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A B S T R A C T

Background and Purpose: Deep learning based planning (DLP) has the potential to improve consistency and ef
ficiency in radiotherapy treatment planning. However, its clinical applicability remains limited, partly due to the 
need to translate a predicted dose into a deliverable dose. This study evaluated the generalisability of an 
institution specific DLP solution across multiple institutions by assessing its performance and developing a 
standardised translation parameter set.
Materials and Methods: Four institutions provided clinical treatment plans of 15 patients with left-sided node- 
negative breast cancer. Treatment plans delivering 40.05 Gy were generated using a deep learning prediction 
model trained on data from one institution. External validation was performed using national consensus criteria, 
by applying the initial parameter settings (InitialMimick) to datasets (n = 45) from three other institutions. A 
standardised parameter set (GenericMimick) was then developed based on data (n = 12) from all four in
stitutions, whereafter it was evaluated on the remaining 48 patients of the dataset.
Results: InitialMimick plans showed higher average dose values in the planning target volume for the Dmean (40.5 
vs. 40.1 Gy) and D2% (42.4 vs. 41.4 Gy), with fewer cases meeting all clinical goals (15/45) compared to clinical 
plans (25/45). After parameter adjustment, GenericMimick plans resulted in more plans meeting all goals (28/ 
48), comparable to the clinical plans (30/48), with Dmean of 40.3 vs. 40.1 Gy and D2% of 41.9 vs. 41.5 Gy. Mean 
differences in organs at risk mean doses were less than 0.2 Gy.
Conclusion: DLP with a standardised translation parameter set demonstrated general applicability across multiple 
institutions.

1. Introduction

Breast cancer is the most prevalent type of cancer and the leading 
cause of cancer-related mortality in women worldwide [1]. To improve 
local tumour control, radiotherapy is often included in treatment, 
particularly after breast-conserving surgery [2]. Radiotherapy planning 
is therefore a critical component of breast cancer care, as it impacts 

tumour control and the risk of radiation-induced side effects.
Conventionally, treatment plans are manually designed by medical 

physicists or radiotherapy technologists, involving beam arrangement 
selection, dose constraints, and optimisation parameters. However, this 
manual approach is time-consuming and prone to inter-planner vari
ability, resulting in differences in treatment quality across institutions 
[3]. To address these challenges, deep learning (DL) based dose 
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prediction models have been introduced [4–7]. These models aim to 
predict patient-specific dose distributions based on delineations and CT 
planning data. Ahn et al. [4] developed a DL model for left-sided VMAT 
plans, demonstrating improved accuracy compared to a conventional 
knowledge-based planning approach. Hou et al. [5] proposed a 3D 
U‑Net model incorporating architectural enhancements for improved 
dose prediction in breast cancer, showing high accuracy and successful 
external validation. Both approaches from Ahn et al. and Hou et al. 
stopped at dose prediction and did not assess whether deliverable plans 
could be translated into clinically deliverable treatment plans. Imple
mentation of such models may lead to significant time savings [8,9]. 
While DL based dose prediction may enhance efficiency, its raw output 
is not clinically deliverable and must be converted into a feasible plan 
through dose mimicking [10]. The mimicking algorithm translates the 
predicted dose distribution into a clinically feasible treatment plan by 
optimising treatment machine configurations and minimising deviations 
from the predicted dose. In this study, we refer to DL based planning 
(DLP) as the combined process of DL based dose prediction and 
mimicking.

The mimicking algorithm transforms dose predictions into clinically 
deliverable treatment plans by adjusting objective functions and their 
respective weights [11]. While these parameters are generally treatment 
protocol- and technique-specific, they are often fine-tuned at an insti
tutional level rather than standardised [12]. This fine-tuning process is 
labour-intensive, relying on trial and error, making efficient imple
mentation across different institutions challenging. Previously, a DL 
model for whole breast irradiation has been successfully implemented at 
a single institution with a site-specific mimicking parameter set [6]. This 
model utilises a 3D U-Net architecture and was trained on radiotherapy 
plans prescribing 40.05 Gy (15 fractions of 2.67 Gy). Previous work by 
Bakx et al. assessed its performance within this controlled setting [13]. 
However, the model’s ability to generalise across multiple institutions 
remained untested.

This study aimed to assess the performance of DLP across multiple 
institutions, with fine-tuning of the mimicking parameters based on a 
multi-institutional dataset. This generalised approach can help to 
consistently meet clinical criteria across institutions, thereby enhancing 
the feasibility of standardised deep learning driven treatment planning.

2. Materials and methods

The assessment of DLP performance was conducted in two stages. In 
the first stage, an external evaluation of the DLP model incorporating an 
institute-specific set of mimicking parameters, was carried out using a 
multi-institutional dataset. This step aimed to derive a standardised set 
of mimicking parameters applicable across diverse clinical settings, 
which was subsequently employed in the second stage of the evaluation. 
In the second stage, a standardised set of mimicking parameters was 
derived based on data from the original institution and external in
stitutions combined.

2.1. Patient group

In this retrospective study, datasets were collected from four in
stitutes, including the institute whose data was used to train the dose 
prediction algorithm. Ethical approval was not required, as the data 
were retrospective and anonymized. Each institute provided a dataset of 
15 randomly selected patients diagnosed with left-sided node-negative 
breast cancer who had undergone a lumpectomy and sentinel lymph 
node biopsy followed by radiotherapy of the whole left breast. The 
radiotherapy treatment was administered in 15 daily fractions of 2.67 
Gy, resulting in a cumulative dose of 40.05 Gy. All patients were treated 
in the breath-hold position with whole breast irradiation using intensity- 
modulated radiotherapy (IMRT), with a beam energy of 6 or 10 MV. 
Standard treatment protocols across these institutes involved the use of 
one lateral and one mediolateral beam. Treatment plan evaluations were 

performed according to the Dutch consensus criteria outlined by Hurk
mans et al. [14].

The datasets include CT images with a spatial resolution of 512 x 
512, a slice thickness of 3 mm, segmentations of the clinical target 
volume (CTV), heart, lungs and contralateral breast, and the clinical 
treatment plan including the corresponding dose generated by each 
institute. For this patient group, the breast planning target volume (PTV) 
is generated by expanding the CTV contour by 5 mm, and subsequently 
cropping the PTV to 5 mm beneath the skin.

There was no statistically significant difference in PTV volumes be
tween the local (median 903 cm3 [IQR: 778–949 cm3]) and external 
cohorts (median 804 cm3 [IQR: 577–1121 cm3]) (p = 0.50). Both dis
tributions were within the reported range of the original training pop
ulation (196–2864 cm3) [6]. All treatment plans were developed 
specifically for each institute’s respective Elekta CBCT-equipped treat
ment machine and were manually optimised by experienced treatment 
planners.

2.2. Datasets for external validation

For the external validation, the performance of the DLP approach, 
was assessed on the three external datasets comprising a total of 45 
patients. The DLP was applied using an initial mimicking parameter set 
specifically tailored for the local institute, hereafter referred to as Ini
tialMimick. To ensure a fair comparison, the dataset from this institute 
was excluded from the external validation, as its inclusion could bias the 
results. The performance of the DLP on the local institute’s dataset is 
provided in Supplementary Table S1 and Fig. S1.

2.3. Datasets for standardised mimicking parameter set

By fine-tuning the InitialMimick parameter set through a trial and 
error process, a standardised set of mimicking parameters was derived, 
hereafter referred to as GenericMimick. These parameters can be found 
in Table S1. The optimisation process included 3 patients in the opti
misation subset from each participating institute, including the local 
institute. The remaining 12 patients per institution comprised the test 
set, which was subsequently used to evaluate the performance of the 
GenericMimick configuration.

Characteristics of the dataset used for external validation, as well as 
the optimisation and test sets, including ROI volumes and doses, are 
summarised in Table 1. Statistical comparisons were performed using 
the Mann-Whitney U-test between the optimisation and test sets.

2.4. Plan generation

The delineations of the PTV and OARs were used to determine the 
two optimal beam angles for each patient. The software embedded in the 
treatment planning system (TPS) (RayStation version 12a) refines the 
beam angles through an optimisation process by improving PTV 
coverage and reducing dose to OARs, resulting in an offset from the 
initial gantry angles at 130 and 310 degrees. Bakx et al. explained this 
method previously in [15]. The DL model predicts a voxel-wise dose 
distribution, using binary masks of the PTV and OARs as an input. The 
predicted dose is independent from the beam configuration. After 
generating the dose prediction, the mimicking process is employed to 
render a clinically deliverable plan. The treatment plans were generated 
for each institute using their respective treatment machine configuration 
files.

2.5. Evaluation

Treatment plan evaluation included a comparison between the 
clinical plans and the plans generated using the DLP approach. The 
assessment was based on the number of plans that fulfilled all clinical 
goals, using the Dutch consensus criteria as the reference standard [14]. 
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The PTV dose goals consist of the mean dose (Dmean), the near-maximum 
dose (D2%), and the near-minimum dose (D98%). No dose normalisation 
technique was applied on the results.

This study evaluated the complete DLP, including the mimicking 
parameters, since the predicted dose is not clinically deliverable. The 
isolated performance of the DL model is reported in Supplementary 
Table S2.

As the objective is to minimise the dose to the OARs, and these doses 

naturally vary due to anatomical differences among patients, the 
consensus criteria do not define strict threshold values. In this study, two 
thresholds per organ, based on previous publications and clinical prac
tice, were specified to evaluate the OARs Dmean dose goals [16,17]. The 
thresholds for the heart are 2 and 3 Gy. For the lungs, the thresholds 
were set to 3 and 6 Gy. Last, the contralateral breast were evaluated 
using the thresholds 1 and 2 Gy [18].

To assess statistical differences between clinical plans and plans 

Table 1 
Characteristics of the data split used for the external evaluation and the mimicking optimisation process. The comparison includes the volumes of the regions of interest 
(ROIs) and the corresponding doses of the clinical plans for the patients. The median and IQR is given for the volumes in cm3 and doses in Gy. Statistical differences 
between the optimisation and test sets were assessed using the two-sided Mann–Whitney U-test. All p-values > 0.05, indicating no statistically significant differences.

ROI Characteristic External evaluation (n = 45) 
Institutes: 3

Optimisation set (n = 12) 
Institutes: 4

Test set 
(n = 48) 
Institutes: 4

P-value 
Opt. vs test set

PTV Volume (cm3) 805 [577–1121] 738 [469–919] 878 [624–1094] 0.17
Mean dose (Gy) 40.1 [40.0–40.2] 40.1 [39.8–40.1] 40.1 [40.1–40.2] 0.12
D98% (Gy) 38.1 [38.0–38.3] 38.1 [37.9–38.1] 38.1 [38.1–38.3] 0.06
D2% (Gy) 41.4 [41.3–42.0] 41.4 [41.3–41.6] 41.5 [41.3–41.7] 0.50

Heart Volume (cm3) 649 [607–685] 682 [638–752] 647 [614–686] 0.28
Mean dose (Gy) 1.1 [0.9–1.5] 1.1 [0.9–1.2] 1.0 [0.8–1.3] 0.73

Lungs Volume (cm3) 4822 [4098–5641] 4509 [3940–5411] 4888 [4171–5454] 0.54
Mean dose (Gy) 2.8 [2.1–2.9] 2.2 [1.8–3.0] 2.3 [2.0–2.6] 0.66

Contralateral breast Volume (cm3) 735 [555–1175] 720 [419–867] 804 [604–1180] 0.15
Mean dose (Gy) 0.5 [0.4–0.6] 0.5 [0.4–0.6] 0.5 [0.4–0.5] 0.77

Fig. 1. Boxplots of the results for the treatment plan evaluation metrics for the PTV and OARs across the multi-institutional dataset for the external evaluation (three 
institutes, n = 45). Boxplots show the median (horizontal line), interquartile range (box), and range (whiskers), with outliers shown as individual points. White 
crosses represent the mean dose per group. Dmean: Mean dose, D98%: Minimum dose received by 98 % of the PTV volume, and D2%: Maximum dose received by 2 % of 
the PTV volume. The green shaded area denotes the threshold or acceptable dose range. The blue boxplots represent the clinical treatment plans generated by the 
institute, while the purple boxplots represent the results for the treatments plans generated using the DLP approach, using the initial mimicking parameters (Ini
tialMimick). The asterisks indicate a statistically significant difference between the methods. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.)
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generated with DLP, the two-sided Wilcoxon signed-rank test was 
applied (α = 0.05). Effect sizes were summarised as mean differences 
with 95 % confidence intervals (95 % CI), calculated using 5000 boot
strap samples per comparison. Confidence intervals reflect the percen
tile range of the bootstrap distribution.

3. Results

3.1. External evaluation

The InitialMimick plans resulted in statistically significant higher 
values for the PTV goals, with mean differences of 0.4 Gy (95 % CI: [0.3, 
0.4 Gy]) for the Dmean, 0.2 Gy (95 % CI: [0.0, 0.4 Gy]) for the D98%, and 
0.9 Gy (95 % CI: [0.8, 1.0 Gy]) for D2% (Fig. 1, Table 2). For the heart, no 
statistically significant dose difference was observed between the two 
planning approaches (p-value = 0.92). The mean dose difference to the 
lungs was 0.2  Gy lower in the InitialMimick plans (95 % CI: [–0.3, –0.1 
Gy]), compared to the clinical plans. Conversely, the mean dose to the 
contralateral breast was 0.1  Gy higher (95 % CI: [0.0, 0.1 Gy]) in the 
InitialMimick plans than in the clinical plans.

Among the 45 clinical plans, 25 met all PTV and OAR clinical goals 
when evaluated using the more stringent OARs criteria, compared to 15 
out of 45 for the InitialMimick cases. When applying the less strict OARs 
criteria, these numbers increased to 32 and 18 cases, respectively. 
Considering only the PTV goals, these numbers remained unchanged, 
with 32 of the clinical plans and 18 of the InitialMimick cases that met 
all PTV criteria.

3.2. Alterations in the mimicking parameters

The external evaluation presented in Section 3.1 underscored the 
necessity of optimising the prediction and mimicking parameters to 
increase the proportion of plans that met all clinical goals, thereby 
aligning more closely with the performance of the clinical plans. 
Achieving this improvement required a reduction in both the Dmean and 
the D2% to the PTV, while ensuring the D98% was preserved. The alter
ations that had been made to improve the initial parameters can be 
found in Table 3. The complete set of prediction and mimicking pa
rameters and its alterations can be found in the Supplementary Table S3.

3.3. Plan results using the standardised mimicking parameter set

For the PTV Dmean, the clinical plans demonstrated greater vari
ability than the GenericMimick plans. The latter showed a higher 
average dose, with a mean difference of 0.2 Gy (95 % CI: [0.1, 0.2 Gy]) 
(Fig. 2, Table 4). The difference between the methods for the D98% goal 
was not considered statistically significant (p-value = 0.95). For D2%, 
the IQR was comparable between the clinical and the GenericMimick 
plans. However, the GenericMimick plans showed a higher average 
dose, with a mean difference of 0.3 Gy (95 % CI: [0.3, 0.3 Gy]). Only one 
outlier in the GenericMimick group exceeded the clinical threshold of 
42.85 Gy.

Regarding the OARs, the GenericMimick plans resulted in a 0.2 Gy 

reduction of the mean lung dose compared to the clinical plans (95 % CI: 
[0.1, 0.2 Gy]). Conversely, the mean dose to the contralateral breast was 
slightly higher by 0.1 Gy (95 % CI: [0.0, 0.1 Gy]). Consistent with 
findings from the external evaluation, no statistically significant differ
ence was observed in heart dose (p = 0.75).

When evaluating the number of treatment plans that met all pre
defined PTV and OAR clinical goals, 30 out of 48 clinical plans fulfilled 
all stringent criteria, compared to 28 out of 48 for the GenericMimick 
plans. Under the more lenient thresholds (the lighter green region in 
Fig. 1), 37 out of 48 clinical plans and 34 out of 48 GenericMimick plans 
met the requirements. Considering only the PTV-related goals, 37 out of 
48 clinical plans and 35 out of 48 GenericMimick plans achieved all 
associated criteria.

4. Discussion

The most notable finding of this study was that using a multi- 
institutional optimised mimicking parameter set, enabled plan quality 
comparable to clinical plans across multiple institutions. Differences in 
OARs doses remained clinically insignificant. As such, these settings 
could be used as a good starting point for creating clinical plans. For a 
minority of plans, manual fine-tuning may still be considered, although 
prior work has suggested that in some cases, this does not lead to 
improved outcomes.

These findings align with previous work. Borderías-Villaroel et al. 
[18] highlighted that one of the key challenges in generalising DLP lies 
in the post-processing stage, particularly in the definition of mimicking 
parameters. Other studies have similarly reported clinically insignificant 
OAR differences [19] and limited benefit of manual fine-tuning [13]. 
Rather than retraining the model, which is computationally and labour- 
intensive, this study focused on optimising the mimicking parameters 
step to improve clinical goal fulfilment. While most published work on 
DL dose mimicking focuses on proton therapy settings [20–22], our 
study contributes to the growing body of evidence supporting its use in 
photon-based techniques. Although not based on DL, Babier et al. [23] 
proposed an automated evaluation framework based on dose score to 
compare plans. Due to weak correlation between this metric and the 
clinical plan ranking, it was not used in this study.

A major limitation of this study was the manual adjustment of 
mimicking parameters through trial and error, making it infeasible to 
optimise for larger datasets within the current software framework. This 

Table 2 
The median and IQR of all the treatment plans. For each method, 45 plans are evaluated. All dose values are displayed in Gy. Mean differences are calculated using 
5000 bootstrap samples. 95% confidence intervals reflect the percentile range of the bootstrap distribution. Significance is calculated between the methods using the 
Wilcoxon signed rank test, where the asterisk denotes a significant difference between the methods’ outcomes.

Structure Clinical goal [Gy] Clinical plans 
(median [IQR] in Gy)

InitialMimick 
(median [IQR] in Gy)

Mean difference 
[95 % CI] in Gy

PTV 39.65 ≤ Dmean ≤ 40.45 40.1 [40.1–40.2] 40.5 [40.4–40.5] 0.4* [0.3, 0.4]
D98% ≥ 38.05 38.1 [38.0–38.3] 38.2 [38.1–38.4] 0.3* [0.0, 0.4]
D2% ≤ 42.85 41.4 [41.3–41.6] 42.3 [42.1–42.5] 0.9* [0.8, 1.0]

Heart Dmean 1.1 [0.9–1.5] 1.1 [0.9–1.4] 0.1 [0.0, 0.1]
Lungs Dmean 2.4 [2.1–2.9] 2.2 [2.0–2.7] − 0.2* [− 0.3, − 0.1]
Contralateral breast Dmean 0.5 [0.4–0.6] 0.5 [0.5–0.7] 0.1* [0.0, 0.1]

Table 3 
The alterations in the InitialMimick parameters leading to the GenericMimick 
parameter set.

Goal Alteration

Decrease the Dmean and D2% 

in the PTV
Decreased the dose of the maximum equivalent 
uniform dose (EUD) function
Added maximum dose function on the PTV

Maintain the D98% Increased minimum dose level on the PTV
Increased the weight of the minimum dose level on 
the PTV
Added a minimum EUD function
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approach introduces subjectivity and increases the risk of suboptimal 
parameter selection, as small adjustments can lead to substantial 
outcome changes. Moreover, some functions in the mimicking algorithm 
are interdependent, resulting in either opposing or synergistic effects. 
Additionally, this study was conducted across four institutes using 
similar radiotherapy techniques (IMRT), limiting applicability to in
stitutions with different planning techniques or treatment machines. 
Zeverino et al. showed the feasibility of applying a VMAT-based model 
for left-sided breast cancer with a simultaneous integrated boost to 
right-sided casing using a similar approach, without retraining [24].

The mimicking parameters were optimised based on data from all 
three external institutes. To demonstrate generalisability, an indepen
dent external dataset would be required. To overcome current limita
tions, future work should prioritise automated generation of mimicking 
parameters tailored to specific patient groups. This would enhance 
scalability, support broader clinical adoption across institutions with 
varying techniques and equipment, and facilitate the extension of DLP 
to, for example, locoregional breast radiotherapy.

Initial prospective work in other indications, such as prostate cancer, 
has already demonstrated the clinical acceptability and efficiency gains 

Fig. 2. Boxplots of the results for the treatment plan evaluation metrics for the PTV and OARs across the multi-institutional dataset for the optimisation of the 
mimicking parameters (4 institutes n = 48). Boxplots show the median (horizontal line), interquartile range (box), and range (whiskers), with outliers shown as 
individual points. White crosses represent the mean dose per group. Dmean: Mean dose, D98%: Minimum dose received by 98 % of the PTV volume, and D2%: Maximum 
dose received by 2 % of the PTV volume. The green shaded area represents the threshold or range of the acceptable dose. The blue boxplot represents the clinical 
treatment plans of the institute, and the red boxplots represent the results for the treatments plans generated using the DLP approach with generic mimicking 
parameters (GenericMimick). It should be noted that the clinical plan data in this analysis differ from those in the external validation, where the local institute’s data 
were excluded. The asterisk indicates a statistically significant difference between the methods. (For interpretation of the references to colour in this figure legend, 
the reader is referred to the web version of this article.)

Table 4 
The median and IQR of all the treatment plans. For each method, 48 plans are evaluated. All dose values are displayed in Gy. Mean differences are calculated using 
5000 bootstrap samples. 95 % confidence intervals reflect the percentile range of the bootstrap distribution. Statistical significance is determined using the two sided 
Wilcoxon signed rank test (α = 0.05), where asterisks indicate significant differences between methods.

Structure Clinical goal [Gy] Clinical plans 
(median [IQR]) in Gy

GenericMimick 
(median [IQR]) in Gy

Mean difference 
[95 % CI] in Gy

PTV 39.65 ≤ Dmean ≤ 40.45 40.1 [40.0–40.2] 40.3 [40.3–40.3] 0.2* [0.1, 0.2]
D98% ≥ 38.05 38.1 [38.1–38.3] 38.1 [38.1–38.3] 0.1 [− 0.1, 0.2]
D2% ≤ 42.85 41.5 [41.3–41.7] 41.8 [41.7–42.0] 0.3* [0.3, 0.4]

Heart Dmean 1.0 [0.8–1.3] 1.0 [0.8–1.3] 0.1 [0.0, 0.1]
Lungs Dmean 2.3 [2.0–2.6] 2.2 [1.8–2.6] − 0.2* [− 0.2, − 0.1]
Contralateral breast Dmean 0.5 [0.4–0.5] 0.5 [0.4–0.6] 0.1* [0.0, 0.1]
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of AI-based treatment planning [25], further supporting the relevance of 
such evaluations in photon-based DLP applications. Ultimately, valida
tion through prospective, multi-institutional studies will be essential to 
confirm clinical feasibility and robustness.

In conclusion, this study demonstrates the general applicability of 
deep learning based whole breast radiotherapy planning among four 
institutes, achieving results comparable to clinical treatment plans when 
using a mimicking parameter set optimised with multi-institutional 
data. Manual parameter fine-tuning remains labour intensive, under
scoring the need for automated parameter optimisation techniques.
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