observed when comparing UMAPs of vaccinated mice 
compared to naïve mice. Subsequently, differential subset abundance analysis was 
performed to identify populations of interest and perform quantitative comparisons. 
We then selected sufficiently large cell populations (>100 events) and exhibited
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Figure 2. UMAP visualization of concatenated, AER-restimulated spleen-derived CD4+, and 
CD8+ T-cells (CD3+ CD19–) from all tested mice (per group) showing differential abundances 
of various populations of cells followed by color-continuous plots depicting phenotypical 
markers distribution. Groups: naïve – unimmunized mice; BCG – live BCG; Ag –antigen 
(25 μg Ag85B-ESAT6-Rv2034, AER) adjuvant mix (50 μg CpG, 1 μg MPLA), NP-free; PLGA 
– antigen (8 μg AER) and adjuvants (2.5 μg CpG, 1 μg MPLA) delivered in PLGA (400 μg) 
NPs; Hybrid – antigen (8 μg AER) and adjuvants (2.5 μg CpG, 1 μg MPLA) delivered in lipid 
(400 μg DOPC:DOPE:DOBAQ:EPC, 3:5:2:4)-PLGA (400 μg) NPs; pH – (8 μg AER)  antigen and 
adjuvants (2.5 μg CpG, 1 μg MPLA)   delivered in cationic pH-sensitive liposomes (400 μg 
DOPC:DOPE:DOBAQ:EPC, 3:5:2:4).

specific phenotypic markers that not only differentiated them from other cell 
subsets but also provided insights into their functional role. If several subsets were 
characterized by overlapping marker expression patterns, we selected one that was 
defined by more markers and was still large enough. We observed several CD4+

T-cell subpopulations that were differentially abundant (Figure 3). The largest 
population was a polyfunctional population defined as CD4+ IL-2+ IFNγ+ TNFα+ IL-
17A– IL-10– CD44– CD62L+ CCR7– T-cells. All AER-based vaccination groups increased 
this population, displaying a central memory phenotype, but interestingly, this 
was not the case for BCG. Similarly, a monofunctional Th1 cell subset defined 
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Figure 3. Differential abundance of CD4+ T-cells present in AER restimulated splenocytes 
from immunized non-Mtb-challenged mice. Markers defining each population are indicated 
above each graph. Graph values depict percentages of the population as a part of the CD3+ 
CD19– CD4+ CD8– cell subset. Each dot represents a single mouse and results from the same 
experiment are shown in one color. Groups: naïve – unimmunized mice; BCG – live BCG; 
Ag –antigen (25  μg Ag85B-ESAT6-Rv2034, AER) adjuvant mix (50  μg CpG, 1  μg MPLA), 
NP-free; PLGA – antigen (8 μg AER) and adjuvants (2.5 μg CpG, 1 μg MPLA) delivered in 
PLGA (400 μg) NPs; Hybrid – antigen (8 μg AER) and adjuvants (2.5 μg CpG, 1 μg MPLA) 
delivered in lipid (400 μg DOPC:DOPE:DOBAQ:EPC, 3:5:2:4)-PLGA (400 μg) NPs; pH – (8 μg 
AER) antigen and adjuvants (2.5  μg CpG, 1  μg MPLA) delivered in cationic pH-sensitive 
liposomes (400 μg DOPC:DOPE:DOBAQ:EPC, 3:5:2:4). n = 12 (mice). The minimal number 
of events used in the analysis was 20,000. Bars represent median ± IQR. *p < 0.05, **p< 0.01, 
***p < 0.001, ****p < 0.0001 (Kruskal-Wallis with an uncorrected Dunn’s posthoc test).
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as CD4+ IL-2– IFNγ+ TNFα– IL-17A– IL-10– CD44– CD62L– CCR7+ T-cells displaying an 
effector memory phenotype was also differentially enriched. On the other hand, two 
subpopulations of CD4+ T-cells were increased following BCG vaccination but not 
AER-based vaccines: a monofunctional central memory population of CD4+ IL-2+ 
IFNγ– TNFα– IL-17A– IL-10– CD44– CD62L+ CCR7– T-cells as well as a population CD4+ 
IL-2+ TNFα+ CD25+ CD69+. Th17 responses were not observed in this study. 

Similarly, we analyzed CD8+ T-cell populations (Figure 4). The largest population was 
a polyfunctional central memory T-cell subset defined as CD8+ IL-2+ IFNγ+ TNFα+ 
IL-17A– IL-10– CD44– CD62L+ CCR7– T-cells. It was significantly increased in all groups 
immunized with AER-based vaccines but not in the case of BCG. We also observed 
two other subsets that were increased by AER-based vaccines: a monofunctional 
central memory CD4+ IL-2– IFNγ+ TNFα– IL-17A– IL-10– CD62L+ CCR7+ T-cells and 
T-cells defined as CD8+ IL-17A+ IFNγ+. One population increased following BCG 
immunization, but none of the AER-based vaccines defined as CD8+ IL-2+ TNFα+ 
CD44+ CD62L– CCR7– displayed predominantly an effector memory phenotype.

3.5 Differentially abundant B-cell populations

Similar to the analysis of T-cell responses, B-cell data were dimensionally reduced 
and UMAPs were analyzed (Figure 5). The UMAPs revealed the presence of 
differentially abundant populations of cells between different groups. Subsequently, 
differential subset abundance analysis was carried out, and statistically significant 
subsets were analyzed using univariate plots (Figure 6). Three B-cell populations 
expressing activation marker CD69 were found in AER-restimulated splenocytes. 
The largest population was a subset identified as MHCII+ IgM– IgD– B220+ CD69+ 
B-cells corresponding to germinal center B-cells, followed by MHCII+ IgM– IgD+ 
B220+ CD69+ (follicular B/B2 cells), and MHCII+ IgM+ IgD– B220+ CD69+ (marginal 
zone B-cell, transitional 1 B cells) follicular B/B2.89,90 All three B-cell subsets were more 
abundant in mouse groups vaccinated with AER-based vaccines compared to naïve 
mice. Moreover, mice vaccinated with lipid-PLGA hybrid NPs as well as pH-sensitive 
liposomes had higher counts of these B-cells compared to mice vaccinated with AER 
mixed with CpG and MPLA. B-cells defined as IL-17A+ B220+ MHCII+ B-cells were 
increased in mice vaccinated with BCG compared to naïve mice and mice vaccinated 
with AER-based vaccines.
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Figure 4. Differential abundance of CD8+ T-cell populations present in AER restimulated 
splenocytes from immunized non-Mtb-challenged mice. Markers defining each population 
are indicated above each graph. Graph values depict percentages of the population as 
a part of the CD3+ CD19– CD4– CD8+ cell subset. Each dot represents a percentage value 
from a single mouse and results from the same experiment are shown in one color. Groups: 
naïve – unimmunized mice; BCG – live BCG; Ag –antigen (25 μg Ag85B-ESAT6-Rv2034, AER) 
adjuvant mix (50 μg CpG, 1 μg MPLA), NP-free; PLGA – antigen (8 μg AER) and adjuvants 
(2.5 μg CpG, 1 μg MPLA) delivered in PLGA (400 μg) NPs; Hybrid – antigen (8 μg AER) and 
adjuvants (2.5  μg CpG, 1  μg MPLA) delivered in lipid (400  μg DOPC:DOPE:DOBAQ:EPC, 
3:5:2:4)-PLGA (400 μg) NPs; pH – (8 μg AER)  antigen and adjuvants (2.5 μg CpG, 1  μg 
MPLA) delivered in cationic pH-sensitive liposomes (400  μg DOPC:DOPE:DOBAQ:EPC, 
3:5:2:4). n = 12 (mice). The minimal number of events used in the analysis was 20,000. Bars 
represent median ± IQR. *p < 0.05, **p< 0.01, ***p < 0.001, ****p < 0.0001 (Kruskal-Wallis with 
an uncorrected Dunn’s posthoc test).
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Figure 5. UMAP visualization of concatenated, AER-restimulated spleen-derived B-cells 
(CD3– CD19+) from all tested mice (per group) showing differential abundances of various 
populations of cells followed by color-continuous plots depicting phenotypical markers 
distribution. Groups: naïve – unimmunized mice; BCG – live BCG; Ag –antigen (25 μg 
Ag85B-ESAT6-Rv2034, AER) adjuvant mix (50 μg CpG, 1 μg MPLA), NP-free; PLGA – antigen 
(8 μg AER) and adjuvants (2.5 μg CpG, 1 μg MPLA) delivered in PLGA (400 μg) NPs; Hybrid 
– antigen (8 μg AER) and adjuvants (2.5 μg CpG, 1 μg MPLA) delivered in lipid (400 μg 
DOPC:DOPE:DOBAQ:EPC, 3:5:2:4)-PLGA (400 μg) NPs; pH – (8 μg AER) antigen and 
adjuvants (2.5 μg CpG, 1 μg MPLA) delivered in cationic pH-sensitive liposomes (400 μg 
DOPC:DOPE:DOBAQ:EPC, 3:5:2:4).
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Figure 6. Differential abundance of CD19+ B-cell populations present in AER restimulated 
splenocytes from immunized non-Mtb-challenged mice. Markers defining each population 
are indicated above each graph. Graph values depict percentages of the population as a part 
of the CD3– CD19+ cell subset. Each dot represents a percentage value from a single mouse 
and results from the same experiment are shown in one color. Groups: naïve – unimmunized 
mice; BCG – live BCG; Ag –antigen (25 μg Ag85B-ESAT6-Rv2034, AER) adjuvant mix (50 μg 
CpG, 1 μg MPLA), NP-free; PLGA – antigen (8 μg AER) and adjuvants (2.5 μg CpG, 1 μg MPLA) 
delivered in PLGA (400 μg) NPs; Hybrid – antigen (8 μg AER) and adjuvants (2.5 μg CpG, 1 μg 
MPLA) delivered in lipid (400 μg DOPC:DOPE:DOBAQ:EPC, 3:5:2:4)-PLGA (400 μg) NPs; pH – 
(8 μg AER) antigen and adjuvants (2.5 μg CpG, 1 μg MPLA) delivered in cationic pH-sensitive 
liposomes (400 μg DOPC:DOPE:DOBAQ:EPC, 3:5:2:4). n = 12 (mice). The minimal number 
of events used in the analysis was 20,000. Bars represent median ± IQR. *p < 0.05, **p< 0.01, 
***p < 0.001, ****p < 0.0001. (Kruskal-Wallis with an uncorrected Dunn’s posthoc test).
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3.6 AER-specific antibody production

AER-specific antibody titers were investigated to explore humoral immune responses 
after vaccination. All four AER-based vaccines resulted in high antibody titers (Figure 
7). However, in sera from naïve and BCG-vaccinated mice, AER-specific total Ig titers 
were below the detection limit. The highest total as well as IgG1 and IgG2 antibody 
titers were observed in mice vaccinated with cationic pH-sensitive liposomes and the 
lowest in mice immunized with the AER-adjuvant mix. Moreover, we also observed 
titers of other subtypes: high IgG2b and IgG2c as well as moderate-low levels of 
IgG3 and IgM (Figure S6).

4. DISCUSSION

TB remains a global epidemic, as a highly contagious airborne infectious disease that 
remains one of the foremost causes of death worldwide for centuries. According to 
the 2022 WHO Global Tuberculosis Report, approximately a quarter of the global 
population is latently infected with Mtb. Between 2000 and 2021, TB claimed the 
lives of 1.4 to 2 million individuals annually, with a peak mortality between 2000
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Figure 7. Quantification of AER-specific antibodies in sera. The type of antibody measured 
is indicated above each graph. Values represent OD450 ELISA, and serum dilutions are 
shown on the x-axis. Groups are indicated in the legend. Groups: naïve – unimmunized 
mice; BCG – live BCG; Ag –antigen (25 μg Ag85B-ESAT6-Rv2034, AER) adjuvant mix (50 μg 
CpG, 1 μg MPLA), NP-free; PLGA – antigen (8 μg AER) and adjuvants (2.5 μg CpG, 1 μg 
MPLA) delivered in PLGA (400 μg) NPs; Hybrid – antigen (8 μg AER) and adjuvants (2.5 μg 
CpG, 1 μg MPLA) delivered in lipid (400 μg DOPC:DOPE:DOBAQ:EPC, 3:5:2:4)-PLGA (400 μg) 
NPs; pH – (8 μg AER) antigen and adjuvants (2.5 μg CpG, 1 μg MPLA) delivered in cationic 
pH-sensitive liposomes (400  μg DOPC:DOPE:DOBAQ:EPC, 3:5:2:4).  n = 6 (mice). Values 
represent mean ± standard deviation.
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and 2010. In 2022 alone, TB was responsible for over one million deaths, surpassing 
fatalities from any other single infectious agent before the COVID-19 pandemic. 
Despite intense research efforts, the world still lacks a licensed effective TB vaccine, 
especially for adolescents and adults. The only licensed vaccine, BCG, offers 
moderate protection to infants and children but falls short for adult populations 
with the highest TB incidence, emphasizing the urgent need for a new vaccine.1 

NPs are very effective delivery systems for subunit vaccines, offering several 
advantages in enhancing their efficacy. Firstly, NPs function as adjuvants, enhancing 
the antigenicity of associated antigens, and can mimic some properties of 
pathogens like viruses. Secondly, NPs can trigger both innate and adaptive immune 
responses, acting as effective antigen carriers that enhance antigen processing and 
presentation. Their nanoscale size promotes efficient uptake by phagocytic cells and 
facilitates robust innate immune responses. This positions NPs as pivotal tools in 
next-generation vaccine development.91–93

The physicochemical properties of NPs dictate their recognition, uptake, and immune 
responses.94–96 Key properties such as size, charge, hydrophobicity, and rigidity affect 
interactions with interstitial matrix and antigen-presenting cells (APCs).97,98 Small 
particles (<20 nm) drain to blood capillaries and are eliminated, while particles 20 
÷ 100 nm drain into lymph nodes (LNs) and are taken up by LN-resident APCs. 
Larger NPs (>100 nm) remain at the injection site (SOI) until transported to LNs by 
resident APCs.99,100 Surface charge affects interactions with the interstitial matrix and 
cellular membranes.95 Neutral and negatively charged NPs drain more easily into 
LNs,101,102 while positively charged particles are more efficiently taken up by APCs103,104 
and form depots, facilitating immune responses.41 The depot effect allows precise 
targeting of APCs, controlled antigen release, and antigens retention at the SOI. This 
leads to prolonged exposure to the immune system and continuous stimulation of 
the APCs in the vicinity of the SOI. Rigid NPs are more efficiently taken up by APCs 
and facilitate depot formation at the SOI105,106 compared to soft NPs.107,108 Hydrophilic 
NPs may accumulate more in LNs than hydrophobic ones of similar size.109,110

In this study, PLGA NPs (85 nm, -50 mV) with a hydrophilic, acid-terminated surface 
likely exhibited short retention at the SOI and efficient transport to LNs, which 
resulted in strong immune responses possibly due to slow release of antigens and 
adjuvants from the NP core. Hybrid lipid-PLGA NPs and liposomes (140-170 nm, 20-
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25 mV) with hydrophilic surfaces formed palpable depots at the SOI, likely resulting 
in extended antigen presentation. Although hybrid NPs most likely offered a slow 
release of antigens and adjuvants compared to the expected burst release from 
liposomes, both types of NPs induced comparable protection and immune response.

To date, no clear immune correlates of protection against tuberculosis have been 
established. Therefore, it remains a challenge to identify types of immune responses 
that should be induced by a vaccine that would result in protection against Mtb. 
Historically, T helper 1 responses were deemed essential for a successful TB 
vaccination, and this notion was supported by ample evidence. 9,111–113 However, over 
time a conventional strategy aiming to induce predominant Th1/Th17 responses and 
minimize Th2/Treg immunity is being complemented by a more balanced approach 
that would lead to the interplay between Th1 and Th2 responses as well as B-cell 
responses. Such a diverse immune response repertoire is supposed to be more 
beneficial for the host. 

All of the AER-containing vaccines induced primarily polyfunctional CD4+ and 
CD8+ T-cells that produced IL-2, IFNγ, and TNFα, as well as monofunctional IFNγ-
producing T-cells, which both displayed a central memory phenotype.114 The 
observed polyfunctional T-cells expressed CD62L but not CD44 or CCR7, which 
could mean that they belong to a separate central memory T-cell subset that has 
lost CD44, as shown by Henao-Tamayo et al.114 CD4+ T-cells with such a phenotype 
were observed to possess a significant expansion potential and induced excellent 
protection when transferred to Rag−/− mice challenged with Mtb H37Rv but not 
CD4+ CD44hi CD62Llo cells.115 CD44lo CD62Lhi T-cells could significantly contribute to 
the protective responses like T-cells with CD62Lhi CCR7hi central memory phenotype. 
Central memory CD4+ T-cells rather than effector memory T-cells mediate long-
term protection, and it has been suggested that inadequate protection conferred 
by BCG in adults and adolescents may be (partially) attributed to insufficient central 
memory T-cell responses.116 

Noteworthy, we observed a significant increase in CD8+ T-cells compared to naïve 
mice, especially in mice vaccinated with lipid-PLGA hybrid NPs, and cationic pH-
sensitive liposomes. The significance of cytotoxic CD8+ T-cells in Mtb protection is 
debated. Beyond directly killing infected cells, they produce cytokines, modulate the 
immune response, and work together with Th1 cells.117,118 Recent research suggests 
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CD8+ T-cells, alongside Th1 cells, are promising vaccine targets against Mtb.9,119,120 
Mouse studies support their importance in controlling Mtb.121–124 Specifically, CD8+ 
T-cell depletion increases bacterial load during latent phases in both mice125 and 
non-human primates.126 Interestingly, we observed elevated counts of IL-17A-
producing CD8+ T-cells but not CD4+ T-cells. These CD8+ T-cells, referred to as Tc17, 
are postulated to exhibit functions comparable to Th17 cells.127,128 Th17 cells contribute 
to protective responses in the early stages of Mtb infection by engaging neutrophils 
and Th1 cells to infection sites and play a role in the formation of mature granuloma, 
which is crucial for the control of the disease.9,129 However, further investigations are 
necessary to elucidate the specific role of Tc17 cells in immune responses against 
Mtb infection.

An increase in three subsets of CD69-expressing B-cells and high total AER-specific 
and Ig subtypes were observed in mice immunized with AER-based vaccines, which 
could contribute to the protection. B-cell and antibody responses are believed to 
contribute to TB immunity, but their exact role remains ambiguous.130,131 Evidence 
for B-cell involvement is substantiated by increased vulnerability to Mtb in B-cell-
depleted subjects restored post-B-cell transfer132–134 and B-cell dysfunction in active 
TB patients rectifying post-treatment.135 However, some genetic knockout studies 
and Mtb infection models challenge this perspective.136–138 The protective role of 
antibody responses is supported by research on sera transfers from LTBI patients 
showing protective effects in mice139 as well as treatment with monoclonal antibodies 
against Mtb antigens has been shown to improve survival, reduce spread, decrease 
tissue damage, and decrease mycobacterial load in animals.140–143 Differential antibody 
responses between LTBI and ATB patients have also been shown. Antibodies from 
LTBI patients exhibited enhanced FC receptor profiles and enhanced macrophage 
killing of intracellular Mtb.144

All delivery-system-based AER vaccines (PLGA, lipid-PLGA hybrid NPs, and pH-
sensitive liposomes) induced protection in intranasal Mtb challenge mouse model 
but not AER-adjuvant mix, despite overall similar immune responses induced by 
all AER vaccines. Importantly, the immunological effects induced by the NP-based 
vaccine were achieved at significantly lower doses of the antigen and adjuvants. 
This highlights the substantial advantage of using these nanoparticles for vaccine 
delivery, as they lead to better immunological outcomes and can reduce costs 
associated with antigens. CD4+, CD8+ T-cell, and B-cell responses that we observed 
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have been previously linked with protective outcomes by others; however, they do 
not explain the induced protection by these vaccines. The protection mechanism 
remains unknown because there are no established correlates of Mtb protection, 
and none of the immune responses observed in this study were associated with 
bacterial burden outcomes. This knowledge gap is a major hurdle in developing 
effective TB vaccines, and this issue has been raised in the literature before.145,146

The study’s primary limitation is its single time point assessment, missing dynamic 
immune responses, and potential long-term effects. Future research should 
investigate multiple time points and explore various doses of the antigen, NPs, and 
adjuvants. The 7-day lymphocyte restimulation limited early immune responses 
study. The lack of immune response data from Mtb-challenged mice limits direct 
protection correlation. However, the study’s strength lies in linking human innate 
responses with adaptive immune responses in vaccinated mice, finding NP-based 
vaccines that outperform BCG, hinting at broader applicability to other models and 
human use.

5. CONCLUSIONS

In this study, three types of NP-based potential TB vaccines were compared in vivo: 
PLGA, lipid-PLGA hybrid NPs, and cationic pH-sensitive liposomes. The formulations 
used Ag85B-ESAT6-Rv2034 AER fusion antigen, and two adjuvants (CpG and MPLA). 
Lipids used in the production of the hybrid NPs and liposomes comprised of 
DOPC:DOPE:DOBAQ:EPC at 3:5:2:4 molar ratio. This study describes the side-by-side 
comparison of three types of delivery systems in terms of protection (Mtb burden 
reduction in lungs and spleens) as well as a comprehensive exploration of immune 
responses: CD4+/CD8+ T-cell, B-cell, and antigen-specific antibody production. 
Vaccines that used NP-based delivery systems induced protection in intranasal 
Mtb-challenged mice as indicated by a significant CFU reduction compared to NP-
free vaccination (AER mixed with CpG and MPLA). Moreover, NP-based vaccines 
induced a significant increase in polyfunctional CD4+, and CD8+ T-cells, as well as 
CD69+ B-cell subsets, and high antigen-specific antibody titers. NP-based vaccines 
induced protection and protective immune responses at much lower doses of the 
antigen and molecular adjuvants than the NP-free vaccine. Our study’s strength 
lies in linking human innate with adaptive immune responses in immunized mice, 
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thereby identifying NP-based vaccines that outperform BCG. PLGA, lipid-PLGA 
hybrid NPs, and cationic pH-sensitive liposomes are excellent promising vaccine 
delivery candidates, and their application should be further explored.

ABBREVIATIONS

AER, Ag85B-ESAT6-Rv2034 antigen; APC, antigen-presenting cell; Ag, antigen(-
adjuvant mix group); BCG, Mycobacterium bovis Bacillus Calmette–Guérin; CCL, 
chemokine (C-C motif) ligand; CCR, C-C chemokine receptor type; CD, cluster of 
differentiation; CFU, colony forming unit; CpG ODN, cytosine-phosphorothioate-
guanine oligodeoxynucleotides; CXCL, chemokine (C-X-C motif) ligand; CXCR,  
C-X-C motif chemokine receptor; DC, dendritic cell; DOBAQ, N-(4-carboxybenzyl)-
N,N-dimethyl-2,3-bis(oleoyloxy)propan-1-aminium; DOPC, 1,2-dioleoyl-sn-glycero-
3-phosphocholine; DOPE, 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine; EPC, 
1,2-dioleoyl-sn-glycero-3-ethylphosphocholine; FBS, fetal bovine serum; FDR, 
false discovery rate; GM-CSF, granulocyte-macrophage colony-stimulating factor; 
HLA, human leukocyte antigen; HRP, horse radish peroxide; IFN, interferon; Ig, 
immunoglobulin, IL, interleukin; i.n., intranasal; IQR, interquartile range; KLRG1, 
killer cell lectin-like receptor subfamily G member 1; MACS, magnetic cell isolation; 
M-CSF, macrophage colony-stimulating factor; LAL, limulus amebocyte lysate; LN, 
lymph node; LUMC, Leiden University Medical Center; MDDC, monocyte-derived 
dendritic cell; MDMF, monocyte-derived macrophages; MDR-TB, multidrug-resistant 
tuberculosis; MHC, major histocompatibility complex; MPLA, monophosphoryl lipid 
A; Mtb, mycobacterium tuberculosis; NP, nanoparticle; PBMC, peripheral blood 
mononuclear cell; PCR, polymerase chain reaction; PD-1, programmed cell death 
protein 1; PDI, polydispersity index; PE, phosphatidylethanolamine; pH, pH-sensitive 
liposome group; PLGA, poly(D,L-lactic-co-glycolic acid); rpm, rounds per minute; 
s.c., subcutaneous; SDGs, Sustainable Development Goals; SOI, site of injection; TB, 
tuberculosis; Th1/Th2/Th17, type 1/2/17 helper T-cell; TLR, Toll-like receptor; TNF, 
tumor necrosis factor; UMAP, uniform manifold approximation and projection.
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Figure S1. Chemical structures of lipids used in the production of pH-sensitive liposomes 
and lipid-PLGA hybrid NPs.
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Table S1. List of antibodies used for spectral flow cytometry analysis of CD4+, CD8+, and 
CD3- CD19+ cells.

Marker Fluorochrome Clone Catalog Manufacturer

CCR7 (CD197) PE/Cyanine5 4B12 120113 BioLegend
CD273 BUV 395 TY25 565102 BD Biosciences
CD8b.2 BUV 496 53-5.8 741049 BD Biosciences
CD80 BUV 661 16-10A1 741515 BD Biosciences
CD69 BUV 737 H1.2F3 612793 BD Biosciences
CD25 BV 480 PC61 566120 BD Biosciences
CD154 Super Bright 436 MR1 62-1541-82 Thermo Fisher 
IgD Pacific Blue 11-26c.2a 405711 BioLegend
I-A/I-E (MHC II) BV 510 M5/114.15.2 107636 BioLegend
CD44 BV 570 IM7 103037 BioLegend
PD-1 (CD279) BV 605 29F.1A12 135220 BioLegend
CXCR3 (CD183) BV 650 CXCR3-173 126531 BioLegend
KLRG1 (MAFA) BV 711 2F1/KLRG1 138427 BioLegend
CCR6 (CD196) BV 785 29-2L17 129823 BioLegend
CD4 Spark Blue 550 GK1.5 100474 BioLegend
CCR5 (CD195) PerCP/Cyanine5.5 HM-CCR5 107015 BioLegend
CD19 PE Fire 640 6D5 115574 BioLegend
CD138 APC 281-2 142505 BioLegend
B220 (CD45R) Spark NIR 685 RA3-6B2 103267 BioLegend
CD62L (L-selectin) APC/Fire 750 MEL-14 104449 BioLegend
CD3 APC/Fire 810 17A2 100267 BioLegend
IL-2 APC-R700 JES6-5H4 565186 BD Biosciences
IL-17A PE eBio17B7 12-7177-81 Thermo Fisher 
IgM FITC RMM-1 406505 BioLegend
IL-10 PE/Dazzle 594 JES5-16E3 505033 BioLegend
TNFα PE/Cyanine7 MP6-XT22 506323 BioLegend
IFNγ Alexa Fluor 647 XMG1.2 505816 BioLegend
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Figure S2. Uptake of (DiI-stained) PLGA NPs and lipid-PLGA hybrid NPs. A) Uptake kinetics of 
PLGA NPs by MDDCs, pro-inflammatory (M1), and anti-inflammatory M2 MDMFs between 1 
and 6 hours of exposure. n = 4 (MDMFs), n =2 (MDDCs) donors. B) Uptake of PLGA NPs and 
lipid-PLGA hybrid NPs by MDDCs after 1 hour of exposure. n = 4 donors. Results represent 
median fluorescence intensity (MFI) ± IQR.
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Figure S3. Cell surface activation marker expression levels in MDDCs after stimulation with 
medium, unadjuvanted AER (5 μg/ml), a combination of LPS and TNFα (100 and 5 ng/ml, 
respectively), CpG and MPLA (1.56 and 0.625 μg/ml, respectively) as the positive controls, 
and vaccine formulations: PLGA NPs (5 μg/ml AER, 250 μg/ml PLGA), lipid-PLGA hybrid NPs 
(5 μg/ml AER, 250 μg/ml lipids, 250 μg/ml PLGA), and (pH) liposomal formulation (5 μg/
ml AER, 250 μg/ml liposomes), and their adjuvanted counterparts (containing additionally 
1.56 and 0.625 μg/ml CpG and MPLA, respectively). Median fluorescence intensities (MFI) 
related to the expression of indicated activation markers. The formulations are compared to 
the medium in the significance testing. The results represent median ± IQR. n = 4 or 6 (cell 
donors).

→ Figure S4. Production of cytokines by MDDCs exposed to vaccine formulations. 
Concentrations used: 5 μg/ml AER, 100 ng/ml LPS and 5 ng/ml TNFα, 1.56 μg/ml CpG and 
0.625 μg/ml MPLA, 250 μg/ml PLGA, 250 μg/ml liposomes/lipids, exposure 1 hour, n = 4 (cell 
donors). The results represent median ± IQR.
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← Figure S5. A) PLGA NPs (without lipids added). CryoEM overview image of a typical 
2-micron diameter hole in the carbon film with three PLGA spheres. The box’s area is 
magnified on the top right. Several other spheres from other images are shown below that 
image. The edges of the spheres are not sharply defined.

B) Lipid-PLGA hybrid NPs. CryoEM overview of a typical 2-micron diameter hole in the 
carbon film showing multiple lipid-PLGA spheres. Irregularly shaped lipid vesicles were 
found occasionally. The boxes’ areas are magnified and show PLGA spheres with clear lipid 
bilayer-resembling features, which can also be observed in small lipid vesicles (arrowheads). 
The borders of the spheres are more distinctive. 

In both A and B scale bars are 200 nm (overview images) and 50 nm (insets).
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Figure S6. Quantification of AER-specific antibodies in sera. The type of antibody measured 
is indicated above each graph as well as the vaccination group. Values represent OD450 
ELISA, and serum dilutions are shown on the x-axis. Groups are indicated in the legend. 
Naïve controls were not included because of the undetected (total) AER-specific antibodies 
(Figure 7). n = 2 (mice). 


