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Polysaccharides occur throughout all kingdoms of life including plants, microorganisms and animals. They differ
profoundly in structure and function ranging from heparin that serves as an anti-coagulant to pectins that are
used to modify food properties. Mass spectrometry (MS) is a powerful technique for the characterization of
polysaccharides and is often applied in conjunction with chemical or enzymatic degradation. Here, we show that

Pecti

Heecp;r;m wide mass range ultrahigh-resolution matrix-assisted laser desorption/ionization (MALDI) in-source decay (ISD)
Hyaluronic acid Fourier transform ion cyclotron resonance (FTICR) MS is suitable as a generic and robust method for the analysis
Methoxylation of polysaccharides at the level of large fragments. We successfully analyzed polysaccharides that differ widely

regarding composition and origin. The ISD fragment ions conferred information on monosaccharide composition
as well as modifications including sulfation, amidation and methoxylation. Additionally, we could determine the
pectins' degree of methoxylation from these ISD fragment ions. Performing MS? of the ISD fragments confirmed
the proposed identity and provided additional structural characteristics. We conclude that MALDI-ISD-MS is a
fast and robust method for the characterization of polysaccharides complementing other analytical techniques.
Specifically, the method may be evaluated for a rapid determination of differences between polysaccharide
variants and batches, for establishing structure-function relationships.

1. Introduction

Polysaccharides can be obtained from different sources including
plants, animals or microorganisms (Delgado & Masuelli, 2019). These
complex macromolecules are referred to as homopolymers in case these
are built of one specific monosaccharide and as heteropolymers when
the polysaccharide contains different monosaccharides (Benalaya,
Alves, Lopes, & Silva, 2024). In nature, polysaccharides such as cellulose
and pectin provide structure in the plant cell walls (Gomez d'Ayala,
Malinconico, & Laurienzo, 2008; Millan-Linares, Montserrat-de la Paz,
& Martin, 2021). In healthcare, polysaccharides are applied for instance
as anticoagulant drugs (i.e. low molecular weight heparin) and in the
food industry they are used for example as gelling agent in jams and
yogurt (i.e. pectins) (Costa et al., 2010; Srivastava & Malviya, 2011).

Structural characterization of polysaccharides generally includes
determination of the molecular weight distribution, determining

(monosaccharide) compositions and assessment of modifications such as
sulfation, acetylation, methoxylation and amidation. This character-
ization is typically performed using a range of techniques such as size-
exclusion chromatography (SEC), nuclear magnetic resonance (NMR),
high performance liquid chromatography (HPLC), and mass spectrom-
etry (MS) (Churms, 1996; Fontana & Widmalm, 2023; Jermendi, Beu-
kema, van den Berg, de Vos, & Schols, 2022; Ma et al., 2018). So far, MS-
based polysaccharide analysis is commonly performed in combination
with chemical or enzymatic degradation (Amicucci et al., 2020). Such
hydrolysis of polysaccharides results in loss of structural information
regarding the overall polymer size, and location of modifications
(Jermendi et al., 2022). Also, these chemical or enzymatic degradation
methods need to be tailored to specific polysaccharide structures.
Consequently, there is a need for more generic analytical methods that
enable MS-measurements of intact or larger fragments of
polysaccharides.
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Table 1
List of the polysaccharide compounds with their properties.
Polysaccharide Mw (kDa) Backbone structure Branched structure Source
Maltodextrin 2-10 a(1-4) -glucose - Corn kernels
Dextran 40 a(1-6)-glucose a(1-3)-glucose Leuconostoc cpp
Polygalacturonic acid 25-50 a(1-4)-galacturonic acid - Enzymatic
Polygalacturonic acid a(1-4)-galacturonic acid - Orange
Low molecular weight heparin 4.5 a(1-4)-glucosamine, a(1-4)-glucuronic acid - Porcine intestinal
mucosa
Hyaluronic acid 1500-1800  B(1-3)-N-acetylglucosamine, p(1-4)-glucuronic - Streptococcus equi
acid
Colominic acid 24-38 a(1-8)-N-acetylneuraminic acid - Escherichia coli
Chitin B(1-4)-N-acetylglucosamine Shrimp (Pandalus
borealis)
High methoxylated pectin ~217 a(1-4)-(methoxylated) galacturonic acid Galactose, xylose, arabinose, rhamnose, Citrus and apple peel
glucose
Low methoxylated pectin ~167 a(1-4)-(methoxylated) galacturonic acid Galactose, xylose, arabinose, rhamnose, Citrus and apple peel
glucose
Low methoxylated amidated ~176 a(1-4)-(methoxylated) galacturonic acid Galactose, xylose, arabinose, rhamnose, Citrus and apple peel
pectin glucose
Citrus peel pectin ~140 a(1-4)-(methoxylated) galacturonic acid Galactose, xylose, arabinose, rhamnose, Citrus peel
glucose

Recently, our group has shown the benefits of intact and top-down
MS for the analysis of intact polysaccharides and highly glycosylated
glycoconjugates (Nicolardi et al., 2021; Nicolardi et al., 2022). Profiting
from (ultra)high mass range, resolving power and mass accuracy of
matrix-assisted laser desorption ionization (MALDI) Fourier transform
ion cyclotron resonance (FTICR) MS, detailed analysis of intact synthetic
polysaccharides was achieved through in-source decay (ISD) fragment
ions that are linkage-specific and pinpoint branching (Nicolardi et al.,
2021). The ISD fragmentation is induced concomitantly with the ioni-
zation, and fragments covering a vast size range can be generated and
detected.

In this paper we demonstrate a straightforward and generic MS-
based approach to analyze naturally occurring polysaccharides. We
show the potential of wide mass range, ultrahigh resolution MALDI-ISD-
FTICR MS for the analysis of polysaccharides isolated from different
sources including microorganism, plants and animals. The integration of
ISD fragments obtained by high laser fluence in combination with a
specific MALDI matrix, and collision-induced dissociation (CID) pro-
vided unprecedented in-depth structural characterization of intact
polysaccharides (Asakawa & Takayama, 2012; Smargiasso & De Pauw,
2010).

2. Materials and methods
2.1. Polysaccharides

Table 1 lists the analyzed polysaccharides, including, their most
important properties. More details, including purity, degree of
methoxylation and supplier are presented in Supplementary Information
1.

2.2. MALDI-MS sample preparation

The dry droplet spotting method was used in combination with a
polished steel MALDI target plate (Bruker Daltonics, Bremen, Germany).
Polysaccharides were dissolved in water (MilliQ or else) to a final con-
centration of 2 mg/mL. For dextran and maltodextrin samples, 1 mM or
4 mM sodium hydroxide, respectively, was added to the stock solution of
the sample (2 mg/mL in water). 5 pL of the polysaccharide stock solution
was mixed with 5 pL 1,5-diaminonaphthalene (1,5-DAN; CAS 2243-62-
1; Sigma-Aldrich, Burlington, USA; saturated solution in 50:50 [v/v]
acetonitrile: 0.1 % trifluoracetic acid in water) in a 500 pL Eppendorf
tube by pipetting up and down. From the prepared sample matrix mix, 2
pL were spotted onto a polished steel MALDI target plate. The droplet
was scratched with the pipette tip until crystals were formed within the

spot on the MALDI target plate and afterwards allowed to air dry.
2.3. MALDI-in-source decay (ISD)-MS

All MS experiments were performed on a 15 T solariX XR FTICR mass
spectrometer (Bruker Daltonics) equipped with a Combi-Source and a
ParaCell. MALDI measurements were performed using a smartbeam-II
laser system (Bruker Daltonics) at a frequency of 500 Hz and 200 laser
shots per scan. The MALDI-ISD mass spectra were acquired in m/z-
ranges 153-5000, 800-7000, and 1000-8000 with 1 million data points.
The MALDI-ISD mass spectra were obtained from the sum of a different
number of scans, ranging between 20 and 100 scans.

2.4. Tandem mass spectrometry

CID tandem MS measurements were performed using the quadrupole
for precursor ion selection with an isolation window of m/z 5 and
collision energy of 27 V for polysaccharides in negative ion mode.
Dextran and maltodextrin had a collision energy of 55 V in positive ion
mode. The MALDI-CID mass spectra were generated from approximately
20 scans in the m/z-range 153-5000 with 1 million data points (negative
ion mode) or in the m/z-range 153-5000 with 1 million data points
(positive ion mode).

2.5. Data processing

MALDI-FTICR mass spectra were visualized in DataAnalysis Version
5.0 SR1 (Bruker Daltonics). All the spectra were internally mass-
calibrated, with the theoretical fragment ions of the polysaccharides.
These theoretical fragment ions were calculated in Microsoft Excel
(Supplementary Information 1). The MS! assignments were done by
comparing the measured masses of the fragment ions with the theoret-
ical ones with a tolerance range < 1 ppm. The polysaccharides colominic
acid, dextran and maltodextrin had a tolerance range < 2 ppm. All MS>
assignments had a mass deviation <1 ppm. Calculations for the degree of
methoxylation (DM) of the pectins through MS are presented in Sup-
plementary Information 1. DM of the pectins through NMR, were similar
to the procedure of de Souza, Rietkerk, Selin, and Lankhorst (2013).

3. Results

We explored the use of MALDI-ISD-FTICR MS for the analysis of a
wide range of different types of polysaccharides. Polysaccharides were
analyzed polysaccharides in positive and negative ion mode as well as
homo- and heteropolysaccharides. ISD fragments were subjected to
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Fig. 1. MALDI-ISD-FTICR mass spectra of (A) maltodextrin, (B) dextran, and zoom in m/z-range 2800-3800 of (C) maltodextrin and (D) dextran measured in positive
ion mode. Spectra C and D show the Y or C-ion (purple), B or Z-ion (pink) ladder, 0.2% or 24A cross-ring fragment for maltodextrin and 0-2% or 04A cross-ring fragment
for dextran of the (orange) ladder for glucose (Glc). 027 or 24x cross-ring fragment for maltodextrin and 04% or %2 cross-ring fragment for dextran of the (red)
ladder for glucose (Glc). 4 mM NaOH was added to the samples with 1,5-DAN matrix. All assigned peaks are [M + Na]" species. *1,5-DAN. **Electronic noise.

tandem MS for further structural elucidation.

Maltodextrin and dextran, glucose based homopolysaccharides, were
subjected to MALDI-ISD-FTICR MS and measured in positive ion mode.
The observed sodiated fragment ions showed ladders with hexose
monosaccharide mass differences (around 162.0528 Da; Fig. 1A, B).
Fragment ions with a degree of polymerization (DP) of up to 46 were
observed. For each polysaccharide multiple ladders were identified with
repeating masses of the monosaccharide blocks and fragment ions were
assigned according to common nomenclature (Domon & Costello,
1988). Specifically, ladders of isomeric Y or C ions as well as isomeric B
or Z ions were assigned (Fig. 1C, D). Additionally, ladders of cross-ring
fragments were observed. The intensity of the cross-ring fragments of
dextran are higher compared to maltodextrin (Fig. 1C, D). For malto-
dextrin %2X or 2*A and %2A or 24X were assigned while for dextran %2X
or %%A and %X or %A were assigned (Fig. 1C, D). The different cross-

ring assigned is due to linkage differences (Table 1).

For further structural elucidation, CID MS? of the maltodextrin and
dextran ISD fragment at m/z 1013.31 were performed (Fig. 2A, B).
Similar to the ISD fragmentation (Fig. 1A, B), the CID MS? measurement
resulted in isomeric Y or C as well as B or Z ions, next to cross-ring
fragments (Fig. 2). There were additional ®3X or ®“3A cross-ring frag-
ments assigned in dextran (Fig. 2B, D).

Further analyses aimed at characterizing polysaccharides that are
difficult to dissolve or insoluble. While are attempts to analyze cellulose
were not successful (not shown), we managed to analyze chitin by
MALDI-ISD-FTICR-MS (Supplementary Information 2).

Negatively charged homopolysaccharides were analyzed by negative
ion mode MALDI-ISD-FTICR MS (Fig. 3). In this case signals up to 5000
m/z were detected corresponding to DPs between 15 and 20 for the
different  polysaccharides. In the overview spectra of
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Fig. 2. (A) MALDI-CID-ISD-FTICR mass spectrum by CID of (A) maltodextrin with ISD precursor ion m/z 1013.3167 and (B) MALDI-CID-ISD-FTICR mass spectrum of
dextran with ISD precursor ion m/z 1013.3170. (C) Schematic structure of an 7-mer fragment of maltodextrin with examples of assigned fragment ions (black) and
cross-ring fragments (red) detected in the m/z-range depicted in A. (D) Schematic structure of an 7-mer fragment with examples of assigned fragment ions (black) and
cross-ring fragments (red) detected in the m/z-range depicted in B. 4 mM NaOH was added to the samples with 1,5-DAN matrix. All assigned peaks are [M + Na] "

species. *1,5-DAN.

homopolysaccharides, a ladder of peaks was assigned with the respec-
tive monosaccharide mass differences (Fig. 3A, B, and C). For colominic
acid and polygalacturonic acid, ladders of isomeric Y or C ions and
isomeric B or Z ions were assigned with mass increments corresponding
to N-acetylneuraminic acid and galacturonic acid, respectively (Fig. 4D,
E and F). For colominic acid, additional mass differences were assigned
to decarboxylation and decarboxylation with dehydration (Fig. 4D). In
both of the polygalacturonic acid samples, prepared enzymatically and
isolated from oranges, a ladder of %X cross-ring fragments with hexose
mass differences was observed (Fig. 3E, F). This hexose ladder is likely
originated from cellulose contamination during the MALDI plate
cleaning process (Supplementary Information 2).

CID-tandem MS of the polygalacturonic acid ISD fragment at m/z
1073.1960 was performed (Fig. 4). The CID tandem MS experiment
resulted in isomeric Y or C as well as B or Z ions, together with cross-ring

fragments (Fig. 4B, C). Confirming the monosaccharide composition of
polygalacturonic acid.

Next, the negatively charged heteropolysaccharides hyaluronic acid
and low molecular weight heparin (LMWH) were analyzed in negative
mode without any other method adjustment. The negative ion mode
MALDI-ISD-FTICR spectra showed alternating peak patterns for odd and
even DPs reflecting the heterodimeric repeat units of these poly-
saccharides (Fig. 5A, B). The zoom in spectra show ladders of Y or C and
B or Z ions that reflect the alternating occurrence of N-acetylglucos-
amine and glucuronic acid in hyaluronic acid (Fig. 5C) and glucosamine
and glucuronic acid in LMWH (Fig. 5D). For hyaluronic acid an addi-
tional ladder of decarboxylation occurs (Fig. 5C). For LMWH two
additional ladders of Y or C and B or Z ions were observed indicating the
presence of a sulfate group (Fig. 5D).

CID-tandem MS of the ISD fragment at m/z 932.2310 (Fig. 6) showed
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Fig. 3. MALDI-ISD-FTICR mass spectra of (A) colominic acid, (B) enzymatically prepared polygalacturonic acid, (C) polygalacturonic acid isolated from orange, and
zoom in m/z-range 1000-2200 of (D) colominic acid, (E) polygalacturonic acid retrieved enzymatically, and (F) polygalacturonic acid isolated from orange. All
spectra were recorded in negative ion mode. Spectra D, E and F shows the Y or C-ion (purple) and B or Z-ion (pink) ladder of N-acetylneuraminic acid (Neu5Ac) in
colominic acid and galacturonic acid (GalA) in polygalacturonic acid. Spectra E and F additionally show a potential %X cross-ring fragment ladder of a hexose
polymer likely originated from cellulose contamination (orange). All assigned peaks are [M - H] ™ species. In Spectrum D, *B or Z-ion with decarboxylation ladder
(orange). **B or Z-ion a combined with decarboxylation and dehydration ladder (red).

isomeric Y or C as well as B or Z ions both with and without a sulfate
group (Fig. 6B). No additional cross-ring fragments of LMWH were
observed (Fig. 6B, C). Perhaps the sulfation of LMWH causes the absence
of the cross-ring fragments within MS2.

Next, the applicability of the developed MALDI-ISD-FTICR MS
approach was evaluated for differentiating structurally related such as
pectins. In the overview spectra of differently substituted, like
methoxylation or amidation, pectin samples repetitive peak patterns
were observed reflecting the DP (Fig. 7A-D). When zooming in on
fragments of DP7, a cluster of Y or C and B or Z ions of galacturonic acids
was observed differing in the numbers of methoxy groups (Fig. 7E-H).

CID tandem MS of the ISD fragment at m/z 1115.2426 revealed
isomeric Y or C as well as B or Z ions (Fig. 8B). No additional cross-ring

fragments of galacturonic acid were observed (Fig. 8B, C). Just like
LMWH pectin has additional substitutions on their backbone, perhaps
causing no additional cross-ring fragments within MSZ

Subsequently, repeatability of the method was assessed by per-
forming the analyses on different days. The aforementioned pectin
samples were measured on three days over the time period of a month
(Supplementary Information 3). From these different pectin samples, the
DM was calculated to try to determine the repeatability of the method
(Fig. 9 and Supplementary Information 1)). Over the three measurement
days, consistent spectra and DM data were obtained for the pectin
samples, demonstrating good intermediate precision of the method
(Fig. 9).

The DM is typically measured after hydrolysis via quantification of
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chemically released methyl groups and monosaccharides by NMR. MS
results were compared with those obtained by NMR: Pectin isolated
from citrus peel had an average DM of 60 % and the HM pectin of 75 %
(Fig. 9). Pectin isolated from citrus peel and HM pectin both had a DM of
around 50 % analyzed by NMR. LM pectin had a DM of 35 % measured
by the described MS approach (Fig. 9), while the DM measured with
NMR was 27 %. Lastly, LMA pectin showed a DM of 50 % measured with
MALDI-ISD-FTICR MS (Fig. 9), while the DM measured with NMR was
19 %. When comparing the DMs measured with MALDI-ISD-FTICR MS
and NMR, all the pectin samples showed a higher DM in MS than in NMR
analyses. Notably, the calculated DM of LMA pectin by MALDI-ISD-
FTICR MS was potentially influenced by the overlap of the isotopic
distribution of amidated and methoxylated species within the in-source
decay fragments (Supplementary Information 4).

4. Discussion

We evaluated MALDI-ISD-FTICR MS for the characterization of a
diverse set of polysaccharides. This included polysaccharides of animal,
plant and bacterial origin. Both neutral and negatively charged species,
including homo- and heteropolysaccharides, were analyzed with a range
of different modifications including sulfation, amidation and methox-
ylation. No method adjustments were needed except for a polarity
switch, indicating that MALDI-ISD-FTICR MS is a generic and broadly
applicable method for the characterization of a wide range of
polysaccharides.

Maltodextrin and dextran are samples both consisting of glucoses
with different linkages. Previous studies has shown the differences

between such linkages comparing the cross-ring fragments (Garozzo,
Giuffrida, Impallomeni, Ballistreri, & Montaudo, 1990; Mechref,
Novotny, & Krishnan, 2003; Spina et al., 2004). Comparing our results
with these studies, the 0.4A or 0.2X cross-ring fragment of dextran had a
higher intensity compared to 0.2X or 2.4A cross-ring fragment of
maltodextrin, similar to the previous studies (Mechref et al., 2003).
Comparing the tandem MS spectra of maltodextrin and dextran, an
additional cross-ring fragment could be assigned in dextran, confirming
the 1.6-linkage (Mechref et al., 2003).

Similar to our previous study on bacterial bioconjugates, poly-
saccharide fragments generated by ISD were readily amenable to further
characterization by tandem MS applying CID (Nicolardi et al., 2022).
Overall, fragment ions generated from ISD fragments by tandem MS
employing CID and ISD fragment without additional MS? were virtually
identical, pointing towards comparable fragmentation mechanisms in
ISD and CID.

MALDI-ISD-FTICR MS provides characteristic fragment ion patterns
that may serve as a unique fingerprint of a specific polysaccharide.
Compared to other MS method, this method shows with a simple and
straightforward sample preparation and spotting technique, important
structural information of polysaccharides can be obtained. Importantly,
repeatability of the method appeared high as assessed over a period of
one month for pectins. Furthermore, the approach readily revealed
detailed differences in the structure of closely related polymers such as
differences in the levels of methoxylation.

While our MS method allowed the determination of methoxylation
levels (DM) with good precision, there were discrepancies between the
DM determined by MS versus the standard NMR analysis. The higher DM
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Fig. 5. MALDI-ISD-FTICR mass spectra in negative ion mode of (A) hyaluronic acid, (B) low molecular weight heparin (LMWH), and zoom in m/z-range 1550-2650
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values observed by MS compared to NMR could be explained from an
ionization bias for positively versus negatively charged ISD fragment
ions, or from preferential ISD fragment ion formation at highly
methoxylated regions (implying block substitution), or a combination of
these. In order to verify whether an overrepresentation of highly
methoxylated fragments is observed in the spectra and dissect the
impact of methoxylation on ISD we aim to apply homogeneous model
substances in future studies.

In general, further research is needed to identify how polysaccharide
structure and modifications may influence the generation and registra-
tion of ISD fragments are obtained within the overall polysaccharide
structure. Interestingly, MALDI-ISD-MS has recently been shown to have
potential for the characterization of protein N- and O-glycosylation from

intact glycoproteins. This provides high-precision signatures that are in
good agreement with glycosylation signatures obtained with gold-
standard methods (Senini et al., 2024; S. Urakami & Hinou, 2022;
Shogo Urakami & Hinou, 2023), demonstrating the vast potential of ISD-
MS approaches for glycosylation analysis.

For the method development of MALDI-ISD-MS as described in this
paper, the FTICR mass analyzer came with specific advantages, such as
the high resolution and mass accuracy, which helped with the unam-
biguous composition assignment of the observed fragment ions. Like-
wise, the instrument allowed tandem MS analysis of the observed ISD
fragment ions, again at high resolution and mass accuracy.

The MALDI-ISD-MS approach may be more broadly applicable and is
likely not restricted to instruments with an FTICR mass analyzer, and
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Fig. 7. MALDI-ISD-FTICR mass spectra of (A) pectin isolated from citrus peel, (B) high methoxylated (HM) pectin, (C) low methoxylated (LM) pectin, (D) low
methoxylated amidated (LMA) pectin. (E) Zoom in m/z-ranges 1210-1370 of pectin isolated from citrus peel, (F) HM pectin, (G) LM pectin, and (H) LMA pectin
measured in negative ion mode. Spectra E, F, G and D show the Y or C-ion (purple) and B or Z-ion (pink) ladders with different numbers of methoxy groups for the
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systems with a TOF, quadrupole-TOF or Orbitrap™ mass analyzer
should also be suitable (Supplementary Information 5) (Campuzano &
Loo, 2025). However, the large conceptual differences between these
mass spectrometers are expected to affect the analyses. The high-
vacuum sources of MALDI-TOF-MS may result in limited collisional
cooling of the ISD fragments, and post-source decay of polysaccharides
may occur, which may be observed as metastable ions when operated in
reflector-ion mode. For MALDI-quadrupole-TOF systems such as tim-
sTOF fleX™ (Heijs, Potthoff, Soltwisch, & Dreisewerd, 2020), the ion
source is very similar to the one of the FTICR MS used in this study, and
consequently highly comparable data are expected. In the case of
ambient pressure or sub-atmospheric pressure MALDI-MS systems using
e.g. Oribtrap™ mass analyzers (Shi et al., 2019), the pronounced

collisional cooling may somewhat limit ISD, yet this could potentially be
overcome by applying enhanced laser power. Dedicated studies are
needed to establish MALDI-ISD-MS of polysaccharides and potentially
other polymers on the diverse MALDI-MS platforms differing in pa-
rameters such as source pressure, extraction time, m/z range and
resolution.

Next to evaluating different MALDI-MS platforms, future research
should evaluate the implementation of MALDI-ISD-FTICR MS as a tool in
the characterization of polysaccharides. Specifically, the method may be
evaluated for assessing differences between polysaccharide variants and
batches, consequently establishing structure-function relationships.
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Fig. 8. (A) MALDI-ISD-FTICR mass spectrum of pectin retrieved from citrus peel and (B) MALDI-CID-ISD-FTICR mass spectrum of pectin retrieved from citrus peel
from the precursor ion m/z 1115.2426. (C) Schematic structure of 7-mer fragment of the pectin galacturonic acid backbone with examples of assigned fragment ions
(black) detected in the m/z-range depicted in B. All assigned peaks are [M - H]~ species. *1,5-DAN.
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