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Abstract
The gut microbiota produces metabolites that are important for host physiology and have critical roles in the development 
of diseases, such as metabolic disorders, cardiovascular diseases, and cancer. Here, we developed a gas chromatography-
coupled tandem mass spectrometry (GC-MS/MS) method for the quantification of 120 volatile and semi-volatile compounds 
produced by gut bacteria, including short-chain fatty acids, indols, nucleotides, organic acids, and amino acid derivatives. 
The method is based on multiple-reaction-monitoring (MRM) of each analyte and their respective isotopically labeled inter-
nal standard, enabling absolute metabolite quantification between 0.45 pmol and 1 nmol. Applying the method to different 
tissue samples from germfree and conventionally colonized mice, we illustrate the ability to quantify microbiota-produced 
metabolites in different sample matrices—plasma, liver, feces, and intestinal content—and at different concentrations. Lastly, 
we demonstrate that this protocol is capable of quantifying microbiota-derived metabolites in stool samples stored in DNA 
stabilization buffers that are typically used in sequencing-based microbiome studies. Altogether, the developed GC-MS/MS 
method adds a valuable analytical tool to quantify microbiota-host metabolic interactions.
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Introduction

The microorganisms residing in the mammalian gastrointes-
tinal tract (gut microbiota) are involved in digestion, general 
host physiology, and various health states [1]. For example, 
perturbations of the metabolic interactions between the gut 
microbiota and their host have been associated with various 
diseases, including metabolic disorders [2], cardiovascular 
issues [3, 4], gastrointestinal ailments [5, 6], neurodegenera-
tive conditions [7], and cancer [8–10]. Therefore, metabo-
lomics analyses have become an important tool to study 
microbiota-host interactions, and modulation of the metabo-
lism of the microbiota has been discussed as treatment and 
prevention strategies [11, 12]. Gut microbial metabolites are 

produced through bacterial fermentation of dietary compo-
nents, through the biosynthesis of novel compounds, and 
biotransformation of compounds derived from nutrients, the 
host, or other members of the dense gut microbial commu-
nity [13]. For example, short-chain fatty acids (SCFAs), such 
as acetate, propionate, and butyrate, are thought to be key 
metabolites to understand microbiota-host metabolic inter-
actions [14]. Produced through fiber fermentation under the 
generally anaerobic conditions in the large intestine, they 
reach millimolar concentrations [15] in the large intestine 
and can serve as energy sources for intestinal and hepatic 
tissues [16]. Other fermentation products, such as lactate and 
succinate, are involved in microbial cross-feeding and meta-
bolic signaling [17]. Microbial biotransformation products 
of amino acids, such as the glutamate-derived neurotrans-
mitter gamma-aminobutyric acid (GABA), or tryptophan-
derived indole compounds, such as indole-3-propionate and 
tryptamine, are important signaling molecules between the 
gut microbiota and the host [18–22].

Numerous protocols have been developed to measure 
microbiota-produced metabolites in feces, body fluids, and 
host tissue, with a particular interest in SCFA and other 
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small-molecular-weight metabolites. However, their high 
volatility causes challenges for the preanalytical sample han-
dling and acquisition in both nuclear magnetic resonance 
(NMR) spectrometry [23] and liquid chromatography-cou-
pled mass spectrometry approaches [24, 25]. Gas chroma-
tography-based methods are particularly well-suited for the 
analysis, taking advantage of various protocols to chemically 
derivatize and stabilize these volatile analytes [26–29].

Quantification of microbiota-produced metabolites has 
been increasingly incorporated in sequencing-based micro-
biome studies [30]. Quantification of metabolite concentra-
tions in human and animal models enables direct comparison 
between studies and allows data translation into mechanis-
tic in vitro models of microbiota-host interactions. In most 
clinical microbiome studies, the stool samples are typically 
collected into stabilization buffer to maintain DNA/RNA 
integrity upon storage and shipment. However, the vari-
ous detergents, high salt concentrations, and other (often 
unknown) buffer additives are often incompatible with liq-
uid chromatography systems, hampering accurate metabolic 
measurements.

Here, we developed a workflow to quantify 120 gut 
microbiota-produced metabolites, many of which have 
been reported to play a role in metabolic host-microbiota 
interactions. To this aim, we established multiple-reaction-
monitoring (MRM) assays on a gas chromatography-coupled 
tandem mass spectrometer (GC-MS/MS) for each of the 120 
metabolites and 52 matching isotopically labeled internal 
standards. We then applied the developed method on intes-
tinal, plasma, and liver samples of germ-free and conven-
tional mice to quantify the contribution of the microbiota 
to intestinal and systemic metabolite levels. Additionally, 
we demonstrate that the developed method is compatible 
with DNA/RNA conservation buffers and that the majority 
of metabolites can be quantified in intestinal samples stored 
in such buffers.

Experimental section

Chemicals and preparation of metabolite standards

LC-MS-grade (ChemSolute®) pyridine, ethanol, methanol, 
and water were purchased from TH.GEYER (Renningen, 
Germany). N-tert-butyldimethylsilyl-N-methyltrifluoro-
acetamide (CAS:77,377−52−7) and methoxyamine HCl 
(CAS:61-16−5) were purchased from Sigma-Aldrich (St. 
Louis, MO) (Supplementary Table S1). Helium was used 
as carrier gas for GC-MS/MS (Helium 5.0, Messer SE & 
Co. KGaA, Germany). Argon was used as  collision gas 
for GC-MS/MS (Argon 5.0, Messer SE & Co. KGaA, Ger-
many). A 0.1M NaOH solution was prepared by diluting 
10M NaOH in water. Invitek stabilization buffer (Item 

No.: 1038111200) and OMNIgene gut stabilization buffer 
(Ottawa, ON) were purchased from Invitek Diagnostics and 
DNA Genotek, respectively. Metabolite standards were pur-
chased at the highest purity available, dissolved in ethanol, 
water, or methanol, based on metabolite solubilities at a 
concentration of 10 mM (Supplementary Table S2). These 
chemical standards were combined into two mixtures at a 
concentration of 500 µM and 166.6 µM so that none of the 
pools contains analytes with the same nominal mass. Before 
metabolite extraction, an internal standard mixture (IS mix) 
of isotopically labeled organic acids (250 µM), amino acids 
(500 µM), hexanoic acid, valeric acid, isovaleric acid, cap-
roic acid, and indole-propionic acid (10 mM) was spiked 
into each sample (Supplementary Table S3).

Metabolite extraction from animal samples

The liver, feces, and intestinal content were defrosted, and 
the weights were recorded and adjusted to 50–200 mg. 
Each tissue was added to a 2 mL O-ring tube (HS10060, 
Heathrow Scientific HEA10060), together with 200 µL of 
0.1 mm zirconia/silica beads and 500 µl of a solvent mix-
ture (H₂O:ACN:MeOH, 25:50:50, v/v/v). Samples were 
homogenized by bead-beating for 5 min at 2400 rpm (Mini-
BeadBeater 96, product No.:1001EUR, BioSpec Products, 
USA). The lysed samples were kept in the freezer for 1 h 
and then centrifuged at 10,000g at 4 °C for 12 min. Forty 
microliters of supernatant was transferred to a 96-well plate 
and derivatized as described below. Animal derived plasma 
and NIST 1950 serum (100 µl) was deproteinised with 200 
µl (MeOH:H20, 9:1, v:v) (1:3,  −20 °C), and 20 µl of super-
natant was derivatized as described below.

Metabolite derivatization

Twenty microliters of each sample was added to a mixture 
of 12.8 µL IS mix and 25 µL of 0.1M sodium hydroxide. 
Samples were dried in a speed-vac (Genevac EZ-2 4.0 
Series Centrifugal Evaporators, © Avantor, Inc.) at 30 °C. 
A fresh solution of methoxyamine HCl in pyridine (MeOX) 
was prepared by dissolving 20 mg of methoxyamine HCl 
in 1 mL of pyridine under vortexing. Twenty microliters of 
MeOX was added to dried samples, resuspended, and cov-
ered with aluminum foil. Samples were incubated at 60 °C 
for 60 min. Twenty microliters of N-tert-butyldimethylsilyl-
N-methyltrifluoroacetamide was then added to the samples, 
samples were resuspended, and the plates were covered with 
aluminum foil. Samples were incubated at 60 °C for 60 min 
and centrifuged for 5 min at 16,000 rpm, and 40 µL of super-
natant was transferred to glass vials with inlets (screw top, 
with fixed insert, amber, 300 µL insert volume. Vial size: 
12 × 32 mm, Part No.: 5188-6592, Agilent).
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GC‑MS/MS settings

GC-MS/MS acquisitions were performed on a Shi-
madzu instrument (TQ8040) using a Zebron ZB-5ms (30 
m × 0.25 mm × 0.25 µm) column applying the following 
settings: injection in split mode 1:10, injection tempera-
ture 250 °C, flow control mode–linear velocity 40.1 cm/s, 
pressure 83.3 kPa, total flow 17.9 mL/min, purge flow 
5.0 mL/min, column flow 1.17 mL/min, and column oven 
starting temperature 90 °C (for 1.5 min), followed by a 
temperature gradient from 90 to 320 °C at a rate of 15 °C/
min and kept at 320 °C until 25-min total run time. Injec-
tion volume was set to 1 μL. Ion source temperature was 
kept at 230 °C, interface temperature at 280 °C, and sol-
vent cut time at 0 min. Full-scan mode was acquired from 
50 to 500 m/z, EI at 70 eV. MRM settings were applied as 
described below.

Sensitivity and quantification

Dilution series were prepared using two separate mixtures 
of chemical standards: one composed of 30 organic acids 
(Cambridge Isotope Laboratories, MSK-OA) and the second 
composed of the remaining 90 compounds, weighted and 
mixed manually. Dilution series started at a concentration of 
12.5 µM (12.5 pmol injected) and 25 µM (25 pmol injected) 
for the first and second mixture, respectively. 1:3 dilution 
steps were performed ten times (final concentration range of 
1000 µM and 0.01 µM). Fifty-two isotopically labeled com-
pounds were used as internal standards to enable absolute 
quantification of the analytes (Supplementary Table S3). A 
total of 12.8 µL of 25 µM internal standards mixture was 
added to each sample to reach a final concentration of 8 µM 
in the derivatized solution. For each analytical batch, four 
blank extractions (containing no biological sample) were 
processed alongside study samples. Blanks underwent the 
full homogenization, extraction, and derivatization work-
flow and were measured throughout the measurement batch. 
The signals of blank samples were inspected to assess base-
line noise and the absence of contamination or carryover. 
No blank subtraction was performed; blank measurements 
were used solely for quality control assessment. Signals in 
blank samples prepared for concentration to signal calibra-
tion curves were used to determine LOD and LOQ of each 
metabolite (in particular of SCFAs).

Precision assessment

To evaluate intraday and interday precision, cecum and 
plasma samples were collected from 15 CONV and 8 GF 
animals of mixed sex and pooled within animal group. On 

three subsequent days, four independent aliquots of the 
pooled samples were extracted and derivatized as a batch.

Day 1: Batch 1 was prepared, and each of the four rep-
licates was injected twice to assess intraday variability.
Day 2: Batch 2 was freshly extracted and derivatized, 
and each replicate was injected twice; in addition, Batch 
1 was injected a third time for the interday measurement 
variability assessment.
Day 3: Batch 3 was prepared and injected twice, and 
Batch 2 was injected a third time.
Day 4: Batch 3 was injected a third time to complete the 
interday measurements. This design enabled evaluation 
of intraday variability (duplicate injections of freshly 
prepared replicates) and interday variability (third 
injections of batches on subsequent days).

Animal experiments

Germ-free (GF) B6NTac mice were obtained from Taconic 
Biosciences and maintained and bred in gnotobiotic iso-
lators (CbC) with a 12-h light/dark cycle. GF status was 
monitored by PCR and culture-based methods. Specific 
pathogen-free (conventional mice) C57BL/6J were origi-
nally obtained from The Jackson Laboratory, and mice 
were routinely tested and negative for Helicobacter spp. 
and other known murine pathogens. Mice were provided 
with autoclaved chow (1318 P FORTI, Altromin) ad libi-
tum. Animals of mixed sex between 13 and 20 weeks 
of age were used for all experiments (Supplementary 
Table 4). GF and conventional animals were singly housed 
for 14 days before they were euthanized by CO2. Plasma, 
liver, and fecal samples, as well as cecal, duodenal, jeju-
nal, ileal, and colon contents were collected, snap-frozen, 
and stored at −70 °C until further processing. Mouse 
experiments were approved by IACUC (license number 
21-002_HD_MZ).

Data analysis

Chromatographic data was acquired and processed using 
Shimadzu LabSolutions GC-MS software (version 5.131, 
Shimadzu Corporation, Kyoto, Japan). Peak detection and 
integration were performed using the software default set-
tings with manual adjustment when necessary to ensure 
consistency across samples. After integration, data were 
exported as tab-delimited text (.txt) files for further statisti-
cal analysis in R (Ver. 4.2.2). Statistical data analyses were 
performed in R (R version 4.2.2 (2022-10−31)). All code is 
available on GitHub (https://​github.​com/​Zimme​rmann​Lab/​
gcms-​gut-​metab-​quant).

https://github.com/ZimmermannLab/gcms-gut-metab-quant
https://github.com/ZimmermannLab/gcms-gut-metab-quant
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Results and discussion

Gut microbial metabolite library preparation 
and metabolite derivatization

To establish a targeted metabolomics method, we assem-
bled a library of 120 chemical standards of metabolites that 

are produced by the human gut microbiota and that span 
multiple metabolite classes as defined by the Microbial 
Metabolites Database (MiMeDB) [31] (Fig. 1, Table 1, and 
Supplementary Table S2). The library includes the short-
chain fatty acids (SCFAs) acetate, propionate, and butyrate, 
which are produced during gut bacterial fiber fermentation, 
serve as important energy substrates for colonocytes and 
hepatocytes, and can function as modulators of immune 
regulation [32, 33]. We also included branched-chain fatty 

Fig. 1   Metabolites included in the method. Asterisks (*) indicate metabolites with matched isotopically labeled internal standards used for abso-
lute quantification. Colors depict chemical classes defined by MiMeDB [31]
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acids (BCFAs) [34]; organic acids, such as lactate [35] and 
succinate [36]; and indoles [37] derived from tryptophan 
metabolism, all of which are involved in microbial cross-
feeding and signaling [38]. Additionally, amino acids [39] 
and some of their derivatives, including GABA [40], a neu-
rotransmitter linked to gut-brain communication, were part 
of the library (Fig. 1, Table 1). The selected metabolites 
range from 60.05 Da (acetic acid) to 412.69 Da (stigmas-
terol). Further, these compounds have a broad range of boil-
ing points—from low (e.g., short-chain fatty acids) to high 
(e.g., non-volatile amino acids and dicarboxylic acids, such 
as succinate and fumarate). In addition, we included isotopi-
cally labeled compounds for 52 of the metabolites as internal 
standards (IS), enabling metabolite quantification (Fig. 1, 
Table 1, Supplementary Table S3).

To facilitate gas chromatographic separation, we chemi-
cally derivatized the metabolites as previously reported by 
Gu et al. [41]. In brief, we first basified the samples with 
NaOH to decrease the volatility of organic acids and, hence, 
enable sample drying under vacuum. Prior to GC-MS/MS 
analysis, we then performed methoxymation and silylation 
(using methoxyamine and N-tert-butyldimethylsilyl-N-meth-
yltrifluoroacetamide—MTBSTFA), respectively, to enhance 
volatility and thermal stability. A key advantage of using 
MTBSTFA is that the derivatization reaction can be per-
formed at 60 °C, without the requirement of ultrasonication 
[42]. Moreover, the chemical replacement of polar and reac-
tive functional groups with less polar and more thermally 
stable groups allows direct injection into the GC-MS instru-
ment without the need of any further extraction steps [43].

Optimization of MRM assays

We optimized the temperature gradient of the gas chroma-
tography separation for the separation of all metabolites. 
To this end, all 120 metabolites were injected separately 
and as a mixture to determine their retention times, which 
ranged from 2.35 to 24.90 min (Fig. 2a and Table 1) in the 
final 25-min run.

To optimize the MRM parameters of the triple quadru-
pole (QqQ) instrument, we then selected one or two precur-
sor ions for each compound and isotopically labelled internal 
standards. To this aim, we injected each metabolite eight 
times and ramped the collision energy (CE) of Q2 from 3 
to 45 eV to determine specific MS/MS-fragments and the 
CE resulting in their highest occurrence. Using the Smart 
Database (GCMSsolution Ver. 4.22), the optimized MRM 
parameters were managed and together with their respective 
retention time assembled to the final GC-MS/MS method 
(Table 1). Confirmation ions were selected to help quanti-
fication through improved identification of the peaks upon 
splitting or retention time shifts.

Quantification of metabolites

The limit of detection (LOD) was defined as the lowest 
concentration at which the signal for a given metabolite 
could be reliably distinguished from background noise, 
corresponding to a signal-to-noise ratio of greater than 
three. We found an LOD of 0.05 pmol for organic acids, 
lipids, and lipid-like molecules; 12.34 pmol for short-
chain fatty acids (SCFAs); 0.15 pmol for amino acids and 
their derivatives; and 4.11 pmol for flavonoids, alkaloids, 
furanoid ligands, and organooxygen compounds (Table 1). 
For the limit of quantitation (LOQ), we report the concen-
tration for which the signal to noise ratio was greater than 
10 (Fig. 2b).

For the absolute quantification of metabolites, we cal-
culated the ratio between the peak area of metabolites and 
their corresponding isotopically labeled internal standards 
and compared the value to the corresponding calibration 
curves. In the absence of a matching internal standard com-
pound, we selected a structurally similar internal standard 
with close retention time to the analyte (Table 1) to deter-
mine metabolite concentrations. This strategy extended the 
linear range of quantification, as demonstrated for valeric 
acid and tryptamine, whose calibration curves were cor-
rected using 2H₉-valeric acid and 2H-indole-propionic 
acid, respectively (Fig. 2c). Following this approach, we 
achieved a linear quantification range of 0.68 to 500 pmol 
for organic acids and 1.37 to 1000 pmol for amino acids, 
branched-chain fatty acids, indole derivatives, and lipid-like 
molecules. Some compounds, such as short-chain fatty acids 
(4.11–1000 pmol), ectoine (12.34–1000 µM), propylpara-
ben, piperine, arachidonic acid, erythronic acid, and enterol-
actone (0.103–1000 pmol), exhibited narrower linear ranges.

To validate the method, we analyzed the certified refer-
ence plasma material NIST SRM 1950. Four 100 µL ali-
quots of the NIST plasma were extracted and derivatized as 
independent replicates following the developed protocol for 
sample extraction, derivatization, and GC-MS/MS measure-
ments. Accuracy was evaluated for metabolites for which 
reference concentrations are available: 15 metabolites with 
certified values reported by NIST and an additional 9 metab-
olites with literature values reported by Mandal et al. [44]. 
These quantified metabolites span four orders of magnitude 
in concentration (from 0.3 to 2600 µM), allowing the assess-
ment of method accuracy across a broad concentration range 
in a physiological matrix. For both the NIST-certified set 
and the literature-reported set of metabolites, the concentra-
tions measured with our method were within the respective 
reference ranges (Table 2, Supplementary Table S14). These 
results demonstrate robust analytical accuracy. Further, these 
analyses suggest using NIST SRM 1950 as external quality-
control material for future measurement batches to ensure 
inter-batch and inter-study comparability.
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Altogether, we established a targeted metabolomics pro-
tocol for the quantification of 120 gut-bacteria-produced 
metabolites using a total of 52 isotopically labeled internal 

standard compounds. We report LOQ and linear quantifica-
tion range for each of the metabolites to facilitate the analy-
sis of biological samples.

Fig. 2   a Chromatogram and b limit of quantification of 120 gut bac-
teria-derived metabolites. Colors indicate the MiMeDB metabolite 
class. c Calibration curves of valeric acid (orange, solid line) cor-
rected with 2H₉-valeric acid as internal standard (orange, dashed line) 

and of tryptamine without internal standard correction (red, solid 
line) and with d2-indole-propionic acid for internal standard correc-
tion (red, dashed line)
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Quantification of gut microbiota‑derived 
metabolites in the plasma and liver

To demonstrate the utility of the developed targeted metabo-
lomics method for quantifying microbiota-derived metabo-
lites in vivo, we applied it to samples from six conventional 
(CONV) and six germfree (GF) C57BL/6 mice of mixed sex 
(Supplementary Table S4). Using the established GC-MS/
MS protocol, we detected 86 metabolites in plasma sam-
ples in both groups of mice, of which we could quantify 81 
(Fig. 3a). Measured concentrations align well with previ-
ously reported values, providing an important validation of 
the established method. For example, we measured a plasma 
concentration of 519.9 ± 8.2 µM for acetic acid in CONV 
mice, which aligns with previously reported concentra-
tions of 101 µM and 580 µM (Fig. 3b) [44, 45]. Further, 
amino acid concentrations in the plasma of GF mice, such 
as isoleucine (mean, 34.2 ± 4.2 µM; reported range, 29 µM 
and 50 µM) and aspartic acid (mean, 6.7 ± 0.8 µM; reported 
range, 5 µM and 11 µM), were within the range of previously 
reported concentrations (Fig. 3c, d) [46, 47].

Among the 81 quantifiable plasma metabolites, we 
detected ten solely in the plasma of CONV mice (Fig. 3a, 

Supplementary Table S5). Furthermore, 40 metabolites 
showed significant differences (padj < 0.05) between GF 
and CONV animals, illustrated in the scatter plot (Fig. 3e). 
Among the metabolites with higher plasma concentration in 
CONV animals are indole-acetic acid and indole-propionic 
acid, which are solely produced by microbes but not the host 
and, hence, should indeed not be detected in germfree ani-
mals [20]. Furthermore, microbiota-produced acetic acids, 
2-ketoisocaproic acid, and valeric acids are more abundant 
in the plasma of CONV mice. Altogether, these data dem-
onstrate that our developed method is capable of detecting 
microbiota-dependent metabolites in plasma samples and 
that the determined concentrations of specific metabolites 
are in agreement with previous reports.

Next, we wanted to test our protocol for the measure-
ment of metabolites extracted from solid tissues. To this 
aim, we extracted metabolites from liver samples from the 
same animals using the bead-beating protocol previously 
described [52]. We detected 78 metabolites, 73 of which we 
could quantify. Measured concentrations also align well with 
previously reported values. For example, the concentration 
of glycine (mean, 2.2 ± 0.1 nmol per mg; reported range, 0.6 
and 2.7 nmol per mg), glutamic acid (mean, 0.7 ± 0.1 nmol 

Table 2   Quantified metabolites 
in NIST SRM 1950 
plasma and comparison to 
reference concentrations and 
concentrations recently reported 
[44]. Standard deviations are 
based on four independent 
replicate measurements

Metabolites Concentration ± SD (μM)
Measured

Concentration ± SD (μM)
Reference [44]

Concentra-
tion ± SD 
(μM)
NIST

Acetic acid 99.56 ± 3.73 112.3 ± 1.6
Pyruvic acid 74.49 ± 8.08 77.6 ± 4.56
L-Alanine 280.62 ± 10.49 298 ± 10.8 300 ± 26
Lactic acid 2508.12 ± 27.36 2538 ± 2.9
3-Hydroxybutyric acid 128.47 ± 6.04 138 ± 1.7
Glycine 248.59 ± 6.96 244.6 ± 6.7 245 ± 16
L-Valine 159.72 ± 5.99 177.7 ± 7.7 182.2 ± 10.4
L-Leucine 97.77 ± 3.29 101.0 ± 5.6 100.4 ± 6.3
Isoleucine 49.60 ± 1.33 55.4 ± 2.1 55.5 ± 3.4
GABA 0.41 ± 0.06 0.345 ± 0.0572
Succinic acid 2.33 ± 0.10 2.25 ± 0.01
L-Proline 173.27 ± 4.48 169.1 ± 8.4 177 ± 9
Fumaric acid 0.84 ± 0.10 0.749 ± 0.076
L-Methionine 15.04 ± 0.48 20.9 ± 1.6 22.3 ± 1.8
L-Serine 82.35 ± 2.16 91.2 ± 4.9 95.9 ± 4.3
L-Threonine 93.11 ± 2.78 118.3 ± 3.7 119.5 ± 6.1
L-Phenylalanine 48.26 ± 1.45 50.5 ± 2.3 51 ± 7
Hippuric acid 2.58 ± 0.18 2.31 ± 0.26
L-Aspartic acid 4.43 ± 0.60 6.74 ± 2.3
L-Glutamic acid 56.77 ± 2.32 59.2 ± 8.4
Indole-propionic acid 0.44 ± 0.11 0.578 ± 0.033
L-Lysine 128.47 ± 3.34 144.9 ± 6.4 140 ± 14
L-Histidine 51.85 ± 2.41 68.3 ± 2.6 72.6 ± 3.6
L-Tyrosine 48.42 ± 1.19 56.5 ± 1.8 57.3 ± 3.0
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Fig. 3   Metabolites quantified in plasma and liver tissues of CONV 
and GF animals. a Venn diagram representing the number of quan-
tified metabolites in GF and CONV animals plasma samples. b–d 
Measured and previously reported concentration range of b isoleu-
cine, c aspartic acid, and d acetic acid in plasma samples from CONV 
mice. e Scatter plot of metabolites quantified in plasma samples of 

conventional and GF animals. f Venn diagram representing the num-
ber of quantified metabolites in GF and CONV animals in liver sam-
ples. g–i Measured and reported concentration range of g glycine, h 
glutamic acid, and i serine in liver samples from CONV mice. j Scat-
ter plot of metabolites quantified in liver samples of CONV and GF 
animals [46–51].
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per mg; reported range, 1.2 and 2.1 nmol per mg), and serine 
(mean, 0.4 nmol ± 0.05 per mg; reported range, 0.32 and 
1.00 nmol per mg) in CONV mice (Fig. 3g–i) [50, 51]. Three 
of the detected metabolites (hippuric acid, suberic acid, and 
tryptamine) were quantified only in the liver of CONV mice, 
whereas 12-hydroxystearic acid was only quantifiable in GF 
mice, which highlights the microbiome dependency of these 
metabolites. (Fig. 3j, Supplementary Table S6).

Quantification of gut microbiota‑derived 
metabolites along the intestine

Since we measured microbiota-dependent differences in the 
concentration of specific metabolites in plasma and liver, 
we next aimed to quantify microbiota-produced metabolites 
directly in the complex intestinal tract of GF and CONV 
mice. To this aim, we analyzed the intestinal content of dif-
ferent sections of the intestine (duodenum, jejunum, ileum, 
cecum, colon, and feces) to quantify metabolites at the site 
of gut microbial activity. In total, we analyzed 72 samples, 
including six mouse replicate samples per intestinal section 
for either group (i.e., CONV and GF). From our panel of 
120 targeted metabolites, we could quantify between 63 and 
82 in a given intestinal section and mouse group, with site-
specific and colonization-dependent differences in detected 
metabolites (Fig. 4a, Supplementary Table S7-S12).

We first focused our analysis on the cecum because most 
microbial metabolic activity is expected in this intestinal 
section [53]. We detected a total of 97 cecal metabolites, 82 
of which we could quantify, with 5 and 22 metabolites only 
quantifiable in the cecum of GF and CONV mice, respec-
tively (Fig. 4b, Supplementary Table S8). For 80 of the 82 
quantified metabolites, concentrations remained within the 
linear range of the method (maximum measured concen-
tration = 987 µM). However, acetic acid and propionic acid 
levels exceeded this range in three cecal samples from con-
ventional mice. Therefore, we re-measured these samples 
after doubling the volume of the derivatization solution 
during sample preparation to dilute the samples. Neverthe-
less, one acetic acid sample remained above the linear range 

post-dilution and was therefore excluded from further analy-
sis. Measured concentrations also align well with previously 
reported values. For example, the concentration of acetic 
acid (mean, 22.1 ± 3.2 nmol per mg; reported range, 20 and 
60 nmol per mg), butyric acid (mean, 24.6 ± 5.7 nmol per 
mg; reported range, 16 and 48 nmol per mg), and propionic 
acid (mean, 16,5 ± 0.9 nmol per mg; reported range, 4.00 
and 20.00 nmol per mg) in CONV mice was within the pre-
viously reported range (Fig. 4c, d, and e) [54–56]. Among 
the 82 quantified metabolites, 57 were significantly differ-
ent between CONV and GF animals (padj < 0.05), illustrated 
in the scatter plot (Fig. 4f, Supplementary Table S10) with 
key microbiota-dependent metabolites labeled, such as ace-
tic acid, valeric acid, propionic acid, indole-propionic acid, 
isocaproic acid, and isovaleric acid. The elevated levels of 
these microbiota-associated metabolites in CONV mice, 
alongside higher amino acid concentrations in GF mice 
(e.g., proline concentration, GF = 2.2 ± 0.2 nmol/mg vs. 
CONV = 0.33 ± 0.10 nmol/mg), can be explained by micro-
bial metabolism. Notably, we detected several microbiota-
produced SCFA in the cecum, such as butyric acid and pro-
pionic acids, that were absent in the plasma of CONV mice 
(Fig. 3c). This difference is likely due to their rapid con-
sumption by enterocytes in the gut epithelium and the liver.

To further illustrate gut bacterial metabolism, we per-
formed measurements along the intestinal tract (Fig.  4 g, 
Supplementary Figs. 1, 2, 3, 4 and 5). For example, to illus-
trate the lack of microbial consumption or transformation 
of amino acids in the distal colon of GF mice, we show 
serine concentrations along the gut (Fig.  4 g). Serine con-
centrations are significantly higher (padj < 0.05) in the dis-
tal colon of GF compared to CONV mice, reflecting the 
absence of a microbiota that consumes serine in the gut GF 
mice. Contrarily, to demonstrate microbial metabolite pro-
duction, we show that hydroxyhexanoic and propionic acid 
concentrations have an increasing gradient along the intes-
tinal tract—particularly enriched in the cecum and colon of 
CONV mice (Fig.  4 g). These patterns reflect known micro-
bial colonization zones and emphasize region-specific bacte-
rial fermentation.

Determine method precision and accuracy

To assess the intraday and interday precision of the devel-
oped method, we extracted three batches of four replicates 
of the same sample (i.e., plasma and cecum from both ger-
mfree and conventional mice) on three different days. We 
then measured each sample batch twice on the same day 
to assess intraday measurement precision and once on the 
subsequent day to assess interday measurement precision. 
To illustrate method precision, representative metabolites 
covering a broad concentration range in plasma and intes-
tinal content sample matrices are displayed (Fig. 5a). For 

Fig. 4   Metabolites quantified in intestinal content and tissues of 
CONV and GF animals. a Number of quantified metabolites across 
intestinal content and tissues of CONV and GF mice. b Venn diagram 
representing the number of quantified metabolites in GF and CONV 
animals in cecum samples. c–e Reported and measured concentra-
tion range of c acetic acid, d propionic acid, and e butyric acid in the 
cecum of GF and CONV animals. f Scatter plot of metabolites quan-
tified in the cecum of CONV and GF animals. The concentration of 
all 82 quantified metabolites is represented as mean concentrations 
(nmol per mg) from six mice in each group. g Serine, hydroxyhexa-
noic acid, and propionic acid concentrations in the intestinal con-
tent along the gut of GF and CONV mice. An independent samples 
t-test was used to compare metabolite levels between the two groups, 
*padj < 0.05 [53–56].

◂
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Fig. 5   Metabolites quantified in cecum and plasma of CONV and GF 
mice analyzed in different measurement batches to assess intra- and 
interday measurement precision and metabolites quantified in cecal 
samples of conventional animals stored under three different preana-
lytical conditions. a Box plots of citric acid and indole-propionic acid 
quantified in the plasma of CONV and GF animals, and butyric acid 
and glycine quantified in the cecum of CONV and GF animals. The 
same samples were processed in three independent batches (each con-

taining four identical replicates) on three different days, and each pro-
cessed batch was measured by GC-MS/MS three times (two times on 
the same day and once on the subsequent day). b Scatter plot of quan-
tified metabolites in cecum sample stored in Invitek and OMNIgut 
stabilization buffers and in a freshly frozen sample. The abundances 
of all 82 quantified metabolites are represented as mean concentra-
tions from four replicates in each group.
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plasma, indole-propionic acid, solely produced by the gut 
microbiota, and citric acid, produced by microbes and the 
host, were selected to illustrate different physiological con-
centrations. For the cecum, butyric acid and glycine are 
shown. Precision, quantified as %CV, was determined for 
citric acid: CONV: interday CV = 6.14, intraday CV = 4.77, 
and GF: interday CV = 5.50%, intraday CV = 5.50%; for 
indole-propionic acid: CONV interday CV = 6.40%, intra-
day CV = 7.90%, and for GF: not quantified; for butyric 
acid: CONV interday CV = 5.65%, intraday CV = 4.27%, 
and for GF: not quantified; and for glycine: CONV: inter-
day CV = 11.09, intraday CV = 13.14, and for GF: interday 
CV = 9.64, intraday CV = 7.03. All these values fall within 
the acceptable range (CV < 20%) defined by current ana-
lytical guidelines (Supplementary Table S15) [57]. In total, 
we could assess the precision for 80 distinct metabolites in 
all four sample matrices (i.e., plasma and cecum from both 
germfree and conventional mice), and for all of them, we 
determined an intraday and interday CV < 20% (Supplemen-
tary Table S15).

Quantification of gut microbiota‑derived 
metabolites in DNA/RNA stabilization buffers

Next, we tested the capacity of the developed method to 
detect gut-bacterial metabolites in intestinal content stored 
in DNA stabilization buffers. To this aim, we pooled and 
homogenized cecal material from CONV mice and equally 
distributed four aliquots in three different storage conditions: 
(i) freshly frozen samples without any additional solution, 
(ii) samples stored in Invitek stabilization buffer, and (iii) 
samples stored in OMNIgene gut stabilization buffer. We 
then froze the samples at −70 °C and analyzed them using 
our developed GC-MS/MS protocol. We detected a total of 
96 compounds in freshly frozen samples, among which we 
could quantify 82.

For samples stored in Invitek buffer, we could quantify 
79 of the 82 metabolites quantified in fresh-frozen samples, 
with isocaproic acid, 2-ketoisocaproic acid, and isovaleric 
acid not being detected (Fig. 5a, Supplementary Table S13). 
All other metabolites showed comparable concentrations 
between the two sample storage conditions (e.g., butyric 
acid in freshly frozen samples = 23.9 ± 0.41 nmol/mg com-
pared to 21.35 ± 1.35 nmol/mg in Invitek buffer and alanine 
in freshly frozen samples = 1.63 ± 0.09 nmol/mg compared 
to 1.65 ± 0.1 nmol/mg in Invitek buffer).

In contrast, we could quantify all the 82 metabolites in 
OMNIgut that we also quantified in freshly frozen sam-
ples. However, we also found three metabolites that had 
significantly (padj ≤ 0.5) lower concentration in OMNIgut 
stabilization buffer compared to fresh-frozen samples, 

including 2-ketoisocaproic acid, 2-hydroxyisovaleric acid, 
and isovaleric acid (Fig. 5b, Supplementary Table S13).

Furthermore, we noticed that measured metabolite inten-
sities in Invitek stabilization buffer are generally lower than 
those from freshly frozen and OMNIgut buffers. The exten-
sive use of internal standard compounds compensates for 
this for the quantification of metabolites, but the limit of 
detection is reduced.

Conclusions

We have developed and validated a GC-MS/MS method for 
the simultaneous quantification of 120 chemically diverse 
gut microbiota-derived metabolites across multiple biologi-
cal matrices. By employing multiple-reaction-monitoring 
(MRM) and incorporating 52 isotopically labeled internal 
standards, our approach ensures high specificity, sensitivity, 
and quantitative accuracy for a broad range of metabolite 
classes, including SCFAs, BCFAs, organic acids, amino 
acids and their derivatives, indole compounds, and lipid-
like molecules.

To demonstrate the versatility and biological relevance of 
our method, we applied it to samples from germfree and con-
ventionally raised mice. The method successfully captured 
microbiota-dependent metabolic signatures across systemic 
and intestinal compartments, with key metabolite concentra-
tions closely aligning with established literature values. Our 
results also revealed site-specific differences in microbial 
metabolism along the gastrointestinal tract, reflecting known 
microbial colonization zones and metabolic microbiota-host 
interactions. Furthermore, we evaluated the compatibility 
of the method with DNA/RNA stabilization buffers com-
monly used in microbiome studies. We demonstrated that the 
majority of metabolites can be accurately quantified in two 
commonly used DNA/RNA stabilization solutions, OMNI-
gut and Invitek buffer.

We acknowledge that variability in water content between 
samples can introduce imprecision, particularly for metabo-
lites whose concentrations are sensitive to tissue hydration, 
such as highly polar small molecules and SCFAs. In this 
study, metabolite concentrations were normalized to wet 
tissue weight, which is a common and practical approach in 
targeted metabolomics. However, this normalization does 
not account for inter-sample differences in water content, 
which may lead to slight over- or underestimation of metabo-
lite concentrations in samples that are more or less hydrated 
than average. Alternative normalization strategies, such as 
dry-weight normalization or incorporation of tissue water 
content measurements, could further reduce this source of 
variability, but were not applied in the current study. We 
therefore recommend interpreting the provided concentra-
tions with this limitation in mind.
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Altogether, the developed GC-MS/MS method offers 
an analytical protocol for microbiome research, facilitat-
ing accurate quantification of gut-derived metabolites. It 
provides a metabolomic tool for future studies aiming at 
the quantification of microbiota-host metabolic interactions 
and the effects of dietary or microbial interventions on host 
physiology.
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