

Postoperative radiotherapy for oral cavity cancer with or without elective neck radiotherapy of the pN0 en bloc dissected neck: oncologic outcomes and late toxicity

Kreike, B.; Al-Mamgani, A.; Werkhoven, E. van; Beugeling, M.; Kaanders, J.H.A.M.; Ruler, M. van; ... ; Dutch Head & Neck Radiation Oncology Soc

Citation

Kreike, B., Al-Mamgani, A., Werkhoven, E. van, Beugeling, M., Kaanders, J. H. A. M., Ruler, M. van, ... Elbers, J. B. W. (2025). Postoperative radiotherapy for oral cavity cancer with or without elective neck radiotherapy of the pN0 en bloc dissected neck: oncologic outcomes and late toxicity. *Radiotherapy & Oncology*, 208. doi:10.1016/j.radonc.2025.110896

Version: Publisher's Version

License: [Licensed under Article 25fa Copyright Act/Law \(Amendment Taverne\)](#)

Downloaded from: <https://hdl.handle.net/1887/4289227>

Note: To cite this publication please use the final published version (if applicable).

Original Article

Postoperative radiotherapy for oral cavity cancer with or without elective neck radiotherapy of the pN0 en bloc dissected neck: oncologic outcomes and late toxicity

B. Kreike ^{a,*}, A. Al-Mamgani ^{b,j}, E. van Werkhoven ^c, M. Beugeling ^d, J.H.A.M. Kaanders ^e, M. van Ruler ^f, P.A.H. Doornaert ^{g,j}, M.A. de Jong ^h, M.S. Koedijk ⁱ, M.R. Vergeer ^j, H.H.G. Verbeek ^k, F.W.R. Wesseling ^l, Joris B.W. Elbers ^m, on behalf of the Dutch Head and Neck Radiation Oncology Society

^a Department of Radiation Oncology, Radiotherapiegroep, Arnhem, the Netherlands

^b Department of Radiation Oncology, Netherlands Cancer Institute/Antoni van Leeuwenhoek, Amsterdam, the Netherlands

^c Department of Hematology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, the Netherlands

^d Department of Radiation Oncology, Instituut Verbeeten, Tilburg, the Netherlands

^e Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, the Netherlands

^f Department of Radiation Oncology, Haaglanden Medisch Centrum, Den Haag, the Netherlands

^g Department of Radiotherapy, University Medical Center Utrecht, Utrecht, the Netherlands

^h Department of Radiation Oncology, Leiden University Medical Center, Leiden, the Netherlands

ⁱ Department of Radiation Oncology, Radiotherapeutisch Instituut Friesland, Leeuwarden, the Netherlands

^j Department of Radiation Oncology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands

^k Department of Radiation Oncology, University Medical Center Groningen, Groningen, the Netherlands

^l Department of Radiation Oncology (MAASTRO), GROW Research Institute for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, the Netherlands

^m Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, the Netherlands

ARTICLE INFO

ABSTRACT

Keywords:

Oral cavity cancer
Postoperative radiotherapy
Elective neck radiotherapy
en bloc neck dissection
Toxicity

Background and purpose: The benefit of elective postoperative radiotherapy (PORT) to the pN0 neck after en bloc primary tumor with neck dissection in patients with oral cavity cancer remains unclear. This nationwide multicenter retrospective observational study investigates the effect of adding or omitting elective neck irradiation to PORT of the primary tumor bed.

Materials and Methods: Treatment data from 12 head and neck cancer centers in the Netherlands was pooled to compare oncologic outcomes and long-term toxicity between 2 groups of patients, i.e. in whom the PORT volume involved the primary tumor bed only (PORT-T, 118 patients) and in whom the pN0 neck was also irradiated, along with the primary tumor bed (PORT-TN, 146 patients).

Results: After a median follow-up of 60 months, 5-year regional control was 96 % in both groups. The 5-year local control was 92 % vs 91 % and the 5-year overall survival was 80 % vs 78 % for the PORT-T and PORT-TN group, respectively (p-value > 0.05 for all). Multivariable analyses showed that elective irradiation of pN0 neck was significantly associated with late grade 2–3 xerostomia (OR 4.93, p < 0.01) and dysphagia (OR 5.29, p < 0.01).

Conclusion: The omission of elective radiotherapy to the pN0 en bloc dissected neck in patients with oral cavity cancer resulted in comparable regional control rate to those who received elective irradiation of the neck along with the primary tumor bed with a significant reduction of late grade 2–3 radiation-related xerostomia and dysphagia. Therefore, elective irradiation of the pN0 en bloc dissected neck can safely be omitted.

* Corresponding author at: Radiotherapiegroep, Wagnerlaan 47, 6815 AD Arnhem, the Netherlands

E-mail addresses: b.kreike@radiotherapiegroep.nl (B. Kreike), a.al-mamgani@amsterdamumc.nl (A. Al-Mamgani), e.vanwerkhoven@erasmusmc.nl (E. van Werkhoven), beugeling.m@bvi.nl (M. Beugeling), j.kaanders@radboudumc.nl (J.H.A.M. Kaanders), Marc.van.ruler@haaglandenmc.nl (M. van Ruler), p.doornaert@amsterdamumc.nl (P.A.H. Doornaert), M.A.de.Jong@lumc.nl (M.A. de Jong), M.S.Koedijk@skf-rif.nl (M.S. Koedijk), mr.vergeer@amsterdamumc.nl (M.R. Vergeer), h.verbeek@umcg.nl (H.H.G. Verbeek), Frederik.wesseling@maastro.nl (F.W.R. Wesseling), j.elbers@erasmusmc.nl (J.B.W. Elbers).

Introduction

Oral cavity carcinoma (OCC) is the 16th most common cancer worldwide with approximately 390,000 new cases per year[1]. Standard of care for OCC is surgery with or without postoperative radiotherapy (PORT). The indication for PORT is based on histopathological characteristics of the primary resected tumor and/or on the nodal status[2]. However, in case of an indication for PORT to the primary tumor bed while the neck dissection specimen showed no malignancy in the removed lymph nodes (pN0), it is debatable whether or not the en bloc dissected pN0 neck should be irradiated electively[3]. The main argument to include the dissected lymph node regions in the radiation volume is the risk of tumor spill from the primary tumor site into the en bloc dissected node region. Counterarguments are the added side effects associated with neck irradiation and the concern in case of re-irradiation for recurrent, metastatic or new malignancies after previous radiotherapy to the neck.

In the Netherlands, radiotherapy (RT) for head and neck cancer care is well organized on a national level and is centralized in 14 centers. Representatives of all departments participate in regular joint meetings of the Head and Neck Radiation Oncology Society several times a year in order to discuss and share innovations, studies and protocols. To date, due to the lack of evidence and international guidelines regarding elective RT of the pN0 neck, local guidelines to treat or to omit the postoperative pN0 neck differ between institutions. All centers would irradiate the primary tumor site based on the same tumor characteristics, but some keep the en bloc dissected neck (with pN0) outside the radiation volume, while others always include the neck in the elective target volume. To assess the consequence of adding or omitting elective neck irradiation of the pN0 neck in patients with OCC with indications for PORT of the primary tumor bed, we retrospectively pooled the data from 12 head and neck cancer centers with the primary aim to evaluate regional control. Secondary aims were local control, overall survival and long-term toxicity.

Materials and Methods

This multicenter retrospective observational study was conducted in 12 Dutch radiotherapy centers. Patients were eligible if they were treated between January 2010 and December 2019. Only patients who received local surgery for OCC with uni- or bilateral neck dissection in continuity with the primary tumor were eligible. No lymph node metastases had to be present in the dissected neck specimens (pN0). All patients were irradiated postoperatively in accordance to international guidelines based on characteristics of the primary tumor[2]. These characteristics included positive surgical margins (<1 mm), close surgical margins (1–5 mm), perineural growth (PNG), lymphovascular invasion (LVI), non-cohesive tumor border and pT3-4 status. In general, an equivalent dose of 66 Gy in 33 fractions was given to the tumor bed in case of incomplete resection of the primary tumor and 56 Gy in 28 fractions when the tumor was closely resected or in the presence of one or more other risk factors. The elective neck was usually irradiated to an equivalent dose of 46 Gy in 23 fractions, predominantly with a simultaneous integrated boost technique (SIB). PTV margin was initially 5 mm in all centers. Over the last years, 3 mm margin was gradually introduced. Concurrent cisplatin was used in case of a microscopically incomplete resection of the primary tumor. All patients were treated with intensity modulated radiotherapy (IMRT). Volumetric modulated arc therapy (VMAT) was gradually introduced after 2015. Patient informed consent was waived by the Research Ethics Committee, Radboud University Medical Centre due to the retrospective nature of the study. We did not receive any specific funding for the study.

Two groups were defined based on the RT volume: one group of patients where the PORT volume involved primary tumor bed only and the pN0 neck was not irradiated (PORT-T) and the other group in whom the pN0 neck was irradiated, along with the primary tumor bed (PORT-

TN). As stated above this was an institution-dependent selection, since some centers historically always include the neck, while others do not.

Study endpoints

The primary endpoint was the incidence of regional failure in the PORT-T and PORT-TN groups. The secondary endpoints were local failure, overall survival and highest grade late toxicity (more than 3 months after end of treatment) as defined by CTCAE v5. Toxicity was only reported if it was prospectively scored or in case it could be clearly extracted retrospectively from the patient records. In case of doubt, toxicity was reported as “missing”.

Statistical analysis

The following details were collected for all patients: age, sex, smoking status, history of prior neck surgery, history of prior head and neck radiotherapy, location of the primary tumor in the oral cavity, pT-stage and pN-stage according to the 7th edition of the American Joint Committee on Cancer (AJCC), number of removed lymph nodes, indication for PORT, whether or not concurrent chemotherapy was given, RT volume, fractionation scheme, highest scored late xerostomia and dysphagia, date of local recurrence, date of regional recurrence, site of regional recurrence, date of distant metastasis and date of death.

Differences at baseline between the two groups were compared using Pearson's Chi-square test or by *t*-test (age) or Fisher's Exact Test for Count Data (primary tumor site). Toxicity was compared as dichotomous variable using logistic regression and using a linear-by-linear test that takes the grade into account. Survival curves were calculated with the Kaplan-Meier method and compared using the log-rank test. Median follow-up was calculated from start of radiotherapy using the reverse Kaplan-Meier method. For the local and regional failure free interval estimation, second primary tumors and death were censored, distant metastases were ignored. Cox models were used to find confounders and prognostic factors. All variables that were statistically significant predictors for late toxicity in univariable analysis were included for multivariable analysis. The number of removed lymph nodes (contralateral and ipsilateral separately) was log transformed (using base 2). A sensitivity analysis of overall survival was performed creating confounder-adjusted survival curves using the method of inverse probability of treatment weighting[4]. The propensity score was calculated using a logistic model with sex, age, pT, concurrent chemotherapy, and previous neck surgery. Histograms were used to inspect the overlap in propensity scores between the two treatment groups. All statistical analyses were performed using Statistical Package for the Social Sciences (SPSS) version 28 and R, version 4.4.1 with package adjustedCurves version 0.11.1.

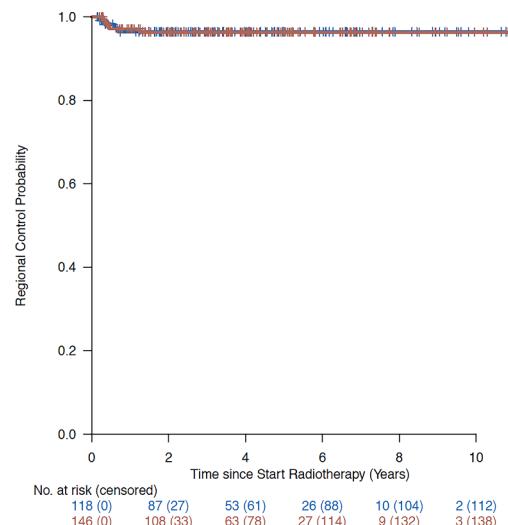
Results

According to the departmental protocol for PORT, 4 departments would irradiate only the primary tumor site, 5 departments the primary site in continuity with the operated neck and 3 departments let the decision to the individual physician. Only one department had treated 100 % of the patients according to local protocol, while the other 8 departments had exceptions to their own protocol in respectively 2–38 % of the cases.

In total, 264 patients were included, 118 patients (45 %) in the PORT-T group and 146 patients (55 %) in the PORT-TN group. Most characteristics were relatively well balanced between the two patient groups (Table 1). In the PORT-T group, there were more primary tongue cancers ($p = 0.01$) and less patients received concurrent chemotherapy ($p < 0.01$). The indication for postoperative radiotherapy was in the majority of cases (55.3 %) based on a combination of risk factors, like close resection margin and/or pT3-4 status and/or PNG and/or LVI and/or non-cohesive tumor border. The second biggest group (25.4 %) was a

Table 1
Baseline characteristics.

	PORT-T	PORT-TN	Total	p-value
	(N = 118)	(N = 146)	(N = 264)	
Sex				0.18
Male	72 (61.0 %)	77 (52.7 %)	149 (56.4 %)	
Female	46 (39.0 %)	69 (47.3 %)	115 (43.6 %)	
Age, median (range)	62 (33–86)	65 (37–89)	64 (33–89)	0.08
Smoking status				0.89
No	19 (17.4 %)	21 (15.3 %)	40 (16.3 %)	
Former	60 (55.0 %)	79 (57.7 %)	139 (56.5 %)	
Current	30 (27.5 %)	37 (27.0 %)	67 (27.2 %)	
Missing	9	9	18	
Previous neck surgery				0.50
No	114 (96.6 %)	143 (97.9 %)	257 (97.3 %)	
Yes	4 (3.4 %)	3 (2.1 %)	7 (2.7 %)	
Previous neck radiotherapy				0.11
No	114 (96.6 %)	145 (99.3 %)	259 (98.1 %)	
Yes	4 (3.4 %)	1 (0.7 %)	5 (1.9 %)	
Primary tumor site				0.01
Buccal mucosa	2 (1.7 %)	8 (5.5 %)	10 (3.8 %)	
Retromolar triangle	17 (14.4 %)	28 (19.2 %)	45 (17.0 %)	
Alveolar process of mandible	24 (20.3 %)	43 (29.5 %)	67 (25.4 %)	
Tongue	31 (26.3 %)	18 (12.3 %)	49 (18.6 %)	
Floor of mouth	44 (37.3 %)	49 (33.6 %)	93 (35.2 %)	
pT				0.29
1–2	29 (24.6 %)	28 (19.2 %)	57 (21.6 %)	
3–4	89 (75.4 %)	118 (80.8 %)	207 (78.4 %)	
No. of removed lymph nodes				0.59
<10	5 (4.2 %)	9 (6.2 %)	14 (5.3 %)	
10–14	13 (11.0 %)	12 (8.2 %)	25 (9.5 %)	
15–17	11 (9.3 %)	18 (12.3 %)	29 (11.0 %)	
>17	88 (74.6 %)	107 (73.3 %)	195 (73.9 %)	
Unknown	1 (0.8 %)	0 (0.0 %)	1 (0.4 %)	
PORT indication				0.28
<1 mm margin (positive)	24 (20.3 %)	43 (29.5 %)	67 (25.4 %)	
1–5 mm margin (close)	11 (9.3 %)	13 (8.9 %)	24 (9.1 %)	
pT3–4	11 (9.3 %)	14 (9.6 %)	25 (9.5 %)	
Perineural growth	0 (0.0 %)	2 (1.4 %)	2 (0.8 %)	
Combination of risk factors (close margin and/or pT3–4 and/or PNG and/or LVI and/or non-cohesive tumor border)	72 (61.0 %)	74 (50.7 %)	146 (55.3 %)	
Concurrent chemotherapy				<0.01
No	112 (94.9 %)	120 (82.2 %)	232 (87.9 %)	
Yes	6 (5.1 %)	26 (17.8 %)	32 (12.1 %)	
Radiotherapy, site				
Oral cavity	118 (100.0 %)	118 (44.7 %)		


Table 1 (continued)

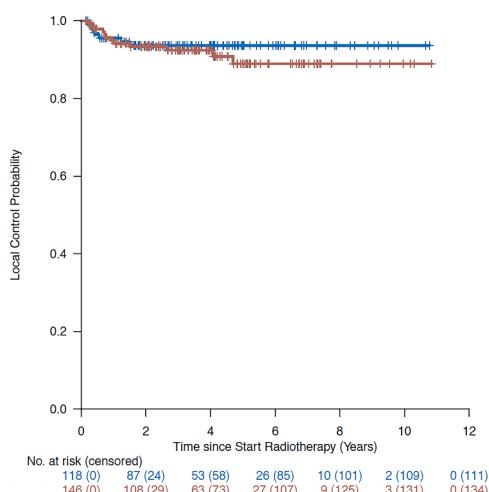
	PORT-T	PORT-TN	Total	p-value
	(N = 118)	(N = 146)	(N = 264)	
Oral cavity + unilateral neck		91 (62.3 %)	91 (34.5 %)	
Oral cavity + bilateral neck		55 (37.7 %)	55 (20.8 %)	
Equivalent fractionation scheme, in case of SIB: “tumor bed”/ “neck”				
56 Gy in 28 fractions		75 (63.6 %)	7 (4.8 %)	82 (31.1 %)
66 Gy in 33 fractions		40 (33.9 %)	0 (0 %)	40 (15.2 %)
70 Gy in 35 fractions		3 (2.5 %)	0 (0 %)	3 (1.1 %)
56/50 Gy in 28 fractions (SIB)		0 (0 %)	62 (42.5 %)	62 (23.5 %)
66/54 Gy in 33 fractions (SIB)		0 (0 %)	69 (47.3 %)	69 (26.1 %)
66/60 Gy in 33 fractions (SIB)		0 (0 %)	6 (4.1 %)	6 (2.3 %)
70/60 Gy in 35 fractions (SIB)		0 (0 %)	1 (0.7 %)	1 (0.4 %)
Other		0 (0 %)	1 (0.7 %)	1 (0.4 %)

positive surgical margin. There were no differences in indication for PORT between both groups ($p = 0.28$). Also the amount of removed lymph nodes were equally balanced between the groups ($p = 0.59$).

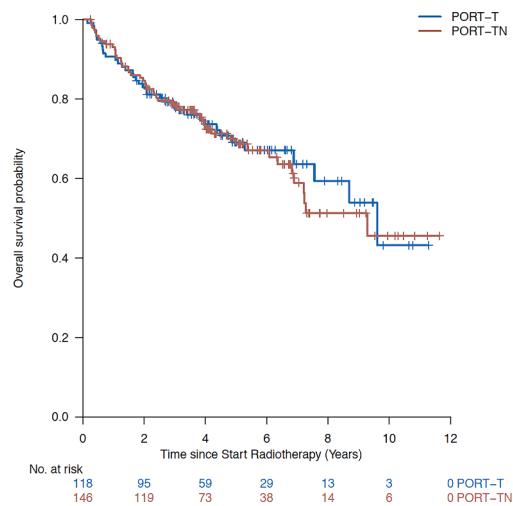
The median follow-up was 5 years (IQR 3.57 – 7.04). The median follow-up time of patients alive was 4.5 years (IQR 3.30 – 6.59). In the whole group, 9 regional recurrences occurred, 4 in the PORT-T group and 5 in the PORT-TN group. Five out of 9 regional recurrences were in-field recurrences, respectively 1 in the PORT-T group (i.e. level 1 recurrence in the case of a floor of mouth primary tumor site) and 4 in the PORT-TN group; 3 out of 9 ipsilateral regional recurrences in the PORT-T group and 1 out of 9 contralateral recurrence in the PORT-TN group. Three out of 5 in-field recurrences were irradiated to an equivalent dose of 46 Gy in 23 fractions; one received 56 Gy in 28 fractions; and the other only 23.2 Gy in 13 fractions due to wound complications during radiotherapy. The unadjusted 5-year regional control was 96 % in both groups (Fig. 1A). No factors were found significant for regional control, except the ipsilateral lymph node yield (HR 0.46 for each doubling of the yield, Table 2). In a multivariable analysis (MVA) adjusting for the ipsilateral lymph node yield no difference was found between the PORT-T and PORT-TN groups (HR 0.75, 95 % CI 0.19–2.95, $p = 0.68$).

There were 23 local recurrences: 10 in the PORT-T group and 13 in

Fig. 1A. Kaplan-Meier curves of regional control.


Table 2
Univariable analysis of regional control.

		Patients	Events	HR	95 % CI	p-value
Treatment	PORT-T	118	4			
	PORT-TN	146	5	1.00	(0.27–3.73)	1
Sex	Male	149	6			
	Female	115	3	0.64	(0.16–2.56)	0.53
Age (continuous per year)		264	9	0.99	(0.93–1.05)	0.77
Concurrent chemotherapy	No	232	9			
	Yes	32	0	0.00	(0.00–Inf)	1
pT	1–2	57	4			
	3–4	207	5	0.35	(0.09–1.31)	0.12
No. of removed lymph nodes	>17	195	4			
	15–17	29	2	3.39	(0.62–18.53)	0.16
	10–14	25	1	2.03	(0.23–18.18)	0.53
	<10	14	2	8.08	(1.48–44.15)	0.02
	unknown	1	0	0.00	(0.00–Inf)	1
No. of ipsilateral lymph nodes removed	(per doubling of number of nodes)	263	9	0.46	(0.24–0.89)	0.02
No. of contralaterally lymph nodes removed	(per doubling of number of nodes)	263	9	0.96	(0.65–1.41)	0.82
PORT indication	Combination of risk factors (close margin and/or pT3-4 and/or PNG and/or LVI and/or non-cohesive tumor border)	146	6			
	< 1 mm margin (positive)	67	0	0.00	(0.00–Inf)	1
	1–5 mm margin (close)	24	2	2.02	(0.41–9.99)	0.39
	pT3-4	25	1	0.99	(0.12–8.22)	0.99
	perineural growth	2	0	0.00	(0.00–Inf)	1
Primary tumor site	Buccal mucosa	10	1			
	Retromolar triangle	45	1	0.21	(0.01–3.35)	0.27
	Alveolar process of mandible	67	2	0.30	(0.03–3.36)	0.33
	Tongue	49	1	0.19	(0.01–3.09)	0.24
	Floor of mouth	93	4	0.43	(0.05–3.82)	0.45
Previous neck surgery	No	257	9			
	Yes	7	0	0.00	(0.00–Inf)	1
Previous neck radiotherapy	No	259	9			
	Yes	5	0	0.00	(0.00–Inf)	1
Center	F	45	1			
	A	11	0	0.00	(0.00–Inf)	1
	B	12	0	0.00	(0.00–Inf)	1
	C	36	0	0.00	(0.00–Inf)	1
	D	13	0	0.00	(0.00–Inf)	1
	E	7	0	0.00	(0.00–Inf)	1
	G	30	1	1.55	(0.10–24.88)	0.76
	H	19	0	0.00	(0.00–Inf)	1
	I	34	0	0.00	(0.00–Inf)	1
	J	9	1	4.76	(0.30–76.04)	0.27
	K	44	6	6.52	(0.78–54.24)	0.08
	L	4	0	0.00	(0.00–Inf)	1


the PORT-TN group, the unadjusted 5-year local control was respectively 92 % vs. 91 % (p-value > 0.05, Fig. 1B). Thirty-eight patients were

diagnosed with a 2nd primary tumor (head and neck carcinoma n = 32, lung carcinoma n = 5, endometrium carcinoma n = 1). After 5 years the incidence for developing a second primary tumor was not significantly different between the PORT-T and PORT-TN group, respectively 16 % vs 12 % (p-value > 0.05). Fifteen patients developed distant metastases and 86 patients died (37 in the PORT-T group and 49 in the PORT-TN group), the unadjusted 5-year overall survival was 80 % vs 78 % for the PORT-T and PORT-TN group, respectively (p-value > 0.05, Fig. 1C). Only 1 out of 9 regional recurrences occurred simultaneously with the presence of distant metastases, while the other 8 were isolated regional recurrences (Fig. 2). No significant overall-survival difference was found in a MVA adjusting for age, pT, primary tumor site and whether prior neck surgery or radiotherapy was given (HR PORT-T vs PORT-TN 0.95, 95 %CI 0.61–1.48, p = 0.82). Adjusted overall survival curves using Inverse Probability of Treatment Weighting were largely overlapping too (figure S1).

Late toxicity was documented in 194 and 192 patients for xerostomia and dysphagia, respectively (Table 3). Patients treated in the PORT-T group had less late xerostomia (p < 0.01) and dysphagia (p < 0.01) compared to the patients treated in the PORT-TN group. UVA of grade 2–3 xerostomia and dysphagia are shown in Table 4 and 5, respectively. After MVA of all statistically significant predictors in UVA adjusted for center, irradiation of the neck remained a significant predictor for grade

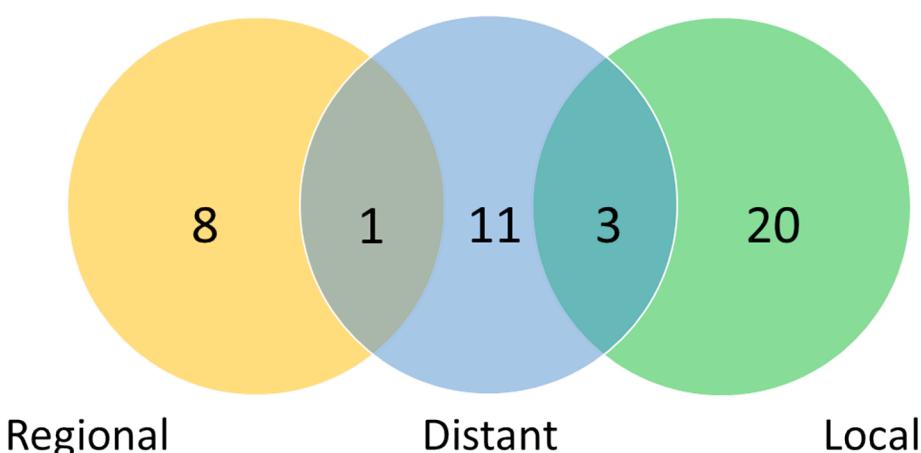
Fig. 1B. Kaplan-Meier curves of local control.

Fig. 1C. Kaplan-Meier curves of overall survival.

2–3 xerostomia (OR 4.93; 1.75–13.89, $p < 0.01$), the total neck dose (with the PORT-TN group) lost statistical significance ($p = 0.06$). For grade 2–3 dysphagia, irradiation of the neck was also a significant predictor in MVA (OR 5.29; 2.09–13.43, $p < 0.01$), along with pT3-4 status (OR 2.84; 1.21–6.69, $p = 0.02$). The observed differences in reported toxicity between centers in UVA remained significant in MVA for both grade 2–3 xerostomia and dysphagia.

Discussion

To the best of our knowledge, this nationwide retrospective observational study is the largest series to date investigating the necessity of elective irradiation of the pN0 neck in OCC patients who require adjuvant radiotherapy to the primary tumor bed only. The current study shows that regional control rates are excellent and comparable between PORT-T and PORT-TN groups. Patients irradiated to the primary tumor site plus the pN0 neck (PORT-TN) have significantly higher incidence of late grade 2–3 dry mouth (31 % vs. 15 %, $p < 0.01$) and dysphagia (61 % vs. 19 %, $p < 0.01$).


Apart from less radiation-related dysphagia and xerostomia, reduction of the radiation volume by not including the neck has several other advantages as well. First, improvement of different domains of quality of life has been reported in various randomized and prospective studies to be the result of reducing the irradiated volumes[5–7]. Secondly, reducing the irradiated volumes might subsequently reduce the incidence of a second primary tumor in the head and neck region, which is

already higher in these patients than the general population[8]. Thirdly, it might also reduce the risk of ischemic cerebrovascular accidents, since several studies have shown a clear correlation between carotid exposure to radiation and the development of carotid stenosis and ischemic cerebrovascular accidents[9–11]. Fourthly, it will reduce the risk of several thyroid disorders[12]. Moreover, in case of regional recurrence or second primary tumor in the head and neck region, it offers the possibility to irradiate the radiation-naive neck to high radiation dose or to easier operate upon the neck with less risk of postoperative complications.

The data on the benefit of elective irradiation of the en bloc dissected pN0 neck is limited and published literature is conflicting. Two groups have reported treatment outcomes in less than 55 patients[13,14], suggesting that the omission of elective radiotherapy is safe while others have advocated to include the pN0 neck in elective PORT target volumes, especially in the case of positive surgical margins[15,16]. It is speculated that positive surgical margins could be an indication for the aggressiveness of the primary tumor and the presence of the tumor in the mucosal surface of the surgical specimen could cause tumor spill. Because of the rich lymphatic network in the head and neck region, elective nodal irradiation in patients with head and neck squamous cell carcinoma primarily treated with radiotherapy is shown to be very effective in reducing the risk of regional failure to less than 5 % [15,17,18]. Our study included a large number of patients ($n = 264$) from 12 dedicated head and neck cancer centers across the Netherlands. This report shows that there is no clear benefit of elective neck irradiation of the surgically treated pN0 neck, while both groups show 5-year

Table 3
Highest scored late toxicity.

Xerostomia		PORT-T	PORT-TN	Total
patients scored		68	126	194
Grade				
0		35 (51 %)	24 (19 %)	59 (30 %)
1		23 (34 %)	63 (50 %)	86 (44 %)
2		10 (15 %)	37 (29 %)	47 (24 %)
3		0 (0 %)	2 (2 %)	2 (1 %)
Linear-by-linear association test, p-value < 0.01				
Dysphagia		PORT-T	PORT-TN	Total
Patients scored		67	125	192
Grade				
0		49 (73 %)	29 (23 %)	78 (41 %)
1		5 (7 %)	20 (16 %)	25 (13 %)
2		9 (13 %)	61 (49 %)	70 (36 %)
3		4 (6 %)	15 (12 %)	19 (10 %)
Linear-by-linear association test, p-value < 0.01				

Fig. 2. Venn diagram of patterns of recurrences' distribution.

Table 4

Univariable logistic regression analyses of grade 2–3 xerostomia.

	Patients	Events	(%)	OR	95 % CI	p-value
Treatment						
PORT-T	68	10	15 %			
PORT-TN	126	39	31 %	2.60	(1.20—5.62)	0.02
pT						
1–2	46	8	17 %			
3–4	148	41	28 %	1.82	(0.78—4.23)	0.16
Neck radiotherapy						
Unilateral	80	22	28 %			
Bilateral	46	17	37 %	1.55	(0.71—3.35)	0.27
Concurrent chemotherapy						
No	166	42	25 %			
Yes	28	7	25 %	0.98	(0.39—2.48)	0.97
Total dose tumor bed						
(continuous per Gy)	194	49	25 %	0.95	(0.89—1.02)	0.15
Total neck dose						
(continuous per Gy)	126	39	31 %	0.80	(0.69—0.94)	0.01
Center						
F	39	6	15 %			
A	8	1	12 %	0.79	0.08	7.60
B	7	2	29 %	2.20	0.34	14.08
C	34	10	29 %	2.29	0.73	7.17
D	13	1	8 %	0.46	0.05	4.21
E	7	1	14 %	0.92	0.09	9.04
G	30	6	20 %	1.38	0.39	4.79
J	9	8	89 %	44.00	4.62	418.93
K	44	14	32 %	2.57	0.87	7.53
L	3	0	0 %	0.00	0.00	Inf
						0.99

Table 5

Univariable logistic regression analyses of grade 2–3 dysphagia.

	Patients	Events	(%)	OR	95 % CI	p-value
Treatment						
PORT-T	67	13	19 %			
PORT-TN	125	76	61 %	6.44	3.19	13.03
pT						
1–2	47	14	30 %			
3–4	145	75	52 %	2.53	1.25	5.11
Neck radiotherapy						
Unilateral	80	45	56 %			
Bilateral	45	31	69 %	1.72	0.80	3.72
Concurrent chemotherapy						
No	164	78	48 %			
Yes	28	11	39 %	0.71	0.31	1.62
Total dose tumor bed						
(continuous per Gy)	192	89	46 %	1.02	0.97	1.08
Total neck dose						
(continuous per Gy)	125	76	61 %	0.95	0.83	1.07
Center						
F	40	12	30 %			
A	8	2	25 %	0.78	0.14	4.42
B	8	2	25 %	0.78	0.14	4.42
C	33	25	76 %	7.29	2.57	20.72
D	13	0	0 %	0.00	0.00	Inf
E	7	4	57 %	3.11	0.60	16.08
G	30	23	77 %	7.67	2.60	22.65
H	6	5	83 %	11.67	1.23	110.80
K	44	16	36 %	1.33	0.53	3.32
L	3	0	0 %	0.00	0.00	Inf
						0.99

regional control of 96 %. Based on this result, the concept of tumor spill does not seem to play a notable role, since there is no increased risk of regional recurrence when the pN0 en bloc dissected neck is not adjuvantly irradiated.

An other potential risk factor for regional recurrence could be the location of the oral cancer subsite, since it has been proposed that subsites can have different biological behavior[19–21]. In our study, we identified relatively more primary tumors located in the tongue in the PORT-T group, for which we have no clear explanation. Nevertheless, we found no differences in clinical outcome between the different

subsites with regard to the development of regional recurrences. We did find that tumors located on the alveolar process of the mandible had a higher incidence of developing a local recurrence and had poorer overall survival in the univariable analyses, but it lost its significance in the multivariable analyses. The lymph node yield from elective neck dissections has been associated with survival outcome[22–25]. Several cutoff levels have been proposed and most studies have determined that a cutoff value of 18 removed lymph nodes is being predictive for survival outcome[22]. Jaber et al showed that lower regional recurrence rates and improved survival outcome were seen as lymph node yield

increased for pN0 OCC[24]. We also found a clear improvement in regional control if the amount of removed lymph nodes increased, but did not see an improved overall survival. Our results show that elective radiotherapy to the pN0 neck does not influence the regional recurrence rate, but a high yield of lymph nodes does. This might possibly reflect that more than microscopic disease is left behind in the neck when a low number of lymph nodes is removed.

The limitations of the current study, including biases inherent to a retrospective analysis are well understood by the authors. Although the regional control curves closely overlap, the limited number of events may have hindered the identification of confounders necessary to account for differences in case-mix. For overall survival however there were more events (n = 86) and therefore possibilities to adjust the analysis for potential confounding. We used multivariable regression and inverse probability of treatment weighting, neither of which could detect a difference between the two treatment groups.

Prior to the initiation of this study, we conducted a survey amongst participating centers. Four centers claimed to belong to the PORT-T group, 5 centers to the PORT-TN group and in 3 centers there was no formal treatment protocol and pN0 neck irradiation was mainly left to the discretion of the physician, determined on a case-by-case basis. When analyzing the data, we found that only one department treated all their patients according to their own institutional protocol while the other departments had some exceptions to their own protocol. Therefore, we could not exclude the possibility of some selection bias. However, we did not find any contributing factors after multivariable analysis. There were significant differences in reported toxicity between centers. One possible explanation can be a difference in interpretation of de CTCAE-toxicity definition for grade 2 dysphagia and to a lesser extent for xerostomia. Another explanation could be the use of different treatment planning techniques resulting in differences in organ at risk sparing[26,27]. An in-depth plan comparison was outside the scope of this project. However, difference in toxicity between the treatment groups remained significant after adjusting for center effects. Furthermore, the reported reduction of toxicity by omitting adjuvant radiotherapy to the en bloc dissected pN0 neck might be underestimated, because accurate registration and documentation of different radiation-related toxicity items like fibrosis, laryngeal edema, hypothyroidism and incidence of fistulas, are missing in the current study. On the other hand, the strengths of our study are the multicenter setup and large sample size in a relatively homogenous group of patients focusing on one head and neck sub-site, the oral cavity.

The optimal proof to show that it is safe to omit elective post-operative radiotherapy to the pN0 neck would be if at least two randomized controlled trials confirm our results. However it is unlikely that these trials will be conducted, since the scientific debate on this topic is already very old and has yet not resulted in such trials. Perhaps this is due to the fact that these trials will need a large sample size and need a lot of centers to participate in order to accrue enough patients to answer this important question. It would also be important for these trials to accrue in a relatively short time period to be clinical relevant and economically efficient. We were able to collaborate with almost all Dutch radiotherapy departments to collect every possible patient adhering to the inclusion criteria and still needed a time period of 10 years to find 264 patients and 9 regional recurrences.

In conclusion, the current study aimed to investigate the effect of adding or excluding elective radiotherapy to the en bloc dissected pN0 neck in patients with OCC, treated in 12 dedicated head and neck cancer centers in the Netherlands. The study showed that patients irradiated to the primary tumor bed only (PORT-T) had the same excellent regional control compared to those irradiated to the primary tumor bed and the operated neck site (PORT-TN), with significantly lower incidence of late grade 2–3 xerostomia and dysphagia. Based on these results, elective irradiation of the pN0 neck can safely be omitted following local resection with en bloc neck dissection in OCC patients who require adjuvant radiotherapy to the primary tumor bed only based on local

pathological risk factors.

CRediT authorship contribution statement

B. Kreike: Writing – original draft, Resources, Project administration, Methodology, Investigation, Formal analysis, Data curation, Conceptualization. **A. Al-Mamgani:** Writing – original draft, Resources. **E. van Werkhoven:** Writing – review & editing, Formal analysis, Data curation. **M. Beugeling:** Writing – review & editing, Resources. **J.H.A. M. Kaanders:** Writing – review & editing, Resources, Conceptualization. **M. van Ruler:** Writing – review & editing, Resources. **P.A.H. Doornaert:** Writing – review & editing, Resources. **M.A. de Jong:** Resources. **M.S. Koedijk:** Writing – review & editing, Resources. **M.R. Vergeer:** Writing – review & editing, Resources. **H.H.G. Verbeek:** Writing – review & editing, Resources. **F.W.R. Wesseling:** Writing – review & editing, Resources. **Joris B.W. Elbers:** Writing – original draft, Resources, Formal analysis.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Appendix A. Supplementary data

Supplementary data to this article can be found online at <https://doi.org/10.1016/j.radonc.2025.110896>.

Data availability

Research data are stored in an institutional repository and will be shared upon request to the corresponding author.

References

- Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, Soerjomataram I, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. *CA Cancer J Clin* 2024;74:229–63. <https://doi.org/10.3322/caac.21834>.
- Machiels J-P, René Leemans C, Golusinski W, Grau C, Licitra L, Gregoire V. Squamous cell carcinoma of the oral cavity, larynx, oropharynx and hypopharynx: EHNS–ESMO–ESTRO Clinical Practice Guidelines for diagnosis, treatment and follow-up. *Ann Oncol* 2020;31:1462–75. <https://doi.org/10.1016/j.annonc.2020.07.011>.
- Evans M, Beasley M. Target delineation for postoperative treatment of head and neck cancer. *Oral Oncol* 2018;86:288–95. <https://doi.org/10.1016/j.oraloncology.2018.08.011>.
- Xie J, Liu C. Adjusted Kaplan–Meier estimator and log-rank test with inverse probability of treatment weighting for survival data. *Stat Med* 2005;24:3089–110. <https://doi.org/10.1002/sim.2174>.
- Nutting CM, Morden JP, Harrington KJ, Urbano TG, Bhide SA, Clark C, et al. Parotid-sparing intensity modulated versus conventional radiotherapy in head and neck cancer (PARSPORT): a phase 3 multicentre randomised controlled trial. *Lancet Oncol* 2011;12:127–36. [https://doi.org/10.1016/S1470-2045\(10\)70290-4](https://doi.org/10.1016/S1470-2045(10)70290-4).
- Langendijk JA, Doornaert P, Verdonck-de Leeuw IM, Leemans CR, Aaronson NK, Slotman BJ. Impact of Late Treatment-Related Toxicity on Quality of Life Among Patients With Head and Neck Cancer Treated With Radiotherapy. *J Clin Oncol* 2008;26:3770–6. <https://doi.org/10.1200/JCO.2007.14.6647>.
- De Veij Mestdagh PD, Walraven I, Vogel WV, Schreuder WH, Van Werkhoven E, Carbaat C, et al. SPECT/CT-guided elective nodal irradiation for head and neck cancer is oncologically safe and less toxic: A potentially practice-changing approach. *Radiother Oncol* 2020;147:56–63. <https://doi.org/10.1016/j.radonc.2020.03.012>.
- Amemiya K, Shibuya H, Yoshimura R, Okada N. The risk of radiation-induced cancer in patients with squamous cell carcinoma of the head and neck and its results of treatment. *Br J Radiol* 2005;78:1028–33. <https://doi.org/10.1259/bjr.86352309>.
- Van Aken ESM, Van Der Laan HP, Bijl HP, Van Den Bosch L, Van Den Hoek JGM, Dieters M, et al. Risk of ischaemic cerebrovascular events in head and neck cancer patients is associated with carotid artery radiation dose. *Radiother Oncol* 2021;157:182–7. <https://doi.org/10.1016/j.radonc.2021.01.026>.
- Carpenter DJ, Mowery YM, Broadwater G, Rodrigues A, Wisdom AJ, Dorth JA, et al. The risk of carotid stenosis in head and neck cancer patients after radiation

therapy. *Oral Oncol* 2018;80:9–15. <https://doi.org/10.1016/j.oraloncology.2018.02.021>.

[11] Pruijssen JT, Wilbers J, Meijer FJA, Pegge SAH, Loonen JJ, De Korte CL, et al. Assessing radiation-induced carotid vasculopathy using ultrasound after unilateral irradiation: a cross-sectional study. *Radiat Oncol* 2022;17:130. <https://doi.org/10.1186/s13014-022-02101-7>.

[12] Jereczek-Fossa BA, Alterio D, Jassem J, Gibelli B, Tradati N, Orecchia R. Radiotherapy-induced thyroid disorders. *Cancer Treat Rev* 2004;30:369–84. <https://doi.org/10.1016/j.ctrv.2003.12.003>.

[13] Last AS, Pipkorn P, Chen S, Kallogjeri D, Zenga J, Rich JT, et al. Risk and Rate of Occult Contralateral Nodal Disease in Surgically Treated Patients With Human Papillomavirus–Related Squamous Cell Carcinoma of the Base of the Tongue. *JAMA. Otolaryngol Head Neck Surg* 2020;146:50. <https://doi.org/10.1001/jamaoto.2019.3277>.

[14] Contreras JA, Spencer C, DeWees T, Haughey B, Henke LE, Chin R-I, et al. Eliminating Postoperative Radiation to the Pathologically Node Negative Neck: Long-Term Results of a Prospective Phase II Study. *J Clin Oncol* 2019;37:2548–55. <https://doi.org/10.1200/JCO.19.00186>.

[15] Vergeer MR, Doornaert PAH, De Bree R, Leemans CR, Slotman BJ, Langendijk JA. Postoperative elective nodal irradiation for squamous cell carcinoma of the head and neck: outcome and prognostic factors for regional recurrence. *Ann Oncol* 2011;22:2489–94. <https://doi.org/10.1093/annonc/mdq768>.

[16] Grégoire V, Levendag P, Ang KK, Bernier J, Braakmans M, Budach V, et al. CT-based delineation of lymph node levels and related CTVs in the node-negative neck: DAHANCA, EORTC, GORTEC, NCIC, RTOG consensus guidelines. *Radiother Oncol* 2003;69:227–36. <https://doi.org/10.1016/j.radonc.2003.09.011>.

[17] De Veij Mestdagh PD, Van Werkhoven E, Navran A, De Boer JP, Schreuder WH, Vogel WV, et al. Incidence of contralateral regional failure in the electively irradiated contralateral neck of patients with head and neck squamous cell carcinoma. *Clin Transl Radiat Oncol* 2019;17:7–13. <https://doi.org/10.1016/j.ctro.2019.04.015>.

[18] Van Den Bosch S, Dijkema T, Verhoef LCG, Zwijnenburg EM, Janssens GO, Kaanders JHAM. Patterns of recurrence in electively irradiated lymph node regions after definitive accelerated intensity modulated radiation therapy for head and neck squamous cell carcinoma. *Int J Radiat Oncology*Biology*Physics* 2016;94:766–74. <https://doi.org/10.1016/j.ijrobp.2015.12.002>.

[19] Gupta P, Migliacci JC, Montero PH, Zanoni DK, Shah JP, Patel SG, et al. Do we need a different staging system for tongue and gingivobuccal complex squamous cell cancers? *Oral Oncol* 2018;78:64–71. <https://doi.org/10.1016/j.oraloncology.2018.01.013>.

[20] Garzino-Demo P, Dell'Acqua A, Dalmasso P, Fasolis M, La Terra Maggiore GM, Ramieri G, et al. Clinicopathological parameters and outcome of 245 patients operated for oral squamous cell carcinoma. *J Craniomaxillofac Surg* 2006;34:344–50. <https://doi.org/10.1016/j.jcms.2006.04.004>.

[21] Berrino F, Gatta G. Variation in survival of patients with head and neck cancer in Europe by the site of origin of the tumours. *Eur J Cancer* 1998;34:2154–61. [https://doi.org/10.1016/S0959-8049\(98\)00328-1](https://doi.org/10.1016/S0959-8049(98)00328-1).

[22] Stampe H, Jakobsen KK, Tvedskov JF, Wessel I, Kiss K, Friberg J, et al. Prognostic Value of Lymph Node Yield, Lymph Node Density, and pN in Oral Cancer. *Otolaryngol Head Neck Surg* 2023;169:276–85. <https://doi.org/10.1177/01945998221123927>.

[23] Lemieux A, Kedarisetty S, Raju S, Orosco R, Coffey C. Lymph Node Yield as a Predictor of Survival in Pathologically Node Negative Oral Cavity Carcinoma. *Otolaryngol Head Neck Surg* 2016;154:465–72. <https://doi.org/10.1177/0194599815622409>.

[24] Jaber JJ, Zender CA, Mehta V, Davis K, Ferris RL, Lavertu P, et al. Multi-institutional investigation of the prognostic value of lymph node yield in advanced-stage oral cavity squamous cell carcinoma. *Head Neck* 2014;36:1446–52. <https://doi.org/10.1002/hed.23475>.

[25] Zenga J, Divi V, Stadler M, Massey B, Campbell B, Shukla M, et al. Lymph node yield, depth of invasion, and survival in node-negative oral cavity cancer. *Oral Oncol* 2019;98:125–31. <https://doi.org/10.1016/j.oraloncology.2019.09.028>.

[26] Tol JP, Dahele M, Doornaert P, Slotman BJ, Verbakel WFAR. Different treatment planning protocols can lead to large differences in organ at risk sparing. *Radiother Oncol* 2014;113:267–71. <https://doi.org/10.1016/j.radonc.2014.10.008>.

[27] Verbakel WFAR, Doornaert PAH, Raaijmakers CPJ, Bos LJ, Essers M, Van De Kamer JB, et al. Targeted intervention to improve the quality of head and neck radiation therapy treatment planning in the Netherlands: Short and Long-Term Impact. *Int J Radiat Oncology*Biology*Physics* 2019;105:514–24. <https://doi.org/10.1016/j.ijrobp.2019.07.005>.