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7
Samenvatting, discussie en toekomstig werk

7.1 Samenvatting van de dissertatie

Deze dissertatie richt zich op de dringende behoefte aan efficiënte en betrouwbare kwaliteitscon-

trole (QA)-tools voor geautomatiseerde contourbepaling van organen en tumoren bij ra-

diotherapie. Hoewel deep learning modellen een aanzienlijke versnelling bieden, kun-

nen de daaropvolgende handmatige QA- en verfijningsstappen tijdrovend zijn en zo de

winst gedeeltelijk tenietdoen, wat leidt tot een knelpunt in klinische workflows. Twee

hoofdthema’s binnen QA worden onderzocht: foutdetectie (waar zijn contouren waarschi-

jnlijk fout) en foutcorrectie (hoe corrigeer je die efficiënt), in zowel pre- als post-commissioning

fasen.

Dit proefschrift onderzoekt specifiek: a) de ontwikkeling van een geautomatiseerde en

schaalbare workflow voor het evalueren van de dosimetrische impact van autocontouren

vóór ingebruikname (Chapter 2), b) het potentieel van Bayesiaanse modellen en train-

ingsverliezen om onnauwkeurige voorspellingen te detecteren in de post-ingebruiknamefase

door gebruik te maken van de bijbehorende onzekerheid (Chapter 3 & Chapter 4), en

c) de verbetering van de efficiëntie van foutcorrectie met behulp van AI-ondersteunde

verfijningstools (Chapter 5). Het overkoepelende doel van dit proefschrift is dan ook om

verschillende QA-methodologieën te verkennen, zowel vóór als na ingebruikname van

autocontouringtools voor hoofd-halsradiotherapie.

7.2 Hoofdstuk Samenvattingen

7.2.1 Hoofdstuk 2

Dit hoofdstuk richtte zich op de noodzaak van grootschalige pre-commissioning dosimetrische

evaluaties van automatisch gecontourde organen-at-risk (OARs). Het belangrijkste re-

sultaat was een geautomatiseerde workflow voor planningsoptimalisatie, gebaseerd op

bestaande klinische instellingen, bekend als robotic process automation (RPA). Via script-

ing in het Treatment Planning System (TPS) werd een handmatige planningsprocedure

geautomatiseerd.

Een studie werd uitgevoerd op 100 hoofd-hals patiënten (70 fotonen, 30 protonen).

Resultaten toonden minimale dosimetrische verschillen tussen automatische en hand-

matige contouren. Dit wijst erop dat geometrische afwijkingen veroorzaakt door automa-
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tische contouren beperkte klinische impact hebben, en bevestigt de bruikbaarheid van de

voorgestelde QA-aanpak.

7.2.2 Hoofdstuk 3

Dit hoofdstuk onderzocht hoe modelkeuzes de onzekerheid beïnvloeden, die als proxy

kan dienen voor fouten in post-commissioning QA. Twee Bayesiaanse modellen (DropOut

en FlipOut) werden geëvalueerd met behulp van Expected Calibration Error (ECE) en een

nieuwe metriek, Region-based Accuracy-vs-Uncertainty (R-AvU). Waar ECE een informati-

etheoretische benadering is, biedt R-AvU een meer visuele evaluatie. Training met cross-

entropy verlies (CE) gaf betere calibratie (lagere ECE). FlipOut-CE toonde betere onzeker-

heidsdekking in foutieve regio’s dan DropOut-CE volgens de R-AvU grafieken. Deze resul-

taten roepen de vraag op: welke metriek moet men gebruiken bij onzekerheidsevaluatie

voor foutdetectie?

7.2.3 Hoofdstuk 4

Hoewel Bayesiaanse modellen onzekerheidskaarten kunnen produceren, is hun klinisch

nut afhankelijk van de mate waarin deze kaarten overeenkomen met echte fouten. Hoofd-

stuk 2 toonde aan dat deze overeenstemming vaak suboptimaal is. Dit hoofdstuk in-

troduceerde een differentieerbaar verlies op basis van de Accuracy-vs-Uncertainty (AvU)

metriek, die expliciet onzekerheid stimuleert waar fouten voorkomen. De kaarten werden

geëvalueerd via ROC-curves ("uncertainty-ROC") en Precision-Recall-curves. Een belan-

grijk aspect was het onderscheid tussen "fouten" (klein, acceptabel) en "falen" (groter,

vereisen interventie).

De AvU-verliesfunctie verbeterde significante calibratie (ECE) en de overeenkomst tussen

onzekerheid en fouten (ROC-AUC, PRC-AUC), voor zowel in-distributie (ID) als out-of-

distributie (OOD) datasets. AvU presteerde zelfs beter dan ensemble-modellen. Dit toont

dat optimalisatie op ECE niet voldoende is om bruikbare onzekerheidskaarten te produc-

eren — AvU biedt een unieke meerwaarde.

7.2.4 Hoofdstuk 5

De focus ligt hier op foutcorrectie, post-commissioning. In dit hoofdstuk werd de ef-

ficiëntie en kwaliteit van handmatige borstels vergeleken met een AI-ondersteunde “AI

potlood”-tool. Bestaande AI-potloodtools missen vaak evaluatie met menselijke gebruik-

ers en werken enkel in 2D.

Een webinterface werd ontwikkeld waarin gebruikers 2D-aanduidingen (scribbles) kon-

den geven, waarna de AI potlood 3D-refinements uitvoerde op CT+PET scans van hoofd-

hals tumoren. Zowel klinische als niet-klinische gebruikers namen deel. De AI-potlood

was 5–78% sneller bij niet-experts en 16–97% sneller bij experts, terwijl de uiteindelijke

kwaliteit gelijkwaardig bleef. De AI potlood bereikte snel een hoge kwaliteit, in tegen-
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stelling tot de geleidelijke verbetering bij de handmatige tool. Dit toont de kracht van

AI-geassisteerde QA bij radiotherapie.

7.3 Discussie en toekomstig werk

Deze dissertatie adresseert belangrijke uitdagingen in veilige, efficiënte en betrouwbare

integratie van QA-tools voor deep learning-gebaseerde auto-contouring in de kliniek. Zowel

foutdetectie als foutcorrectie, in pre- en post-commissioning scenario’s, worden aangepakt,

met nadruk op menselijke bruikbaarheid.

Toekomstige onderzoekslijnen zijn:

• Klinische betrokkenheid - Technisch onderzoek probeert vaak te optimaliseren op

basis van bepaalde, vooraf gespecificeerde criteria, maar vertaalt dit niet naar de

klinische praktijk. Dit gebrek aan ’van tafel tot bed’-mentaliteit wordt vaak veroorza-

akt door de structuur van onderzoeksprojecten. Een ontbrekende factor is vaak

voldoende klinische betrokkenheid, waardoor onderzoek op een stoffige plank blijft

liggen. Onderzoekers zouden moeten overwegen hun teams en mentoren zo in te

richten dat ze multidisciplinaire vaardigheden inzetten om de volledige breedte en

diepte van het probleem te begrijpen.

• Vernieuwing van contourrichtlijnen – Chapter 2 toonde zowel correlaties als non-

correlaties tussen DICE en dosisverschillen. Grotere studies zouden de contour-

richtlijnen opnieuw kunnen definiëren, en mogelijk vaste anatomische richtlijnen

laten evolueren naar richtlijnen met marges die rekening houden met inter- en intra-

observatorvariabiliteit.

• Het nut van onzekerheid in klinische settings begrijpen – Onzekerheid is een wiskundig

concept dat de potentie heeft om inzicht te bieden in de betrouwbaarheid van datages-

tuurde technieken zoals deep learning. De community gebruikt echter vaak puur

wiskundige concepten zoals ECE (met zijn groeperingsmechanisme) om het nut van

de onzekerheid van een model te evalueren. Dergelijke statistieken leggen onzek-

erheid niet pixelgewijs (of op een gedetailleerde manier) vast. Het verleggen van de

grenzen van bestaande statistieken, hoe belangrijk ook, is dus niet voldoende om

onderzoeksinnovaties aan te passen aan de dagelijkse klinische praktijk.

• Pixel- vs. slice- vs. regio-onzekerheid: Het is mogelijk dat er een praktische limiet

is aan de mate waarin clinici kunnen profiteren van ’onzekerheidsafstemming’ vo-

ordat het leidt tot cognitieve overbelasting. Enerzijds kan te veel op onzekerheid

gebaseerde besluitvorming (bijv. per pixel) cognitief veeleisend zijn. Anderzijds

biedt gemiddelde onzekerheid (bijv. op het niveau van een plak of orgaan/tumor)

mogelijk niet effectief houvast voor het verfijnen van contouren. Daarom moeten
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onderzoekers nadenken over de granulariteit van onzekerheid die we nodig hebben

in medische beeldsegmentatietoepassingen.

• Verliesfuncties en klinische bruikbaarheid: De DICE-loss is een geometrie-gebaseerde

verliesfunctie, omdat het kijkt naar de algehele structuur en vorm van de ’ground

truth’ en de voorspelling. Verrassend genoeg presteerde een pixel-gebaseerde aan-

pak, namelijk de cross-entropy loss, echter beter in het weergeven van de werkelijke

vertrouwelijkheid van zijn voorspellingen. Daarom moeten makers van autocontouring-

tools dieper nadenken over de manier waarop hun verliesfuncties de ervaring van

de eindgebruiker beïnvloeden.

• De eisen voor de dataset analyseren – Een van de belemmeringen voor het ver-

talen van onderzoek naar de klinische praktijk is de grote hoeveelheid benodigde

trainingsdata. De literatuur laat echter vergelijkbare prestaties zien met datasets

van verschillende groottes. Meer werk met hulpmiddelen zoals leercruves kan de

gemeenschap beter informeren over de minimale vereisten voor datasets om te vol-

doen aan klinische normen voor het contouren van organen en doelwitten.

• Frameworks voor klinische validatie in de praktijk – Frameworks voor klinische val-

idatie in de praktijk – Tools voor robuuste experimentatie en evaluatie zijn wat elk

vakgebied vooruithelpt, aangezien ze de drempels voor nieuwkomers verlagen om

bij te dragen. Dit is te zien bij programmeertalen zoals Python en deep learning

frameworks zoals Tensorflow en PyTorch. Een vergelijkbaar voorbeeld voor medis-

che beeldsegmentatie is het grand-challenge.org-platform. Nu deep learning tools

steeds gangbaarder worden in de medische beeldvorming, moet de gemeenschap

zich richten op de ontwikkeling van vergelijkbare frameworks voor onzekerheid als

een proxy voor foutdetectie en voor interactieve segmentatie.

• Vertrouwen in AI-gedreven acties – Voor de context van interactieve contourverfijn-

ing, hoe kunnen we ervoor zorgen dat clinici de door AI gegenereerde verfijningen

voldoende vertrouwen om niet terug te vallen op handmatige correcties? En kun-

nen dergelijke tools zich aanpassen aan de diverse manieren waarop verschillende

clinici contourbewerking benaderen? Het kan dus nodig zijn om statistieken te

gebruiken die bijhouden hoe betrouwbaar het model is in lokale gebieden waar de

gebruiker zijn krabbels maakt. En doet het model stiekem onterechte voorspellin-

gen in gebieden ver weg van de interactie van de gebruiker?.

• Rol van regelgevende instanties: Gezondheidszorgsystemen moeten worden gereg-

uleerd door overheidsinstanties vanwege de kritieke aard van de dienst die ze lev-

eren. Onderzoeks-innovaties overtreffen echter vaak de regulerende instanties en in

de tussentijd bestaat de mogelijkheid dat innovaties die niet rigoureus of nauwkeurig
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zijn getest, door artsen kunnen worden gebruikt. In het geval van op deep learning

gebaseerde auto-contouring is er bijvoorbeeld heel weinig discussie over de noodzaak

van land-/demografisch-gebaseerde benchmark datasets. Dit maakt het voor klin-

ische innovators zeer omslachtig om te bepalen hoe ze commerciële oplossingen

moeten evalueren, aangezien zij degene moeten zijn die hun eigen interne dataset

samenstellen, die vaak rommelig is vanwege de drukke werkdruk van clinici. We

smeken de lezer van dit proefschrift om over dit punt na te denken en de bovenge-

noemde lacune op te vullen..

7.4 Algemene conclusies

In een tijdperk van toenemende incidentie van kanker en beperkte klinische middelen,

levert dit proefschrift essentiële hulpmiddelen om de veilige, effectieve integratie van deep

learning auto-contouring in de radiotherapieworkflow te waarborgen. Door praktische,

mensgerichte methoden te bieden voor zowel precieze foutdetectie als efficiënte foutcor-

rectie, helpt dit werk de kloof te overbruggen tussen geavanceerde deep learning-modellen

en hun veilige en effectieve kwaliteitsbeoordeling voor integratie in de dagelijkse klinische

radiotherapiepraktijk. We hopen anderen te inspireren om werk na te streven dat de kloof

overbrugt tussen wiskundige onzekerheidsmetrieken en praktisch klinisch vertrouwen.

Evenzo moeten interactieve AI-hulpmiddelen evolueren om de diverse manieren waarop

clinici werken te weerspiegelen.

Uiteindelijk streeft dit onderzoek ernaar om patiëntenzorg van hoge kwaliteit te waar-

borgen en de workflowefficiëntie te verbeteren, waarbij de positieve resultaten bedoeld

zijn om mensgerichte deep learning voor medische beeldvorming te informeren en te

bevorderen.
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