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Existing experiments demonstrated that constant light has either enhancing or diminishing effects on the
behavioral rhythms of mammals, sparking our intense interest in the underlying mechanisms of this paradoxical
phenomenon. The influence of constant light on behavioral rhythms involves the regulation of collective neuronal
behavior. The robustness of behavioral rhythms stems from the synchronization of neurons. In mammals, the
synchronization among neurons is regulated by the suprachiasmatic nucleus (SCN) located in the hypothalamus.
Neurons within the SCN exhibit significant heterogeneity. The intrinsic frequency and coupling strength are two
fundamental characteristics determining the internal dynamics of the SCN. In this study, the Poincaré model
was employed to investigate the impact of constant light on SCN neuronal dynamics. We found that constant
light can modulate neuronal synchronization, a phenomenon tightly linked to the critical threshold value of
coupling strength among the neurons. Specifically, under weak coupling, constant light enhances neuronal
synchronization. Under strong coupling, constant light weakens synchronization among oscillators. Furthermore,
higher light intensity results in lengthened periods and reduced amplitudes. Our findings elucidate important
underlying mechanisms by which constant light either enhances or diminishes mammalian behavioral rhythms,

and provide a new perspective for understanding the complex regulation network of circadian rhythms.

DOI: 10.1103/PhysRevE.111.014401

I. INTRODUCTION

Constant light as a prevalent environmental condition ex-
erts significant and intricate effects on the circadian system
of mammals, particularly concerning behavioral rhythms. In
previous experiments, it was observed that mice exposed to
constant light exhibited either arrhythmic behavior or a low
amplitude rhythm with a lengthened period, indicating that
constant light can directly interfere with the daily activity pat-
terns of mammals [1-3]. Conversely, the work of Hughes et al.
[4] revealed that prolonged exposure to constant light in mice
with VIP-VPAC?2 signaling defects facilitated the restoration
of behavioral rhythms close to a 24-hour period, suggesting
the potential rthythm-restoring capability of constant light un-
der specific conditions. These findings collectively underscore
the dynamic regulatory role of constant light on mammalian
behavioral rhythms.

The impact of constant light on the circadian rhythms
of mammalian behavior involves the regulation of collec-
tive behavior of suprachiasmatic nucleus (SCN) neurons. The
SCN, serving as the master clock in the mammalian brain,
comprises approximately 20000 neurons [5-7]. These neu-
rons are driven by molecular oscillators, which are part of a
complex core clock-gene network. The core genes, including
mPer, mCry, and Bmall, form a feedback loop that regulates
gene expression in a rhythmic manner [8—11]. The circadian
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rhythms of molecular oscillators are modulated by external
light input. Specifically, light activates melanopsin-containing
retinal ganglion cells, which transmit signals directly to the
SCN, triggering intracellular signaling cascades, including the
cAMP/CREB pathway [12,13]. At the molecular level, this
signaling process regulates the transcription and translation
dynamics of core clock genes, thereby altering the positive
and negative feedback mechanisms within the clock-gene net-
work [14]. At the cellular level, these molecular mechanisms
lead to changes in the electrophysiological properties of SCN
neurons, such as alterations in their membrane potential, firing
rate, and synaptic interactions, thereby propagating informa-
tion about phase and frequency to the network of neurons,
leading to overall synchrony of SCN neurons [7]. These inter-
actions in turn may manifest as shifts in the phase, frequency,
and amplitude of intracellular neuronal oscillations in gene
expression. The neurons in SCN are functionally heteroge-
neous resulting, among others, in heterogeneity in intrinsic
periods, which can range from 22 to 28 hours [15]. Robust
circadian rhythms are achieved through the synchronous ac-
tivity of these heterogeneous neurons.

The effects of constant light on synchronization differs
between healthy and unhealthy mammals. Indeed, research by
Ohta et al. [1] found that, under constant light, the disruption
of behavioral thythms is due to the loss of synchronization
among SCN neurons rather than the cessation of molecular
oscillations in individual neurons. For each neuron in the
SCN, constant light serves as an external perturbation that
influences the expression of photoreceptive proteins, altering
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the interactions among neurons within the SCN and leading
to rhythm disruption. Conversely, Hughes et al. [4] observed
in VIP-VPAC2 signal-deficient mice that prolonged exposure
to constant light improves the intercellular synchronization,
thereby further enhancing the behavioral rhythmicity of
animals. This finding emphasizes that the enhancement of
synchronization depends on the intensity and duration of
constant light. In VIP-VPAC2 signaling-deficient mice, light
may promote the recovery of rhythms by activating alternative
neural pathways or altering gene expression. These experi-
ments underscore the crucial importance of synchronization
in the SCN to maintain proper behavioral rhythms in
organisms.

The synchronization of neurons is not only influenced by
light inputs but also relies on the coupling through neurotrans-
mitters. Neurotransmitters refer to the chemical substances
that facilitate the connections and communication between
neurons, playing a critical role in regulating the coupling
[16,17]. Within the SCN, neurotransmitters commonly asso-
ciated with coupling include vasoactive intestinal polypeptide
(VIP), arginine vasopressin (AVP), y-aminobutyric acid
(GABA), gastrin-releasing peptide (GRP), among others
[18]. The heterogenous neurons of the SCN achieve ro-
bust synchronization through the coupling mediated by these
neurotransmitters, thereby enabling the coupled oscillator net-
work of the SCN to generate a unified circadian rhythm
[19-21]. Among these neurotransmitters, VIP is the most
prevalent neuropeptide transmitter, and recent studies strongly
implicate that VIP and its receptor VPAC2 play a pivotal role
in the coupling of SCN cellular clocks [22,23]. For instance,
research demonstrated that the application of VIP can sig-
nificantly enhance coupling efficiency among SCN neurons
whose coupling has been chemically disrupted [24]. In healthy
mammals, the SCN structure and functionality are intact, lead-
ing to stronger coupling among neuronal oscillators within
the SCN. By contrast, in mammals deficient in VIP or its
receptor VPAC2, the coupling between neuronal oscillators
in the SCN is notably weaker. This observation under-
scores the crucial impact of coupling on the synchronization
among oscillators.

Constant light can either enhance or diminish the synchro-
nization of SCN neurons; this sparked our interest, and we
intend to provide a potential explanation for this paradoxical
phenomenon. In this work, we utilized a coupled Poincaré
model to investigate the effects of constant light on the col-
lective behavior of strongly and weakly coupled SCN neuron
ensembles. The model was detailed in Sec. II, wherein we
hypothesized that intrinsic frequencies of SCN neurons are
heterogeneous and follow a normal distribution around the
mean. In Secs. III and IV, we presented numerical results and
theoretical analyses of the impact of constant light on the syn-
chronization, period, and amplitude of the coupled oscillator
network in the SCN, respectively. Finally, we summarized and
discussed our findings in Sec. V.

II. METHODS

The Poincaré model constitutes a paradigmatic exemplar of
minimalistic yet comprehensive frameworks that encapsulate
the fundamental attributes of oscillatory systems, specifically

addressing their amplitude modulation, periodicity, phase
dynamics, and stability characteristics. Notably, it was ex-
tensively employed as an analogical representation of the
circadian clock mechanism, as evidenced by numerous studies
such as Refs. [25-29]. This widespread adoption attests to the
model’s adequacy in serving as a surrogate for the investigated
brain region.

In the present study, we employ a Poincaré model in-
stantiation comprising N individual oscillators to emulate the
structural and functional organization of the coupled oscillator
network in the SCN. Within this model, each oscillator is
mathematically represented by a bivariate system of variables,
denoted as x and y. Notably, the x and y track the trajectory
of the oscillating system in Cartesian space. These two vari-
ables do not directly correspond to physical concentrations of
molecules but describe the oscillatory behavior in a geometric
framework [30]. These oscillators are interconnected in an
all-to-all manner through a mean field denoted as F, which
is calculated as the arithmetic average of the x values across
the entire ensemble of oscillators. In the proposed Poincaré
model, the light term L is introduced to represent the effect of
light input on SCN neurons. This term L can be interpreted as
the mathematical representation of the biological mechanisms
by which light adjusts neuronal properties, such as phase,
frequency, and amplitude, which then propagate through the
network and affect global synchrony. Several studies demon-
strated the effectiveness of the Poincaré model in describing
the interaction between light input and the circadian clock
by using phase response curves [29,31-34]. Then, under the
constant light, the governing equations of the Poincaré model
can be formulated as follows:

Xi = yxi(Ag — 1)) —wyi +gF + L,

yi=yyilAo —r) twx;, i=172,..,N,

1 N
F:N;xh 1)

where r;, defined as r; = ,/x? 4+ y?, is the actual neuronal

amplitude of the ith oscillator. L is the intensity of constant
light. The other parameters, such as y, Ap, and g, represent
the amplitude relaxation rate, intrinsic neuronal amplitude,
and cellular coupling strength, respectively. w; = wgyo; de-
notes the intrinsic frequency of the ith neuron, wherein o;
follows a normal distribution with a mean of 1 and a standard
deviation of u, wy = 27”, T represents the intrinsic period of
neurons. We use p to represent the heterogeneity of intrinsic
frequencies for the different individual oscillators. To investi-
gate the effects of the heterogeneity of intrinsic frequency on
the synchronization, the other parameters are set as follows:
y =0.1,A9 = 1, T = 24 [29,33], and the number of neuronal
oscillators is set as N = 200. We assume that the values of
these parameters remain unchanged throughout this work if
not specifically stated. Furthermore, we hypothesize that the
standard deviation of intrinsic frequencies, u, ranges from 0
to 0.2 [35,36].

We will systematically evaluate the effects of constant light
on phase synchronization R, coupled period 7', and amplitude
r among all oscillators within the coupled oscillator network
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in the SCN. R is defined as
| N
Z i0;
k= N = j=1 7

where 6; = arctan)yc—'jf represents the phase angle of jth oscil-
lator. The R ranges from 0 to 1. R = 0 indicates complete
desynchronization, while R = 1 signifies perfect synchroniza-
tion with identical phases among neurons. When oscillator j is
in a stable oscillating state, the oscillation period 7; represents
the time interval between consecutive peaks or troughs of
variable x; [37]. The output period T of the coupled oscillator
network in the SCN is then defined as the average period
across N oscillators [7], i.e.,
1 X
T=3 2T
j=l1
Upon reaching a steady oscillatory state, the amplitude r; of
oscillator j can be computed as r; = /x7 + y7 in the Poincaré

model framework. Consequently, the output amplitude r of
the coupled oscillator network in the SCN is defined as the
average amplitude of the N oscillators, i.e.,

1 N
I’:]T/er.
j=1

In Sec. III, the fourth-order Runga-Kutta method with a
time step size of 0.01 hour is performed in the numerical
simulations. To avoid the effect of transients, the initial 10°
hours are neglected. The initial values of x and y are selected
randomly from a uniform distribution in the range (0, 1).

III. NUMERICAL RESULTS

In the absence of external driving, we calculate the free-
running period (FRP) and phase synchronization degree R
influenced by coupling strength g. FRP is defined as the aver-
age period of all coupled neuronal oscillators. We examine the
relationships between FRP, R, and g under varying standard
deviations u, as depicted in Fig. 1. The categorization of
coupling strength as strong or weak depends on the values
of g and p. Notably, a critical value of coupling strength g, is
labeled in Figs. 1(a)-1(c), where error bars rapidly diminish.
A conspicuous change in R at g. is observable in Fig. 1(d).
When g > g, the synchronization among neural oscillators is
significantly pronounced, leading us to classify the coupling
strength g as strong. Conversely, if g < g., synchronization
is diminished, and we term this a weak coupling strength.
To illustrate, for © = 0.01, g. = 0.01, © = 0.05, g. = 0.05
and when u = 0.10, g, = 0.10. The critical value g. increases
with the increase of intrinsic frequency heterogeneity . Con-
sequently, we delineate the boundaries between strong and
weak coupling strengths based on these determinations, as il-
lustrated in Fig. 2. It is noteworthy that the distinction between
strong and weak coupling strengths closely correlates with the
heterogeneity of intrinsic frequencies.

Determining the strength of coupling as either strong or
weak is a complex endeavor, primarily because this classifica-
tion is dynamically determined by the interplay between the

p=0. 05

p=0. 10 1.0

26.0 0.8

= 0.6
X 24,0 &

S | 0.4

22.0 ! 0.2

N &, 0.0

0.00 0.05 0.10 0.15 0.20 0.00 0.05 0.10 0.15 0.20
g g

FIG. 1. The relationship of the free-running period (FRP) to the
coupling strength g [panels (a)—(c)] and the relationship of R to the
coupling strength g [panel (d)] in the absence of a zeitgeber (L = 0).
The parameter p represents the standard deviation of intrinsic neu-
ronal frequencies, and the error bar measures the standard deviation
of “coupled” neuronal periods.

value of coupling strength g and the heterogeneity of intrinsic
frequencies . To facilitate analysis, we posit an assumption
that the u is held constant, while the g is considered variable.
This assumption is considered be reasonable. Specifically, for
a given biological model, such as in mice, the heterogeneity
of intrinsic frequency can be viewed as an intrinsic property
of the organism that is relatively stable and unchanging. Con-
versely, the coupling strength is more plastic and susceptible
to modulation by external factors. For instance, interventions
like the application of tetrodotoxin (TTX) to inhibit neural
excitability or the genetic manipulation targeting genes or
receptors intimately involved in coupling processes can sig-
nificantly alter the coupling strength. Therefore, assuming a
constant for p while allowing g to vary not only aligns with
logical coherence but also mirrors empirical observations in
biological systems.

0.20

%00. 10

Weak Coupling

0.05

0.00 -t
0.00 0.05 0.10 0.15 0.20

FIG. 2. The division of strong and weak coupling strengths. The
dashed line represents the critical threshold g, for strong or weak
coupling strength.

014401-3



XU, GU, QU, WANG, AND ROHLING

PHYSICAL REVIEW E 111, 014401 (2025)

Weak Coupling g=0.01 Strong Coupling g=0.06

: L= (! f\

0.

(=2}

0.

(&)

X
o

-0. -0.

S »
(=]
 ——

13

08| =015

‘ ‘! ‘I ) ml] _
R
H“(“‘\!‘ W \i J‘IH “}j\“‘\w\

~

o

0.4

0 50 100 150 200 0 50 100 150 200
time(h) time(h)

FIG. 3. The temporal evolution of five randomly selected neu-
rons is represented by the variable x;. Parameters g and L denote
the coupling strength between neuron oscillators and the constant
light intensity received, respectively. Here, the parameter selection
is as follows: the heterogeneity of intrinsic frequency p = 0.05. For
panels (a) and (c), the coupling strength is set to g = 0.01, where
L =0 in panel (a) and L = 0.15 in panel (c). For cases (b) and (d),
the coupling strength is set to g = 0.06, where L = 0 in panel (b) and
L = 0.15 in panel (d).

A. Impact of constant light on neuronal oscillator
properties: A demonstrative example

For the impact of constant light on oscillator dynamics, an
illustrative example is provided in Fig. 3, considering a fixed
intrinsic frequency. It becomes heterogeneous with a stan-
dard deviation of & = 0.05, which was often used previously
[38—40]. Based on Fig. 2, it is evident that when p = 0.05,
g = 0.01 represents weak coupling strength, while g = 0.06
represents strong coupling strength. The VIP~/~ knock-out
mice, which lack VIP expression, exhibit disturbed coupling,
and this is modeled by weakening the coupling strength,
whereas healthy animals, with normal VIP expression, have
stronger coupling strength. In Fig. 3, weak coupling strength
refers to the VIP™/~ animals, while strong coupling strength
corresponds to the healthy animals.

When the oscillators are in constant darkness (L = 0),
the temporal evolution of the neuronal ensemble exhibits
similar amplitudes but erratic phase behavior under weak
coupling strength (g = 0.01), indicative of substantial phase
disparities and thus poor synchronization among the oscilla-
tors, as demonstrated in Fig. 3(a). Conversely, as observed
in Fig. 3(b), under strong coupling strength (g = 0.06), the
oscillators demonstrate ordered behavior, indicating well syn-
chronization among them, oscillating with consistent periods
and amplitudes.

Upon introducing constant light with intensity L = 0.15,
the temporal evolution of the neural population under weak
coupling exhibits a more regular pattern, although not all
oscillators synchronize, implying that constant light can im-
prove the synchronization among weakly coupled oscillators,
as illustrated in Fig. 3(c), reflecting the experimental results
from Ref. [4]. It should be noted, however, that not all

Weak Coupling Strong Coupling

(a) (b)
0.6 0.93 4
0.54 —m— g=0.01
' g=0. 02 0.90
—A— g=0.03
0.4
0.87 1
= x
0.3
0.2 0.84
0-17 0.81
0.0 T T T T T T T T T T T T
0.00 0.03 0.06 0.09 0.12 0.15 0.00 0.03 0.06 0.09 0.12 0.15
L L

FIG. 4. The influence of constant light on the phase synchro-
nization R of the coupled oscillator network in the SCN. Here, the
heterogeneity of intrinsic frequency v takes values of 0.05. The se-
lected values for weak coupling strength are g = 0.01, 0.02, and 0.03,
whereas for strong coupling strength, the representatives chosen are
g =0.06,0.07, and 0.08.

oscillators maintain a uniform period, and amplitudes sig-
nificantly decrease. In stark contrast, constant light induces
slight perturbations in the temporal evolution of strongly
coupled neuronal populations, with synchronization between
oscillators showing a decrease compared to constant darkness.
This indicates a desynchronizing effect of constant light on
strongly coupled oscillators, as evident in Fig. 3(d), reflect-
ing the experimental results from Ref. [1]. These modeling
results indicate that the model described here is able to explain
mechanistically the differential effects of constant light seen
in experiments.

Subsequently, we shall systematically investigate the ef-
fects of constant light on the phase synchronization, periods,
and amplitudes of the neural population.

B. Effects of constant light on neuronal oscillator
synchronization under strong and weak coupling

The diverse impacts of constant light on neuronal oscillator
synchronization degree R are vividly illustrated in Fig. 4.
Here we select a fixed frequency heterogeneity of u = 0.05.
Therefore, according to Fig. 2, we can determine the critical
value g, = 0.05 that distinguishes strong and weak coupling.

Observations from Fig. 4 reveal dual effects of constant
light on the synchronization of the coupled oscillator network
in the SCN. Specifically, under weak coupling strength, i.e.,
g < g, constant light enhances the synchronization among
neurons, as shown in Fig. 4(a). Particularly, the enhancement
of constant light on synchronization is slight and unstable
when the light intensity L < 0.08. However, at L > 0.08, the
synchronization of coupled oscillator network in the SCN is
enhanced robustly and swiftly by constant light. Under strong
coupling strength, i.e., g > g., we observe that constant light
exhibits desynchronizing effects on synchronization R, as de-
picted in Fig. 4(b). Notably, the synchronization decreases
most noticeably at g = 0.06, while the decrease is minimal
at g = 0.08. This indicates that the synchronization of the
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FIG. 5. Temporal dynamics of the mean field under varying light
intensities in weak and strong coupling regimes. The number of
oscillators is N = 200 and the heterogeneity of intrinsic frequency p
takes values of 0.05. The selected value for weak coupling strength
is g = 0.01, whereas for strong coupling strength g = 0.06.

coupled oscillator network in the SCN is more susceptible
to disruption by constant light when the coupling strength
between neuronal oscillators is lower.

In the Poincaré model, the dynamics of each neuron are
described by three main components,

X =h(x;,y) +gF +L, )

where h(x;, y;) represents the intrinsic dynamics of the neuron,
gF is the coupling term reflecting the influence of the network,
and L is the light input acting as an external force. These three
components jointly determine the behavior of each neuron and
the overall synchronization of the network.

An important point to note is that the mean filed F =
%le:lxj is a time-varying variable, as shown in Fig. 5,
which means that it oscillates over time as the network
evolves. Therefore, instead of analyzing F directly, we focus
on the amplitude of F', denoted as A. The amplitude A captures
the oscillatory behavior of F and provides a more stable
measure for examining the collective dynamics. As shown in
Fig. 6, A is proportional to the coupling strength g, allowing us
to reliably substitute A for F when investigating the dynamics
of the system.

These observations in Fig. 4 naturally lead to an important
consideration regarding the balance between the coupling
term gF and the light input L in regulating the synchronization
dynamics. To quantitatively analyze the relative influence of
the coupling term and the light input, we introduce the ratio
gA/L, where A represents the amplitude of the mean field F.
This ratio helps capture the interplay between the coupling
and the light input across different coupling strengths and
light intensities. As shown in Fig. 7, the plot of gA/L as a
function of L reveals critical insights. For weak coupling
g =0.01, gA/L is consistently less than 1, indicating that the
light input L dominates and promotes synchronization. On
the other hand, for strong coupling g = 0.15, gA/L exceeds 1,
showing that the coupling term gF takes the lead in dictating

2.0
1.5
X
1.0
—— L=0. 00
L=0. 05
0.5 —A— [=0. 10
—k— L=0. 15
0.0 T T T T T T T T T
0. 00 0. 05 0.10 0.15 0.20

FIG. 6. The relationship between the amplitude A of the mean
field F and the coupling strength g under different intensities of
constant light.

the dynamics, with the light input instead disrupting the
synchronization.

C. Effects of constant light on SCN period
under strong and weak coupling

The impact of constant light on the coupled period T
is investigated, with the heterogeneity w = 0.05 of intrinsic
frequency, then the coupling strength g from O to 0.05 is the
weak coupling strength and g from 0.05 to 0.20 is the strong
coupling strength, as depicted in Fig. 8.

Under both strong and weak coupling conditions, the in-
fluence of constant light intensity on the coupled period T is
similar. Specifically, when the coupling strength g is set to a
fixed value, the period of the coupled oscillator network in the

30
weak coupling g=0.01
strong coupling g=0. 15
25
1.0
20 0.8
06
~
15 0.4
S | .
10 0.0
0.00 0.05 0.10 0.15
L
5_
\fA/LZl
I R el SR GO
T T T T T T T
0. 00 0.03 0. 06 0.09 0.12 0.15

FIG. 7. Ratio of gA/L as a function of L for weak coupling g =
0.01 and strong coupling g = 0.15.
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FIG. 8. The comprehensive impact of constant light and coupling
strength on the period of coupled oscillator network in the SCN. The
heterogeneity p of intrinsic frequency is selected as 0.05.

SCN increases monotonically with increasing constant light
intensity, and is not affected by the coupling strength critical
value g.. Additionally, when the constant light intensity L is
set to a fixed value, the period of the coupled oscillator net-
work in the SCN increases with increasing coupling strength,
as shown in Figs. 8(a) and 8(b), consistent with the effect
of coupling strength on the oscillation period under constant
darkness in Figs. 1(a)-1(c). We also observe that under weak
coupling strength, the coupled period T is generally smaller
than under strong coupling strength.

D. Effect of constant light on SCN amplitude
under strong and weak coupling

Constant light exerts a negative impact on the amplitude
of the coupled oscillator network in the SCN, as illustrated
in Figs. 9(a) and 9(b). When the coupling strength g is held
constant, the amplitude decreases with increasing constant
light intensity, irrespective of the critical value of coupling
strength g.. SCN-coupled oscillator networks under weak
coupling are more susceptible to constant light, with ampli-
tudes decreasing from approximately 1 to around 0.6. The
decline in amplitude is more pronounced with lower cou-
pling strengths. In contrast, under strong coupling strength,
the interference of constant light on the coupled oscillator
network in the SCN amplitudes is less significant, and the
trend of amplitude reduction becomes more subtle as cou-
pling strength increases. When constant light intensity L is
fixed, the amplitude of the coupled oscillator network in

(a) Weak Coupling (b) Strong Coupling

Y
.\\‘\‘ \
IS o;t ‘\‘}\\‘ |

0.8
0.7

\

N B
g 010 " 00
0.05 0.00

FIG. 9. The comprehensive impact of constant light and coupling
strength on the amplitude of coupled oscillator network in the SCN.
The heterogeneity w of intrinsic frequency is selected as 0.05.

the SCN increases with higher coupling strength. Comparing
(a) with (b) in Fig. 9, it is evident that SCN amplitudes
under strong coupling are notably larger than those under
weak coupling.

An all-to-all coupled network is often used as a global
approximation to the many synaptic interactions between the
cells in the SCN. A more realistic approach would mean to
take into account the network topology, i.e., the scheme that
tells which neurons are connected to which other neurons.
Currently this information is unknown. Apart from this, the
network connections are also not static. The connectivity in
the network is constantly changing: connections are created or
are broken, connections get stronger or weaker over time. To
approximate the network, many studies use the global all-to-
all coupling scheme [15,29,39,41]. There are also studies that
investigate different possible network topologies [42—47]. But
also for these studies, one can not claim to simulate the “real”
system, as the “real” network topology is unknown. However,
to address this topic, we conduct a detailed examination of
the effects of two heterogeneous networks on synchroniza-
tion dynamics: an Erdos-Rényi (ER) random network [48],
which represents low heterogeneity, and a Barabdsi-Albert
(BA) scale-free network [49], indicative of high heterogeneity.
The results are qualitatively consistent with those shown in
Figs. 4, 8, and 9. Detailed description of model with heteroge-
neous coupling and corresponding results, Figs. S1-S3, are
presented in the Supplementary Material [50]. To facilitate
theoretical analysis, we employed an all-to-all network model
in Sec. IV.

Additionally, we conduct an examination of the synchro-
nization dynamics in systems with oscillator number N =
1000 and N = 10000. The findings indicate that the synchro-
nization dynamics remain unaffected even with a substantial
increase in the number of oscillators. Detailed result Fig. S4 is
presented in the Supplementary Material [50]. This observa-
tion underscores the robustness of our results, demonstrating
their broad applicability to large-scale systems.

IV. ANALYTICAL RESULTS

In this section, analytical results are provided to explain the
emergence of positive relationship between coupling strength
and critical value of heterogeneity, the increasing effect of
constant light on the period, and the decreasing effect of
constant light on the amplitude, respectively. To simplify the
analysis, let the number of neuron oscillator be N = 2. Equa-
tion (1) can be rewritten as

X1 = yxi1(Ag — ) — w1y +gxl —;xQ +L,

Y1 =yy1(Ap — ) + wrxy,

Xy = yx2(Ag — r2) — w22 + gx1 —;)Q +L,

y2 = yy2(Ao — r2) + wrxz. (3)

For convenience, Eq. (3) is transformed from Cartesian co-
ordinates to polar coordinates. Suppose x; = rj cosfy, y; =
rysin 6y, xp = rp cos 6, y» = r; sin 6,, substituting them into
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Eq. (3) and we obtain

r1 cos? 6; + r, cos 6 cos 6,
2

i =yri(Ag —r)+

+ Lcos 6,
. r1 sin 6 cos 61 + r, sin 61 cos 6, L sin 6,
91 = w] — 8 — s
2r1 rt

15 €082 0, + 11 cos 6y cos 6,
2

rhp =yr(Ag — )+

+ L cos6,,

. r1 sin 6, cos 0; + r, sin 6, cos 6, Lsin 6,
92 = w — g — . (4)
2r2 r

When the frequencies of these two oscillators are the same
(locked), we have ¥; =0, r, =0, 91 = Q, 92 = 2, where Q2 is
the coupled frequency of these two oscillators. Consequently,
we let 6; = Qt + ¢y, 0, = Q + ¢,. Considering the averag-
ing method developed by Krylov and Bogoliubov as used in
Refs. [29,51], suppose o = 6, — 6, then we have

2 1
< cos“ (¢ + Q) > = -,

2
< cos(¢y + Q) cos(¢p) + Q) > = COS(¢12_ 92) = cozso:’
< cos(¢y + Q) sin(¢py + Q) > =0,
. sin o
< cos(¢y + Q) sin(¢p) + Q) > = — 7
. sin o
< cos(¢y + Qi) sin(gy + Q) > = > (5)

where < - > denotes the average in one cycle. For simplicity,
we keep on the nonaverage notation ry, 72, ¢, and ¢, in the
following. Substituting Eq. (5) into Eq. (4), we get
(ri + rycosa)g
—
L sin 6,

4}"1 r

O:yrl(Ao—rl)—i- +LCOS@1,

ragsino

Q=w +

b

(ricosa + rp)g

0=yn(Ao—nrn)+ 7 + Lcos6s,
szz_ngsina _Lsin92. ©)
47‘2 r
From Eq .(6) we have that
yri(Ag —r1) + (r + rycosa)f
cosb) = ,
—L
(o — 94 nee)
sinf; = )
L
yr2(Ao — r2) + (r2 + ri cos )
cosb, = ,
—L
rz(a)z - Q+ —rlisri:a)
sin 9, = 7 . 7

By sin” 6, + cos?6; = 1, sin* 6, + cos> 6, = 1, and when the
oscillators are synchronized, the amplitudes of these two

oscillators are almost equal, i.e., r = r| & r, & 1 [as shown
in Fig. 3(b)], Eq. (7) can be reduced as

2
|:yr(A0 —r)+r(l+cosa)

]
o[r(o-arige)] -
|

|:yr(A0 — )4+ cosa)i

+[r<w2—sz—gsln“>] =12 8)
. . 2
02 o2

2
+2[yo-n+a +cosa>§] == ©)

0

When the oscillators are synchronized, the phase difference
a — 0, then there is cosa — 1 and sinae — 0. We set w; =
wo(1 — ) and wr = wy(1 + @), thus the Eq. (9) can be sim-
plified as

(@ —*+0=1, (10)

where Q = a)(z)u2 + %2 +v(Ay —r)g+ y2(Ayg — r)>. Since
the period T > 24 hours when the oscillator remains syn-
chronized, therefore Q2 < wy, then we can obtain the coupled
frequency €2 from Eq. (10), i.e.,

Q~w - /L -0, (11)

this indicates that the coupling frequency €2 is negatively cor-
related with the constant light intensity, from which it can be
inferred that the coupled period T is positively correlated with
the constant light intensity L, which qualitatively explains the
relationship between the 7 and the L in Fig. 5.

When the oscillators are synchronized, the amplitude r of
the oscillators is approximately equal to 1. Then from Eq. (10)
we have

(w0 — Q) + oy’ + %2 +y(Ag—r)g
+y*(AF — 2rAo + 1) ~ L2, (12)
thus the amplitude is
—L? M
re + ,
y2yAo+g v(2yAo+g)
where y(2yAp+g) >0 and M = yz(A% + 1)+ ygho +

%2 + (wo — Q) + w%uz > (. This indicates that the ampli-
tude r decreases as the constant light intensity L increases,
which is qualitatively consistent with Fig. 6.

From Fig. 3, we see that when the oscillators are syn-
chronized, there exists g > g., hence subtracting the two
expressions of Eq. (8), we can obtain

. 2 . 2
(a)l - Q4+ gcs;not) - <a)2 - Q- gcsinot) =0,

(13)
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that is
(@1 + @2 — 29Q) (01 — @ + £51) = 0. (15)
Then we get

go = duen (16)

sin o
since w; 4+ wy — 292 # 0. This qualitatively indicates that the
critical threshold value g. of coupling strength is positively
correlated with the intrinsic frequency heterogeneity w, as
shown by the dashed line in Fig. 2.

V. CONCLUSIONS AND DISCUSSION

In the present study, we examined the varied effects of
constant light on the entrainment of the SCN that were found
experimentally, by looking at the synchronization, period,
and amplitude of the SCN neuronal network, based on a
generalized Poincaré model containing neurons with intrinsic
frequency heterogeneity. Employing numerical simulations
and theoretical analyses, we elucidated the dual regulatory
mechanism of constant light on the synchronization effects
among neuronal oscillators, which is closely linked to a crit-
ical threshold value of coupling strength. Specifically, (i) in
the case of weak coupling, i.e., when the coupling strength
is below the critical value, constant light exhibits a facil-
itative role and enhances synchronization among neurons.
Conversely, (ii) under strong coupling strength, i.e., when the
coupling strength is larger than the critical value, constant
light weakens the synchronization among neuronal oscillators.
Furthermore, we determined that there is a linear positive
correlation between the critical value of coupling strength and
intrinsic frequency heterogeneity. This implies that the criti-
cal value of the coupling strength increases linearly with the
increase of the intrinsic frequency heterogeneity. The effect of
constant light on the period and amplitude is relatively simple:
as the constant light intensity increases, the period of the SCN
increases and the amplitude decreases.

Constant light, serving as a persistent and unvarying zeitge-
ber, was gradually recognized by the scientific community as a
lighting condition potentially compromising the integrity and
normal physiological functioning of biological organisms. In-
deed, it was documented that constant light exposure disrupts
the behavioral rhythms in healthy mammals [1]. We specu-
lated that this phenomenon is related to a critical threshold
value of coupling strength. Specifically, when the coupling
strength between neuronal oscillators is strong, and this cou-
pling strength does not exceed a critical threshold related to
intrinsic frequency heterogeneity, then their ability to recover
from constant light interference is diminished. This leads to a
reduction in synchronization and thus to arrhythmic behavior.

However, constant light shows therapeutic potential for
animals with severely disrupted circadian rhythm systems.
Researches confirmed that VIP and its VPAC2 receptors
play a central role in the cellular signaling network within
the SCN, being crucial for mediating intercellular synchro-
nization [7,22,52]. When intracellular clock mechanisms or
intercellular neuropeptide signaling pathways involving the
VIP-VPAC2 pathway are impaired, the coupling strength
among SCN neurons is significantly weakened. Studies in-
dicated that constant light exposure can alleviate the impact

of impaired intercellular signaling on SCN neurons, aiding
in restoring disrupted behavioral rhythms [4]. We inferred
that constant light plays an active role when the coupling
strength between neuronal oscillators is weak, and this cou-
pling strength does not exceed a critical threshold related
to intrinsic frequency heterogeneity. The coupled oscillator
network in the SCN responds to the light input by altering the
phase distribution of heterogeneous neurons. This alteration
enhances the synchronization between the oscillators, thereby
further enhancing behavioral rhythmicity.

Under the condition of constant light, the phenomenon of
elongated behavioral circadian period accompanied by de-
creased amplitude in animals may be associated with the
process of light adaptation within organisms. Light signals
serve as a primary input to the circadian clock, and sus-
tained exposure to light may lead to a gradual reduction in
the organism’s responsiveness to such signals. Consequently,
the circadian clock may require an extended period to syn-
chronize its internal rhythms with the external environment,
thus resulting in a lengthened behavioral circadian period.
An explanation of this amplitude reduction is given as phase
dispersion among rhythmic SCN cells [18]. In particular, un-
der constant light, the amplitude reduction in wild-type mice
is significantly more pronounced compared to that in VIP-
deficient mice, thereby robustly corroborating the consistency
between our findings and the experimental data presented in
Ref. [53] concerning amplitude variations.

The findings presented herein not only deepen our under-
standing of the mechanisms by which the light influences
the regulation of biological thythms but also provide a new
perspective and theoretical foundation for exploring preven-
tion mitigation strategies for health issues, such as circadian
disruptions and sleep disorders, induced by abnormal light
exposures.

Coupling plays an essential role in maintaining the robust-
ness of circadian rhythms. It was found that the nonidentical
neurons are well synchronized through the coupling of chem-
ical neurotransmitters, such as VIP, AVP, GABA, in that the
neurons show a uniform circadian period [19-21,52]. Nev-
ertheless, the neural system responses to constant light is
complex, possibly involving some form of sensory adapta-
tion and an impact on neuron coupling. In previous models,
coupling strength was often assumed to be constant and aver-
aged, which may be too rigid a view. For complex biological
systems with synchronous dynamics, it is more reasonable to
adjust coupling strength based on the proximity of initial and
synchronous states [54,55]. Therefore, in future works, we
plan to introduce adaptive coupling strength to challenge the
constant coupling strength assumption in the model and make
it closer to real-world conditions.
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