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Chapter 3

Preliminaries

In this chapter, we establish the foundational definitions and formal problem state-
ments for Open-world Continual Learning (OWCL) that underpin our research.
We also introduce key technical concepts that will be needed throughout this the-
sis.

To begin with, we present widely-adopted definitions of three core paradigms: Con-
tinual Learning (CL), Open-Set Learning (OSL), and Out-of-Distribution (OOD)
detection. Building upon these, we then formalize the basic definitions and notation
specific to open-world continual learning, which are used throughout all subsequent
chapters. Additional chapter-specific definitions will be introduced in their respec-
tive contexts.

3.1 General Definitions

Before formalizing the core components of open-world continual learning, we first
present the definitions of its two basic paradigms: continual learning and open-set
recognition. These concepts, while often studied independently, are combined in a
complex interaction in open-world continual learning systems.

3.1.1 Continual Learning

Continual Learning is formally defined as a learning paradigm where models adapt to
evolving data distributions across sequential tasks. In this framework, the training
samples arrive in temporal order, with each task ¢ potentially drawn from a distinct
distribution D;. A continual learning model fp(-), parameterized by 6, must learn
new tasks with minimal access to previous training data and maintain performance
on all previously encountered tasks.

We adopt the following notation: ¢r and te denote training and testing phases,

tr

respectively. In addition, DI = {X/", VI"} represents the’ training set of task ¢,

where X" are the input samples, V" their corresponding labels, and ¢ € {1,..., T}
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3. PRELIMINARIES

the task identifiers. Finally, D" := P/"(X’, ) denotes the true data distribution for
task ¢.

Under the standard continual learning assumption, the testing distribution Df¢
matches DI" for each task ¢. This leads to our formal definition:

Definition 1 Continual Learning. Let T = {T1, -+ ,T;,..., Tn} be a sequence
of learning tasks, where each task T; comes with its own training data D" consisting
of input-output pairs (x;,y;)-

A continual learning model learns a parameterized function fa, : X — Y by mini-
mizing the expected loss:

L(0:) = Ea, yy~mpr [€(fo, (), yi)],

where € is a task-specific loss (e.g., cross-entropy). To prevent forgetting knowledge
from previous tasks Ty, ..., Ti_1 learning is additionally constrained by

t—1
LEO) = L0) +A> . 2u(0,67)

k=1

Current task Memory of past tasks

Here, Q. acts as a "memory anchor” [21], encoding knowledge from the task T,
and X is a trade-off parameter that requlates the balance between plasticity (learning
new tasks) and stability (retaining previous knowledge). Empirically, appropriate
values of A (e.g., in the range [0.3,0.7]) have been shown to effectively mitigate
catastrophic forgetting while preserving learning flexibility, as we further demonstrate
in the experimental analysis presented in Chapters 4 to 7.

The final goal is to learn one single function fa- that works well in all tasks:

N
0" = arg mein Z LE(0).

t=1

Continual learning aims to acquire new tasks sequentially without catastrophic for-
getting of previously learned knowledge. To achieve this, typical “memory anchors”
Q) are used, including regularization, replay (store old examples), or architectural
(separate storage areas per task).

In real-world applications, two critical pieces of information may be unavailable
during training: the task labels }! and the task identities ¢. This practical constraint
leads to three fundamental continual learning scenarios, categorized by data arrival
patterns and task identifier availability [6]:

Task-Incremental Learning (TIL): In this setting, the model receives explicit
task identifiers during both training and inference phases. This task-awareness en-
ables the use of dedicated output modules for each task, typically implemented
through a shared backbone network with multiple task-specific classifier heads. For
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3.1 General Definitions

Table 3.1: Overview of the three CL scenarios.

Scenario Required at test time

Task-IL Solve tasks so far, task-ID provided
Domain-IL Solve tasks so far, task-ID not provided
Class-IL Solve tasks so far and infer task-ID

instance, a visual recognition system might maintain separate output layers for dif-
ferent domains (e.g., one head for medical images, another for satellite images) while
sharing convolutional feature extractors.

Domain-Incremental Learning (DIL): In this scenario, task identity is not pro-
vided at test time, so that the model only needs to perform the correct task without
identifying which one it is. The assumption is that the task structure remains fixed
across domains, while the input distributions vary. A practical example would be an
agent operating across multiple environments, where the task/environment identifi-
cation is not required, while data distributions change as they depend on the specific
environment.

Class-Incremental Learning (CIL): As the most demanding scenario, class-
incremental learning requires models to not only solve all previously seen tasks
but also infer which task a given input belongs to. The system must gradually in-
corporate new categories while preserving performance on previously learned ones,
without access to task identifiers. This mirrors real-world applications like retail
product recognition, where new items are continuously added to inventory while
maintaining accurate identification of existing products.

3.1.2 Open-Set Learning and Out-of-Distribution Detection

Traditional supervised learning operates under a closed-world assumption, where
the label spaces for training (Yiaim) and testing are identical. Formally, a model
learns a mapping f : X — Virain With the guarantee that all test samples belong to
Virain. While effective for constrained environments, this assumption fails in realistic
scenarios where systems encounter new categories during deployment.

To address this limitation, various strategies have been proposed in recent years.
Two prominent and increasingly studied directions are Open-Set Learning that ex-
tends classification to include rejection of unknown categories, and Out-of-Distribu-
tion Detection that focuses on distinguishing in-distribution from out-of-distribution
samples. Though both approaches handle distributional shifts, they differ fundamen-
tally in their objectives and formulations.

Definition 2 Open-Set Learning. In open-set learning, the test-time label space
1s extended to include unknown classes:

ytest = ytmin U yunknowm yunknown N ytmm =0.
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3. PRELIMINARIES

The system must simultaneously achieve two objectives: (1) accurate classification
of samples © € X from a known class © € Vi), and (2) reliable detection or
rejection of samples from unknown classes y € Vunknown-

The above dual requirement implies that an open-set learning model not only main-
tains discriminative power for established categories but also identifies novel inputs
that deviate from the training distribution. OOD detection instead creates binary
in/out decision boundaries without explicit class differentiation.

Definition 3 Out-of-Distribution Detection. Let D;, be the in-distribution
data (training distribution), and D,y be any distribution such that supp(Dyy) N
supp(D;,) = 0. The goal of OOD detection is to learn a function g : X — {0,1}
such that:
)1 if x ~ Dy, (in-distribution)
9(x) = 0 if x ~ Doy (out-of-distribution)

Optionally, if x is classified as in-distribution, it may be passed to a classifier f for
label prediction.

Following the two definitions above, Table 3.2 contrasts open-set learning and out-of-
distribution detection across several dimensions. Although both paradigms address
the limitations of closed-set assumptions, they diverge fundamentally in their objec-
tives and implementations.

Open-set learning methods like OpenMax [15, 57] and C2AE [78] focus on discrimi-
native classification of known classes while rejecting unknowns within an expanded
label space. In contrast, out-of-distribution detection techniques such as ODIN [62],
Mahalanobis distance [79], and MSP [80] establish binary decision boundaries to
separate in-distribution from out-of-distribution samples, without explicit class dif-
ferentiation.

These foundational concepts share a common structural framework, where data is
partitioned into base known classes available during training and unknown classes
encountered only during deployment, with no overlap between them by definition.
This difference between known and unknown categories forms the base of our inves-
tigation into open-world continual learning.

Our work extends these principles by developing novel knowledge transfer mech-
anisms that bridge continual learning and open-set recognition. At its core, the
framework addresses three interconnected challenges: the preservation of base-class
knowledge during incremental updates, the transfer of discriminative features be-
tween known and unknown categories, and the maintenance of an optimal stability-
plasticity balance as the class space evolves dynamically. These objectives are
pursued while respecting the inherent constraints of real-world deployment scenar-
ios.

The open-world environment we consider significantly generalizes conventional
open-set learning and out-of-distribution settings through its temporal dimension,
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3.2 Problem Definition

Table 3.2: Comparison between OSL and OOD Detection.

Aspect

OSL

00D

Objective

Label Space

Classify known classes and
reject unknowns

ytrain U yunknown

Detect whether a sample
belongs to the training
distribution

No specific label set for

at Test out-of-distribution samples;
only binary in/out decision
Output Class label or rejection Binary label: in-distribution
vs. out-of-distribution
Assumption Unknown classes exist and Outliers come from a
are not seen during training distribution disjoint from
training data
?cf)c[])ll;catlon Open-world classification, Model safety, anomaly
e.g., novel class discovery detection, robust deployment
NePreSentative OpenMax [57], C2AR [78]  ODIN [62], MSP [80),

Mahalanobis [79]

where both base and unknown classes may evolve across learning episodes, and
its emphasis on the dynamic interplay between familiar and novel categories. This
perspective, which formalizes the interdependence of incremental learning and open-
set recognition, is formally defined in the next section.

3.2 Problem Definition

To formally characterize the open-world continual learning challenge, Definition 4
gives the learning objective as a double optimization problem. This formulation
fundamentally extends traditional continual learning in two critical aspects: first, by
explicitly accounting for open-class samples during testing through an open-set risk
term; and second, by requiring simultaneous minimization of both this detection
risk and the standard incremental learning error across all tasks. The resulting
framework captures the essential tension between maintaining existing knowledge

while remaining responsive to novel, previously unseen categories.

Definition 4 (OWCL Problem Formulation.) Consider a taskt characterized
by a training set D = {x; € X,y; € Y}, with M, classes, and a test set D¢ =
{z; € X,y; € y{}jﬁl where Y, D Yy (i.e., it contains additional unknown classes).
During training, an open-world continual learning model only accesses D", while
during testing it must handle both known (Y;) and unknown (Y/\Y;) classes. Let h(-)
be a feature extractor mapping inputs to a latent space, and define u(h(x), h(D{")) to
be the open-set risk measuring detection capability for unknowns, and epfr(h) to be
the prediction error on known classes. The open-world continual learning objective
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3. PRELIMINARIES

learns an optimal h* € H that minimizes these two factors across all tasks:

T T
h* fargmln{ (I=AX Zu h(DI")) +)\Z eper(h) } (3.1)
=1

Open-set risk Incremental error

where H is the hypothesis space of possible models, \ € [0,1] is a trade-off parameter
between old and new knowledge, epgr(h) 1s the generally suggested prediction error
term on task t [15], u can be defined on any scoring function for out-of-distribution
detection, and T is the total number of tasks.

In practice, p can be instantiated using a variety of out-of-distribution detection
scores, such as energy-based scores, Mahalanobis distance, or margin-based confi-
dence [63, 79]. The choice of 1 depends on the specific nature of the feature space
and the distribution shift between known and unknown classes.

As formalized in Definition 4, the open-world continual learning paradigm considers
a (potentially infinite) sequence of tasks, each associated with a training set con-
taining only known-class examples. The model is required to incrementally learn
from these tasks while maintaining the ability to recognize both previously seen and
unseen (novel) classes at test time. Therefore, a promising open-world continual
learning model must not only accurately classify samples from known classes, but
also reliably detect inputs belonging to previously unseen (unknown) classes.

To do this, the model learns a feature extractor that maps inputs into a useful rep-
resentation space. The learning objective then tries to find the best such feature
extractor by balancing two goals: keeping the prediction error on known classes
low (called incremental error), and being good at recognizing unknown or out-of-
distribution inputs (called open-set risk). A parameter A adjusts how much the
model focuses on remembering what it has learned versus being cautious about un-
familiar data, and this balancing act happens continually as new tasks arrive.

To fix our formal problem formulation and facilitate discussion of the proposed
methods, Table 3.3 provides a summary of the key mathematical notations used
throughout this thesis.

3.3 Four OWCL Scenarios

Traditional continual learning is typically divided into three scenarios based on
whether task identifiers are available at test time: TIL, DIL, and CIL.

However, as outlined earlier in Chapter 1, in the context of open-world continual
learning, such assumptions no longer hold. During testing, the model cannot rely
on task identifiers, as unknown or open-category samples may appear arbitrarily
alongside known ones. Moreover, data distributions in open-world continual learning
evolve dynamically through both novel class emergence and recurring open samples.
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3.3 Four OWCL Scenarios

Table 3.3: Notations used in the OWCL problem formulation.

Symbol Description

t Index of the current task

T Total number of tasks encountered so far

0y, or (67) Parameters optimized after learning task ¢

L:(0) Expected loss on task ¢

0:(0,6,) Constraint /regularization term to retain knowledge from task ¢

Dir Dle Training, test set for task ¢

N, Number of training samples for task t

N/ Number of test samples for task ¢

M, Number of classes in the training set of task ¢

M, Number of classes in the test set of task ¢

)}i]\i‘l Label set for training samples in task ¢

yﬁé Label set for test samples in task ¢

x A sample input from the input space X

he(+) or fa(-) Latent feature extractor or encoder function

h* The optimal function to be learned

w(ey ) Open risk function, e.g., based on out-of-distribution scoring

epyr(h) Prediction error on task t’s training set

0(-) Task-specific loss function (e.g., cross-entropy)

H Hypothesis space (function space)

A Trade-off hyperparameter balancing open risk and prediction
error

This renders conventional continual learning scenarios inadequate for open-world

continual learning settings.

Hence, we formulate four progressively challenging open-world continual learning
scenarios to reflect different patterns of task evolution and unknown-class recurrence
in open-world environments:

e CINO: Class-Incremental Learning with Non-Repetitive Open Sam-
ples. In CINO, each task introduces a disjoint set of new training classes,
and the open-category samples encountered during testing do not reappear in
future tasks. The model learns each class only once, without access to past
data or recurring unknowns. This scenario is particularly suited for one-pass
learning applications where data cannot be revisited, such as species identi-
fication in biodiversity monitoring or new material classification in industrial

inspection.

e CIRO: Class-Incremental Learning with Repetitive Open Samples.
In CIRO, training classes remain disjoint across tasks as in CINO, but open-
category samples that appear during testing can recur in future tasks. This
setting requires the model to incrementally accumulate knowledge about recur-

29
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ring unknowns without revisiting known class labels. CIRO is representative of
real-world settings such as autonomous driving or robotic exploration, where
unknown objects (e.g., road signs, dynamic obstacles) may resurface over time,
and adaptive open-set handling is essential.

e KINO: Knowledge-Incremental Learning with Non-Repetitive Open
Samples. KINO relaxes the disjoint-class assumption, allowing training classes
to repeat across tasks, and includes distributional shifts over time. However,
open-category samples remain non-repetitive—they appear only once during
testing and do not recur. This scenario models data streams where user prefer-
ences or content characteristics evolve, such as in personalized recommendation
systems or adaptive spam filtering, where the model must cope with shifting
distributions while handling unseen content once.

¢ KIRO: Knowledge-Incremental Learning with Repetitive Open Sam-
ples. KIRO represents the most complex and realistic open-world continual
learning scenario, where both known-class distributions and open-category
samples can change and recur over time. While KINO handles shifting dis-
tributions of known classes, KIRO additionally requires models to recognize
and consolidate knowledge about recurring unknowns. This setting reflects
the demands of long-term, real-world systems such as intelligent surveillance,
financial fraud detection, or user behavior modeling, where evolving pat-
terns—whether known or unknown—must be continually tracked, recognized,
and adapted to.

Remarks. Compared to task-, domain-, and class-incremental learning settings,
knowledge-incremental learning introduces significantly greater complexity. It re-
quires the model to learn new classes incrementally without access to task identi-
fiers, while also maintaining robustness to shifts in data distributions across tasks.
Moreover, the unpredictable presence of open-category data means the model must
not only recognize unfamiliar classes but also transfer knowledge across both known
and unknown examples. These combined challenges make Open World Contin-
ual Learning fundamentally more demanding than traditional continual learning
paradigms.

3.4 Pretrained Models in OWCL: A Brief Overview

As outlined above, this thesis aims to push continual learning into open-world sce-
narios, where data distributions shift over time and the model must continually
handle previously unseen instances. Within this context, we explore how knowledge
can be effectively transferred under such open and dynamic conditions.

The rise of large-scale pretrained models (PTMs) has brought a paradigm shift
to both the continual learning and open-set recognition communities, including in
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tasks such as out-of-distribution detection. These models are increasingly used as
foundational backbones, followed by task-specific fine-tuning. This shift has under-
scored the critical influence of the backbone architecture on the learning behavior
of open-world continual learning models. Furthermore, several open-world continual
learning methods are tightly coupled to specific backbone designs, which limits their

generalizability across architectures.

To establish the foundations for the open-world continual learning framework pro-
posed in this thesis, this section provides a concise overview of recent PTM-based
methods in continual learning. This review both contextualizes our approach within
the current research landscape and motivates the architectural choices made in the

design of our proposed method.

3.4.1 Attention Mechanism and Transformer Architecture

In recent years, pretrained models have shown strong performance in continual learn-
ing, attracting significant attention from the research community. However, these
approaches still suffer from catastrophic forgetting, primarily because importance
weights associated with previous tasks cannot be recovered once overwritten—even
when using a pretrained backbone. To mitigate this issue, many studies have ex-
plored Parameter-Efficient Fine-Tuning (PEFT) techniques, which enable model
adaptation to new tasks through minimal parameter updates, thereby preserving
the knowledge stored in the frozen backbone.

In the vision domain, current methods commonly employ a pretrained Vision Trans-
former (ViT) [81] as a fixed feature extractor fy. The ViT architecture is built upon
a sequence of multi-head self-attention layers [82], where attention scores are com-
puted via a scaled dot-product mechanism, allowing the model to capture complex

relationships across image patches.

Definition 5 Scaled Dot-Product Attention. Let K € RV*% be a key matriz
with N key vectors, and V € RN*% be q value matriz with N corresponding value
vectors. Given a query matriz Q € RM*% attention over (K,V) is defined as

Attention(Q, K, V') = softmax (%) V, (3.2)

where the softmax function acts on the rows of matriz QKT € RM*N,

The Scaled Dot-Product Attention mechanism forms the core computational unit
of transformer architectures, enabling models to weigh the relevance of different in-
put elements when producing contextualized representations. However, relying on a
single attention function may limit the model’s capacity to capture diverse relation-
ships. To address this, transformers, including (ViTs), use Multi-head Self-Attention
(MSA), which extends the basic attention operation by computing multiple attention
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Rehearsal-based methods: Prompt-based methods:

i i . . : Trainable
Fine-tuning Prompt selection + tuning

Data buffer of
past tasks

...........

........... .

E : Query I prompt = Instruct
: Model N [ Taskn | —— "po0r 7% Model 0

............

...........

Mini-batching

Figure 3.1: In contrast to rehearsal-based continual learning approaches that sequen-
tially adapt full or partial model parameters to new tasks and rely on a rehearsal buffer
to alleviate catastrophic forgetting, prompt-based methods adopt a unified backbone
model augmented by learned prompts [32, 83]. Task-specific information is encap-
sulated within the prompts, thereby eliminating the necessity of a rehearsal buffer.
Furthermore, different methods have different ways of selecting and updating prompts
dynamically, usually enabling task-agnostic inference at test time without explicit task
identity.

functions in parallel. Each head attends to different subspaces of the input represen-
tation, allowing the model to capture richer and more nuanced dependencies. The
formal definition of the MSA layer is given below.

Definition 6 Multi-head Self-Attention (MSA) Layer. Let X9 XX XV de-
note the input query, key, and value matriz, respectively, where X@ = XX = XV =
[z1,...,2n]T € RY*? and N is the length of the input sequence. The output is
expressed as

MSA(XQ, XK XV = Concat(hy, ..., hyy) WO € RV (3.3)

hi := Attention(XOWE, XKWE XYWy, i [m] (3.4)

where WO € Rmdoxd VViQ € R&xde WK ¢ R and WY € R™4 are projection
matrices, and m is the number of heads in the MSA layer. In ViTs, they use
dy = d, = d/m.

3.4.2 Prompt-based CL Methods with PEFT Techniques

Building on the transformer-based backbone discussed above, prompt-based tun-
ing has emerged as a flexible, lightweight, and rehearsal-free approach for adapting
frozen models to new tasks in continual learning settings [32, 83, 84]. Instead of
modifying the entire network, these methods introduce a small number of trainable
parameters, known as prompts, that augment the model’s input representations.
These prompts serve to encode task-specific knowledge and interact with the atten-
tion computations in the PTM-based backbone, enabling efficient adaptation while
preserving previously learned capabilities. This design enables task-specific knowl-
edge adaptation efficiently, making it particularly suitable for continual learning
with limited memory or parameter sharing.

As illustrated in Figure 3.1, prompt-based approaches [83, 84] enhance model flex-
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ibility by integrating learnable prompt vectors into the Multi-Head Self-Attention
mechanism. These prompt tokens are injected into the query, key, and value matri-
ces at each attention layer, effectively conditioning the model on new tasks. Let the
prompt parameters be denoted by p € RE»*? where L, is the prompt length and d
denotes the hidden dimensionality.

According to prior work [83], two main formulations have been widely adopted:
Prompt Tuning (ProT) [85] and Prefix Tuning (PreT) [86]. In Prompt Tuning, the
same prompt vectors are concatenated to the inputs of the query, key, and value
projections simultaneously. In contrast, Prefix Tuning splits the prompt into two
components, p&, p¥ € R%Xd, which are prepended to the key and value matrices
only, leaving the query stream unchanged. This decoupled design enables finer con-
trol over attention flow and has demonstrated improved performance across various

downstream tasks:

Pre-T Q wvK ~V pK PV
prompt (pa X X X ) MSA < |:XK:| ) |:XV:|)

= Concat(hy, ..., hpy)WO.

(3.5)

A broad spectrum of prompt-based continual learning methods has been developed
to mitigate catastrophic forgetting by dynamically introducing new prompts as
learning progresses. In this paradigm, prompts act as task-specific adapters: for
each new task, a set of adaptive prompts is either generated or selected to guide the
model’s behavior. This modular design enables the model to retain task-relevant
knowledge and reuse it effectively when encountering related inputs. At inference
time, appropriate prompt configurations can be retrieved to enable accurate predic-
tion on previously learned tasks [32].

Instance-Specific
(.*)( IHho o Prompt
:% Query-Key Matching (L2P)
<.,T)( IhHho )(.,T)
@ PTM Shared & Task-. Spectﬁc (DualPrompt)
L XX T
S2)
Irf:f au; ce Wezghted Cambmatlon (CODA-Prompt)

0%

Prompt Generation (DAP)

Figure 3.2: Different kinds of prompt selection, including key-value matching, shared
and task-specific retrieval, attention-based combination, and instance-specific prompt
generation.
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An overview of prompt-based continual learning methods is provided in [87], and vi-
sually summarized in Figure 3.2. This figure categorizes a range of prompt selection
strategies, including hard prompt retrieval (L2P) [32], structured prompt group-
ing (DualPrompt) [83], attention-based soft aggregation (CODA Prompt) [88], and
meta-generated prompts (DAP) [89].

One of the earliest contributions in this line of work, L2P [32], incorporates prompt
learning into the continual learning setting by introducing a shared pool of learn-
able prompts. A key-query matching mechanism dynamically selects a subset of
prompts from the pool based on the current input, enabling input-dependent adap-
tation. Building upon this, DualPrompt [83] introduces a structured decomposition
of the prompt space into General Prompts (G-Prompts), which encode task-agnostic
knowledge, and Expert Prompts (E-Prompts), which specialize in capturing task-
specific features. This separation encourages generalization while preserving task-
level specificity.

Similarly, S-Prompt [90] adopts a task-specific prompt learning strategy, maintaining
a separate prompt for each task, akin to L2P but without retrieval. In contrast,
CODA-Prompt [88] enhances flexibility by growing the prompt pool over time and
using an attention-based mechanism to softly aggregate prompts. Each prompt is
weighted by task-specific attention scores, allowing the model to form context-aware
combinations instead of relying on hard selection.

Moving beyond explicit retrieval mechanisms, DAP [89] introduces a meta-network,
typically a multilayer perceptron (MLP), that generates prompts conditioned on
input representations. This instance-level prompt generation enables fine-grained
adaptation and removes the need for a fixed prompt pool.

Recent studies have also explored alternative strategies, such as appending all avail-
able prompts to the input or adopting visual prompts, i.e., low-level pixel-space mod-
ifications to the image itself. Furthermore, the rise of multimodal pre-trained models
has led to approaches that leverage textual information to guide prompt selection
or generation, particularly within vision-language pretraining frameworks.

A notable advancement in this space is HiDe-Prompt [84], which redefines the con-
tinual learning objective through a hierarchical decomposition. By optimizing each
sub-objective independently, HiDe-Prompt enhances both performance and modu-
larity, establishing a new benchmark for continual image classification.

Therefore, inspired by the aforementioned prompt-based continual learning frame-
works, we further investigate their applicability and extensibility under the open-
world continual learning setting. In open-world continual learning, models are ex-
pected to make inferences without access to task identifiers and to distinguish be-
tween known and unknown classes. Prompt-based methods naturally align with the
demands of open-world continual learning, providing a task-agnostic solution to this
challenge. For instance, CODA-Prompt’s soft selection strategy enables inference
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without relying on explicit task labels, aligning well with open-world continual learn-
ing’s open-set and label-free nature. Similarly, dynamic prompt generation methods
like DAP offer instance-level adaptability, which is essential when encountering un-
known or evolving data distributions. These properties position prompt-based con-
tinual learning methods as promising candidates for scalable, open-world scenarios,
particularly in settings with data privacy constraints where revisiting past samples
is infeasible and task-agnostic.

3.4.3 Other PTMs-based CL Methods with PEFT Techniques

Recent advances in parameter-efficient continual learning studies extend beyond
prompt-based methods, with adapter-based approaches demonstrating particular
success. Works like SimpleCIL [91], ADAM [92], and EASE [93] employ lightweight
modular architectures [94] that attach task-specific adapter layers to frozen pre-
trained backbones. These adapters achieve dual objectives: encoding new task
knowledge through localized parameter updates, while preserving existing represen-
tations via regularization that anchors new features near previously learned embed-
dings. This dual mechanism effectively balances plasticity and stability, minimizing

interference during sequential learning.

Complementing these methods, vision-language models like CLIP [95] provide inher-
ent open-world capabilities through their contrastive image-text pretraining. Their
zero-shot classification ability, enabled by measuring alignment between visual fea-
tures and textual prompts (e.g., "a photo of a dog"), offers natural open-set detection
through confidence thresholding. However, CLIP’s static architecture faces two key
limitations in open-world continual learning settings: (i) fixed decision boundaries
that cannot adapt to evolving task distributions, and (ii) domain gaps when ap-
plied to specialized datasets. Our proposed Pro-KT and MOB frameworks address
these gaps through dynamic prompt tuning and adaptive hypersphere boundaries,
respectively.

These developments reflect a broader paradigm shift toward modular, efficient adap-
tation of foundation models. Contemporary approaches increasingly favor lightweight
task-specific components (prompts/adapters) over full model retraining, explicit
mechanisms for knowledge preservation during incremental updates, and unified
architectures that support both closed-set and open-set recognition.

Our work contributes to this direction by introducing preference-conditioned adap-
tation techniques into the PTM backbone. Specifically, our method dynamically
adjusts to task requirements through learned gating mechanisms, maintains back-
ward compatibility with previously learned representations, and jointly optimizes for
both known class accuracy and unknown detection. This approach demonstrates su-

perior adaptability, robustness, and generalization capabilities compared to static
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architectures, as evidenced by our experiments simulating dynamic, unpredictable,
and open-ended data environments.
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