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Expediting hit-to-lead progression in drug
discovery through reaction prediction and
multi-dimensional optimization

David F. Nippa 1,4, Kenneth Atz 1,4, Yannick Stenzhorn 1, Alex T. Müller 1,
Andreas Tosstorff 1, Jörg Benz1, Hayley Binch1, Markus Bürkler1, Achi Haider1,
Dominik Heer1, Remo Hochstrasser1, Christian Kramer1, Michael Reutlinger 1,
Petra Schneider2, Thierry Shema3, Andreas Topp1, Alexander Walter1,
Matthias B. Wittwer 1, Jens Wolfard 1, Bernd Kuhn 1, Mario van der Stelt 3,
Rainer E. Martin 1 , Uwe Grether 1 & Gisbert Schneider2

The rapid and economical synthesis of novel bioactive compounds remains a
hurdle in drug discovery efforts. This study demonstrates an integrated
medicinal chemistry workflow that effectively diversifies hit and lead struc-
tures, enabling an acceleration of the critical hit-to-lead optimization phase.
Employing high-throughput experimentation (HTE), we generated a compre-
hensive data set encompassing 13,490 novel Minisci-type C-H alkylation
reactions. These data served as the foundation for training deep graph neural
networks to accurately predict reaction outcomes. Scaffold-based enumera-
tion of potential Minisci reaction products, starting from moderate inhibitors
of monoacylglycerol lipase (MAGL), yielded a virtual library containing 26,375
molecules. This virtual chemical library was evaluated using reaction predic-
tion, physicochemical property assessment, and structure-based scoring,
identifying 212 MAGL inhibitor candidates. Of these, 14 compounds were
synthesized and exhibited subnanomolar activity, representing a potency
improvement of up to 4500 times over the original hit compound. These
ligands also showed favorable pharmacological profiles. Co-crystallization of
three computationally designed ligands with the MAGL protein provided
structural insights into their binding modes. This study demonstrates the
potential of combiningminiaturized HTE with deep learning and optimization
of molecular properties to reduce cycle times in hit-to-lead progression.

The fast and efficient synthesis of novel compounds continues to be a
bottleneck in small-molecule drug discovery, requiring considerable
time and effort1. The structural novelty and complexity of target
molecules for synthesis often present substantial challenges,

especially when establishing structure-activity relationships in med-
icinal chemistry2. Therefore, efficient synthetic strategies are crucial
for hit-to-lead and lead optimization programs, as they play a key
role in improving or maintaining pharmacological activities while
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concomitantly improving the physicochemical properties of drug
candidates3. Advanced computer-assistedmolecular designmethods
have the potential to address some of these key aspects in medicinal
chemistry4.

Using computational tools and machine learning frameworks,
combined with efficient semi-automated synthesis techniques such as
high-throughput experimentation (HTE) and late-stage functionaliza-
tion (LSF), has been shown to improve cycle times while reducing
material consumption and costs5,6. LSF facilitates the direct substitu-
tion of C-H bonds by other functional groups or building blocks in a
single step, eliminating the need for pre-functionalization of complex
molecules7. Consequently, this approach can offer higher efficiency in
diversifying hit and lead structures compared to traditional multi-step
synthesis starting frombasic building blocks8. Among the available LSF
methodologies9, Minisci-type C-H alkylations are of particular interest
as they leverage readily available carboxylic acids to incorporate alkyl
fragments into heterocyclic cores10, such as the widely used pyridine
motif in medicinal chemistry. In addition, the use of carboxylic acid
building blocks with many carbon sp3 centers can improve lead- and
drug-like characteristics, activity and selectivity profiles, as well as the
physicochemical molecular properties of candidate compounds11,12.

However, due to the structural intricacies and the number of
similar C-H bonds in a molecule, the transformation of pharmaceu-
ticals and advanced building blocks using LSF reactions remains
challenging8,9. HTE partially alleviates these issues by enabling the
rapid identification and optimization of reaction conditions with
minimalmaterial consumption6,13,14. The curationof the generatedHTE
data based on the FAIR principles (findable, accessible, interoperable,
and reusable)15,16 can help create high-quality data sets suitable for
computational analyses and machine learning applications17,18. We
previously reported successful in silico prediction of the coupling
performance of the coupling of heterocyclic building blocks with
diverse sp3-rich carboxylic acids using Minisci-type reactions, using
graph neural networks (GNN) trained on HTE data19. GNNs enable
learning on two-dimensional (2D) and three-dimensional (3D) mole-
cular models20–22. These deep learning models were developed to
predict reaction outcomes, including product yields and regioselec-
tivity, such as for borylation and alkylation reactions5,23–25. Recent
studies have shown how GNNs can be used for the optimization of
conditions in cross-coupling reactions26, and reaction outcome pre-
diction for three-component reactions27.

Hit-to-lead optimization in drug discovery projects typically
combines optimization of on-target activity and drug selectivity
against undesired off-targets with achieving suitable absorption, dis-
tribution,metabolism, and excretion (ADME) properties28–30. Although
machine learning models have shown robust prediction accuracy for
certain physicochemical properties, such as lipophilicity or
permeability31,32, predicting drug potency or protein-ligand complexes
proves to be notoriously challenging33,34. The methods used include
physics-based approaches, such as free energy perturbation
calculations35, semi-empirical quantum chemistry approximations36,37,
and deep learning, including GNN approaches38,39. Moreover, ligand-
based machine learning was combined with three-dimensional (3D)
scoring using template-based ligand docking40.

This study describes an efficient compound diversification strat-
egy aimed at enhancing the potency of existing MAGL-inhibiting
molecules (hits). We combine GNN-based C-H activation reaction
prediction for computational molecular library design with a suite of
property prediction methods. These include structure-based scoring
using template docking and prediction of key molecular properties
such as lipophilicity, solubility, and permeability. Toward this end, a
new Minisci alkylation data set with reaction yield resolution was cre-
ated that covers 13,490 reactions. Integrating a reaction prediction
model trained on these data with different scoringmethods ("machine
learning funnel") enabled the computational generation of novel,

synthetically accessible compound designs with improved physico-
chemical properties and potency. We applied this processing cascade
to monoacylglycerol lipase (MAGL), a serine hydrolase that is crucial
for the metabolism of neuroprotective endocannabinoid
2-arachidonoylglycerol (2-AG). MAGL represents a target for the
development of selective inhibitors aimed at treating central nervous
system (CNS) disorders associated with neuroinflammation41–43. Using
a selected set of moderate MAGL-inhibitors (hit compounds) that
allow diversification through C-H Minisci-type alkylation in combina-
tion with a set of 211 carboxylic acids, we generated an enumerated
data set of 26,375 in silico reaction products (Fig. 1). These virtual
molecules were then subjected to the machine learning funnel, deli-
vering 212 diversified, novel, synthetically accessible designs with
predicted improved physicochemical properties and potency, of
which 14 were synthesized and tested in biochemical assays for inhi-
bition of human, mouse, rat, and macaque MAGL enzymes.

Results
Reaction data set generation with miniaturized high-
throughput experimentation
Generation of the reaction data set for Minisci-type alkylation reac-
tions involved the experimental evaluation of a variety of electron-
deficient heterocyclic fragments in combination with various sp3-rich
carboxylic acids. 80 common medicinal chemistry fragments (e.g.,
pyridines, pyrimidines, quinolines, benzoxazoles, F1-F80, Supplemen-
tary Information [SI]4.1) and 59 carboxylic acids (A1-A59, SI4.2) were
selected, resulting in a chemical space of 4,720 possible combinations
(Fig. 2A). Data analysis using the Simple User-Friendly Reaction Format
(SURF)16 revealed variable reactivity dependent on different silver salts
and additives while maintaining consistent oxidant and solvent sys-
tems. Consequently, each fragment+acid combination was assessed
with different catalysts and additives in a 24-well plate format
(Fig. 2F, SI3).

The theoretical reaction space generated by the substrates and
conditions in focus encompassed nearly 115,000 possible combina-
tions. To allow efficient evaluation of a relevant portion of this reaction
space, a rapid and miniaturized HTE workflow was implemented
(Fig. 2B, SI3). Using stock solutions and automated liquid handling, we
prepared reaction plates in a reproducible and efficient manner.
Reactions were analyzed via liquid chromatography-mass spectro-
metry (LC-MS) to determine the reaction outcome, employing an
automated tagging workflow. In total, 13,490 reactions were per-
formed, representing approximately 12% of all possible combinations
(Fig. 2C). Data analysis revealed that 30% of the reactions resulted in
positive reaction outcomes, i.e., successful alkylation of the hetero-
cyclic fragment with a detectable reaction yield of ≥5% (Fig. 2D).
Among these successful reactions, a balanced yield distribution was
observed (Fig. 2E), making this generated data set suitable for training
a machine learning model for reaction forward prediction.

Building reaction forward prediction models based on the
Minisci data set
Machine learning models were trained to predict reaction outcomes
using various data set splitting strategies (Fig. 3A), including a 0D split
for known combinations, 1D splits for novel acids orN-arenes, and a 2D
split for novel combinations of both components (Fig. 3B). The per-
formance of thesemodels, assessed through reaction yield and binary
outcome predictions, highlights their capacity for reaction forward
prediction (Methods and SI1). The random split (0D) consistently
outperformed the other strategies, with a mean absolute error (MAE)
of 6.7% and a Pearson correlation coefficient (r) of 0.83, demonstrating
predictive power for both reaction yield and binary outcomes (accu-
racy = 85.7%, precision = 90.9%) (SI1). Extrapolation to novel acids
(1DA) and novelN-arenes (1DN) resulted in increased errors,withMAEs
of 12.5% and 11.4%, respectively. The 2D split, which tested novel
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combinations of both acids and N-arenes, showed comparable per-
formance to the 1D splits, with an MAE of 12. 6%, maintaining a rela-
tively high precision at 85.4% (SI1).

Molecular template docking, synthesizability assessment, and
property prediction for candidate selection
To explore the potential chemical space using C-H alkylation, 125 hit
molecules featuring N-heteroaromatic scaffolds and moderate MAGL
inhibitory activity were selected. Thesemoleculeswere combinedwith
211 carboxylic acid fragments characterized by a high sp3 content,
covering a virtual library of 26,375 potential products. The compounds
were subsequently evaluated using a multi-dimensional optimization
(MDO) strategy that included protein-ligand template docking, syn-
thetic feasibility assessment using reaction prediction, as well as phy-
sicochemical and ADME property prediction (lipophilicity calculated
as LogD values, kinetic solubility assay (LYSA), P-glycoprotein (P-gp)
apparent permeability, and parallel artificial membrane permeability
assay (PAMPA)). For MAGL, an intracellular target, the cellular per-
meability of inhibitors is a crucial factor for successful drug develop-
ment. This MDO approach allowed for the simultaneous evaluation of
diverse criteria, ensuring the identification of compounds that balance
potency, synthesizability, and properties that impact their pharma-
cokinetic profiles. Figure 1 illustrates how the applied computational
filtering process enabled prioritization and selection of compounds
with predicted increased inhibitor potency and synthetic accessibility
compared to the original hits.

A subset of 1675 molecules with predicted inhibitory potencies of
pIC50 ≥6 was identified, using a recently published 2D3D-hybrid scor-
ingmethod40 (Fig. 3C). The application of the GNN reaction prediction
model to validate the synthetic feasibility resulted in 668 compounds
with a predicted reaction yield ≥5% (Fig. 3D), confirming a positive,
binary reaction outcome. From this pool, 212 molecules had both a

predicted positive reaction outcome (i.e., ≥5% LCMS yield) and a
pIC50 ≥8, which made them preferred candidates for further investi-
gation (Fig. 3E). The computational docking approach used fixed
coordinates of a predefined template as illustrated in Fig. 3F overlayed
with 10 potential candidate ligands. Finally, the predictions of four
selectedphysicochemical properties (i.e., LogD, LYSA, P-gp, PAMPA) of
the remaining 212 molecules were evaluated (Fig. 3G), leading to the
selection of 34 molecule+carboxylic acid combinations exhibiting a
balance in key physicochemical properties and ADMEparameters. The
reaction and potency predictions served as strict criteria, narrowing
the virtual library to 212 molecules. The final selection of 14 com-
pounds was guided by calculated ADME parameters, using an
approach that avoided fixed thresholds to minimize the propagation
of model error through sequential filtering steps.

MAGL inhibitor synthesis and biological characterization
The 34 identified molecules were subjected to screening of reaction
conditions using a 24-well setup (Fig. 2F) resulting in the formation of
the desired product with ≥5% for the 34 selected substrate combina-
tions. Based on these results, the most high-yielding examples were
prioritized and, consequently, scale-up experiments were performed
for 14 new MAGL inhibitors (18-31 following the synthesis route out-
lined in Fig. 4A. Detailed synthesis information can be found in SI5.
Using our late stage Minisci-type building block alkylation procedure,
we reduced the number of synthesis steps of the alkylated inter-
mediate from the seven steps proposed by a classical synthesis
approach (Fig. 4A, orange) to three steps (Fig. 4A, blue).

The inhibitory potency of all newly synthesized compounds (18-
31) was evaluated in a biochemical assay for the human,mouse, rat and
cynomolgus macaque MAGL enzymes. Compared to the human IC50

value of the starting point, hit compound 17 (IC50 = 445 nM), all newly
synthesized compounds exhibited enhanced potency (Table 1). Six

Fig. 1 | Hit optimization workflow. A set of 125 monoacylglycerol lipase (MAGL)-
inhibiting “hit"molecules (startingpoints) containingN-heterocycles are combined
with 211 commercially available carboxylic acids to generate 26,375 hypothetical
products. These virtual molecules are passed through a series of filters to identify
potent, synthetically accessible molecules with favorable physicochemical prop-
erties ("machine learning funnel"). Multi-template docking and amachine learning-
basedpotency scoring function are used to identify candidatemolecules. Synthetic
accessibility is predicted using graph neural networks (GNNs) trained on a novel

reaction data set encompassing 13,490 Minisci-type alkylation reactions. Physico-
chemical properties are determined using various, readily available machine
learning-based predictions. Consequently, from 212 potentially suitable com-
pounds, 34 molecule-acid combinations were manually selected and screened
using miniaturized high-throughput experimentation (HTE) to identify favorable
alkylation reaction conditions. Based on building block availability, up-scaling of a
selected number of reactions successfully delivered 14 compounds with improved
profiles.
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compounds (21, 23, 24, 27, 29, and 31) demonstrated IC50 values
between 0.1 and 10 nM, i.e., corresponding to a 45- to 4500-fold
potency enhancement, with four molecules (25, 26, 29 and 31)
achieving considerably improved lipophilic efficiency (LipE), i.e., =
pIC50 - cLogP. The IC50 values predicted by the 2D3D-hybrid scoring
model reflect the trend of the experimentally confirmed potency with
a Pearson correlation of r = 0.52.

To confirm the ligand bindingmode, the crystal structures of four
inhibitor-MAGL complexes (17, 23, 27, and 29) were determined
(Fig. 4B). These co-crystal structures reveal that the addition of
cyclopentyl and cyclopropyl-cyclobutyl groups in the para position of
the pyridine induces a flip of the pyridine, allowing a new hydrogen
bond interaction with a water molecule and allowing lipophilic resi-
dues to access a previously untapped sub-pocket of theMAGL binding
site. The interactions on the right-hand side of the ligands, including
key hydrogen bonds toMet123, Ala51, Arg57, two crystal watermolecules,

and π-stacking with Tyr194, remain conserved compared to the original
hit structure 17.

For the three compounds (23, 27, and 29), additional physico-
chemical and ADMET properties were obtained (SI2.2). The high
selectivity toward MAGL over common safety-relevant off-targets and
closely related brain hydrolases (SI2.3) was confirmed by activity-
based protein profiling43 (SI2.4).

Discussion
Curated high-quality reaction data sets are the cornerstone of a suc-
cessful forward reaction prediction model. The data used for machine
learning in this study consisted of one Minisci-type alkylation data set
with 13,490 transformations covering a wide range of scaffolds rele-
vant tomedicinal chemistry. Data points were generated in a resource-
efficient and time-efficient HTE setup, which requiredminimal starting
material. This experimental approach allowed us to explore a relevant

Fig. 2 | High-throughput generation of experimental training data for reaction
forward prediction models. A Generalized Minisci reaction scheme highlighting
the large chemical and reaction space. BMiniaturized reaction screening workflow
utilized to generate the data set. CMatrix of possible fragment and carboxylic acid
combinations including conducted screenings and their yield range. D Analysis of
the binary reaction outcome. E Analysis of the yield across all reactions. F Example

of the used screening plate highlighting the results from one particular fragment
and carboxylic acid combination. Colors of the pie charts: Light blue: Mono-
alkylation product, Grey: Starting material, Dark blue: Di-alkylation product, Dark
grey: Side products. The percentage values represent the amount of observed
mono-alkylated product determined by liquid chromatography-mass spectro-
metry (LCMS).
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portion (12%) of the reaction space, encompassing approximately
115,000 potential combinations. This sampling was sufficient for
robustmachine learningmodel training. Tomake the data available for
reaction prediction, they were exported in SURF16. SURF files provide
reaction information in a comprehensive machine-readable format
containing all parameters of the transformation, as well as structural
and quantitative information of all components and products. Simi-
larly to related recent work27,44, it became evident that such machine-
readable data sets, including negative reaction outcomes, are the key
enablers for successful reaction prediction.

The reaction prediction models demonstrated their robustness
not only by accurately predicting the reaction outcome for known
substrates, as seen with the random data split (0D split), which
achieved a mean absolute error (MAE) of approximately 7%, high
correlation (r=0.83), and a precision value of 91%. When applied to
unseen carboxylic acids and N-arenes, either independently (1D split)

or combined (2D split), the models maintained robust performance,
with MAEs in the range of 11-13%, precision values up to 85%, and
correlation coefficients ranging from r = 0.51 to r = 0.55. This ability to
partially extrapolate to novel chemical space, combined with the
integration of predicted synthetic feasibility, provides an advantage
over relying solely on the enumeration and screening of large virtual
libraries, where synthetic accessibility is often a downstream
challenge27.

We applied multi-template ligand docking to a virtual library of
26,375 potential compounds originating from MAGL-inhibiting hit
molecules, narrowing the pool to 1675 candidates based on predicted
potency with pIC50 ≥6. The reaction predictionmodels were then used
to assess the synthetic feasibility of these candidates (binary “yes/no"
reaction outcome), identifying 668 molecules with predicted reaction
yields of ≥5%. In the final step, a physicochemical and ADMET property
prediction funnel was used to automatically select 34 molecules with

Fig. 3 | Computational filtering and selection of molecules. A To test the
extrapolation performance of the machine learning models, the reaction data set
was split using four different strategies: (i) Predicting novel combinations between
known N-arenes and acids (zero-dimensional [0D] split, shown in light blue); (ii)
Extrapolation to novel N-arenes (one-dimensional [1D] split for N-arenes [1DN],
shown in pale purple); (iii) Extrapolation to novel acids (1D split for acids [1DA],
shown in beige); and (iv) Extrapolation to both novel N-arenes and acids (2D split,
shown in light brown). B Visualization of machine learning results for the four data
set splitting strategies, showing reaction yield prediction (left and center) and
binary reaction outcomes (right). Error bars indicate the standard deviation of a
four-fold cross-validation; individual data points are shown. C Predicted potency
for generatedmolecules with a predicted pIC50≥6.D Predicted reaction outcomes:
Molecules with a predicted reaction yield ≥5% are classified as positive, otherwise

negative.EVisualization of the subset ofmoleculeswith predictedpositive reaction
outcomes and pIC50 ≥8. F Template docking was demonstrated with an example
template and four products, where the coordinates of the templatewere keptfixed.
Key amino acids are shown, i.e., Met123, Ala51, Arg57, and Tyr194. The template com-
pound is illustrated in light green indicating the initial position and placement of
the docked ligands and the four products in the docked conformation in light
brown. G Predicted absorption, distribution, metabolism and excretion (ADME)
properties of the final subset of 212 molecules. The physicochemical and ADME
properties considered are (from left to right): LogD, kinetic solubility assay (LYSA)
solubility in μg/mL, P-glycoprotein (P-gp) apparent permeability, and parallel arti-
ficialmembrane permeability assay (PAMPA) in 10-6cm/s. The 14molecules selected
for synthesis are indicated by dashed lines. pIC50 = The negative logarithmic con-
centration of the half maximal inhibitory concentration in mol/L.
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favorable solubility andpermeability profiles. Subsequently, these top-
ranking candidates were prioritized for synthesis and biological test-
ing. This workflow utilized an MDO strategy that allowed the simulta-
neous consideration of potency, synthetic feasibility, and
physicochemical properties. The MDO framework streamlined the
prioritization of compounds that achieved a balance across these
diverse criteria. This combined approach accelerated the hit-to-lead
optimization process by reducing the need for manual intervention
and experimental resources. The integration of reaction yield

prediction into this workflow was crucial, highlighting the impact of
predictive modeling on synthetic efficiency and reduction of material
waste in medicinal chemistry45. The complete optimization cycle was
performed in one month. The computational work, including virtual
library enumeration, multi-template docking, reaction prediction, and
ADMETproperty prediction, was completed in approximately one day.
Compound synthesis, using miniaturized HTE and scale-up, took two
weeks. The biological measurements were also completed in two
weeks. This condensed timeline demonstrates how integrating

Fig. 4 | Synthesis route to novel MAGL inhibitors. A The Minisci-type alkylation
approach delivered a shortened synthesis route. Rather than through seven steps
(orange, a–g), the left-hand side building blocks (9a-i) were obtained in three steps
(blue, h–j). Consequent coupling with different right-hand side building blocks
(13–16) delivered 14 MAGL inhibitors (18–31). a H2O, 0

∘C, 2 eq. KOH, 10% F2 in N2;
bneat, 120 ∘C, 1.4 eq. PBr5; c EtOH, rt, 1.0 eq.NaBH4;dToluene/H2O 10:1, 100 ∘C, 1.26
eq. R-boronic acid, 0.3 eq. PCy3, 0.1 eq. Pd2(dba)3*CHCl3, 3.0 eq. K2CO3; e HCl aq.,
80 ∘C; f THF, rt, 1.3 eq. CDI, 1.3 eq. 7; g polyphosphoric acid, 120 ∘C; h THF, rt, 1.3 eq.
CDI, 1.3 eq.; i polyphosphoric acid, 120 ∘C; jMeCN/H2O 3:2, 80 ∘C, 3.0 eq. 12, 3.0 eq.
(NH4)2S2O8, 0.1 eq. AgSCF3; k a. MeOH, rt, 5.0 eq. LiOH b. DMF, rt, 1.2 eq.

13/14/15/16, 10.0 eq. DIPEA, 1.1 eq. HATU; B Crystal structure complexes of human
monoacylglycerol lipase (MAGL) with hit compound 17, and inhibitors 23, 27, and
29, shown in pale, light green, light blue, and royal blue, respectively. From left to
right, a close-up view of the binding poses of 23, 27, and 29, along with some of
their key interactions (i.e., hydrogen bonds to Met123, Ala51, Arg57, and two crystal
water molecules, and π-stacking with Tyr194) is shown. Additionally, an overlay
of the three inhibitors (23, 27, and 29) with the hit structure 17 is depicted.
Source data are provided in a Source Data file. Abbreviations: cPen: Cyclopentyl
(A37), cHex: Cyclohexyl (A36), cPr-cBu: Cyclopropyl-cyclobutyl (A31), Pip: Piper-
idine (A25).
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computational and experimental workflows from the outset outpaces
traditional drug discovery pipelines that do not include predictive
modeling.

The 34 selected combinations of molecules and carboxylic acids
were subjected to screening of reaction conditions in a 24-well plate
setup (Fig. 2F), resulting in the formation of the desired product with
≥5% LCMS-yield for all substrate combinations. Scale-up experiments
were performed for 14 new MAGL inhibitors (18-31) following the
simplified synthesis route outlined in Fig. 4A. By employing a late-stage
Minisci-type alkylation strategy, we reduced the synthesis of the
alkylated intermediate from seven steps (orange) to three steps (blue),
greatly enhancing efficiency. Instead of alkylating the final compound,
we synthesized intermediate building blocks, allowing diverse amide
couplings to generate a broader array of analogs.

All synthesized compounds (18-31) were evaluated for potency
using MAGL biochemical assays. Compared to the IC50 of the struc-
turally related original hit (17), all newly synthesized compounds
showed improved potency (Table 1). Six inhibitors demonstrated a 45-
fold to a 4500-fold increase in potency, with two compounds, 29 and
31, achieving subnanomolar activity. The predicted IC50 values reflect
the trend of the measured biological data (r = 0.52). A LipE analysis
revealed that four molecules (25, 26, 29, and 31) achieved LipE values
greater than 4.1, i.e., the LipE value of the original hit 17. This value
indicates a favorable balance between potency and lipophilicity, which
is important for the development of effective and selective inhibitors.
Compounds 29 and 31 exhibit potent cell permeability, a crucial
characteristic for the intracellular target MAGL, positioning them in
the favorable upper right corner of the optimization chart
(SI2.2, Fig. S1).

To confirm and study their binding modes, the co-crystal struc-
tures of four inhibitors (17, 23, 27, and 29) with human MAGL were
determined (Fig. 4B). Compared to the binding mode observed for
compound 17, the benzoxazole motif on the left side of the molecules
is inverted in the new compounds. This flip is likely driven by addi-
tional hydrophobic interactions formedby the new substituents in this
region of the MAGL binding site.

The moderate correlation (r = 0.52) of the potency predictions
with the experimental results reflects an inherent trade-off between
computational cost and accuracy. Free energy perturbation35 or semi-
empirical quantum chemistry approximations36,37 could potentially
refineΔG estimates for a small subset of ligands but are impractical for
large-scale screening. In contrast, deep-learning models enable rapid

scoring of largemolecule libraries, yet remain limited by the quality of
their scoring functions. Here, we adopted template-based docking
with RF-scoring, which has been shown to efficiently enrich active
compounds40. Developing next-generation scoring functions that
combine the fidelity of physics-basedmethods with the throughput of
machine learning models represents an opportunity for in silico hit
and lead profiling.

This study presents a comprehensive machine learning-based
workflow that integrates binding potency predictions, reaction for-
ward prediction models, and ADMET property evaluation to rapidly
select, prioritize, and synthesize new chemical entities with strongly
enhanced inhibitory activity. The workflow accelerates the early hit-to-
lead optimization cycle by rapidly diversifying and evaluating new
molecules, thereby reducing both cycle times and material consump-
tion. This sequential process is adaptable to other projects and reac-
tion types. It provides a distinct advantage over simply enumerating
and screening vast virtual libraries, primarily because exhaustive
library enumeration often presents considerable synthetic challenges
in laboratory experiments. Importantly, the applicability and success
of our workflow hinge on the availability of high-quality, well-curated
data sets for machine learning and access to reliable binding models
for computational template-based docking and affinity prediction. We
advocate for the adoption of FAIR principles (Findable, Accessible,
Interoperable, Reusable) in data collection throughout the drug dis-
covery cycle, from synthesis to biological evaluation. Such efforts will
enablemachine learning cascades to further streamline and accelerate
hit-to-lead optimization in medicinal chemistry.

Methods
Screening plate design
The collection and meta-analysis of reaction data were based on
publications covering Minisci-type alkylation using carboxylic acids as
radical precursors, as reviewed by Proctor46 and Duncton10. A 24-well
alkylation screening plate was designed using reaction conditions
most frequently reported in the literature. The reaction variables
included temperature, time, compound concentrations, and scale,
optimized for minimal material consumption and ease of integration
into the experimental workflow. By miniaturizing the scale and
adapting the concentration ranges to c = 0.016 M (n = 0.8 μmol), we
achieved solid conversion rates for literature test reactions. This was
done at a temperature of 80 ∘C for 18 h. Since most of the reactions
worked with ammonium persulfate ((NH4)2S2O8) as the oxidant, only a

Table 1 | Potency data and lipophilic efficiency (LipE) (i.e., = pIC50 - cLogP) of the synthesizedmonoacylglycerol lipase (MAGL)
inhibitors

MAGL
inhibitor

IC50

human/ nM
IC50

mouse/ nM
IC50

rat/ nM
IC50 cynomolgus
macaque/ nM

IC50 nanoBRET
human/ nM

Predicted potency /
pIC50 & nM

Lipophilic effi-
ciency (LipE)

17 (hit) 445 557 79 531 > 100 - 4.14

20 50 > 10000 26 61 5.1 10.3 / 0.050 2.84

21 10 27 2 12 3.9 8.3 / 5.01 3.84

22 66 189 18 68 19.2 9.8 / 0.158 3.02

23 4 ( ± 1.3) 109 ( ± 1.1) 6 ( ± 1.2) 5 ( ± 1.1) 5.9 9.5 / 0.316 3.50

24 7 ( ± 1.2) 71 ( ± 1.2) 2 ( ± 1.1) 7 ( ± 1.1) 2.7 9.1 / 0.794 3.04

25 434 ( ± 1.1) > 10000 206 ( ± 1.0) 581 ( ± 1.6) > 100 8.3 / 5.01 6.04

26 348 ( ± 1.3) 6426 155 ( ± 1.3) 547 ( ± 1.2) > 100 8.3 / 5.01 5.91

27 2 ( ± 1.2) 86 ( ± 1.5) 8 ( ± 1.2) 2 ( ± 1.5) 14.5 10.6 / 0.025 3.72

28 19 ( ± 1.3) 369 ( ± 2.1) 13 ( ± 1.2) 28 ( ± 1.3) 10.8 9.4 / 0.398 2.31

29 0.1 ( ± 1.6) 3 ( ± 1.7) 0.7 ( ± 1.2) 0.1 ( ± 2.4) 0.31 9.6 / 0.251 6.27

30 60 ( ± 1.3) 253 ( ± 1.4) 99 ( ± 1.2) 84 ( ± 1.2) 11.8 8.1 / 7.9 3.28

31 0.6 ( ± 1.3) 0.8 ( ± 1.3) 1 ( ± 1.1) 0.8 ( ± 1.2) 0.1 8.9 / 1.18 6.21

LipE estimates a compound’s drug-likenessby integratingboth its potency and lipophilicity into a single value. NanoBRET is a proximity-based assay that detects smallmolecule-binding to a target in
live cells using bioluminescence resonance energy transfer (BRET) as described in ref.62. The numbers in the parentheses are ± standard deviation of N = 3 measurements. IC50 values were
determined in triplicate (N = 3), whereas NanoBRET assays were performed once (N = 1).
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single oxidant was used on the plate. The observed variety in silver
salts (catalyst) led to the inclusion of six different species (AgNO3,
AgBF4, Ag-pTsOH, AgCF3SO3, AgCO2CH3, and AgSCF3). Based on lit-
erature analysis and with four additional parameters available per
plate, we opted to vary additives rather than solvents. Consequently,
TFA, H2SO4, HNO3, and a non-additive control were selected to allow
for a broad range of pKa values. As a solvent system, a mixture of
MeCN and H2O with a 3:2 ratio was chosen (Fig. 2F).

Generation of Minisci-type alkylation reaction data set with
miniaturized HTE
Using the 24-well plate design (Fig. 2F), we evaluated Minisci-type
alkylations between a curated set of 80 commercially available N-
heteroarenes (comprising pyridines, pyrimidines, and indoles,
labeled F1-F80 in SI 4.1) and 59 sp3-rich carboxylic acids (encom-
passing linear, branched, cyclic, heterocyclic, and aromatic motifs,
labeled A1-A59 in SI 4.2). Candidates were first filtered to remove
incompatible functional groups. They were then required to be in
stock (greater than 1g) from at least one supplier, and finally,
manually down-selected to maximize scaffold diversity. The reac-
tions were set up using automated liquid handling of prepared stock
solutions, and then executed in glass vials on a parallel screening
plate under a normal atmosphere, with heating and stirring. Upon
completion of the reaction, the solvents were removed by evapora-
tion, followed by automated resuspension of the residues in MeCN/
H2O and dilution to a defined concentration for LC-MS analysis using
automated liquid handling. The resulting reaction data were sub-
jected to an automated analysis pipeline to rapidly determine all
components within the mixture5. The standardized output of the
data in SURF allowed for direct visualization of the reaction outcome
and generated a data set containing 13,490 reactions for training
specifically designed GNN-based machine learning models. The
general screening procedure, including detailed information on the
hardware and software utilized, is provided in SI3.

Reaction prediction
Machine learning process. PyTorch Geometric (2.0.2)47 and PyTorch
(1.10.1+cu102)48 functionalities were used for GNN training. Training
was performed on a GPU (NVIDIA A100 Tensor Core-GPU) graphical
processing unit for four hours, using a batch size of 16 samples. We
used the Adamstochastic gradient descent optimizer49, with a learning
rate of 10−4, loss of mean squared error (MSE) on the training set, a
decay factor of 0.5 applied after 100 epochs, and an exponential
smoothing factor of 0.9. Early stopping was applied to the model that
achieved the lowest validation mean absolute error (MAE) in 1000
epochs. All models considered in this study were trained on the Roche
high-performance computing cluster, Switzerland.

Atom featurization. Atomic propertieswereencoded via the following
atomic one-hot encoding scheme: 12 atom types [H, C, N, O, F, P, S, Cl,
Br, I, Si, Se], two ring types [True, False], two aromaticity types [True,
False], four hybridization types [SP3, SP2, SP, S].

Reaction condition featurization. Molecular reaction conditions, i.e.,
additives, solvents, atmosphere, catalysts and reagents, were one-hot
encoded. The data set covered four reagents and four solvents, 11
catalysts, four additives, and two atmospheres.

Conformer generation. 3D conformers were calculated using RDKit
(AllChem.EmbedMolecule50) followed by energy minimization using
the Universal Force Field (UFF) method51. For each molecule, ten dif-
ferent conformers were calculated for training and testing. A con-
former was randomly selected at each training step. For testing, the
final predictionswereobtainedby averaging the individual predictions
calculated for each of the ten conformers.

Graph neural network architecture. A graph transformer neural
network (GTNN) architecture was employed based on the E(3) equiv-
ariant graph neural network (EGNN) architecture52, which has been
usedin several related applications38,53. The GTNN was designed using
the same training procedure as before19.

First, the individual atomic embedding was concatenated and
transformed into an initial atomic representation h0

i with a multi-layer
perceptron (MLP). The atom representations h0

i were transformed
through three layers of message passing. In each message-passing
layer, the atomic representations were transformed via Eq. (1)

hl + 1
i =ϕ hl

i ,
X

j2N ðiÞ
ψ hl

i ,h
l
j , ri, j,

� �
0

@

1

A, ð1Þ

where hl
i is the atomic representation of the i-th atom at the l-th layer;

j 2 N ðiÞ is the set of neighboring nodes connected via edges; ri,j the
inter-atomic distance represented in terms of Fourier features, using a
sine- and cosine-based encoding; ψ is an MLP transforming node
features into message features mij: mij =ψðhl

i ,h
l
j , ri, jÞ for 3D graphs,

andmij =ψðhl
i ,h

l
j Þ for 2D graphs; ∑ denotes the permutation-invariant

pooling Operator (i.e., sum) transforming mij into mi: mi =
P

j2N ðiÞmij;
andϕ is anMLP transforming hl

i andmi into hl + 1
i . The resulting atomic

features of all layers ½hl = 1
i ,hl = 2

i ,hl = 3
i � were concatenated and trans-

formed through an MLP, resulting in the final atomic features. The
atom features were then pooled through a graphmultiset transformer
(GMT)54 with four attention heads that produce an overall molecular
feature vector.

This procedure was conducted for both input molecular graphs,
where no weights were shared between the two GNN modules except
for the initial embedding layers of the atom-level representations. The
pooled molecular representations were then concatenated to a
learned representation of the reaction conditions. This subsequent
reaction representation was further transformed via a final MLP, con-
verting the latent space into the desired reaction output. Both of the
examined problems, namely, the prediction of reaction yield and the
prediction of binary reaction outcome, were addressed as regression
tasks. The output for reaction yield was defined within the range of
floating values from 0 to 1, whereas for binary reaction outcomes, it
was defined as 0 (non-reactive) or 1 (reactive). For each reaction, the
total yield was calculated by summing the observed mono- and/or di-
alkylated species.

Number of hyperparameters. The number of features of the internal
representation of the GTNN was 128, with the exception of the
embedding dimension for the reaction and the atomic properties,
which was set to 64. Additionally, the first MLP layer after multiset
graph transformer-based pooling was configured to have 256 dimen-
sions. The transformer architecture employed two attention heads for
pooling. These parameter settings translated into neural network sizes
with approximately two million trainable parameters for GTNN.

Virtual library enumeration
Active molecules from the MAGL project containing a N-heteroaro-
matic handle forMinisci-type alkylation were filtered to 125 candidates
with sufficient powder stock. In parallel, a unique list of all carboxylic
acids available in-house at Roche and from Enamine (Monmouth
Junction, NJ, USA) was assembled and filtered down to 211 acids (SI4.2
and Supplementary Data 1) based on a high fraction of sp3 carbon
atoms and a molecular weight of lower than 230 g/mol. Using Minisci
reaction templates for N-heteroaromatic rings, each of the 125 avail-
able project compounds were then virtually enumerated with the 211
carboxylic acids to generate 26,375 virtual compounds for processing
through the multi-objective filtering funnel Fig. 1.
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Multi-template docking and 2D3D-scoring
The procedure for generating poses through multi-template pairing
and 2D3D scoring has previously been described and the code has
beenmade publicly available40. A total of 143 Roche internal co-crystal
structures served as templates for docking. For each ligand, the tem-
plate structure was selected on the basis of the maximum common
substructure (MCS) between the ligand and the template ligand. The
pose was generated with the GOLD docking program by constraining
the ligand to the MCS part of the reference ligand55. The template
docking approach was used as a data augmentation method to gen-
erate virtual protein-ligand complex structures for 3245 compounds
with measured activities that serve as training data for the 2D3D
scoring function, as described40. The 2D scoring model within the
2D3D scoring function is an attentive fingerprint model31,56 trained on
Roche in-house data. Using a four-fold cross-validation on random
splits of a data set containing 7487 compounds with annotated bio-
logical activity to MAGL, this 2D model achieved a coefficient of
determination (R2) of 0.72 and a root mean square error (RMSE) of
0.77. The 3D scoring model relies on a frequency interaction ratio40

and is taken without further adaptation from the original publication,
representing a statistical model trained on data. The final “2D3D
scoring” function is obtained by combining these 2D and 3D models
into a single scoring metric. Subsequently, a virtual library of pro-
spective ligands was subjected to multiple template docking, and the
poses generated were ranked using the MAGL 2D3D scoring function.

Synthesizability assessment
The enumerated library consisted of 26,350 potential molecules gen-
erated from 125 selected MAGL-inhibiting molecules featuring N-het-
eroaromatic fragments and 211 carboxylic acids. Each molecule was
labeled as positive or negative on the basis of predicted reaction
outcomes: molecules with a predicted reaction yield of ≥5% were
classified as positive, while those with lower predicted yields were
classified as negative. The final predictions for each molecule were
based on themean of threemodels, providing a robust assessment for
subsequent machine learning model training and reaction property
predictions.

Absorption, distribution, metabolism, and excretion (ADME)
property prediction
ADME property predictions were performed for 212 molecules iden-
tified as synthesizable and predicted to be active by multi-template
docking. Attentive fingerprint models were used31,56, which were
trained on proprietary Roche internal data sets. The predicted ADME
properties included LogD, lyophilisation solubility assay (LYSA) solu-
bility in μg/mL, P-glycoprotein (P-gp) apparent permeability, and
PAMPA in 10-6 cm/s. The four ADME endpoints (i.e., LogD, LYSA, P-gp,
PAMPA) were predicted using multitask GNN models as detailed
elsewhere57.

Synthesis of novel MAGL inhibitors
The 14 selected MAGL inhibitor molecules (18–31) were synthesized
using a four-stepprocedure. The key step involved the alkylation of the
benzoxazole building block (9) under Minisci-type conditions, which
were pre-screened in silico and validated through HTE, yielding
intermediates 9a–9i. Subsequently, these intermediates were coupled
with four different head groups (13–16) using classic amide coupling
techniques. For this study, compound 17, consisting of non-alkylated 9
and head group 13, was freshly synthesized. All reactions were con-
ducted under ambient conditions in glass reaction vessels equipped
with pressure release caps and stirring bars. Purification was achieved
via flash chromatography or reversed-phase high-performance liquid
chromatography (RP-HPLC). Structural elucidation was performed
using nuclear magnetic resonance (NMR) spectroscopy and high-
resolution mass spectrometry (HRMS). The complete experimental

procedures, analytical results, and spectra for all compounds are
provided in the SI (SI5 and SI6).

Biological characterization
Measurement of IC50 values. The compounds were dissolved in
DMSO at 10 mM and serially diluted with assay buffer to give final
concentrations ranging from 12.5μMdown to 70pM in the presence of
MAGL protein. The dilutions were transferred to a 384-well assay plate
containing a recombinantMAGLprotein in assaybuffer (50mMTRIS, 1
mM EDTA, 0.01% Tween 20, v/v and 2.3% DMSO, v/v) and incubated at
room temperature for 15 min. The reaction was initiated by adding the
substrate 2-AG in assay buffer and incubation was conducted with
gentle shaking at room temperature for 30 min. The final concentra-
tion of the MAGL protein was 50 pM, 8 μM for 2-AG, and 2.5% (v/v)
DMSO. Upon completion of incubation, the reactions were quenched
with a double assay volume of acetonitrile containing 4 μM d8-
arachidonic acid (AA). The accumulation of d8-AA was monitored
using an online solid phase extraction system (Agilent RapidFire)
coupled to a triple quadrupole mass spectrometer (Sciex5000 or
Agilent 6460). The samples were loaded in a C18 cartridge with 99%
water/acetonitrile (v/v) and eluted with 5 mM ammonium acetate in
90% acetonitrile (v/v). A mass spectrometer was operated in the ESI
mode with mass transitions m/z = 303.1-259.1 for AA and m/z = 311.1-
267.1 for d8-AA, respectively. IC50 values were fitted based on the ratio
of AA / d8-AA intensities at different points of the serial dilution assay.

X-ray crystal structures of MAGL complexes with 17, 23, 27 and 29.
The humanMAGL protein (amino acid residues 1-303) with mutations
Lys36Ala, Leu169Ser, and Leu176Ser (Cepter Biopartners, Nutley, NJ, USA)
was concentrated to 10.8mg/mL. Crystallization tests were performed
by sitting-drop vapor diffusion at 21 ∘C. Crystals appeared within two
days out of 0.1MMESpH6.5, 6–13% PEGMME5K, 12% isopropanol. The
crystals were soaked for 16 h in a crystallization solution with 10 mM
ligand. For data collection, crystalswereflash-cooled at 100Kwith 20%
ethylene glycol added as cryo-protectant to the soaking solution. The
X-ray diffraction data were collected at a wavelength of 0.9999 Åusing
an Eiger2X 16M detector at the X10SA beamline of the Swiss Light
Source (Villigen, Switzerland). Data were processed with XDS and
scaledwith SADABS (Bruker, Billerica,MA,USA). The crystals belong to
the space groupC2221with cell axes a = 89.96Å, b = 127.45Å, c = 63.03
Å. They diffract to a resolution of 1.65Å. The structure was determined
by molecular replacement with PHASER using the coordinates of PDB
entry 3PE6 as a search model58. The difference in electron density was
used to place the compounds. The structure was refined with pro-
grams from the CCP4 suite and Buster. Model building was performed
with COOT59. Data collection and refinement statistics are summarized
in SI2.5.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Training data: The SURF-formatted experimental data set, containing
13,490 Minisci-type C-H alkylation reactions, has been made publicly
available via Figshare (https://doi.org/10.6084/m9.figshare.28294850)60.
Co-crystal structures:The coordinates of theMAGL co-crystal structure
of the initial hit compound 17 have been deposited in the PDB under
accession code 7PRM. The three co-crystal structures of optimized
molecules (23, 27, and 29) are available under accession codes 9I5J, 9I9C,
and 9I3Y, respectively. Source data are provided with this paper.

Code availability
Code: A reference implementation of the geometric machine learning
platform based on PyTorch48 and PyTorch Geometric47 is available at
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https://github.com/ETHmodlab/minisci(rep. DOI: 10.5281/zenodo.
8344587, https://zenodo.org/record/8344587)61.
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