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ARTICLE INFO ABSTRACT
Keywords: Introduction: In patients with pancreatic cancer, the risk of venous thromboembolism (VTE) is high compared to
Venous thromboembolism other cancer types, suggesting that tumor-intrinsic features drive hypercoagulability. Tumor gene expression

Pancreatic ductal carcinoma

‘ A€ analysis may help unravel the pathogenesis of VTE in these patients and help to identify high-risk patients.
Genetic transcription

Aim: To evaluate the association between tumor gene expression patterns and VTE in patients with pancreatic
cancer.

Methods: In this retrospective cohort study RNA-sequence data from surgically resected tumor material from
patients with pancreatic ductal adenocarcinoma (PDAC) was used to identify genes associated with the presence
of venous thromboembolism (i.e., pulmonary embolism or deep-vein thrombosis) within one year follow-up after
surgery. Additionally, VTE risk and expression of coagulation related genes in two molecular subtypes of
pancreatic cancer was assessed.

Results: Out of 151 patients, 10 (6.6 %) developed deep-vein thrombosis or pulmonary embolism within one year
follow-up. Differential expression analysis yielded 89 genes significantly differentially expressed in patients with
VTE compared to those without VTE, including ATP6VOA4, SYT14 and ZNF114. The incidence of VTE in classical
subtype was higher (n = 9; 7.6 %) than in basal-like subtype (n = 1;4 %), but this difference was not statistically
significant (SHR 1.79; 95 % CI 0.22-14.3). Forty-two coagulation-associated genes were identified that were
differentially expressed between these molecular subtypes, including F5, PLAU, SERPINE1, and C4BPB.
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Conclusions: Patients with pancreatic cancer and VTE show a different tumor gene expression profile than those
without VTE. Multiple coagulation-related genes were differentially expressed in classical versus basal-like
molecular subtype, suggesting that there is a difference in pro-thrombotic phenotype.

1. Introduction

Venous thromboembolism (VTE), which encompasses pulmonary
embolism and deep-vein thrombosis, occurs in approximately 7 % of
cancer patients during the first 6 months after their cancer diagnosis
[1,2]. VTE frequently leads to interruption or discontinuation of cancer
treatment, decreased quality of life, morbidity, and death [3,4]. The
incidence of VTE is heavily dependent on the type of cancer. Patients
with breast or prostate cancer have a significantly lower VTE incidence
(~1 % per year) than those with high-risk tumors, including gyneco-
logical, biliary, and pancreatic cancer [5]. Patients with ductal pancre-
atic adenocarcinoma (PDAC) have the highest risk of VTE, with an
estimated incidence of up to 20 % in the first 6 months after diagnosis in
those with metastatic disease and up to 11 % in the first year after
surgery with curative intent [5,6]. The reasons for this disparity in VTE
risk across tumor types is still largely unclear, but is hypothesized to be
highly related to tumor intrinsic properties. PDAC cells may induce
hypercoagulability by releasing thrombogenic factors, such as tissue
factor-positive extracellular vesicles [7-9], or inhibitors of fibrinolysis,
such as plasminogen activator inhibitor 1 (PAI-1) [10]. Molecular in-
formation holds promise to improve risk assessment, which can be used
to identify patients for thromboprophylaxis. Additionally, it will provide
insights in the pathophysiology of cancer-associated thrombosis.

Other studies have demonstrated an association between tumor gene
expression and the risk of VTE in patients with lung cancer and colo-
rectal cancer [11,12]. To the best of our knowledge, this association has
not been studied in PDAC, which is a tumor type known to carry the
highest risk of VTE. We hypothesize that tumor gene expression is
associated with VTE risk in PDAC patients. Therefore, we sought to
evaluate the association between tumor gene expression assessed by
RNA-sequencing and development of VTE in patients with PDAC after
resection.

2. Methods
2.1. Cohorts, outcome data and analysis

RNA sequence data were analyzed retrospectively in two indepen-
dent cohorts, across three academic hospitals in the Netherlands, in
which tumor specimens were collected after surgery. In the first cohort,
patients underwent surgery in the Amsterdam UMC between 1993 and
2015. The second cohort included patients who underwent pancreatic
surgery between 2015 and 2018 in the Amsterdam UMC, or between
1993 and 2018 in the University Medical Center Utrecht or Leiden
University Medical Center. Patients were included in these cohorts if
they had histologically proven PDAC; underwent a pan-
creatoduodenectomy; were 18 years or older and provided written
informed consent for tumor sample collection. Differences in tumor gene
expression and their association with VTE were assessed.

The main outcome was radiologically confirmed proximal deep vein
thrombosis (DVT) of the leg or symptomatic or incidental pulmonary
embolism (PE) within one year after surgery, since VTE risk remains
high in the first year after PDAC surgery [6]. Abdominal vein thrombosis
and catheter-related thrombosis were not included in this homogeneous
outcome because they are often also caused by local factors (e.g. vein
compression by the tumor and foreign material, postoperative compli-
cations) rather than hypercoagulability. Patients with arterial throm-
boembolism were also excluded since mechanisms of thrombosis are
likely different which could interfere with differential expression results.
Outcomes were adjudicated by a vascular medicine specialist who was

blinded for the RNA-sequencing outcomes.

RNA-sequencing data was used to assess differences in gene
expression in patients who developed VTE compared to those who did
not develop a VTE event during the first year after surgery for PDAC.
Gene set enrichment analysis was performed to find significantly
enriched pathways associated with VTE. Additionally, we compared
genes significantly associated with VTE in our analysis with two previ-
ous studies on VTE and differentially expressed genes in patients with
colorectal cancer [11] and lung cancer [12]. To assess a possible dif-
ference in thrombogenic phenotype, we compared VTE outcomes and
expression of coagulation-related genes in two molecular subtypes of
PDAC, classical versus basal-like [15]. In this analysis, samples were
classified as classical or basal-like molecular subtype according to the
PurlST classifier, introduced by Rashid et al., which classifies samples as
classical or basal-like based on the expression of 16 different genes
[16,17]. Basal-like and classical subtype were further categorized as
strong, likely, or leaning basal-like and strong, likely, or leaning classical
molecular subtype. Finally, differential expression of 324 coagulation-
related genes and gene ontology for coagulation pathways was
assessed in classical vs. basal-like molecular subtype to find possible
differences in expression which could be related to VTE risk. Three
external PDAC datasets were used to confirm coagulation-related gene
expression in these two subtypes.

2.2. Data collection, validation cohorts and gene sets

Data on patient characteristics and outcomes were retrospectively
collected from the patients’ medical charts using Castor EDC, an elec-
tronic case record form. Patients without complete one year follow-up
were excluded.

Methodology on tissue collection and RNA-sequencing is discussed in
detail elsewhere [18]. In short, tumor specimens were snap-frozen in
liquid nitrogen and stored at —80 °C. RNA was isolated from 30 sections
of 20 pm using RNABee (Bio-Connect, Huissen, the Netherlands) and the
RNeasy Mini kit (Qiagen, Hilden, Germany). Samples were DNase-
treated. RNA was amplified using the Total Prep RNA Amplification
kit (Illumina, San Diego, CA). Poly-A enriched libraries were synthesized
using TruSeq RNA Library Prep kit and sequenced in three batches
(Illumina HiSeq2500). All sequencing data were quality-controlled
using FastQC and found to be of high quality. RNA-Seq reads were
aligned to the human reference genome (GRCh38). rRNAs, tRNAs and
chromosome M were masked.

Retrospective collection for RNA sequencing was conducted in
accordance with ethical guidelines ‘Code for Proper Secondary Use of
Human Tissue in The Netherlands’ (Dutch Federation of Medical Sci-
entific Societies), approved by the Amsterdam UMC institutional review
board (METC_A1 15.0122) [18]. For prospectively collected material,
written informed consent was obtained from all patients in the BioPAN
biobank from 2011 (METC 2018-181) and PancreasParel biobank from
2015 (BTC 2014_180). Clinicopathological data were obtained through
the departments of Surgery and Pathology. Normalized gene expression
data from these cohorts are available upon request at R2: Genomics
Analysis and Visualization Platform (https://r2.amc.nl) under identifier
‘Tumor PDAC Spacious 1+2 - Vijver - 221 - custom - ensh38e99’. Raw read
data can be downloaded at EMBL-EBI ArrayExpress (E-MTAB-6830).

For the analysis of differences in expression of coagulation related
genes in classical versus basal-like molecular subtype, we used genes
from gene ontology pathway ‘coagulation’ (GO:0050817; 178 genes),
KEGG pathways ‘Complement and coagulation cascades’ (hsa04610; 86
genes), and ‘Platelet activation’ (hsa04611; 124 genes), resulting in a list
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of 324 unique coagulation and platelet related genes. For external
validation of gene expression of coagulation related genes in the two
molecular subtypes, three publicly available PDAC datasets were used.
These included the Moffitt dataset (GSE71729), the Canadian pancreatic
cancer dataset by the International Cancer Genome Consortium (ICGC
PACA-CA, available at https://dcc.icgc.org/projects/PACA-CA), and
The Cancer Genome Atlas PDAC dataset (TCGA-PAAC, available at http
s://portal.gdc.cancer.gov/projects/TCGA-PAAD).

2.3. Statistical analysis

Analyses were performed in R (statistical software, version 3.2.0).
Differential gene expression analysis was performed using the DESeq2
package and LFC shrinkage was performed using the ‘ashr’ method
[20,21]. A P-value <0.05 after multiple testing correction, using the
Benjamini-Hochberg method, was considered statistically significant.
Analyses were restricted to protein coding genes only (n = 17,311). The
‘ComplexHeatmap’ package was used to construct heatmaps. Gene Set
Enrichment Analysis (GSEA) was performed on genes significant
differentially expressed (false discovery rate [FDR] <0.05) using the
gseGO function in the clusterProfiler package. Gene expression in
external datasets were assessed using the ‘pdacR’ package, in which
gene expression analysis can be performed using publicly available
expression data of previously reported PDAC datasets [22].

VTE in both molecular subgroups was visualized using cumulative
incidence curves. Subdistributional hazard ratios were calculated to
assess risk differences of VTE in both groups with death not related to
VTE as a competing risk according to Fine & Gray [23]. Survival curves
were constructed to assess a difference in mortality in classical vs. basal-
like tumors using the log-rank test.

Coagulation-related genes that were significantly differentially
expressed with a 1og2FC > 0.5 or < —0.5 were assessed in the three
external PDAC dataset mentioned above (GSE71729, ICGC PACA-CA,
and TCGA-PAAC).

3. Results
3.1. Description of the cohort

RNA-sequencing data were available for 221 patients from the two
cohorts, including expression data of 17,311 protein coding genes. Eight
patients (3.6 %) were excluded because they did not have a certain
diagnosis of pancreatic ductal adenocarcinoma after pathology revision
and one (0.4 %) was excluded because of therapeutic-dose anti-
coagulation for atrial fibrillation during follow-up. Of the remaining 212
patients, 162 (76.4 %) had complete one-year follow-up available.
Eleven patients were excluded from the analysis due to other throm-
boembolic events, including abdominal vein thrombosis (n = 5),
catheter-related upper extremity thrombosis (n = 3), and arterial
thromboembolism (n = 3). Of the remaining 151 patients, 10 (6.7 %)
patients developed lower-extremity DVT or PE, 65 (43.0 %) had recur-
rent disease, and 48 (31.8 %) died. Of 10 patients with VTE, 7 (70 %)
had disease recurrence within one year. Of those, 2 had recurrent dis-
ease prior to VTE. The other 5 had recurrent disease within six months
after VTE. Baseline and tumor characteristics are listed in Table 1.

3.2. Gene expression in PDAC patients with VTE versus no VTE

Differential gene expression analysis between patients with VTE and
no VTE yielded 20 genes significantly associated with VTE and 69 genes
significantly associated with no VTE after multiple testing correction
(Fig. 1). Genes with the strongest association with VTE, in terms of
log2fold change (log2FC), were ATP6V0OA4 (log2FC 3.77, FDR
1.22%107%), SYT14 (log2FC 2.91, FDR 4.31%10°), and ZNF114 (1og2FC
2.55, FDR 0.0008). Genes associated with no VTE were KRT20 (log2FC
-5.75, FDR 1.22¥107%), TMPRSS15 (log2FC -4.78, FDR 0.006), and
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Table 1
Baseline characteristics of patients with and without thromboembolic events
year follow-up.

Patients with Patients without P-
VTE VTE value
n=10 n =141
Sex (male) (%) 6 (60) 84 (59.6) 1.00
Age (median, IQR) 67.0 (60.0-73.0)  65.5 (64.0-69.3) 0.89
Tumor diameter (%) 0.86
0-2 cm 0 14 (9.9)
2-4 cm 7 (70) 90 (63.8)
4-6 cm 2 (20) 27 (19.1)
>6 cm 1(10) 9 (6.4)
Tumor location (%) 0.15
Head 8 (80) 119 (84.4)
Corpus 2 (20) 6 (4.2)
Tail 0 11 (7.8)
Differentiation (%) 0.87
Well 110 12 (8.5)
Moderate 4 (40) 50 (35.5)
Poor 5 (50) 70 (49.6)
Unknown 0 5(3.5)
Lymph node metastasis (%) 9 (90) 105 (74.5) 0.47
Irradical resection* (%) 5 (50) 90 (53.9) 0.93
Adjuvant chemotherapyt (%) 9 (90) 110 (78.0) 0.80
Neo-adjuvant chemotherapy 0(0) 4(2.9) 0.59

(%)

Differences between groups are assessed using a chi-squared test for categorical
variables and an ANOVA tests for continuous variables. *Margin <1 mm or
tumor in resection margin. fadjuvant treatment data missing for 3 patients
without VTE. Abbreviations: VTE, venous thromboembolism; SD, standard
deviation.

MEPIA (1og2FC -4.50, FDR 0.004). Genes differentially expressed with a
log2 fold change higher than 2 or lower than —2 are summarized in
Table 2. Remarkably, no genes known to be associated with thrombosis,
coagulation pathways, or platelet function were differentially expressed.
Gene set enrichment analysis resulted in four pathways significantly
enriched in patients with VTE: keratinization (Enrichment score [ES]
0.82, Q-value 0.001), keratinocyte differentiation (ES 0.63, Q-value
0.003), epidermis development (ES 0.44, Q-value 0.04), and protein-
containing complex remodeling (ES -0.90, Q-value 0.04).

Validation of signature genes in external datasets of patients with
colorectal and lung cancer revealed that SYT14 was significantly
differentially expressed between patients with and without VTE in the
current cohort (log2FC 2.91; FDR 4.31¥107%) as well as in those with
lung cancer. Several other genes previously described as associated with
VTE were differentially expressed with high log2 fold change in the
current cohort, including DEFA5 (log2FC -5.87), SPINK4 (log2FC -5.82)
and REG4 (log2FC -3.37) in colorectal cancer and DSG1 (log2FC 3.29) in
lung cancer, although these association did not reach statistical signifi-
cance after adjusting for multiple testing. (sup Table 1).

Finally, we noted that 3 genes significantly associated with no VTE
are amongst the 25 signature genes for classical molecular subtype as
proposed by Moffitt et al., including KRT20, CDH17 (log2FC -3.37, FDR
0.0002) and MYO1A (log2FC -2.59, FDR 0.01) [15]. Therefore, VTE
incidence was also assessed in classical versus basal-like molecular
subtype.

3.3. VTE in patients with classical vs. basal-like molecular subtype

Since several signature genes for classical subtype PDAC were
significantly downregulated in patients with VTE, we assessed whether
classical or basal-like molecular subtype was associated with VTE. For
this analysis we classified samples as classical or basal-like according to
the PurlIST classifier [16]. Classical and basal-like molecular subtype can
further be classified as strong, likely, or leaning classical or basal-like.
126 samples (83.4 %) were classified as classical molecular subtype,
of which 117 were classified as strong classical (77.5 %). Twenty-five
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VTE versus no events during 1 year follow-up
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Fig. 1. Volcano plot of differentially expressed genes in patients VTE versus no VTE during one year of follow-up. In red genes with a false discovery rate < 0.05 and
Log2 fold change >1. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

(16.6 %) samples were basal-like, of which 11 (7.3 %) were strong basal-
like. 2805 (16.2 %) genes were differentially expressed in patients with
classical versus basal-like subtype. Differential expression analysis in
strong classical versus strong basal-like resulted in 3996 (23 %) signif-
icantly differentially expressed genes. 33 (26.2 %) patients with classical
subtype died during follow-up, compared with 15 (60 %) in the basal-
like subtype group (p = 0.0001; Fig. 2A). One-year VTE incidence was
7.2 % (n = 9) in patients with classical subtype tumors compared to 4.0
% (n = 1) in patients with basal-like tumor (SHR 1.79; 95 % CI
0.22-14.3) (Fig. 2B).

To formally ascertain genes associated with VTE regardless of mo-
lecular subtype, we assessed gene expression in patients with VTE versus
no VTE in patients with classical subtype only, in which 90 % of VTE
events occurred. Differential expression of genes in patients with clas-
sical subtype and VTE (n = 9) versus classical subtype and no VTE (n =
116) showed that 4 genes significantly associated with VTE and 23 genes
associated with no VTE. Genes associated with no VTE were comparable
to differentially expressed genes in VTE versus controls in the whole
cohort, including the three signature genes for classical subtype KRT20
(log2FC -5.83, FDR 8.74 * 1076), CDH17 (log2FC -3.57, FDR 0.0002),
and MYO1A (log2FC -2.64, FDR 0.03). EREG (Log2FC 1.85, FDR 0.05)
and LIPJ (Log2FC 1.64, FDR 0.03) were significantly associated with
VTE (sup. Table 2).

3.4. Expression of coagulation related genes in classical vs. basal-like
molecular subtype

To assess a potential difference in thrombogenic phenotype between
subtypes, we assessed differential expression of coagulation related
genes in basal-like and classical molecular subtype. A total of 324 genes

from the Gene ontology and KEGG coagulation, complement and
platelet pathways (GO:0050817, hsa04610, hsa04611) were assessed.
Out of 324 genes, 42 (13.0 %) were significantly differentially expressed
(Fig. 3). Notable genes associated with the classical subtype were
coagulation factor V (F5, log2FC 1.42, FDR 1.7¥107%), factor XI (F11,
log2FC 1.31, FDR 0.002), and complement Component 4 Binding Pro-
tein Beta (C4BPB, 1og2FC 1.18, FDR 7.1*10’5), which is responsible for
inhibition of the natural anticoagulant protein S [26,27]. Transcription
factors HNF4a (log2FC 2.0, FDR 4.4%10-'%) and FOXA2 (log2FC 1.23,
FDR 2.19%107%) both involved in regulation of coagulation related gene
expression, were significantly associated with classical subtype [28-30].
Amongst genes significantly associated with basal-like subtype were
proteins associated with thrombosis, including S100 calcium-binding
protein A9 (S100A9, log2FC -1.52, FDR 2.1*107%) [31], Plasminogen
activator inhibitor-1 (SERPINEI, log2FC -0.85, FDR 0.002) [10], and
interleukin 6 (IL6, log2FC -1.14, FDR 0.002) [32] and proteins associ-
ated with fibrinolysis including plasminogen activator, urokinase
(PLAU, log2FC -0.85, FDR 0.0004) [33] and the thrombin inhibitor
protease nexin-1 (SERPINE2, log2FC -1.18, FDR 6.7*10’7) [34]. Cav-
eolin 1 (CAVI, Log2FC -1.25, FDR 2.05*10’6) a signal transduction
protein, reported to be involved in exposure and function of tissue factor
pathway inhibitor, was significantly associated with basal-like subtype
[35,36].

Next, we assessed differentially expressed genes in patients with
‘strong classical’ (n = 115) versus ‘strong basal-like’ (n = 12). This
analysis revealed 74 (22.5 %) differentially expressed coagulation-
related genes. Similar to the previous analysis, F5, F11, C4BPB, HNF4a
and FOXA2 were significantly associated with classical subtype, while
PLAU, PAI-1, CAV-1 and S100A9 were significantly associated with
basal-like subtype. Amongst other differentially expressed genes were
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Table 2

Genes significantly differentially expressed and log2 fold change >2 in patients
with deep vein thrombosis or pulmonary embolism compared to patients with

no thromboembolic events.

Downregulated
Gene Name Function log2 FDR
symbol Fold
Change
KRT20 Keratin 20 Maintaining keratin ~ —5.75 1.22¥107°
filament
organization
TMPRSS15 Transmembrane Activation of —4.78 0.005652
protease, serine 15 pancreatic
proteolytic
proenzymes
MEP1A Meprin A, alpha Hydrolysis of —4.50 0.000689
protein and peptide
substrates
APOB Apolipoprotein B Recognition signal —4.08 0.003973
for the cellular
binding and
internalization of
LDL
SLC28A2 Solute carrier Sodium-dependent —3.96 0.005652
family 28, member  and purine-
2 selective
transporter
SI Sucrase-isomaltase Carbohydrate —3.94 0.013764
digestion.
GUCY2C Guanylate cyclase Catalyzes synthesis —3.93 0.00269
2C of cyclic GMP
GPA33 Glycoprotein A33 Cell-cell —3.63 0.000253
recognition and
signalling
MTRNR2L8 MT-RNR2-like 8 Neuroprotective —3.50 0.021237
and antiapoptotic
factor
CDH17 Cadherin 17, LI Calcium-dependent —3.37 0.00015
cadherin cell adhesion
protein
CHST5 Carbohydrate Sulfotransferase —3.16 0.024646
Sulfotransferase 5
NEU4 Sialidase 4 Catalyzes the —3.03 0.01638
hydrolytic cleavage
of sialic acids
NPPC Natriuretic peptide ~ Endochondral —2.97 0.024646
C ossification
PI16 Peptidase inhibitor =~ May inhibit —2.93 0.004975
16 cardiomyocyte
growth
MOGAT2 Monoacylglycerol Catalyzes the -2.79 0.02751
O-acyltransferase 2~ formation of
diacylglycerol from
2-monoacylglycerol
and fatty acyl-CoA.
SHD Src homology 2 May function as an —2.63 0.03757
domain containing adapter protein
transforming
protein D
MYOl1A Myosin IA Movement of —2.59 0.011156
organelles along
actin filaments
ADH4 Alcohol Oxidizes long chain ~ —2.53 0.03757
dehydrogenase 4 omega-hydroxy
fatty acids
APC2 Adenomatosis Stabilizes —2.52 0.034081
polyposis coli 2 microtubules
CYP3A4 Cytochrome P450, Involved in the —2.40 0.042837
family 3, subfamily =~ metabolism of
A, polypeptide 4 sterols, steroid
hormones,
Retinoids and fatty
acids
TUBAL3 Tubulin, alpha-like Constituent of -2.39 0.034081

3

microtubules
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Table 2 (continued)

Downregulated
Gene Name Function log2 FDR
symbol Fold
Change
SOX2 SRY (sex Controls expression —2.27 0.016974
determining region  of genes involved in
Y)-box 2 embryonic
development
PTPN5 Protein tyrosine activity of several -2.19 0.007677
phosphatase, non- effector molecules
receptor type 5 involved in
synaptic plasticity
and neuronal cell
survival
MOGAT3 Monoacylglycerol Catalyzes the -2.17 0.042837
O-acyltransferase 3 ~ formation of
diacylglycerol from
2-monoacylglycerol
and fatty acyl-CoA
CNTFR Ciliary Receptor for -2.15 0.0369
neurotrophic factor ~ heterodimeric
receptor neurotropic
cytokine
Upregulated
Gene Name Function log2 FDR
Symbol Fold
Change
ZNF114 Zinc finger protein Involved in 2.55 0.000841
114 transcriptional
regulation
SYT14 synaptotagmin XIV  trafficking and 291 4.31¥107°
exocytosis of
secretory vesicles in
non-neuronal
tissues
ATP6VOA4 ATPase, H+ Hydrolyzes ATP 3.77 1.22¥107°
transporting,
lysosomal VO
subunit a4

Abbreviations: FDR, false discovery rat.

coagulation factor X (F10, Log2FC 1.48, FDR 1.0¥107>), Protein C in-
hibitor (SERPINA5, Log2FC 1.05, FDR 0.007), both associated with
classical subtype (sup. Fig. 1).

GSEA showed no significantly enriched coagulation related path-
ways in classical versus basal-like subtype. GSEA in strong classical
versus strong basal-like subtype yielded 209 pathways significantly
enriched, including the pathways ‘coagulation’ (GO:0050817, ES 0.49,
Q-value 0.04) and ‘blood coagulation’ (GO:0007596, ES 0.49, Q-value
0.04) (sup. Fig. 2).

Expression of coagulation related genes in classical versus basal-like
subtype with a log2 fold change >0.5 or < —0.5 were evaluated in three
external dataset of PDAC in which classical vs. basal-like subtype per
sample was available. Clustered heatmaps showed clustering of basal-
like and classical subtype in all three cohorts with similar over- and
under expression in both subtypes as in our study cohort (Fig. 4).

4. Discussion

Tumor gene expression analysis of patients with pancreatic cancer
showed that expression of 89 genes were significantly associated with
VTE, of which 20 genes showed significantly higher expression in pa-
tients with VTE and 69 genes showed significantly lower expression in
patients with VTE. In an analysis stratified into two different commonly
used molecular subtypes of PDAC [15,16], the incidence of VTE was
numerically higher in patients with classical compared to basal-like
molecular subtype, but this difference was not statistically significant.
In an analysis of classical subtype only, we found that expression of
KRT20, MYO1A and CDH17, three genes previously classified as signa-
ture genes for classical subtype, were amongst genes associated with no
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VTE. Finally, we found an abundance of coagulation-related genes
differentially expressed across the two molecular subtypes, including
prothrombotic coagulation factors upregulated in classical subtype
while proteins involved in fibrinolysis were more upregulated in basal-
like subtype, suggesting that VTE risk might be different in these
subtypes.

While several genes were significantly differentially expressed in
patients with VTE versus controls, none of these have a known associ-
ation with thrombosis, coagulation, or platelet activation. Several
differentially expressed genes are known to be associated with poor
prognosis or tumor progression. ATP6V0OA4 is a gene which encodes a

component of vacuolar-type ATPase, a proton pump responsible for
controlling the intracellular and extracellular pH of cells, which has
been reported to predict survival in patients with pancreatic cancer
[37,38]. A high level of ZNF114, a transcription regulator found to be
upregulated in several tumor types, has been reported to be associated
with poor outcome in renal cell carcinoma [39,40]. SYT14 is a gene
known to be responsible for cell proliferation in glioma tumors, which
was also found to be significantly upregulated in lung cancer patients
with VTE compared to no VTE [12,41]. The expression of all these three
genes was significantly associated with VTE. Expression of EREG, the
gene encoding epiregulin, an epidermal growth factor, was significantly
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associated with VTE in patients with classical subtype. This gene is re-
ported to be associated with pancreatic tumor growth and is associated
with poor outcome or tumor progression in many cancer types including
lung, gastric, bladder, breast, brain and colorectal cancer [42,43]. The
differential expression of genes associated with poor outcome or tumor
progression is in line with the higher recurrence rate in patients with
VTE (70 %) compared to those without VTE (43 %). These early re-
currences may have led to a hypercoagulable state resulting in a higher
VTE incidence.

KRT20 expression is also associated with poor overall survival, spe-
cifically in patients with pancreatic cancer [44]. It has been proposed to
be used as biomarker for poor prognosis after RO resection [45]. Inter-
estingly, KRT20 was significantly associated with no VTE with the
highest log2FC in patients with classical molecular subtype only.
Additionally, MYO1A and CDH17, were significantly downregulated in
patients with VTE and classical type. The fact that expression of these
three genes, all signature genes for classical subtype according to the
original manuscript by Moffitt et al., was significantly lower in patients
with classical subtype and VTE compared to those with classical subtype
and no VTE, suggests a potentially important difference in genetic tumor
properties in these patients. Validation in external PDAC datasets with
VTE as outcome need to confirm a causal effect between differential
expression of the genes and VTE risk.

Since VTE in cancer patients, especially in pancreatic cancer, is likely
a multifactorial disease due to patient-related risk factors, tumor prop-
erties, and treatments, we hypothesize that molecular subtypes of spe-
cific tumors could be a better predictor of VTE risk than a small set of
differentially expressed genes. While we could not confirm a significant
risk difference between classical and basal-like subtypes, possibly due to
limited power, we did find important differences in expression of
coagulation-related genes. These findings were subsequently confirmed
in three external PDAC datasets. Upregulation of several prothrombotic

genes was significantly associated with classical subtype, including F5,
F11, and C4BPB, a protein involved in protein S inhibition [27], while
other genes associated with fibrinolysis or inhibition of thrombin for-
mation were significantly upregulated in basal-like subtype, including
PLAU, the gene for urokinase-type plasminogen activator, an important
protein for fibrinolysis [47], and SERPINE2, which functions as an in-
hibitor of thrombin. [34] While these findings suggest a more throm-
bogenic phenotype in patients with classical PDAC, the expression of
other genes associated with potentially opposite effects were associated
with basal-like subtype, such as plasminogen activator inhibitor-1
(SERPINE1), which is associated with VTE specifically in patients with
pancreatic cancer [10]. Importantly, while several coagulation related
genes are differentially expressed, for most genes it is not known in what
way they contribute to thrombosis. For example, increased levels of PAI-
1 and activated F11 are associated with an increased risk of VTE in
patients with pancreatic cancer, but whether increased levels of HNF4a
or CAV1 contribute to the risk of thrombosis in these patients is un-
known [10,49]. These data show that genes associated with blood
coagulation are highly and differentially expressed across different
PDAC subtypes. What the overall pro- or anticoagulant effect of all these
differentially expressed genes is on the occurrence of VTE in these and
other subtypes in clinical practice, remains uncertain.

Since enrolment in this study was restricted to patients undergoing
surgery with curative intent, the results cannot readily be extrapolated
to patients with advanced pancreatic cancer. Additionally, as clinical
data were collected retrospectively, outcome events may have been
missed resulting in an underestimation of the event rate and bias to-
wards the null in the gene expression analyses. Therefore these findings
need to be assessed in prospectively collected cohorts with PDAC pa-
tients, preferably in patients with advanced pancreatic cancer, in which
the VTE incidence is higher [50].

Genetic heterogeneity within pancreatic ductal adenocarcinoma is
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substantial and can affect the course of the disease and response to
therapy. Although the association between this molecular landscape and
cancer prognosis is increasingly being explored [51,52], data on tumor
genes and tumor gene expression in relation to VTE is relatively scarce
[11,52,55]. Additionally, as we assessed gene expression in bulk mRNA,
studies assessing differences in PDAC tumor cells and stromal cells could
provide more insights into the origins of increased VTE risk in these
patients. Studies in this field may increase our understanding of the
pathogenesis of cancer-associated VTE and potentially improve predic-
tion of VTE in cancer patients, with the ultimate goal to select ambu-
latory high-risk patients for thromboprophylaxis. The present study
suggests that such an approach may be possible. Additional studies are
needed to assess VTE risk in patients with advanced pancreatic cancer
with differences in tumor gene expression, including differential
expression of ATP6VOA4, ZNF114, SYT14, EREG, KRT20, MYO1A and
CDH17, to confirm or disprove a causal relation between single tumor
gene expression levels and thrombosis risk. These studies can also be
performed to confirm the hypothesis that VTE risk is different per mo-
lecular subtypes. Finally, identified genes need to be functionally vali-
dated in in vitro and in vivo experiments to improve our understanding
of the pathogenesis of VTE related to pancreatic cancer.
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