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Abstract

This thesis presents a systematic investigation into Open-world Continual Learning
(OWCL), a newly emerging paradigm that fundamentally redefines how intelligent
systems learn in non-stationary and uncertain environments. Rather than being a
mere combination of continual learning and open-set recognition, OWCL establishes
a new research problem that addresses the simultaneous needs for continuous adap-
tation and open-world awareness. It envisions learning agents that not only retain
and transfer knowledge across evolving tasks, but also autonomously identify, char-
acterize, and incorporate novel information beyond previously known categories. In
doing so, OWCL departs from the traditional closed-world assumption underlying
most deep learning frameworks and moves toward a truly dynamic, self-evolving
learning paradigm. The overarching goal of this thesis is to construct the theoret-
ical, methodological, and practical foundations of OWCL, thereby advancing the
development of lifelong, adaptive, and trustworthy artificial intelligence.

The thesis begins by formalizing OWCL through a rigorous mathematical definition
and identifying four representative real-world scenarios that capture its essential
characteristics. This formalization provides a principled framework for understand-
ing the inherent openness and non-stationarity of real-world data, distinguishing
OWCL from traditional continual learning paradigms. Through extensive empirical
analyses, the study reveals that OWCL is defined not merely by sequential learning
but by its continuous exposure to the unknown—posing challenges related to open-
set boundary expansion, knowledge retention, and adaptive generalization. These
findings lay the groundwork for addressing the stability—plasticity dilemma within
an open and evolving context.

Building upon this conceptual foundation, the thesis advances a knowledge transfer-
centric perspective as a unifying principle for solving the challenges of OWCL.
Within this framework, three novel models are introduced to address complemen-
tary aspects of continual adaptation. The first, Pro-KT, develops a prompt-based
mechanism for representing and transferring both task-specific and task-agnostic
knowledge. By dynamically encoding and reusing knowledge across tasks, Pro-KT
enhances the system’s ability to maintain adaptability while preserving previously
learned information, achieving a balanced trade-off between stability and plasticity.
Extending this direction, PEAK explores the few-shot open-world continual learning



setting, where labeled data are scarce and task boundaries are ambiguous. Through
a joint architecture designed to mitigate representation collapse and boundary un-
certainty, PEAK demonstrates strong resilience in learning under limited supervision
while maintaining effective open-set detection. (Chapter 4 & Chapter 5)

To provide a unified theoretical and architectural foundation for OWCL, the the-
sis introduces HoliTrans, a holistic framework that integrates open-set recognition
with continual learning through a shared decision space. By analyzing the intrin-
sic coupling between open-set dynamics and task progression, HoliTrans derives
optimization principles that govern effective learning in open environments and em-
beds them into a transferable model design. This framework not only achieves
state-of-the-art empirical performance but also offers provable guarantees on de-
cision boundary stability and knowledge preservation, bridging the gap between
theoretical understanding and algorithmic implementation. (Chapter 6)

Beyond theoretical and algorithmic contributions, this thesis demonstrates the prac-
tical value of OWCL through an applied study in cross-regional fraud detection.
Real-world financial systems often face the dual challenges of distributional shifts
and evolving fraudulent behavior across regions. To address these, the CCL frame-
work is proposed, formulating fraud detection as a continual graph learning problem.
CCL combines prototype-based knowledge replay, parameter smoothing, and het-
erogeneous graph modeling to adapt to region-specific fraud patterns while retaining
critical knowledge from previous distributions. Experimental results show that CCL
not only mitigates catastrophic forgetting but also enhances cross-regional adapt-
ability, thus validating the real-world relevance and scalability of OWCL principles.
(Chapter 7)

Collectively, the four research questions explored in this thesis chart a coherent
trajectory from theoretical formulation to holistic methodology and real-world val-
idation. The contributions of Pro-KT, PEAK, HoliTrans, and CCL together form
an evolving narrative of how knowledge can be accumulated, transferred, and gen-
eralized in open, uncertain, and continually changing environments. This work
establishes open-world continual learning as a distinct and necessary paradigm for
next-generation artificial intelligence—one that is capable of embracing novelty, un-
certainty, and continual evolution. The findings of this thesis not only deepen our
theoretical understanding of open learning systems but also open new avenues for
future research in lifelong, knowledge-centric, and robust Al
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