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Chapter 2

Literature Review

First, we examine continual learning (CL) methods, categorizing them into three
principal families according to their mechanisms for preserving and utilizing task-
specific knowledge across sequential learning episodes: (1) replay-based methods,
which retain and revisit past samples; (2) regularization-based methods, which con-
strain parameter updates; and (3) structure-based methods, which dynamically ex-
pand or isolate model components. For each category, we provide a critical analysis
of its respective advantages and fundamental limitations.

Second, we investigate open-set learning (OSL) and out-of-distribution (OOD) de-
tection, beginning with formal definitions to then moving to an evaluation of their
core methodologies. This reveals significant gaps in current approaches, particularly
regarding their ability to handle incremental knowledge integration and practical

deployment scenarios.

Finally, we integrate these perspectives into the emerging paradigm of open-world
continual learning (OWCL), which combines the sequential adaptation of continual
learning with the novelty detection capabilities of open-set learning. While recent
open-world continual learning works demonstrate promising results, our analysis
identifies critical shortcomings in the knowledge transfer mechanism and provides
insights into the importance and uniqueness of knowledge transfer in open-world
continual learning.

2.1 Continual Learning

Driven by the resurgence of neural network research, continual learning and catas-
trophic forgetting have received considerable attention. Common approaches to
addressing these challenges include reducing representation overlap through param-
eter regularization [21], memory-based approaches that replay either real or synthetic
historical samples [41, 42], and architectural solutions employing dual-network con-
figurations [43].
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2. LITERATURE REVIEW

Early continual learning research was often constrained by limited computational re-
sources, restricting experiments to shallow architectures and modestly-sized datasets
[44]. Recent empirical analyses have examined how dropout [45] and various acti-
vation functions influence forgetting in sequential tasks [46]. Theoretical perspec-
tives have also been explored, especially in task-incremental settings [19]. Recently,
there has been a shift towards practical scaling to longer task sequences and larger
datasets, utilizing large-scale pre-trained foundational models as backbones with
fine-tuning strategies. This evolution reflects the field’s progression from constrained
laboratory settings to more realistic, large-scale applications.

Next, we categorize recent continual learning methods according to their mech-
anisms for preserving and utilizing both task-specific and transferable knowledge
during incremental learning processes. This taxonomy organizes approaches into
three principal categories based on their core operational principles.

Replay-based methods. Replay-based methods address forgetting by retaining
and revisiting representative examples from past tasks. Classical approaches, such
as iCaRL [42], retrain models on a limited set of past samples alongside new task
data. Other works incorporate constrained optimization into the replay process
[47, 48]. When actual past samples are unavailable, pseudo-rehearsal via generative
models serves as an alternative, though it introduces complexity, including potential
mode collapse and difficulties in balancing old and new samples. Replay methods
also inherently face data privacy and security challenges, significantly limiting their
practical deployment when previous data is inaccessible or restricted by privacy
regulations.

Regularization-based methods. Regularization-based methods apply constraints
on model updates to retain knowledge across tasks. For instance, Elastic Weight
Consolidation (EWC) [21| mitigates forgetting by penalizing significant changes
in crucial model weights. Another classical approach, Learning without Forget-
ting (LwF) [49], utilizes knowledge distillation techniques to preserve previous task
knowledge. Recent work further explores knowledge distillation strategies [50],
though these methods remain highly dependent on task similarity. Consequently, a
growing body of research has begun addressing the robustness of continual learning
models against varying task distributions [51].

Structure-based methods. Structure-based methods address continual learning
by expanding the model’s architecture to accommodate new tasks, preserving previ-
ously learned knowledge [52, 53]. These approaches typically involve either dynam-
ically growing the model structure for new tasks or employing task-specific masks
to isolate parameters of previous tasks [54]. However, without careful management,
these methods risk saturating model capacity, hindering future task learning. Ad-
ditionally, given recent advancements in large-scale pre-trained models, strategies
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relying heavily on model parameter reuse and storage face significant limitations in
scalability, particularly when applied to extensive downstream tasks.

2.2 Open-Set Learning

The conventional closed-world assumption is inadequate for real-world applications,
where models must handle unknown samples during deployment while facing re-
stricted access to historical training data. This challenge motivates open-set learn-
ing, which addresses two core objectives: (1) accurate classification of known classes
and (2) robust rejection of unknown samples during inference [15, 55]. Open-set
learning explicitly models the uncertainty inherent in dynamic environments where

novel objects frequently appear [8].

Formally, given a training set D;. = {(z1,%1), (T2, ¥2), .., (@n,yn)}, where each
y; belongs to the set Cg of known classes, a set u denoting the unified unknown
category, and an evaluation set D., = {(«7,v1), (h, v4), ..., (xl,,y.,)}, with each
yi € (Cp U {u}), open-set learning requires:

e Precise discrimination between known Cp and unknown {u} samples;
e No further granularity within the unknown category.

This formulation captures the essential challenge of open-set recognition while main-
taining practical applicability.

Recent advances in open-set learning have produced several innovative approaches to
handle unknown samples [56, 57, 58]. For example, ORE [55] combines contrastive
clustering with energy-based classification for novel object detection. Additionally,
[59] develops an open-set classifier using an extreme value theory-based classifier.
PointCLIP [60] integrates CLIP and GPT-3 multimodal foundation models for zero-
shot open-set tasks, and CEC [61] introduces an open detection framework featuring
a dual-component framework with proposal advising and class-specific expulsion.
These methods demonstrate the field’s progression from basic thresholding to so-

phisticated architectural solutions.

2.3  Out-of-Distribution Detection

Parallel developments in out-of-distribution detection address the related challenge
of identifying samples from non-training distributions. Current algorithms predom-
inantly rely on the independent and identically distributed (IID) assumption, de-
spite prevalent distribution shifts in practical settings. Formally, given training data
Dy = {(x1,11), (T2, ¥2), - - -, (Tn, yn) }, drawn from a distribution P,.(X,Y") and test
samples a} ~ Poop(X'), out-of-distribution detection evaluates model confidence to
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flag distributional outliers during testing phase. Metrics commonly used for out-of-
distribution detection include the model’s prediction confidence or certainty, typi-
cally measured via softmax probability scores, assessing the correct identification of
out-of-distribution samples.

The field has evolved from early post-hoc techniques like ODIN [62], employing
temperature scaling and input perturbations as post-hoc adjustments to enhance
differentiation between ID and out-of-distribution data, to modern approaches using
energy-based scoring [63, 64, 65] with theoretical guarantees [66], enhanced frame-
works like Generalized ODIN [67] for covariate shift robustness, extension of the
ODIN’s framework [67] by adopting specialized training objectives and optimizing
hyperparameters, like perturbation magnitude, specifically on ID data, and hierar-
chical semantic organization of known classes [68] with specialized classifiers such as
top-down classification [69] and group softmax training [70] that have been proven
very effective within out-of-distribution.

Notably, recent work [19] emphasizes the importance of novelty detection and inte-
grates out-of-distribution detection with continual learning, as exemplified by SOLA
[8], a framework that presents a strategy to enhance novelty detection, facilitate on-
the-fly task adaptation, and support incremental learning.

Despite the significant progress, existing methods still fall short in adequately ad-
dressing the representation and integration of knowledge for effective transfer to
future tasks. The presence of open samples further exacerbates these challenges, pos-
ing substantial difficulties in knowledge representation and accumulation. Crucially,
both open-set learning and out-of-distribution methods classify unknown samples
into an unknown class, thus preventing models from fully utilizing the informative
content within these samples, leading to incomplete exploitation of available knowl-
edge.

2.4 Open-world Continual Learning

Continual learning [21, 49] typically operates under a closed-world assumption,
meaning the model presumes that all samples encountered during testing or de-
ployment belong to predefined classes previously seen during training [15, 16, 71].
However, such an assumption is unrealistic for dynamic, real-world environments,
where systems frequently encounter novel or previously unseen data [8, 30].

While continual learning and open-set learning address complementary challenges,
preserving knowledge across tasks and detecting unknowns, respectively, their in-
tegration introduces fundamental tensions. Continual learning methods prioritize
stability to mitigate forgetting but assume a closed-world setting, while open-set
learning emphasizes plasticity to recognize novelty at the risk of disrupting learned
representations. This creates a three-way trade-off: (1) retaining past knowledge
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(stability), (2) acquiring new knowledge (plasticity), and (3) dynamically detect-
ing open-set samples without prior exposure. For instance, replay-based continual
learning methods may erroneously classify unknowns as known if trained only on his-
torical data [42], while open-set learning detectors struggle when task distributions
shift incrementally [20].

Practically, continual learners need to detect, adapt to, and incrementally learn from
these new, unknown classes or samples while retaining previously learned informa-
tion [72, 73]. These conflicting objectives explain why open-world continual learning
cannot be trivially reduced to combining existing continual learning and open-set
learning techniques, but rather requires novel frameworks to unify stability, plas-
ticity, and open-set robustness. Therefore, effectively detecting and incrementally
learning novelties while preserving prior knowledge becomes essential for realistic
deployment.

Open-world continual learning extends continual learning to accommodate open-
world scenarios. Recently, it has gained significant attention, also because it presents
substantial challenges [8, 14]. To enable existing continual learning frameworks
to recognize unknown or open samples effectively, initial research in open-world
continual learning has integrated methods from open-set recognition and out-of-
distribution detection into standard continual learning models. [59] proposed an
OSR framework utilizing extreme value theory to manage incremental tasks within
dynamic environments. Similarly, [55] introduced a model employing contrastive
clustering coupled with energy-based identification techniques [74], enabling the
continual learner to identify and integrate novel data.

Building upon these approaches, recent open-world continual learning studies have
increasingly emphasized incorporating out-of-distribution detection into continual
learning frameworks. For instance, [19, 25, 30] underscored novelty detection as a
critical component of open-set learning, suggesting that existing out-of-distribution
detection strategies could be effectively integrated within continual learning settings.
Furthermore, recent frameworks such as SOLA [8, 75] combine out-of-distribution
detection methods with incremental task adaptation, enabling improved novelty
detection and task-specific learning in open-world environments.

Nevertheless, despite these advances, current open-world continual learning research
remains constrained by three fundamental limitations. First, the absence of stan-
dardized problem formulations and evaluation protocols [72, 76] hinders fair compar-
ison across methods. Second, most approaches rely on simplistic integrations of con-
tinual learning with out-of-distribution detection techniques [25, 30, 31, 77], failing to
address the critical challenge of asymmetric knowledge transfer between known and
unknown samples. While existing methods effectively transfer knowledge for known
classes (via replay or regularization), they largely ignore the informational value of
unknowns, creating both experimental and theoretical gaps: Experimentally, evalu-
ations disproportionately focus on known-class accuracy while lacking benchmarks
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to assess whether detected unknowns improve future task learning [73]. Unknown
samples are typically discarded rather than analyzed for transferable features (e.g.,
hierarchical relationships to known classes [5]). Theoretically, no framework exists
to quantify how unknowns should contribute to knowledge transfer. Unlike known
classes, where distillation or replay provides clear mechanisms, unknowns present
unique challenges: (i) preserving latent representations without destabilizing known
classes, (ii) refining decision boundaries for future tasks, and (iii) balancing plas-
ticity for new unknowns with stability for knowns. This ambiguity forces ad-hoc
solutions like threshold-based rejection [30] or heuristic clustering [25] without the-
oretical guarantees. Ultimately, the lack of robust theoretical foundations reduces
open-world continual learning to a superficial combination of continual learning and
open-set techniques, rather than a principled framework for unified knowledge trans-
fer and updating.

2.5 Concluding Remarks

Table 2.1 summarizes the core distinctions between continual learning, open-set
learning, and open-world continual learning across four dimensions: objectives,
strengths, limitations, and representative works. While continual learning excels at
sequential knowledge retention and open-set learning specializes in novelty detection,
open-world continual learning must reconcile its competing demands—preserving
stability for known classes while maintaining plasticity for unknowns, all within dy-
namically expanding task distributions. This reveals open-world continual learning’s
critical gap: current methods [8, 30| lack mechanisms to transfer knowledge from
unknown samples while balancing the stability-plasticity trade-off.

This chapter shows critical gaps in current open-world continual learning research
that our work addresses: (1) asymmetric knowledge transfer because of the pre-
vailing neglect of unknown samples’ informational value (solved through HoliTrans’
unified knowledge transfer in Chapter 6), (2) dynamic evaluation because of lack
of benchmarks for unknown reuse (tackled via few-shot protocols in Chapter 5),
and (3) theoretical guarantees because of the absence of formal bounds for open-set
continual learning (resolved by Pro-KT'’s stability-plasticity analysis in Chapter 4).
These advancements are designed with practical deployment constraints in mind,
as demonstrated through our real-world fraud detection applications in Chapter
7.
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Table 2.1: Comparison of continual learning, open-set learning, and open-world con-

tinual learning.

Aspect Continual Open-Set Open-world
Learning Learning Continual
Learning
Primary Goal  Avoid forgetting Detect unknowns Learn

Key Strength

Limitation

Representative
‘Work

known tasks

Task-specific
stability [21]

Assumes a closed
world

EWC [21]

in static settings

Strong open-set
detection [15]

No incremental
learning

ORE [55]

incrementally and
adapt to unknowns

Unified openness
and continuity [§]

Lack of theoretical
framework for
unknown
utilization

SOLA [8]
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