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6

Summary, discussion and future work

6.1 Thesis Summary

This thesis addresses the critical need for efficient and reliable quality assurance (QA)
tools for automated organ and tumor contouring in radiotherapy. While deep learning
models offer significant acceleration in contouring, the subsequent manual QA and re-
finement steps can be time-consuming and offset part of these gains, creating a bottleneck
in clinical workflows. Two core themes of QA are explored in this thesis: error detection
(identifying where contours are likely incorrect) and error correction (efficiently refining
those errors) in either pre- or post-commissioning phases.

Specifically, this thesis explores: a) the development of an automated and scalable
workflow for evaluating the pre-commissioning dosimetric impact of auto-contours (Chap-
ter 2), b) the potential of Bayesian models and training losses to detect inaccurate predic-
tions in the post-commissioning phase by leveraging their associated uncertainty (Chap-
ter 3 & Chapter 4), and c) the improvement of error correction efficiency through Al-

assisted refinement tools (Chapter 5). Thus, the overarching goal of this thesis is to explore
different QA methodologies both pre- and post-commissioning of auto-contouring tools
for head-and-neck radiotherapy.

6.2 Chapter Recapitulations

6.2.1 Chapter2

This chapter addressed the need of large-scale pre-commissioning dosimetric evaluations
of auto-contoured organs-at-risk (OARs). The main contribution was the development
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and assessment of an automated plan optimization workflow. This workflow was de-
signed to emulate the clinic’s treatment planning protocol by reusing existing clinical plan
parameters (e.g., beam settings, objective weights). This approach, termed robot process
automation (RPA), converts the complex manual planning process into a repeatable, step-
by-step script using the Treatment Planning System’s (TPS) scripting interface. This form
of automated planning process is much faster compared to manual planning and allows
one to scale pre-commissioning auto-contour error detection.

A study was conducted on a large cohort of 100 head-and-neck cancer patients (70
photon and 30 proton plans), allowing for robust statistical analysis. Results showed that
using auto-contours resulted in minimal differences for dose coverage (e.g. Dyean, D2%)
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and dose-related toxicities (i.e., NTCP) when compared to manual contours. Thus, this
process of pre-commissioning QA showed that geometric differences introduced by auto-
contouring had minimal clinical dosimetric consequences.

6.2.2 Chapter 3

Bayesian modeling choices can affect prediction uncertainty, which can potentially serve
as a proxy for error in post-commissioning QA. Here, two Bayesian models (DropOut and
FlipOut) were investigated and evaluated using expected calibration error (ECE) and a
novel metric called region-based accuracy-vs-uncertainty (R-AvU). While ECE takes a more
information theoretic approach to evaluate the models truthfulness, R-AvU takes a more
visual approach to evaluate uncertainty utility. Experiments revealed that training with
cross-entropy (CE) loss leads to better model calibration (i.e., ECE). Also, despite similar
ECE values, FlipOut-CE demonstrated better uncertainty coverage in inaccurate regions
than DropOut-CE when analyzed using R-AvU graphs. These results raise a question in
context of translating research outputs to clinics: what metrics should one explore when
evaluating for uncertainty as a proxy for contour error detection.

6.2.3 Chapter 4

While Bayesian models can produce uncertainty maps, their clinical utility depends on
these maps aligning with true errors. Insights from Chapter 3 revealed that while Bayesian
models produce uncertainty, its direct correspondence with prediction errors is often sub-
optimal. This chapter introduced a differentiable loss formulation of the Accuracy-vs-
Uncertainty (AvU) metric to explicitly encourage uncertainty where errors exist. Uncer-
tainty heatmaps were evaluated against voxel inaccuracies using Receiver Operating Char-
acteristic (ROC) curves (specifically, "uncertainty-ROC") and Precision-Recall (PR) curves.
A key aspect of the evaluation was the distinction between segmentation "failures" (larger
errors requiring intervention) and "errors" (smaller, acceptable inaccuracies akin to inter-
observer variation), with only "failures" contributing to the "true" inaccuracy map.

Results showed that the AvU loss significantly improved calibrative (ECE) and uncertainty-
error correspondence (ROC-AUC, PRC-AUC) metrics for both in-distribution (ID) and out-
of-distribution (OOD) datasets. Compared to ensemble models (which use more param-
eters), the AvU model showed comparable or superior performance in uncertainty-error
correspondence. Importantly, the study revealed that training for model calibration (e.g.,
using ECE-focused methods) does not necessarily translate to improved uncertainty out-
puts for error detection, emphasizing the unique advantage of the AvU loss. Thus, this
chapter explored a novel technical approach to improve the utility of deep learning mod-

els for error detection in post-commissioning QA.
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6.2.4 Chapter5

Here the focus is shifted from post-commissioning error detection to post-commissioning
error correction for auto-contour quality assurance. This chapter specifically aimed to
compare the time-efficiency and contour quality of traditional manual brush tools against
an Al-assisted "Al pencil" for auto-contour refinement. Many existing Al pencil methods
in literature often lacked comprehensive human user evaluations, being limited to 2D set-
tings or robotic users. A web-based interface was developed featuring an Al pencil capable
of interpreting sparse 2D visual cues (scribbles) from users to generate 3D refinements of
tumor contours on head-and-neck CT+PET scans.

The study enlisted the help of both non-clinical and clinical users to participate in
refinement sessions of a patients auto-contour. The Al pencil consistently demonstrated
superior time efficiency, being 5%-78% faster in non-expert sessions and 16%-97% faster
in expert sessions compared to the manual brush. This remarkable speed-up is primarily
attributed to the Al pencil’s ability to propagate sparse 2D scribble inputs into compre-
hensive 3D contour refinements, obviating the need for tedious slice-by-slice editing. And
despite the significant speed advantage, the final contour quality achieved with the Al
pencil was equivalent to that of the manual brush. The Al pencil typically achieved a sharp
increase in contour quality early in the refinement process before plateauing, contrasting
with the manual brush’s more gradual improvement. By demonstrating its effectiveness
with human users in a 3D context, this work significantly contributes to alleviating the QA

bottleneck and enhancing the overall efficiency of radiotherapy workflows.

6.3 Discussion and future work

The research presented in this thesis collectively addresses critical challenges in the safe,
efficient and trustworthy integration of QA tools for deep learning-based auto-contouring
models in clinical radiotherapy. By tackling both error detection and error correction
within the QA workflow in both pre- and post-commissioning scenarios, this thesis con-
tributes to advancing human-centric Al applications in medical image segmentation.

Building upon the foundations laid in the aforementioned chapters, several discussion
points and promising avenues for future research emerge:

¢ Clinical buy-in — Often technical research tries to optimize on certain prespecified
metrics and does not translate this into the clinic. This lack of bench-to-bedside
attitude is often caused due to the structure of research projects. A missing factor
is often sufficient clinical buy-in/involvement which leads to research being left on
dusty shelves. Researchers should consider structuring their teams and mentors
that involve multi-disciplinary skills to understand the full breadth and depth of the
problem at hand.
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¢ Renewing contouring guidelines — Chapter 2 showed both correlations and non-
correlations between DICE and dose differences. Larger studies could redefine con-
touring guidelines, potentially evolving fixed anatomical guidelines into those with

margins that could accommodate inter- and intra-observer variability.

¢ Understanding the utility of uncertainty in clinical settings — Uncertainty is a math-
ematical concept that has the potential to offer insights into the confidence of data-
driven techniques like deep learning. However, often the community uses pure
mathematical concepts like ECE (with its grouping mechanism) to evaluate the util-
ity of a models uncertainty. Such metrics dont capture uncertainty in a pixel-wise
(or granular manner). Thus, pushing the boundaries of existing metrics, although
important, is not sufficient to adapt research innovations to daily clinical practice.

¢ Pixel-vs-Slice-vs-Region Uncertainty — It is possible that there is a practical limit
to how much “uncertainty tuning” clinicians can benefit from before it becomes
cognitive overload. On the one hand, too much uncertainty-driven decision making
(e.g., pixel-wise) can be cognitively taxing. However, on the other hand, averaged
uncertainty (e.g., on the slice or organ/tumor level) may not effectively guide con-
tour refinement actions. Thus, researchers need to ponder on the granularity of

uncertainty that we need in medical image segmentation applications.

* Connecting loss functions to clinical usability — The DICE loss is a geometry-based
loss as it looks at the overall structure and shape of the ground truth and prediction.
However, surprisingly a pixel-based approach i.e., the cross-entropy loss performed
better at being truthful about its confidence in its predictions. Thus, makers of auto-
contouring tools need to think deeper on how their loss functions affect the end
users experiences.

* Analysing dataset requirements — One of the barriers to translating research into
clinical practise is the high amount of training data required. However, literature
shows similar performance with varying sizes of datasets. More work with tools like
learning curves can inform the community better on the minimal dataset require-

ments to achieve clinical standards for contouring of organs and targets.

¢ Frameworks for real world clinical validation — Tools for robust experimentation and
evaluation are what drive any field forward as it lowers the barriers for newcomers
to contribute to the field. This can be seen with programming languages like Python
and deep learning frameworks like Tensorflow and PyTorch. A similar example for
medical image segmentation is the grand-challenge . org platform. Thus, as deep
learning tools become more common in the field of medical imaging, the commu-
nity needs to focus on how to build similar frameworks for uncertainty as a proxy

for error detection and also for interactive segmentation.


grand-challenge.org

¢ Trust in AI-driven actions — For the case of interactive contour refinement, how do
we ensure clinicians trust Al-generated refinements enough to avoid reverting to
manual corrections? And can such tools adapt to the diverse ways different clini-
cians approach contour editing? Thus, there may be a need for metrics that track
how reliable is the model in local regions where the user makes their scribbles. And
does the model secretly make any spurious predictions in regions far away from the
users interaction.

* Role of regulatory bodies — Healthcare systems need to be regulated by governmen-
tal bodies due to the critical nature of the service they provide. However, research
innovations often outpace regulatory bodies and in the meantime there is a possibil-
ity that innovations not rigorously or accurately tested can be used by clinicians. For
e.g., in the case of deep learning-based auto-contouring there is very little discus-
sion on the need for country/demographic-based benchmark datasets. Thus, it is
very cumbersome for clinical innovators to determine how to evaluate commercial
solutions since they need to be the ones to curate their own internal dataset which
often tend to be messy due to the busy workload of clinicians. We implore the reader
of this thesis to ponder upon this point and fill the aforementioned gap.

6.4 General conclusions

In an era of growing cancer incidence and limited clinical resources, this thesis contributes
essential tools for ensuring safe, effective integration of deep learning auto-contouring
into radiotherapy workflow. By offering practical, human-centric methods for both pre-
cise error detection and efficient error correction, this work helps bridge the gap between
advanced deep learning models and their safe and effective quality assessment for in-
tegration into daily clinical radiotherapy practice. We hope to inspire others to pursue
work that bridges the gap between mathematical uncertainty metrics and practical clin-
ical trust. Likewise, interactive Al tools must evolve to reflect the diverse ways clinicians
work.

Ultimately, this research aims to safeguard high-quality patient care and enhance work-
flow efficiency, with the positive results intended to inform and advance human-centric

deep learning for medical imaging.
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