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Chapter 1

Introduction

1.1 Background

It is not the most intellectual of the species that survives; it is not the strongest that
survives; but the species that survives is the one that is able best to adapt and adjust
to the changing environment in which it finds itself.

— Charles Darwin !

Learning serves as the fundamental mechanism enabling intelligent systems to adapt
to dynamic environments. Throughout biological evolution, humans and other or-
ganisms have developed exceptional adaptive capabilities, allowing them to contin-
uously acquire, refine, and apply knowledge in response to environmental changes
[1, 2, 3, 4, 5]. Inspired by these natural learning processes, researchers aim to enrich
artificial intelligence (AI) systems with analogous continual learning abilities. This
pursuit has led to the development of continual learning (CL), a paradigm focused
on training models to incrementally process sequences of tasks while maintaining
performance on previously learned ones (see Figure 1.1). Continual learning enables
knowledge acquisition across diverse domains, including new skill learning, skill re-
finement, environmental adaptation, and contextual understanding [6, 7, 8].

In the literature, continual learning is often synonymous with incremental learning
and lifelong learning [4, 8, 9, 10]. While these terms are frequently used interchange-
ably, they collectively embody the overarching objective of developing artificial intel-
ligence systems capable of dynamic evolution, preserving acquired knowledge while
avoiding strict dependence on static data distributions.

Unlike traditional machine learning models that assume static data distributions,
continual learning specifically addresses evolving, dynamic distributions. A cen-

IThis quote is widely attributed to Charles Darwin, but it does not appear verbatim in his
writings. The phrasing is believed to originate from Professor Leon C. Megginson, who paraphrased
Darwin’s ideas. Despite its frequent misattribute, the quote effectively captures the essence of
Darwinian evolution and has since been popularized in both scientific and managerial literature.



1. INTRODUCTION

tral challenge in continual learning is catastrophic forgetting (CF) [11, 12|, where
learning new information severely degrades a system’s ability to retain and utilize
previously acquired knowledge. This phenomenon reveals the fundamental tension
between two competing objectives: learning plasticity (the capacity to acquire
new knowledge rapidly) and memory stability (the ability to preserve existing
knowledge). Achieving an optimal balance proves challenging, as excessive plastic-
ity compromises stability, and vice versa [2, 12, 13].

Furthermore, effective continual learning systems must demonstrate strong gener-
alizability to handle distributional shifts both within individual tasks and across
multiple task domains (see Figure 1.1 b). While one potential solution involves re-
training models on all previous data, this approach presents substantial limitations,
including prohibitive computational costs, extensive storage requirements, and po-
tential privacy issues [14].

The core objective of continual learning is consequently to enable efficient model
updates that learn new data incrementally while preserving knowledge from past
experiences, maintaining computational and storage efficiency, and scaling effectively
with continuous changes.
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Figure 1.1: A conceptual framework of continual learning. a. Continual learning
requires adapting to incremental tasks with dynamic data distributions. b. A desirable
solution should ensure an appropriate trade-off between stability (orange arrow) and
plasticity (green arrow), as well as a generalizability to intra-task (blue arrow) and
inter-task (red arrow) distribution differences.

Despite significant advancements in continual learning, most current approaches
operate under a closed-world assumption, limiting systems to recognizing and
processing only those object classes explicitly encountered during training [8, 15, 16].
This assumption implicitly excludes the possibilities of unexpected or novel entities
emerging during testing or deployment, thus falling short in real-world scenarios, as
the environment is inherently open and constantly presents unknown objects.
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Human cognition, by contrast, treats novelty as a powerful intrinsic motivator for
learning. The human brain responds to new stimuli with distinct neural activity and
behavioral changes, driving exploration and enabling flexible encoding of unfamiliar
information [8]. Over time, however, this novelty response attenuates as the brain
rapidly adapts to repeated exposure to the same stimuli [17, 18], demonstrating an
adaptive balance between exploration and habituation.

To operate effectively in an open-world environment, artificial intelligence sys-
tems must simulate these human capabilities. Specifically, an ideal system would
autonomously identify and respond to novel entities, incrementally integrate new
knowledge while maintaining existing competencies, and adapt dynamically with-
out requiring a periodic offline retraining. Such capabilities would enable artificial
intelligence systems to continuously evolve through a sequence of new tasks, allowing
real-time adaptation to novel scenarios in practical applications.

In this context, Open-world Continual Learning (OWCL) [8, 19] has emerged
as both a highly practical yet profoundly challenging machine learning paradigm.
This framework requires artificial intelligence systems to continuously adapt to un-
bounded task sequences in a dynamic open environment [15, 20], where novel ele-
ments might appear unpredictably during testing phases [5, 21, 22].

The core objective of the open-world continual learning framework includes op-
erating under the open-world assumption, recognizing unseen/open samples, and
incrementally acquiring knowledge from new tasks while preventing catastrophic
forgetting [23, 24, 25]. These requirements introduce two critical challenges. Due
to the potential occurrence of novelties in continual learning [14], open-world con-
tinual learning requires detecting unknown samples to prevent misclassification into
known categories. At the same time, open-world continual learning requires the
model to retain previously learned knowledge without forgetting during continuous
open detection. Consequently, the open-world continual learning paradigm faces a
dual complexity. On the one hand, the presence of unknown samples complicates the
fundamental tension between knowledge stability [1, 14] and knowledge plas-
ticity [26, 27]. On the other hand, the continuous expansion of the knowledge
space through incremental learning of new tasks complicates open detection in the
embedding space.

Although existing continual learning methods have made progress in addressing
catastrophic forgetting, they fundamentally operate under three limiting assump-
tions [28, 29]: (1) task boundaries are always clearly defined, (2) all test-time sam-
ples belong to known classes, and (3) data distributions remain relatively stable [24].
These assumptions break down in open real-world environments where models en-
counter novel categories, shifting contexts, and ambiguous task transitions, precisely
the challenges our work addresses.
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Figure 1.2: An illustration of the open-world continual learning problem and com-
parison between continual learning. In open-world continual learning, the test set of
each task may include samples from classes unseen during training, deviating from the
closed-world assumption of traditional continual learning. As shown in the figure, this
setting imposes two key challenges: (1) preserving knowledge from previously learned
tasks to mitigate catastrophic forgetting, and (2) performing robust open-set recogni-
tion to correctly identify and reject instances from unknown classes. While continual
learning models tend to misclassify open samples as one of the known classes (e.g.,
the green pentagon and orange square), open-world continual learning models are ex-
plicitly designed to distinguish between known and unknown classes, thereby enabling
more reliable and adaptive decision-making in dynamic environments.

To further illustrate the unique challenges of open-world continual learning, we refer
to the scenario depicted in Figure 1.2. Unlike continual learning, where all test-
time samples are assumed to belong to previously seen classes, open-world continual
learning confronts a more realistic setting where unknown classes may emerge during
testing. This introduces the first key challenge: open-set detection, i.e., accurately
identifying and rejecting samples from unseen categories rather than misclassifying
them into existing known classes. As shown in Figure 1.2, while continual learning
models tend to misclassify such unknowns (e.g., the green pentagon and orange
square) into existing classes, open-world continual learning explicitly distinguishes
them as open samples.

Another challenge lies in the need for stronger generalization and boundary stabil-
ity. Open-world continual learning models must not only acquire new knowledge
incrementally and retain prior learning—addressing the classical stability—plasticity
dilemma—Dbut also maintain a consistent open-set recognition capability across tasks.
This requires the ability to form and update well-defined task or class boundaries
over time, ensuring that the decision boundaries between known and unknown cat-
egories remain reliable despite ongoing changes in the data distribution.

Lastly, and most critically, open-world continual learning raises a fundamental ques-
tion that goes beyond mere classification: how can models exploit knowledge from
unknown samples? While traditional continual learning gains knowledge by learn-
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ing from labeled data across successive tasks, the presence of unlabeled and unpre-
dictable unknowns in open-world continual learning complicates this process. Ef-
fectively mining and leveraging knowledge from open-set instances, without ground
truth supervision, becomes essential for sustained learning in dynamic and open
environments.

To provide a more detailed description of the diverse scenarios that may arise in
open-world continual learning, we construct four representative open-world continual
learning settings based on the three classical continual learning paradigms [6]: task-
incremental learning, domain-incremental learning, and class-incremental learning.
It is important to note, however, that a critical distinction in open-world continual
learning lies in the absence of task identity information during testing, as unknown
samples can appear unpredictably at any time [30]. This fundamental characteristic
renders conventional task-incremental and domain-incremental settings insufficient
for fully capturing the complexity of open-world continual learning scenarios.

Therefore, we propose a novel scenario designed for open-world continual learning,
called knowledge-incremental learning (KIL), characterized by the ability to solve
tasks previously seen without knowing which task is being performed (no task identi-
fiers available), non-strictly disjoint training sets across different tasks, and potential
distribution shifts among known categories.

Knowledge-incremental learning both subsumes class-incremental learning and ac-
commodates category-specific distribution shifts, thereby providing a more realistic
and consequently more challenging framework for open-world continual learning.
Based on this foundation, we then introduce four distinct scenarios for open-world
continual learning of increasing difficulty: class-incremental with non-repetitive open
samples (CINO), class-incremental learning with repetitive open samples (CIRO),
knowledge-incremental learning with non-repetitive open samples (KINO), knowledge-
incremental learning with repetitive open samples (KIRO).

Table 1.1: Overview of different OWCL scenarios.

Scenario CINO CIRO KINO KIRO
Known Classes Repeatedly Appear X X v v
Unknown Samples Repeatedly Appear X v X v

Having established four representative open-world continual learning scenarios based
on classical continual learning settings, we now turn to the practical significance of
developing robust open-world continual learning systems. Recent advances in deep
representation learning for computer vision and natural language processing have
catalyzed growing interest in open-world continual learning. However, many current
approaches [25, 31] still treat open-world continual learning as a loose combination of
open-set recognition and continual learning, rather than embracing it as a unified and
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principled learning paradigm. This fragmented view leads to two core limitations:
(1) knowledge transfer is typically confined to labeled data, overlooking the rich
semantic information that may be embedded in unknown samples; and (2) the lack
of standardized problem formulations and evaluation protocols impedes consistent
benchmarking and method selection.

In response, this thesis takes a knowledge transfer perspective to investigate the
open-world continual learning problem. Rather than treating unknown-class de-
tection and known-class classification as isolated objectives, we aim to understand
and enhance the underlying transfer mechanisms across both labeled and unlabeled
samples in dynamic, open environments. Throughout the thesis, we explore mul-
tiple model architectures, training strategies, and evaluation protocols to advance
the understanding and practical utility of knowledge transfer in open-world contin-
ual learning, which contributes not only to methodological innovation but also to
enabling practical open-world continual learning systems that exhibit robust adapt-
ability and generalization across a wide range of real-world scenarios.

For instance, in financial security, open-world continual learning models can sup-
port real-time detection of emerging fraud patterns, such as Al-generated deepfake
scams, while maintaining accuracy on previously encountered attack types, thus re-
ducing reliance on costly periodic retraining. In healthcare, open-world continual
learning systems could incrementally incorporate novel disease markers (e.g., vi-
ral mutations) without compromising diagnostic performance for known conditions.
These examples highlight open-world continual learning’s potential to enhance oper-
ational robustness in dynamic environments, while also addressing pressing societal
challenges.

Beyond immediate applications, the broader societal implications of open-world con-
tinual learning are equally profound. By mimicking human-like continual learning,
open-world continual learning systems can reduce the environmental footprint of
artificial intelligence by eliminating repeated retraining cycles, lower the barrier for
adoption by organizations with limited access to large-scale labeled data, and foster
more trustworthy artificial intelligence systems through transparent novelty detec-
tion. Nonetheless, these benefits come with ethical considerations, such as ensuring
privacy in continuous surveillance settings or maintaining accountability in medical
diagnostics—issues we explicitly address through built-in uncertainty quantification
mechanisms in our framework.

While the empirical studies in this thesis primarily focus on image-based data,
the proposed open-world continual learning framework is designed to be modality-
agnostic. Its core principles—adaptive knowledge transfer, novelty awareness, and
dynamic representation updating—can naturally extend to other data modalities
such as video, text, speech, and multimodal sensor streams. In particular, applying
this framework to sequential modalities (e.g., video surveillance or dialogue systems)
could reveal new insights into temporal transfer and incremental context modeling
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under a realistic open-world environment. Future research may further explore how
the same open-world principles can be instantiated across heterogeneous domains,
paving the way toward a unified and generalizable paradigm of continual learning
beyond visual tasks.

1.2 Research Questions and Contributions

Our approach advances open-world continual learning beyond current limitations
through three key innovations: (a) a dynamic knowledge representation that evolves
with both known and unknown samples, (b) a unified optimization framework that
jointly preserves stability and enables plasticity, and (c) task-agnostic detection
mechanisms that operate without explicit task identifiers. This combination theo-
retically enables infinite learning capacity while maintaining practical deployability.
Note that all subsequent investigations of the problems addressed in this thesis are
conducted within the context of image tasks, and all experimental validations in
subsequent chapters are carried out using image benchmark datasets.

Research Question 1 (RQ 1) Can we develop an effective open-world continual
learning model to accumulate the knowledge gained in the past and to use the knowl-
edge to help divide the test data into knowns and unknowns/opens, especially for
enlarging the open-set boundary between knowns and unknowns?

Existing methods fail to exploit previous unknowns from former tasks to help new
tasks, leading to performance degradation on new tasks. Hence, the main motiva-
tion of RQ 1 here is to learn knowledge for both knowns and unknowns from previ-
ous tasks and later use the knowledge to formulate an open-set boundary between
knowns and unknowns for new tasks. This question targets the foundational chal-
lenge of open-world continual learning: maintaining previously acquired knowledge
while remaining adaptable to new, unseen classes. A robust open-world continual
learning system must not only classify known samples accurately but also detect
and separate unknowns with high confidence.

The key challenge of RQ 1 lies in addressing two critical issues: (1) Knowledge Sta-
bility, where newly acquired knowledge from a task that is significantly different from
previous ones might conflict with existing knowledge; and (2) Knowledge Plastic-
ity, which requires the model to update its understanding by reclassifying unknown
samples as knowns once their ground-truth data becomes available in subsequent
tasks. Our primary contribution to addressing this research question is the devel-
opment of a novel Prompt-enhanced Knowledge Transfer approach, referred to as
Pro-KT. Pro-KT is introduced in Chapter 4 and based on the following publication
[30]:

e Li, Y., Yang, X., Wang, H., Wang, X., & Li, T.: Learning to Prompt Knowl-
edge Transfer for Open-World Continual Learning. In: The 38th Annual AAAI
Conference on Artificial Intelligence. AAAT 24 (2024) 38(12), 13700-13708.
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Our main ideas are knowledge transfer and prompt learning [32, 33, 34]. Pro-KT
delineates an innovation of prompt learning for open-world continual learning, a
novel plug-and-play prompt bank for knowledge transfer, and two adaptive threshold
selection strategies for determining the open-set boundary. Specifically, to address
knowledge stability, we create a prompt bank designed to encode knowledge through
the use of prompts. These prompts serve as instructions for directing the model
in task execution. By flexibly selecting prompts from the proposed prompt bank,
Pro-KT can facilitate effective knowledge transfer with both task-generic and task-
specific knowledge across diverse tasks. To address knowledge plasticity, we design
two adaptive threshold-selection strategies for determining the open-set detection
boundary. Through these strategies, the open-set decision boundary will be updated
according to the newly learned knowledge continually, so as to handle knowledge
plasticity.

While RQ1 addresses the stability-plasticity trade-off, its success heavily depends
on access to labeled data. In practice, such labels are often scarce. This motivates
the investigation in RQ2, which explores how to achieve strong open-world continual
learning performance under severe label constraints by leveraging transfer learning

and few-shot techniques.

Research Question 2 (RQ 2) How can we enhance the performance of existing
open-world continual learning models under the constraint of limited labeled data by
employing an improved knowledge transfer approach?

Existing open-world continual learning still requires a large amount of labeled data
for training, which is often impractical in real-world applications. Given that new
categories/entities typically come with limited annotations and are in small quan-
tities, a more realistic scenario is open-world continual learning with scarce labeled
data, i.e., few-shot training samples, which addresses our second research question
RQ 2.

In RQ 2, we investigate the problem of open-world few-shot continual learning
(OFCL), challenging in (i) learning unbounded tasks without forgetting previous
knowledge and avoiding overfitting, (ii) constructing compact decision boundaries
for open detection with limited labeled data, and (iii) transferring knowledge about
knowns and unknowns and even update the unknowns to knowns once the labels of
open samples are learned. To address RQ 2, we introduce a novel framework, also
referred to as PEAK, in Chapter 5 based on the following publication [35], that,
to the best of our knowledge, is the first work to study the open-world few-shot

continual learning problem:

e Li, Y., Wang, X., Yang, X., Bonsangue, M., Zhang, J., Li, T.: Improv-
ing Open-World Continual Learning under the Constraints of Scarce Labeled
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Data. In: Proceedings of the 31st ACM SIGKDD Conference on Knowledge
Discovery and Data Mining. KDD ’25 (2025).

Specifically, we first propose an instance-wise token augmentation (ITA) aimed at
acquiring additional ‘knowledge’ to mitigate the inadequate representation caused
by scarce labeled data. Moreover, instance-wise token augmentation can facilitate
knowledge transfer by matching learnable tokens to each sample embedding. Addi-
tionally, given the scarce labeled data where certain exemplar points (hubs) appear
among the nearest neighbors of many other points, test samples will be assigned
to it regardless of their true label, resulting in low accuracy [36]. To mitigate this,
inspired by the embedding representations on a hypersphere [37], we introduce a
novel and compact margin-based open boundary (MOB) and an adaptive knowl-
edge space (AKS) consisting of learnable hyperspheres; where each hypersphere is
characterized by a class centroid and an associated radius. In particular, enables the
formulation of compact decision boundaries between known and unknown samples,
thereby enhancing open detection. Simultaneously, the adaptive knowledge space
encourages the model to learn incrementally from unknowns and classify previously
encountered unknown samples in new tasks, effectively transforming unknowns into
knowns over time.

Even with enhanced few-shot learning (RQ2), existing open-world continual learning
methods often disregard the latent information embedded in unknown samples. RQ3
challenges this orthogonality assumption by asking whether knowledge from the open
world—especially unlabeled or outlier data—can be actively incorporated into future
tasks through holistic knowledge transfer.

Research Question 3 (RQ 3) How can we leverage knowledge from both known
and unknown samples to enable knowledge transfer in open-world continual learn-
ing, effectively improving open-set detection with incremental classification at both
theoretical and architectural levels?

Unlike traditional learning models that operate in a closed and fixed set of classes,
open-world continual learning aims at learning on the job in an open-world assump-
tion with the goal of recognizing unseen/open samples and incrementally acquiring
knowledge from new tasks without forgetting [23, 24, 25]. Due to the potential oc-
currence of novelties in continual learning [14], open-world continual learning models
need to accurately detect unknowns to prevent unknown samples from being incor-
rectly classified into known categories. At the same time, open-world continual
learning requires the model to retain previously learned knowledge without forget-
ting while continually performing open detection. In summary, the open detection
for unknowns and classification for knowns are interdependent in open-world con-
tinual learning: the incremental learning of new tasks makes open detection in an
embedding space more challenging with the expanding knowledge space, and vice
versa.
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However, current approaches [25, 31| still treat open-world continual learning as
a simple combination of open-set recognition and continual learning, rather than
as an integrated paradigm, making it only effective in knowledge transfer related
to known samples, while neglecting the knowledge derived from unknown samples.
Therefore, a promising open-world continual learning model must be capable of
knowns-unknowns knowledge transfer, i.e., effectively transferring knowledge
both for known categories and unknown samples. Besides, there is a lack of problem
formulation and thorough empirical explorations of potential issues in open-world
continual learning, making it difficult to compare the performance of existing meth-
ods and making it unclear how to choose one method over another. In Chapter 6, we
explore the issues arising in open-world continual learning and adopt an integrative
perspective to deal jointly with unknown samples’ detection and known samples’
classification, particularly the knowledge transfer for both unknowns and knowns,
based on the following paper [38]:

e Li, Y., Lai, G., Yang, Y., Li, Y., Bonsangue, M., & Li, T.: Exploring
Open-World Continual Learning with Knowns-Unknowns Knowledge Transfer.
arXiv preprint arXiv:2502.20124.

Specifically, we provide a formal and unified formulation of the open-world continual
learning problem, delineating four distinct yet interrelated scenarios that capture the
multifaceted nature of open-world dynamics. Our empirical investigations reveal
a strong and non-trivial interaction between the tasks of open-set detection and
incremental prediction, challenging the prevailing assumption that these components
can be independently optimized. This insight calls for a more holistic approach to
open-world continual learning, one that integrates both discovery and adaptation

within a unified learning process.

From a theoretical standpoint, we rigorously define the decision space of open-world
continual learning and uncover the core optimization objectives that govern learn-
ing under open-world conditions. Building upon this foundation, we propose a novel
framework, HoliTrans, which effectively transfers knowledge from both known and
previously unseen (unknown) instances. HoliTrans unifies open-set recognition and
continual adaptation through a single principled mechanism, thereby enabling ro-
bust generalization in the presence of evolving data distributions and task bound-
aries.

Extensive empirical evaluations across all four open-world continual learning scenar-
ios corroborate our theoretical insights. HoliTrans consistently outperforms state-of-
the-art baselines, demonstrating not only superior performance in isolated metrics
but also stable adaptation across open and incremental learning tasks. These re-
sults affirm the necessity of treating open-world continual learning as an inherently
integrated problem and highlight HoliTrans as a promising step toward a unified,
theoretically based open-world continual learning framework.

10



1.2 Research Questions and Contributions

Having established methods for knowledge retention, transfer, and open-sample uti-
lization, RQ4 shifts focus to practice. It examines whether continual learning and
open-world continual learning frameworks can go beyond benchmarks and offer tan-
gible value in complex, real-world tasks characterized by data drift, concept emer-
gence, and geographical heterogeneity.

Research Question 4 (RQ 4) How can we improve the model performance by
formulating practical problems with an open-world continual learning framework and
developing effective models for challenging real-world applications?

Building upon the aforementioned works, we further investigate the potential of
continual learning and open-world continual learning to address real-world chal-
lenges. As emerging and increasingly influential paradigms in machine learning,
continual learning and open-world continual learning offer the promise of reshaping
how practical systems adapt to dynamic environments. In contrast to conventional
static models, these frameworks inherently accommodate both the continuity of data
streams and the openness of task boundaries, making them particularly well-suited
for applications characterized by evolving knowledge spaces.

For instance, in the domain of dynamic financial transactions, OWCL-enabled sys-
tems can incrementally learn from newly observed fraud types (e.g., deepfake-based
voice scams) while simultaneously preserving detection capabilities for previously
encountered fraud patterns (e.g., credit card cloning or identity theft). Similarly,
in smart healthcare, continual learning has been leveraged to enhance pathological
diagnosis systems, empowering them to incrementally incorporate rare or emerging
disease categories—such as novel variants of infectious diseases—without requiring

complete retraining or catastrophic memory loss.

Motivated by these promising applications, we aim to extend the frontier of open-
world continual learning by formulating a novel cross-regional fraud detection prob-
lem under the continual learning paradigm. Unlike conventional fraud detection ap-
proaches that are confined to static datasets within isolated geographical regions, our
proposed setting reflects a more realistic scenario wherein financial service providers
operate across multiple cities or countries, each exhibiting unique transaction pat-

terns and fraud behaviors.

The inherent challenges in such settings include high retraining costs, data pri-
vacy constraints, and the risk of catastrophic forgetting when adapting models to
new regional data. In light of these challenges, we propose in Chapter 7 a uni-
fied framework that treats cross-regional fraud detection as an incremental learning
task. This formulation enables the development of robust, scalable fraud detection
systems that can generalize across diverse regions while effectively retaining prior
knowledge and adapting to novel threats. This chapter is based on the following
publications [39, 40]:

11
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e Li, Y., Yang, Y., Gao, Q., & Yang, X: Cross-Regional Fraud Detection via
Continual Learning (Special Program). In: Proceedings of the AAAT Confer-
ence on Artificial Intelligence, 37(13), 16260-16261.

e Li, Y., Yang, X., Gao, Q., Wang, H., Zhang, J., & Li, T.: Cross-Regional
Fraud Detection via Continual Learning With Knowledge Transfer. In: IEEE
Transactions on Knowledge and Data Engineering. TKDE’24 (2024) 38(12),
7865-7877.

1.3 Thesis Outline

The overall organization of this thesis is as follows. In this chapter, we give a brief
introduction to the thesis’s background and motivation, the main research questions,
and contributions. Chapter 2 provides a literature review for existing methods
in continual learning and open-set recognition, and focuses more on open-world
continual learning methods. Chapter 3 presents some general definitions, which are
used throughout the whole dissertation, problem definitions of open-world continual
learning, and different scenarios, respectively.

Subsequently, we present investigations corresponding to the four research ques-
tions, detailed respectively in Chapters 4 through 7. Specifically, in Chapter 4, we
address RQ 1 by introducing Pro-KT, a prompt-based knowledge transfer method
for open-world continual learning. We design a plug-and-play prompt bank to bal-
ance knowledge stability and plasticity by enabling flexible transfer of task-specific
and task-generic knowledge.

Chapter 5 addresses RQ 2 and introduces a novel framework, called PEAK, which
is designed to tackle the challenges of open-world continual learning under few-
shot learning scenarios. Within this framework, we propose three core modules that
collectively enable robust performance when labeled data is severely limited, offering
an exploration of the unique difficulties posed by limited supervision in open-world
continual learning.

Chapter 6 addresses RQ 3 and introduces HoliTrans, a unified framework for open-
world continual learning. We provide a formal theoretical construction of the open-
world continual learning decision space and identify four interrelated scenarios that
reflect the complexity of open-world dynamics. Our findings reveal a strong in-
teraction between open-set detection and incremental prediction, challenging the
assumption of their separability and motivating a holistic approach that unifies dis-
covery and adaptation within a holistic paradigm.

Chapter 7 addresses RQ 4 by introducing CCL, a continual learning framework
for cross-regional fraud detection. Motivated by real-world deployments, we extend
open-world continual learning to a more practical setting where financial institutions
operate across diverse regions with varying transaction patterns and fraud behaviors.

12
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Unlike traditional methods limited to static, region-specific datasets, CCL enables
adaptive learning across regions, capturing both shared knowledge and local nuances
in a unified model.

At last, Chapter 8 concludes the contributions of the thesis and discusses possible
future work.

13





