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Abstract

Increased usage of automated tools like deep learning in medical image segmentation
has alleviated the bottleneck of manual contouring. This has shifted manual labour
to quality assessment (QA) of automated contours which involves detecting errors and
correcting them. A potential solution to semi-automated QA is to use deep Bayesian
uncertainty to recommend potentially erroneous regions, thus reducing time spent on
error detection. Previous work has investigated the correspondence between uncertainty
and error, however, no work has been done on improving the “utility" of Bayesian un-
certainty maps such that it is only present in inaccurate regions and not in the accu-
rate ones. Our work trains the FlipOut model with the Accuracy-vs-Uncertainty (AvU)
loss which promotes uncertainty to be present only in inaccurate regions. We apply
this method on datasets of two radiotherapy body sites, c.f. head-and-neck CT and
prostate MR scans. Uncertainty heatmaps (i.e. predictive entropy) are evaluated against
voxel inaccuracies using Receiver Operating Characteristic (ROC) and Precision-Recall
(PR) curves. Numerical results show that when compared to the Bayesian baseline the
proposed method successfully suppresses uncertainty for accurate voxels, with similar
presence of uncertainty for inaccurate voxels. Code to reproduce experiments is available
at https://github.com/prerakmody/bayesuncertainty-error-correspondence.


https://github.com/prerakmody/bayesuncertainty-error-correspondence

4.1 Introduction

In recent years, deep learning models are being widely used in radiotherapy for the task
of medical image segmentation. Although these models have been shown to accelerate
clinical workflows [129, 130], they still commit contouring errors [131]. Thus, a thorough
quality assessment (QA) needs to be conducted, which places a higher time and man-
power requirement on clinical resources. This creates a barrier to the adoption of such
deep learning models [132]. Moreover, it also creates an obstacle for adaptive radiotherapy
(ART) workflows, which have been shown to improve a patient’s post-radiation quality-of-
life [4]. This obstacle arises due to ART’s need of regular contour updates. Currently, com-
mercial auto-contouring tools do not have the ability to assist with quick identification

and rectification of potentially erroneous predictions [131, 132].

Quality assessment (QA) of incorrect contours would require two steps — 1) error detec-
tion and 2) error correction [133]. Currently, errors are searched for by manual inspection
and then rectified using existing contour editing tools. Error detection could be semi-
automated by recommending either potentially erroneous slices of a 3D scan [63], or
by highlighting portions of the predicted contours [58] or blobs [61]. Upon detection
of the erroneous region, the contours could be rectified using point or scribble-based
techniques [134, 135] in a manner that adjacent slices are also updated. For this work,
we will focus on error detection.

Various approaches to error detection have suggested using Bayesian Deep Learning
(BDL) and the uncertainty that it can produce as a method to capture potential errors
in the predicted segmentation masks [56, 58, 61, 63, 64, 66, 69]. Although such works
established the potential usage of uncertainty in the QA of predictions, it may not be
sufficient in a clinical workflow that relies on pixel-wise uncertainty as a proxy for error
detection. In our experiments with deep Bayesian models, we observed that the relation-
ship between prediction errors and uncertainty is sub-optimal, and hence has low clinical
“utility". Ideally, for semi-automated contour QA, the uncertainty should be present only
in inaccurate regions and not in the accurate ones. At times, literature usually refers to
this as uncertainty calibration [69, 136-139], but we find this term incorrect as historically,
calibration is referred to in context of probabilities of a particular event [140]. Thus, we
believe it is semantically incorrect to say uncertainty calibration and instead propose to

use the term uncertainty-error correspondence.

To create a Bayesian model that is incentivized to produce uncertainty only in inaccu-
rate regions, we use the Accuracy-vs-Uncertainty (AvU) metric [141] and its probabilistic
loss version [137] during training of a UNet-based Bayesian model [142]. This loss pro-
motes the presence of both accurate-if-certain (n,;) as well as inaccurate-if-uncertain
(nj,) voxels in the final prediction (Figure 4.1). With uncertainty present only around
potentially inaccurate regions, one can achieve improved synergy between clinical experts
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Figure 4.1: Method overview - A 3D medical scan (e.g. CT/MR) is input into a UNet-based
Bayesian neural net to produce both predicted contours (Pred) and predictive uncer-
tainty (Unc). While the cross-entropy loss is used to improve segmentation performance,
the Accuracy-vs-Uncertainty (AvU) loss is used to improve uncertainty-error correspon-
dence. The AvU loss is computed by comparing the prediction with the ground truth
(GT) at a specific uncertainty threshold using four terms: count of accurate-and-certain
(nac), accurate-and-uncertain (nay), inaccurate-and-certain (n;c) and inaccurate-and-
uncertain (ny) voxels.

and their deep learning tools during the QA stage. Our work is the first to use the AvU
loss in a dense prediction task like medical image segmentation and also with datasets
containing natural and not synthetic variations as was previously done [137]. This work
extends our conference paper [143] with additional datasets, experiments and metrics.
There, we adapt the original AvU loss by considering the full theoretical range of uncer-
tainties in the loss, rather than one extracted from the validation dataset [137]. For our
work we use the predictive entropy as an uncertainty metric [144].

Several other approaches have been considered in context of uncertainty, for e.g. en-
sembles, test time augmentation (TTA) and model calibration. While ensembles of mod-
els have good segmentation performance [62, 66], they are parameter heavy. TTA [60, 73]
performs inference by modulating a models inputs, but does not perform additional train-
ing, so may be unable to transcend its limitations. Calibration techniques attempt to make
predictions less overconfident [71, 145-149], however they do not explicitly align model
errors with uncertainty. All the above methods are benchmarked on the truthfulness of
their output probabilities (when compared against voxel accuracies) using metrics like
expected calibration error (ECE). However, a model with lower ECE than its counterparts
may not necessarily have higher uncertainty-error correspondence.

Finally, to evaluate calibrative and uncertainty-error correspondence metrics, one needs
to compute the “true" inaccuracy map. Similar to our conference paper [143] and inspired
by [58], we classify inaccuracies of predicted voxel maps into two categories: “errors"
and “failures" (see Section 4.8.1). Segmentation “errors" are those inaccuracies which
are considered an artifact similar to inter-observer variation, a phenomenon common
in medical image segmentation [9, 150]. Thus, we consider these smaller inaccuracies
to be accurate in our computations, under the assumption they do not require clinical
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intervention. In the context of contour QA, such voxels should ideally be certain. Hence,
only the segmentation “failures" are a part of the “true" inaccuracy map used to calculate
the calibrative and uncertainty-error correspondence metrics.

To summarize, our contributions are as follows:

¢ For the purpose of semi-automated quality assessment of predicted contours, we
aim to improve uncertainty-error correspondence (unc-err) in a Bayesian medi-
cal image segmentation setting, pioneering this in the context of radiation therapy:.
Specifically, we propose using the loss form of the Accuracy-vs-Uncertainty (AvU)
metric while training a deep Bayesian segmentation model.

* We compare our Bayesian model with the AvU loss against an ensemble of deter-
ministic models, five approaches employing calibration-based losses and also test
time augmentation. We also perform an architectural comparison by comparing
models with Bayesian convolutions placed in either the middle layers or decoder
layers of a deep segmentation model.

¢ We benchmark unc-err of the segmentation models on both in- and out-of-distribution
radiotherapy datasets containing head-and-neck CT and Prostate MR scans. Models
are benchmarked on these datasets across discriminative, calibrative and uncertainty-

error correspondence metrics.
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4.2 Related Works

4.2.1 Epistemic and aleatoric uncertainty

Recent years have seen an increase in work that utilizes probabilistic modeling in deep
medical image segmentation. The goal has been to account for uncertainty due to noise
in the dataset (aleatoric uncertainty) as well as in the limitations of the predictive mod-
els learning capabilities (epistemic uncertainty). Noise in medical image segmentation
refers to factors like inter- and intra- annotator contour variation [9, 150] due to factors
such as poor contrast in medical scans. Works investigating aleatoric uncertainty model
the contour diversity in a dataset by either placing Gaussian noise assumptions on their
output [67] or by assuming a latent space in the hidden layers and training on datasets
containing multiple annotations per scan [151]. A popular and easy-to-implement ap-
proach to model for aleatoric uncertainty is called test-time augmentation (TTA) [57].
Here, different transformations of the image are passed through a model, and the resulting
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outputs are combined to produce both an output and its associated uncertainty.

In contrast to aleatoric uncertainty, epistemic uncertainty could be used to identify
scans (or parts of the scan) that are very different from the training dataset. Here, the
model is unable to make a proper interpolation from its existing knowledge. Methods
such as ensembling [62] and Bayesian posterior inference (e.g., Monte-Carlo DropOut,
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Stochastic Variational Inference) [56, 58, 61, 63, 64, 137, 152] are common methods to
model epistemic uncertainty in neural nets. While Bayesian modeling is a more math-
ematically motivated and hence, principled approach to estimating uncertainty, ensem-
bles have been motivated by the empirically-proven concept of bootstrapping. In con-
trast to Bayesian models where the perturbation is modelled by placing distributions on
weights, ensembles use either different model weight initializations, or different subsets
of the training data. In Bayesian inference techniques, perturbations are introduced in
the models activation or weight space. Dropout [153] and DropConnect [154] are popular
techniques that apply the Bernoulli distribution on these spaces. Stochastic variational
inference (SVI) is another type of weight space perturbation that usually assumes the
more expressive Gaussian distribution on the weights. Bayes by Backprop [155] and its
resource-efficient variant such as FlipOut [142] are examples of SVI. For our work, we
consider approaches that are designed for both epistemic uncertainty (Ensembles and

SVI models) as well as aleatoric uncertainty (TTA).
4.2.2 Uncertainty use during training

Other works also use the uncertainty from a base segmentation network to automatically
refine its output using a follow-up network. This refinement network can be graphical
[156] or simply convolutional [58]. Uncertainty can also be used in an active learning
scenario, either with [157] or without [68] interactive refinement. Shape-based features of
uncertainty maps have also been shown to identify false positive predictions [72]. Simi-
larly, we too use uncertainty in our training regime, but with the goal of promoting uncer-
tainty only in those regions which are inaccurate, an objective not previously explored in
medical image segmentation.

4.2.3 Model calibration

In context of segmentation, model calibration error is inversely proportional to the align-
ment of a models output probabilities with its pixel-wise accuracy. Currently there is
no proof that reduction in model calibration error leads to improved uncertainty-error
correspondence. However, a weak link can be assumed since both are derived from a
models output probabilities. It is well known that the probabilities of deterministic mod-
els trained on the cross entropy (CE) loss are not well calibrated [145]. This means that
they are overconfident on incorrect predictions and hence fail silently. This, which is an
undesirable trait in context of segmentation QA and needs to be resolved.

To abate this overconfidence issue, methods such as post-training model calibration
(or temperature scaling) [65, 145, 158], ensembles [62, 159], calibration-focused training
losses [146, 148, 149, 160] and calibration-focused training targets [71, 147] have been
shown to improve model calibration for deterministic models. Temperature scaling, a
post-training model calibration technique, has been shown to perform poorly in out-of-
domain (OOD) settings [159], relies wholly on an additional validation dataset and/or
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needs explicit shape priors [65]. FinerLocal temperature scaling techniques have been
proposed that calibrate on the image or pixel level [158], however they are still concep-
tually similar to the base method and are hence plagued by the same concerns. Others
[65] used a shape prior module for out-of-domain robustness, but they only introduced
synthetic textural variations in their work.

Another approach to model calibration is to regularize a model during train to pro-
mote uncertainty. For e.g. the ECP [146] technique explicitly adds the negative entropy to
the training loss. Conversely, the Focal loss [148, 161] achieves thisattempts to calibrate
a model implicitly by assigning lower weights (during training) to more confident predic-
tions. Other methods smooth the hard targets of the ground truth towards a uniform dis-
tribution in the limit. For e.g. Label Smoothing [147, 162] does this by modifyingmodifies
the class distribution of a pixel by calculating a weighted average (using parameter a)
between the hard target and a uniform distribution. On the other hand, Spatial Vary-
ing Label Smoothing (SVLS) [71] modifies a pixel’s class allocation by considering classes
around it. To avoid excessively making the models predictions uniform, Margin-based La-
bel Smoothing (MBLS) [149, 163] reformulates the above approaches by showing that they

essentially perform loss optimization where an equality constraint is applied on a pixels
logits. MBLS attempts to achieve the best discriminative-calibrative trade-off by softening
this equality constraint. They subtract the max logit of a pixel with its other logits and
only penalize those logit distances that are greater than a predetermined margin. Others
extend thisthe MBLS framework by further tuningeither learning class-specific weights
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for the equality constraint [164] or reformulating SVLS to a similar formulation similar to
MBLS [160]. Although these methods attempt to make models less overconfident, they do
not explicitly align a model’s error to its uncertainty.

There also exist other approaches to model calibration for e.g., multi-task learning
[52], mixup augmentation [165] and shape priors [166]. Multi-task learning requires addi-
tional data that may not always be present, while mixup creates synthetic samples which
are not representative of the real data distribution. Finally, shape priors may not be appli-
cable to tumors with variable morphology.

Model calibration techniques are evaluated by metrics like Expected Calibration Error
(ECE) and its variants [167], however others have also proposed terms like Uncertainty-
Calibration Error (UCE) [168, 169]. While ECE evaluates the equivalency between ac-
curacy and predicted probability, UCE compares inaccuracy and uncertainty. However,
while it is semantically appropriate to expect an average probability of p (0 < p < 1) to
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give the same average accuracy (i.e., the mathematical formulation of ECE), the same is
not appropriate for inaccuracy and uncertainty u (0 < u < 1). Hence, UCE isnot applicable
to our work.

To conclude, the issue with each of the aforementioned techniques for epistemic, aleatoric
and calibrative modeling is that they do not explicitly train the model to develop an innate
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sense of potential errors on a given segmentation task. Given that this is the primary
requirement from a contour QA perspective, these models may be unable to have good
uncertainty-error correspondence.

4.3 Methods

4.3.1 Neural Architecture

We adopt the OrganNet2.5D neural net architecture [170] which is a standard encoder-
decoder model connected by four middle layers. It contains both 2D and 3D convolutions
in the encoder and decoder as well as hybrid dilated convolutions (HDC) in the middle.
This network performs fewer pooling steps to avoid losing image resolution and instead
uses HDC to expand the receptive field. To obtain uncertainty corresponding to the out-
put, we add stochasticity to the deterministic convolutional operations by replacing them
with Bayesian convolutions [142, 155]. We experiment with replacing deterministic layers
in both the HDC as well as the decoder layers to understand the effect of placement.

In a Bayesian model, a prior distribution is placed upon the weights and is then up-
dated to a posterior distribution on the basis of the training data. During inference (Equa-
tion (4.1)), we sample from this posterior distribution p(W|D) to estimate the output dis-

tribution p(y|x, D) with x, y and W being the input, output and neural weight respectively:

PW1%,D) = Bw—pwin) | py1x, W)). @.1)

This work uses a Bayesian posterior estimation technique called stochastic variational
inference, where instead of finding the true, albeit intractable posterior, it finds a distribu-
tion close to it. We chose FlipOut-based [142] convolutions which assume the distribution
over the neural weights to be a Gaussian and are factorizable over each hidden layer. Pure
variational approaches would need to sample from this distribution for each element of
the mini-batch [155]. However, the FlipOut technique only samples once and multiplies
that random sample with a Rademacher matrix, making the forward pass less computa-

tionally expensive.
4.3.2 Training Objectives

In this section , we use a notation format, where capital letters denote arrays while non-
capital letters denote scalar values.

4.3.2.1 Segmentation Objective

Upon being provided a 3D scan as input, our segmentation model predicts for each class
c € C, a 3D probability map P, of the same size. Each voxel i € N has a predicted prob-
ability vector P! containing values p’ for each class that sum to 1 (due to softmax). To

calculate the predicted class of each voxel };i, we do:

yi= argmaxpz. (4.2)
ceC
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To generate a training signal, the predicted probability vector Piis compared to the
corresponding one-hot vector Y’ in the gold standard 3D annotation mask. Y? is com-
posed of yé € {0,1}. Inspired by [171, 172], we re-frame the binary cross-entropy loss
(Equation (4.3)), as penalizing both the foreground (yé = 1) and background ((1 - yé') =1
voxels of the probability maps of each class with a weight w,:

1
Lcg=—— E
CE |C|( We

ceC

Y (vim@h+a-yhma- ﬁé))‘). 4.3)

ieN

Note, we do not utilize the DICE loss for training as it has been shown to have lower
model calibration metrics [173]. Also, since the CE loss is susceptible to fail during a class-
imbalance, we use its weighted version.

4.3.2.2 Uncertainty Objective

In a Bayesian model, multiple forward passes (m € M) are performed and the output 3D
probability maps (P;),, of each pass are averaged to output P, (Equation (4.1)). Using
P, we can calculate a host of statistical measures like entropy, mutual information and
variance. We chose entropy as it has been shown to capture both epistemic uncertainty,
which we explicitly model in FlipOut layers, as well as aleatoric uncertainty, which is
implicitly modeled due to training data [144]. We use the predicted class probability vector
P for each voxel and calculate its (normalized) entropy u':

. 1 Ai A,
P — In(p?).
T CEZCPC n(pf) (4.4)

Since we have access to the gold standard annotation mask, each voxel has two prop-
erties: accuracy and uncertainty. Accuracy is determined by comparing the gold standard
class y' to the predicted class );i. We use this to classify them in four different categories
represented by 1,¢, nau, Nic and ny,, where n stands for the total voxel count and a, i, u, ¢
represent the accurate, inaccurate, uncertain and certain voxels. A visual representation
of these terms can be seen in Figure 4.1. Here, a voxel is determined to be certain or
uncertain on the basis of a chosen uncertainty threshold ¢ € T where the maximum value
in T is the maximum theoretical uncertainty threshold [143]. The aforementioned four
terms are the building blocks of the Accuracy-vs-Uncertainty (AvU) metric [141] as shown
in Equation (4.5) - Equation (4.7) and it has a range between [0,1]. A higher value indicates
that uncertainty is present less in accurate regions and more in inaccurate regions, thus

improving the “utility" of uncertainty as a proxy for error detection.
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Ngct + Byt

AVU' = 4.5)
Ngct + Mgyt + Nt + Nyt
nle= Y 1, nb= Y 1 (4.6)
e b
nitc = Z 1’ nitu = Z 1 (4'7)
ie{)’ijj)éit&} ie{yﬁygt&}

To maximize AvU for a neural net, one can turn it into a loss metric to be minimized.
As done in [137] for an image classification setting, we minimize its negative logarithm
(Equation (4.8)) to improve mathematical stability of gradient descent. However, the AvU
metric, as defined above, is not differentiable with respect to the neural net’s weights.
This is due to all its constituent terms being produced either due to thresholding or max
operations which introduce discontinuities that disrupt gradient flows.. This is because
the model’s outputs are simply used to create a mask and hence no backpropagation can
take place. The AvU metric is made differentiable by instead using the uncertainty u’
derived from Pi (Equation (4.4)), thus allowing for gradient flows. Also, a smooth non-
linear operation i.e., tanh is used to constrain its value (Equation (4.9)). The differentiable
uncertainty term is multiplied by other scalar weighing terms c.f. the maximum probabil-
ity ( ;; i = max(P')) and accuracy/inaccuracy mask for a voxel. All these operations together
allow us to calculate proxy values for nac, nay, nic and n;,. In addition, rather than evalu-
ating the loss at a single uncertainty threshold, we integrate over the theoretical range of
the uncertainty metric. Thresholding is done by once again multiplying the uncertainty
value with a binary mask. The benefits of this thresholding were shown in our conference

paper [143]:
nl +n!
LAVUt = —ln(l + % ,
1 Nac + 1y @8)
LAVU = ? Z LAvUt)
teT
where
Mac= D pi-(1-tanh(u')), L=y, pi-tanh(u?)
. =9 & ) =7 &
le{yuét } ’E{yui);t } €9)
ni= Y (-p)-(-tanh@?), ni= Y  (1-pi) tanh(). '
ViV & - Jyi#yi &
’E{yuét } ’E{yu,»);t }
Finally, the total loss L combines the segmentation and uncertainty loss as:
L=Lcg+a-Lay. (4.10)

54



4.3.3 Evaluation

4.3.3.1 Discriminative and Calibration Evaluation

We evaluate all models on the DICE coefficient for discriminative performance. Cali-
bration is evaluated using the Expected Calibration Error (ECE) [145]. Numerical results
are compared with the Wilcoxon signed-ranked test where a p-value < 0.05 is considered
significant.

4.3.3.2 Uncertainty Evaluation

As the model is trained on the Accuracy-vs-Uncertainty (AvU) metric, we calculate the
AvU scores up to the maximum normalized uncertainty of the validation dataset. A curve
with the AvU score on the y-axis and the uncertainty threshold on the x-axis is made and

the area-under-the-curve (AUC) for each scan is calculated. AUC scores provide us with
a summary of the model performance regardless of the uncertainty threshold, and hence

we use it to compare all models.

The AvU metric outputs a single scalar value for the whole scan and does not offer
much insight into the differences in uncertainty coverage between the accurate and in-
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accurate regions. To abate this, we compare the probability of uncertainty in inaccurate
regions p(u|i) to the probability of uncertainty in accurate regions p(u|a). Let us plot
p(uli) and p(u|a) on the y-axis and x-axis of a graph respectively, and define nj,, nay, Rac
and nj, as the count of true positives, false positives, true negatives and false negatives
respectively. Thus, p(uli) is the true positive rate and p(u|a) is the false positive rate.
Computing this at different uncertainty thresholds provides us with the Receiver Operat-
ing Characteristic (ROC) curve, which we call the uncertainty-ROC curve [154].

Given that ROC curves are biased in situations with class imbalances between positive
(inaccurate voxels) and negative (accurate voxels) classes, we also compute the precision-
recall curves [69].Here, precision is the probability of inaccuracy given uncertainty p(i|u)
and recall is the probability of uncertainty given inaccuracy p(u|i). Note, that the precision-
recall curves do not make use of n,c, which can be high in count for a well-performing
model.
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Finally, to calculate the calibrative and uncertainty-correspondence metrics, we need
an inaccuracy map. We use an inaccuracy map based on the concept of segmentation
“failures" and “errors" (Section 4.8.1). To do this, we perform a morphological opening
operation using a fixed kernel size of (3,3,1).
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4.4 Experiments and Results

4.4.1 Datasets
4.4.1.1 Head-and-Neck CT

Our first dataset contained Head and Neck CT scans of patients from the RTOG 0522
clinical trial [174]. The annotated data, which had been collected from the MICCAI2015
Head and Neck Segmentation challenge, contained 33 CT scans for training, 5 for valida-
tion and 10 for testing [42]. We further expanded the test dataset with annotations of 8
patients belonging to the RTOG trial from the DeepMindTCIA dataset (DTCIA) [43]. This
dataset included annotations for the mandible, parotid glands, submandibular glands
and brainstem. Although there were annotations present for the optic organs, we ig-
nored them for this analysis as they are smaller compared to other organs and require
special architectural design choices. Since the train and test patients came from the same
study, we considered this as an in-distribution dataset. We also tested our models on the
STRUCTSeg (50 scans) dataset [175], hereby shortened as STRSeg. While the RTOG dataset
contained American patients, the STRSeg dataset was made up of Chinese patients and
hence considered out-of-distribution (OOD) in context of the training data. The uncer-
tainties of this dataset were evaluated to a value of 0.4 since that is the maximum empirical
normalized entropy.

4.4.1.2 Prostate MR

Our second dataset contained MR scans of the prostate for which we use the Prosta-
teX repository [176] containing 66 scans as the training dataset. The Medical Decathlon
(Prostate) dataset with 34 scans [177] and the PROMISE12 repository with 50 scans [178]
served as our test dataset. The Medical Decathlon dataset (abbreviated as PrMedDec
henceforth) contained scans from the same clinic as the ProstateX training dataset. We
combined the Peripheral Zone (PZ) and Transition Zone (TZ) from the MedDec dataset
into 1 segmentation mask. The PROMISE12 dataset (abbreviated as PR12) was chosen for
testing since literature [62] has shown lower performance on it and hence it serves as a
good candidate to evaluate the utility of uncertainty. This dataset is different from Prosta-
teX due to the usage of an endo-rectal coil in many of its scans as well as the presence
of gas pockets in the rectum and dark shadows due to the usage of older MR machines.
Thus, although these datasets contained scans of the prostate region, there exists a sub-
stantial difference in their visual textures. The maximum empirical normalized entropy of
this 2-class dataset is 1.0 and hence the uncertainty-error correspondence metrics were
calculated till this value.

4.4.2 Experimental Settings
We tested the Accuracy-vs-Uncertainty (AvU) loss on four datasets containing scans of

different modalities and body sites. We trained 11 models: Det (deterministic), Det+AvU,
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Ensemble, Focal, LS (Label Smoothing), SVLS (Spatially Varying Label Smoothing), MbLS
(Margin based Label Smoothing), ECP (Explicit Confidence Penalty), TTA (Test-Time Aug-
mentation), Bayes and Bayes + AvU. As the names suggest, Bayes and Bayes + AvU are
Bayesian versions of the deterministic OrganNet2.5D model [170]. The baseline Bayes
model contained Bayesian convolutions in its middle layers and was trained using only
the cross-entropy (CE) loss. The Bayes + AvU was trained using both the CE and Accuracy-
vs-Uncertainty (AvU) loss. Two additional Bayesian models were trained which tests if
the placement of the Bayesian layers had any effect: BayesH and BayesH + AvU. Here,
BayesH refers to the Bayesian model with Bayesian layers in the head of the model (i.e the
decoder). Results for these models can be found in Section 4.8.7.

The Ensemble was made of M =5 deterministic models with different initializations
[159]. For TTA, we applied Gaussian noise and random pixel removals for M = 5 times each
and then averaged their outputs. The hyperparameters of the other models were chosen
on the basis of the best discriminative, calibrative and uncertainty-error correspondence
metrics on the validation datasets (Section 4.8.3). For the calibration focused methods we
used the following range of hyperparameters: Focal (y = 1,2, 3), MbLS (m = 8, 10, 20, 30) for
head-and-neck CT, MbLS (m = 3,5, 8, 10) for prostate MR, LS (a = 0.1,0.05,0.01), SVLS (y =
1,2,3) and ECP (A =0.1,1.0,10.0, 100.0) for head-and-neck CT and ECP (A =0.1,1.0,10.0,
100.0,1000.0) for prostate MR. For the AvU loss, we evaluated weighting factors in the
range [10,100,1000,10000] for the head-and-neck dataset, and [100,1000,10000] for the
Prostate dataset.

We trained our models for 1000 epochs using the Adam optimizer with a fixed learning
rate of 1073, The deterministic model contained =~ 550K parameters and thus the En-
semble contained = 2.75M parameters. Since the Bayesian models double the parameter
count in their layers they incurred an additional parameter cost and ended up with a total
of = 900K parameters.

4.4.3 Results

In Section 4.4.3.1 and Section 4.4.3.2 we show discriminative (DICE), calibrative (ECE) and
uncertainty-error correspondence metrics (ROC-AUC, PRC-AUC) for the two datasets.

4.4.3.1 Head-and-neck CT

Results in Table 4.1 showed that the AvU loss on the Bayes model significantly improved
calibrative and uncertainty-error correspondence (unc-err) metrics for both in-distribution
(ID) and out-of-distribution (OOD) datasets. The Bayes+AvU model also always performed
better than the Det, calibration-focused and TTA models for unc-err metrics. Also, its ECE
scores were in most cases better than calibration-focused models. However, there was no
clear distinction between the performance of the Ensemble and Bayes+AvU model for ECE
and unc-err metrics across both datasets. Also, the AvU loss did not benefit the unc-err
metrics for the Det model, in both datasets. Of all the calibration-focused models, LS had
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Table 4.1: Volumetric (DICE), calibrative (ECE) and uncertainty-error correspondence
(ROC-AUC, PRC-AUC) metrics for all models. Here, we evaluate head-and-neck (H&N)
CT test datasets which are either in-distribution (ID) or out-of-distribution (OOD). The
arrows in the table header indicate whether a metric should be high (1) or low (|). Here,
 and bold are used to indicate a statistical significance and improved results upon com-
paring a Bayesian model and its AvU-loss version, while underlined numbers indicate the
best value for a metric across a dataset.

Test Model DICEZT ECE % ROC—A[;C 1 PRC—AUZC 1
Dataset (x107%) x107°) (x107) (x107%)
Det 842+27 [ 9.0+21 [ 73.0+57 |21.0+4.8
Det+AvU | 83.8+29 | 8.6+27 | 73.1+6.0 | 20.8+4.0
| Focal | 843+24 | 93+15 | 703+55 | 18232 |
D ECP 84.4+23 | 9.0+20 | 73.8+54 | 21.0+£3.7
LS 83.0+3.0 | 75+2.2 | 62.6+33 | 17.5+4.0
H&N CT SVLS 842+26 | 9.0+20 | 708+7.1 | 18.1+35
®IOG | MbLS | 84.0+26 | 92421 | 675457 | 195+35 |
TTA 84.1+28 | 9.1+21 | 729+59 |20.8+39
| Ensemble | 85.0+26 | 7.8+1.8 | 78.6+4.7 | 25.7+6.8 |
| Bayes | 83.9+26 | 86+21 | 741+54 |221+35 |
Bayes+AvU | 83.6+25 | 7.6+2.5" | 76.1+5.6" | 25.1 +5.3"
Det 78.1+4.6 | 129+2.6 | 622+45 | 24.1+3.7
Det+AvU | 78.6+4.7 | 127+3.0 | 60.8+4.7 | 22.4+4.1
| Focal |7 772+6.7 | 125+29 | 57.0+46 | 209+42 |
00D ECP 78.8+4.3 | 125+2.6 | 61.5+4.8 | 23.2+3.6
LS 77.7+6.0 | 103+2.9 | 56.7+3.3 | 20.6+4.3
H&N CT SVLS 79.0+6.0 | 11.3+25 | 59.9+54 | 21.6+2.7
(STRSegy | MPLS_ __ | 775463 | 134230 | 569250 | 215236 _|
TTA 78.1+4.6 | 127+2.6 | 62.7+46 | 249+41
| Ensemble | 78.6+5.2 | 10.6+2.4 | 64.7+49 | 282%51 |
| Bayes | 75.0+9.9 | 124+4.0 | 64.8+50 | 27.7+58 |
Bayes+AvU | 76.3+7.7 | 12.1+3.7 | 65.8+5.0" | 30.1 +6.5"

the lowest ECE and unc-err metrics, while the ECP model had the best unc-err metrics.
When compared to Det, the TTA model improved calibrative and unc-err metrics for the
OOD dataset, while maintaining it for the ID dataset.

Visually, the Bayes+AvU model was able to successfully suppress uncertainty in the
true positive (TP) (Case 1/2 in Figure 4.2a) and true negative (TN) (Case 3 in Figure 4.2a)
regions of the predicted contour. Moreover, it also showed uncertainty in false positive
(FP) regions while also suppressing uncertainty in TP regions (Case 3 in Figure 4.2b).
Calibrative models (e.g. Focal, LS, SVLS) tended to be quite uncertain in TP or TN regions,
which may lead to additional QA time. Detailed descriptions are provided in Section 4.8.4.
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Table 4.2: Volumetric (DICE), calibrative (ECE) and uncertainty-error correspondence
(ROC-AUC, PRC-AUC) metrics for all models. Here, we evaluate Prostate MR test datasets
which are either in-distribution (ID) or out-of-distribution (OOD). The arrows in the table
header indicate whether a metric should be high (1) or low (}). Here, fand bold are used to
indicate a statistical significance and improved results upon comparing a Bayesian model
and its AvU-loss version, while underlined numbers indicate the best value for a metric
across a dataset.

Test Model DICEZT ECE i ROC—AgC 1 PRC—AUZC 1
Dataset (x107%) x107) x107%) (x107%)
Det 84.1+56 | 129+6.0 | 925+57 | 28.0+3.7
Det+AvU | 83.7+6.8 | 169+8.1 | 921+6.8 | 282+3.4
| Focal | 81.1+154 | 102+50 | 93.2+55 | 293+34 |
D ECP 84.0+55 | 16.7+7.1 | 921+6.0 | 27.6+423
- LS 83.4+72 | 151+86 | 832+7.8 | 251+3.1
Prostate SVLS 835+6.7 | 14.0+8.1 | 905+7.9 | 21.7+2.6
MR MbLS 842+49 | 179+74 | 922+56 | 269+3.6
(PrMedDec) | TTA | 83.8£58 | 164+7.1 | 92.7+56 | 28.8+39 |
| Ensemble | 84.5+5.7 | 11.3+65 | 943+43 | 300+4.6 |
| Bayes | 84.0+58 | 8.6+4.7 |947+31 |291+48 |
Bayes+AvU | 84.9+6.9 | 8.9+6.0 95.7+3.2" | 30.5+4.5"
Det 742+126 | 156+6.3 | 87.9+75 | 22.1+6.2
Det+AvU | 745+13.0 | 27.6+14.3 | 882+7.6 | 22.0+7.1
| Focal | 712+17.4 | 121+58 | 89.0+7.1 | 24367 |
00D ECP 748+125 | 223+10.2 | 87.2+8.1 | 20.6+7.0
- LS 745+13.0 | 21.7+11.5 | 795+89 | 19.1+7.2
Prostate SVLS 769+115 | 17.9+9.3 | 87.2+7.2 | 164+5.2
MR MbLS 73.6+125 | 199+7.4 | 865+7.2 | 21.8+5.6
(PR12) | TTA |- 740+12.8 | 23.7+11.4 | 88.6+7.4 | 24958 |
| Ensemble | 76.3+12.2 | 9.7+5.0 | 91.6+5.2 | 28.4+5.7 |
| Bayes | 7 70.6+16.6 | 11.8+7.2 | 89.1+7.4 | 257+5.1 |
Bayes+AvU | 76.3+12.6 | 11.4+6.7 | 90.6+6.9" | 26.2+7.4"

4.4.3.2 Prostate MR

Similar to the head-and-neck CT dataset, the use of the AvU loss on the baseline Bayes
model significantly improved its uncertainty-error correspondence (unc-err) while main-
taining calibration performance (Table 4.2). Moreover, it improved the DICE values such
that its one of the most competitive amongst all models. Also, the Bayes+AvU had better
performance in both unc-err and calibrative metrics when compared to the Det, calibration-
focused and TTA models. When comparing to the Ensemble, the Bayes+AvU had sim-
ilar DICE. While Bayes+AvU had better calibrative and unc-err performance in the in-
distribution (ID) dataset, the Ensemble performed better in the out-of-distribution (OOD)
setting. The AvU loss had no positive effect on the DICE and unc-err performance of the
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Det model in both the ID and OOD setting, however there was an increase in ECE.

Visual results show that the Bayes+AvU successfully suppresses uncertainty in the true
negative (Case 1 in Figure 4.3a, Case 2 in Figure 4.3b) and true positive (Case 2 in Fig-
ure 4.3a) regions of the predicted contour. It also shows uncertainty in the false positive
regions (Case 2 in Figure 4.3a, Case 1/3 in Figure 4.3b)

4.5 Discussion

Although medical image segmentation using deep learning can now predict high quality
contours which can be considered clinically acceptable, a manual quality assessment (QA)
step is still required in a clinical setting. To truly make these models an integral part of
clinical workflows, we need them to be able to express their uncertainty and for those
uncertainties to be useful in a QA setting. To this end, we test 11 models which are either
Bayesian, deterministic, calibration-focused or ensembled.

4.5.1 Discriminative and Calibrative Performance

In context of DICE and ECE, the use of the AvU loss on the baseline Bayes model always
showed results which have never statistically deteriorated. Moreover, the DICE results for
the in-distribution (ID) head-and-neck dataset (RTOG) were on-par with existing state-of-
the-art models (83.6 vs 84.7 for [43]). The same held for the ID Prostate dataset (PRMed-
Dec) where results were better than advanced models (84.9 vs 83.0 for [177]). These results
validate the use of our neural architecture [170], and training strategy.

Secondly, although the Ensemble model, in general, had better or equivalent DICE and
ECE scores across all 4 datasets, it also required 3x more parameters than the Bayes+AvU
model. Also, as expected, and due to 5x more parameters, the Ensemble model performed
better than the Det model for DICE and ECE.

Finally, in the regime of segmentation “failures” as the inaccuracy map, the calibrative
methods did not generally have improved calibration performance when compared to
the Det model. In theory, these models regularize the model’s probabilities by making
it more uncertain and hence avoid overconfidence. In practice however, this leads to
the predicted contours being uncertain along their accurate boundaries, most evident in
visual examples of the Focal and SVLS model (see Figure 4.2 and Figure 4.3). Also, visual
image characteristics in different regions of the scan that are similar to the segmented
organs may cause these models to showcase uncertainty in those areas (for e.g. patches of
uncertainty in Case 3 of Figure 4.2a).

4.5.2 Uncertainty-Error Correspondence Performance

Although calibrative metrics are useful to compare the average truthfulness of a model’s
probabilities, they may not be relevant to real-world usage in a pixel-wise segmentation
QA scenario. Considering a clinical workflow in which uncertainty can be used as a proxy
for error-detection, we evaluate the correspondence between them. Results showed that
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Figure 4.2: Uncertainty-error correspondence for the head-and-neck (H&N) CT (a,b)
dataset. Slices of the CT scans are shown in pairs to understand the 3D nature of
segmentation uncertainty heatmaps. The color bar on the right depicts the range of
uncertainty values while green and blue are used for ground truth and prediction contours
respectively.
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(b) Prostate MR (PR12) (out-of-distribution)

Figure 4.3: Uncertainty-error correspondence for the Prostate MR (a,b) dataset. Slices of
the MR scans are shown in pairs to understand the 3D nature of segmentation uncertainty
heatmaps. The color bar on the right depicts the range of uncertainty values while green
and blue are used for ground truth and prediction contours respectively.
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Figure 4.4: The figures above show the distribution of the uncertainty-error correspon-
dence metrics as curves and boxplots (with swarm plots) for patients from the RTOG
clinical trial (a-f) as well as for the Medical Decathlon (Prostate) dataset (g-1). We only
evaluate up to the maximum uncertainty of each dataset as the metrics do not change
beyond that.

across both in- and out-of-distribution datasets, the Bayes+AvU model has one of the
highest uncertainty-error correspondence metrics. Similar trends were observed for the
BayesH+AvU (Section 4.8.7) model, however Bayes+AvU was better. We hypothesize that
this is due to perturbations in the bottleneck of UNet-like models having a better under-
standing of semantic concepts (e.g., shape, size etc) than the decoder layers. However, the
AvU loss did not offer benefit to the Det model on both datasets indicating that this loss
may rely on the model to already exhibit some level of uncertainty.

An interesting case is shown in Figure 4.2b (Case 3) which showed uncertainty on the
white blob (a vein) in the middle of the grey tissue of the organ. Many models showed
uncertainty on the vein due to a difference in its texture from that of the organ. However,
this information may be distracting to a clinician as they are using uncertainty for error
detection. Given that there were no segmentation “failures”, our Bayes+AvU model suc-
cessfully suppressed all uncertainties. In another case (Figure 4.2a - Case 3), we saw that
for 3D segmentation, uncertainty is also 3D in nature. Our Bayes+AvU model had an error
in the second slice and correctly showed uncertainty there. However, this uncertainty
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overflowed on the first slice and hence penalized the uncertainty-error correspondence
metrics. Such results indicate that during contour QA, the clinician can potentially trust
our AvU loss models more than other models as they are better indicative of potential
errors. This reduces time wasted analyzing false positive regions (i.e., accurate but uncer-
tain) and hence increases trust between an expert and deep learning-based contour QA
tools. Also note that in general, the two-class prostate dataset visually showcased higher
levels of uncertainty than the six-class head-and-neck dataset.

As seen in Table 4.1, Table 4.2 and Figure 4.4, there is no clear choice between the top
two performing models i.e., Bayes+AvU and Ensemble for uncertainty-error correspon-
dence. The visual results, however, indicate that the Ensemble model is more uncertain
in accurate regions. Also, for all the datasets, the Det model has high AvU scores when
compared to the Bayes+AvU model (Section 4.8.3). Here, it is important to consider that
the AvU metric (Equation (4.7)) is essentially uncertainty accuracy, and thus, also comes
with its own pitfalls. Given that all models had a DICE value which leads to more accurate
terms and less inaccurate terms, the AvU metric got skewed due to the large count of n,¢
terms. However, upon factoring the ROC and PRC curves, it becomes evident that the Det
model is not the best performing for uncertainty-error correspondence.

Finally, all calibration-focused methods - Focal, ECE LS, SVLS and MBLS had ROC
and PRC metrics lower than the baseline Bayes model indicating that training for model
calibration may not necessarily translate to uncertainty outputs useful for error detection.

4.5.3 Future Work

In a radiotherapy setting, the goal is to maximize radiation to tumorous regions and min-
imize it for healthy organs. This goal is often not optimally achieved due to imperfect
contours caused by time constraints and amorphous region-of-interest boundaries on
medical scans. Thus, an extension of our work could evaluate the contouring correc-
tions made by clinicians in response to uncertainty-proposed errors in context of the dose
changes to the different regions of interest. Such an experiment can better evaluate the
clinical utility of an uncertainty-driven error correction workflow.

4.6 Conclusion

This work investigates the usage of the Accuracy-vs-Uncertainty (AvU) metric to improve
clinical “utility" of deep Bayesian uncertainty as a proxy for error detection in segmen-
tation settings. Experimental results indicate that using a differentiable AvU metric as an
objective to train Bayesian segmentation models has a positive effect on uncertainty-error
correspondence metrics. We show that our AvU-trained Bayesian models have equivalent
or improved uncertainty-error correspondence metrics when compared to various cali-
brative and uncertainty-based methods. Given that our approach is a loss function, it can
be used with other neural architectures capable of estimating uncertainty.
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Given that deep learning models have shown the capability of reaching near expert-
level performance in medical image segmentation, one of the next steps in their evolution
is evaluating their clinical utility. Our work shows progress on this using a uncertainty-
driven loss in a Bayesian setting. We do this for two radiotherapy body-sites and modali-
ties as well in an out-of-distribution setting. Our hope is that the community is inspired by
our positive results to further contribute to human-centric approaches to deep learning-
based modeling.
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4.8 Appendix

4.8.1 Segmentation “Failures" and “Errors"

(a) Contours (b) Inaccuracy Map (c) Segmentation Errors(d) Segmentation Fail-
ures

Figure 4.5: The green and blue contours in a) show the ground truth (GT) and predicted
contours. In b) we see the inaccuracy map in black, while c) and d) show the smaller
segmentation “errors” and larger segmentation “failures” respectively.

4.8.2 Weightage of AvU loss

The table below show the weights used for the AvU loss which were finetuned on the
validation datasets of the head-and-neck CT and prostate MR. The final weightage was
chosen by identifying the inflection point at which the ROC-AUC and PRC-AUC drop
precipitously. Given that the AvU loss is a log term, its values are inherently small (< 1.0).
This is then added to the cross-entropy term, which is a sum of logs (Eqn (3)) over all the
voxels (=N) and all the classes (=C). Thus, we used a balancing term in the range of 10! to

10°%.
Table 4.3: Uncertainty-error correspondence results (higher is better) to select the weigh-

tage of the AvU loss. Underlined numbers indicate the maximum value for a metric.

Validation Model AVU-AUC ROC-AUC PRC-AUC
Dataset (x1072) (x1072) (x1072)

Bayes 341+£0.7 | 79.1£4.7 | 25.9+£2.9

H&N CT Bayes + 10AvU 345+0.9 | 78.2+6.0 | 26.1+3.4

(MICCAI2015) Bayes + 100AvU 355+0.6 | 79.6+4.8 | 28.0+3.5

Bayes + 1000AvU 35.9+6.9 | 76.4+£5.8 | 23.1+1.7

Prostate Bayes 93.2+1.8 | 953+1.9 | 30.3+£2.9

MR Bayes + 100AvU 949+2.1 | 959+2.0 | 31.5+35

(ProstateX) Bayes + 1000AvU 955+1.9 | 96.3+24 | 32.0+3.3

Bayes + 10000AvU | 96.1+1.7 | 93.1+2.1 | 29.3+3.1

66



4.8.3 Hyperparameter selection

In the tables shown below, we report results for different hyperparameters of different
model classes. If the DICE of a hyperparameter is 10.0 points lower than the class max-
imum, we ignore it. We also ignore models with large drops in ECE or AvU-AUC when
compared to models in its own class. To choose the best hyperparameter, it has to perform
as the best in four out of the five metrics, else we chose the middlemost hyperparameter.
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Table 4.4: Volumetric (DICE), calibrative (ECE) and uncertainty-error correspondence
metrics (AvU-AUC, ROC-AUC, PRC-AUC) on head-and-neck validation dataset for the
purpose of hyperparameter selection. The experiment indicated as bold is the one with
the best performance.

Experiment DICEZT ECE i AVU-AUZC 1 ROC—AléC 1 PRC—AU2C 1
(x1074) (x1074) (x107%) (x1074) (x107%)

Det 83.6+22 | 85+1.6 |351+1.1 |748%50 | 245+0.9
Det + 10AvU 834+1.7 | 84+16 |354+10 | 744248 | 23.2+14
Det + 100AvU 83.6+14 | 81%15 |361+06 75629 | 234x2.1
Det + 1000AvU 58.1+6.9 | 14.7+4.0 | 30.2+1.6 | 78.8+4.6 | 23.0+10.6

| Focal(y=1) | ¢ 84.1£0.8 | 8.0+0.6 | 32407 [ 73.9+4.1 | 21.5+3.4 |
Focal(y=2) 834+13 | 9.6+83 |248+1.1 | 73.7+1.6 | 22.7+4.1
Focal(y=3) 84.1+1.9 | 155+1.9 | 175+74 | 73.1+3.2 | 126+1.9

| ECP(A=0.1) | ¢ 83.9+13 | 83+13 |353+08 | 751+43 | 223+0.8 |
ECP(1=1.0) 84.0+1.1 | 85+08 | 35407 |753+3.2 | 234+14
ECP(1=10.0) 832+21 | 87+13 |352+08 | 749+39 | 24621
ECP(1=100.0) 81.2+6.4 | 17.9+1.5 | 28.7+2.8 | 65456 | 17.5+5.2

| LS(a=0.01) | ¢ 83.0£2.1 | 81+13 |326+09 [ 709+26 | 23.4+2.7 |
LS(a=0.05) 83.6+1.2 | 61+1.0 |249+04 |645+33 | 18.1£2.0
LS(a=0.1) 835+1.2 | 79%12 |175+0.1 | 63.9+22 | 22211

| SVLS(o=1) | ¢ 83.5+13 | 7.7+0.7 |323+0.8 [ 71.5+25 | 19.9+0.4 |
SVLS(0=2) 835+1.7 | 81+09 |[31.8+1.0|705+38 | 17.7+15
SVLS(0=3) 84.1+2.0 | 7.7+0.7 |31.9+1.0 | 71.3+4.4 | 19.2+3.2

MbLS(1=0.1,m=30) | 82.7+1.8 | 85+0.6 | 349:1.0 | 74.0+43 | 23.1+1.2
MbLS(A=0.1,m=20) | 84.4+14 | 80+1.1 |352+07 | 72333 | 204+1.0
MbLS(A=0.1,m=10) | 82.7+18 | 85+0.6 |329+0.7 | 68.4+3.0 | 21.7+2.2
MbLS(A=0.1,m=8) | 62.9+7.6 | 18.75+1.4 | 26.0+0.4 | 74.9+4.0 | 39.1x2.7
MbLS(A=1,m=20) | 832+13 | 89%1.5 |[350+09 | 724+4.4 | 225+1.1
MbLS(1=10,m=20) | 83.4+14 | 85+20 |342+11 |722+44 | 23.1+2.0

MDbLS(A =100,m=20) | 81.8+1.8 8.0+1.1 321+£0.9 | 69.6+x4.8 | 21.0x23

TTA 83.5£22 | 85+17 |349x1.1 [753+52 | 25217

[ Ens ¢ 84.9+16 | 6.8+09 |341+1.1 [808+32 | 28.2+4.1 |

| Bayes | ¢ 84.2+29 | 7.8+13 | 34107 [ 791+4.7 | 259+29 |
Bayes + 10AvU 83.1£29 | 7.6+20 |345+09 | 78.2+6.0 | 26.1+3.4
Bayes + 100AvU 83.2+1.7 | 70+19 |355+06 | 79.6+4.8 | 28.0+35
Bayes + 1000AvU 843+1.0 | 75+1.5 |359+6.9 | 764+58 | 23.1+1.7
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Table 4.5: Volumetric (DICE), calibrative (ECE) and uncertainty-error correspondence
metrics (AvU-AUC, ROC-AUC, PRC-AUC) on head-and-neck iD dataset. The experiment
indicated as bold is the one with the best performance. * indicates hyperparameters
chosen by the validation dataset.

Experiment DICEZT ECE i AVU—AUZC i ROC—A[;C i PRC-AUZC 1
(x107%) (x1074) (x1079) (x1079) (x1074)
Det 84.2+27 | 9.0x2.1 355+15 | 73.0£5.7 | 21.0+4.8
Det + 10AvU 83.7+2.3 93+22 35.7+13 | 70.6+£5.3 | 20.0+£3.6
Det + 100AVU* 83.8+29 | 8627 | 36.2+1.4 | 73.1£6.0 | 20.8+4.0
Det+1000AU |- 623256 | 121229 | 30.7£12 | 78046 | 160290 | =
Focal(y=1)* 843+24 | 93+15 325+0.9 | 70.3+55 | 18.2+3.2 E
Focal(y=2) 84.2+20 | 11.2+1.6 | 25.1+£0.7 | 69.4+4.9 | 17.2+3.0 E
Focal(y=3) 83.9+25 | 15.7+£23 | 179+£53 | 70.5+£5.0 | 12.2+2.9 i
ECP(A=0.1) 84.4+22 | 89+£21 | 357+1.3 | 729+6.3 | 20.1+3.8 -
ECP(A=1.0)* 84.4+23 | 9.0+£20 | 359+1.3 | 73.8+£54 | 21.0+3.7 Z
ECP(A=10.0) 84.3+2.7 | 9.2+24 | 358+1.4 | 73.5+£6.0 | 20.6+4.3 S
ECP(1=100.0) 70.8+3.9 | 186+2.8 | 21.4+£2.7 | 58.7+2.6 | 28.9+7.1 9
| LS(a=0.01) | 83.4+28 | 9.0+29 | 329+0.1 | 66.1+57 | 18.4+3.6 | =
LS(a=0.05)* 83.0£3.0 75+2.2 25.1+0.5 | 62.6+3.3 | 17.5+4.0 g
LS(a=0.1) 84.1+2.3 | 8429 17.5+0.1 | 62.3+£25 | 185+3.5 Z
| SVLS(e=1)* | 83.9+25 | 9.0+23 | 326+1.1 | 69.6+83 | 18.8+2.8 |
SVLS(0=2) 842+26 | 9.0+£20 | 322+1.1 | 70.8+7.1 | 18.1+£35
SVLS(0=3) 83.9+2.7 | 9.0+22 32.1+1.2 | 693+7.0 | 18.8+2.8

MbLS(A=0.1,m=30) | 83.7+2.6 | 9.0£2.0 | 354=1.2 | 70.0£5.6 | 19.7x4.1
MbLS(A =0.1,m=20)* | 84.0+2.6 | 9.2+2.1 | 353+1.3 | 67.5+5.7 | 19.5+35
MbLS(A=0.1,m=10) | 82.4+2.6 | 9.8+28 | 33.1+1.2 | 64.1+7.0 | 18.3%3.1
MbLS(A=0.1,m=8) | 62.4+82 | 189+16 | 263+0.4 | 73.6+6.6 | 383x4.1
MbLS(A=1,m=20) | 834+25| 92+26 | 35413 | 71.3+7.0 | 20.1+3.6
MbLS(A=10,m=20) | 83.0+3.4 | 95+28 | 34.6+1.4 | 69.1£6.0 | 20.1+4.1

MDbLS(A =100,m=20) | 82.5+3.2 | 9.1+3.0 | 324+14 | 682+7.3 | 19.0+2.9
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TTA 84.1+28 | 9121 [355+14 | 72.9+59 | 20.8+3.9

(Ens | 85.0+£2.7 | 7.8+19 [345+12 | 78.6+4.7 | 257+6.8 |

| Bayes | 83.9+2.6 | 8.7+21 [345+12 | 74.1+54 | 221+3.5 |
Bayes + 10AvU 83.4+28 | 8.7+24 | 347+13 | 74.7+4.9 | 244241
Bayes + 100AvU* 83.6+25 | 7.6+25 | 356+12 | 76.1+56 | 25.1%5.3
Bayes + 1000AvU 83.5+3.0 | 85+3.4 | 36.1+15 | 77.2+6.0 | 24.7+45
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Table 4.6: Volumetric (DICE), calibrative (ECE) and uncertainty-error correspondence
metrics (AvU-AUC, ROC-AUC, PRC-AUC) on head-and-neck OOD dataset. The experi-
ment indicated as bold is the one with the best performance. * indicates hyperparameters
chosen by the validation dataset.

Experiment DICE21 ECE % AVU-AUZC 1 ROC-AL;C 1 PRC—AUZC 1
(x107) (x107) (x107) (x107) (x107)

Det 781+4.6 | 12.9+26 | 33.4+14 | 62245 | 241237
Det + 10AvU 76.3+6.9 | 13.7+35 | 33.3+1.7 | 58.3+4.6 | 23.3+4.4
Det + 100AvU* 78.6+4.7 | 12.7+£3.0 | 34.2+15 | 60.8+4.7 | 22424.1
Det + 1000AvU 425+72 | 12.1+21 | 28.9+1.7 | 66.1+5.8 | 19.0+6.2

| Focal(y=1)* =~ | 77.2£6.7 | 125+29 [ 30.6+1.7 | 57.0+4.6 | 20.94.2 |
Focal(y=2) 77752 | 12.2+19 | 24.1+09 | 57.5+4.6 | 21.0x4.1
Focal(y=3) 79.0+52 | 13.3+1.6 | 18.6+0.7 | 59.8+4.9 | 16.6+3.9

| ECP(A=0.1) | 785+49 | 12.6+28 [ 33.5+16 | 59.8+4.9 | 22.0+3.8 |
ECP(1=1.0)* 78.8+43 | 125426 | 36.6+1.5 | 61.5+4.8 | 23.2+3.6
ECP(1=10.0) 78.9+45 | 124+25 | 338+15 | 60.1+4.7 | 22.1+35
ECP(1=100.0) 62.0+6.1 | 20.0+1.8 | 19.9+29 | 56.0+2.8 | 36.5+9.7

| LS(@=0.1) | 77.7£6.0 | 89+27 [ 17.9+03 | 57.6+1.9 | 23.9+4.4 |
LS(a=0.05)* 77.7+6.0 | 103+29 | 243+0.7 | 56.7+3.3 | 20.6+4.3
LS(a=0.01) 77.9+54 | 133428 | 31.1+15 | 58.6+3.9 | 224+3.7

| SVLS(o=1)* | 78361 | 11.5+3.0 [ 314+1.4 | 61.1+4.9 | 233233 |
SVLS(0=2) 79.0+6.0 | 11.3+2.5 | 314+12 | 59.9+54 | 21.6+2.7
SVLS(0=3) 78.6+5.1 | 11.5+29 | 31.1+15 | 58.7+5.0 | 225+ 3.8

MbLS(1=0.1,m=30) | 76.5+7.1 | 13.6+3.9 [ 32.1+2.9 | 58.9+4.1 | 24.7+7.7
MbLS(A =0.1,m=20)* | 77.5+6.3 | 13.4+3.0 | 33.4+15 | 56.9+50 | 21.5+3.6
MbLS(A=0.1,m=10) | 76.8+6.3 | 13.0+3.2 | 31.7+1.4 | 53.0+4.5 | 20.6+3.9
MbLS(A=0.1,m=8) | 50.3+10.6 | 20.1+2.8 | 26.2+0.9 | 61.1+7.1 | 34.1+3.7
MbLS(A=1,m=20) | 773+6.2 | 13.2+2.8 | 33.3+1.6 | 61.0+4.5 | 23.4+4.1
MbLS(A =10,m=20) | 78.1+53 | 13.0+2.9 | 32.9+15 | 57.0+4.1 | 21.7+3.5

MDbLS(A = 100,m=20) 782+x4.9 | 127+25 | 31.6+1.3 | 55.0£5.1 | 19.7+£3.5

TTA 78.1+4.6 | 12.7+2.6 [ 33.2+15 | 62.7+4.6 | 24.9x4.1

Ens [ 786+52 | 10.6+24 [ 321+19 | 64.7+4.9 | 282%5.1 |

| Bayes [ 75.0£9.9 | 124+4.0 [ 322+18 | 64.8+50 | 27.7+5.8 |
Bayes + 10AvU 749495 | 124+4.0 | 321420 | 652+4.6 | 29.1%6.1
Bayes + 100AvU* 76.3+7.7 | 121+3.7 | 33.2+1.7 | 65.8+5.0 | 30.1+6.5
Bayes + 1000AvU 755+8.2 | 143+4.1 | 335+1.8 | 69.3+5.6 | 32.9+6.9
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Table 4.7: Volumetric (DICE), calibrative (ECE) and uncertainty-error correspondence
metrics (AvU-AUC, ROC-AUC, PRC-AUC) on prostate validation dataset for the purpose
of hyperparameter selection. The experiment indicated as bold is the one with the best
performance.

Experiment DICE21 ECE i AVU—AUZC 1 ROC—AI;C 1 PRC-AUZC 1
(x1074) (x1074) (x1074) (x1074) (x1074)

Det 859+18 | 144+3.2 | 965+0.9 | 926+4.1 | 26.5+1.5

Det + 100AvU 84.8+23 | 16.3+3.9 | 96.1+09 | 91.7+4.2 | 279+2.8

Det + 1000AvU 84.8+19 | 16.0+3.0 | 96.4+£0.9 | 93.6+3.2 | 29.2+1.0
 Det+10000AVU | 84.9£35 | 167251 | 965210 | 91827 | 259223 | s
Ensemble 854+17 | 134+3.0 | 96.0+1.0 | 948+24 | 314+1.6 E
| Focal(y=1) | 845+2.7 | 13.3+43 | 90.7+1.1 | 93.0+4.1 | 29.4+1.7 | =
Focal(y=2) 84.4+2.1 9.8+26 | 825+1.0 | 93.8+£2.3 | 30.9+2.1 i
Focaly=3) | 845219 | 64:L5 | 58913 | 920:43 | 305226 | -
ECP(A=0.1) 859+18 | 146+3.0 | 96.5+0.9 | 91.9+4.2 | 25.8+1.7 Z
ECP(A=1.0) 85.7+18 | 147+3.0 | 96.4+1.0 | 923+3.9 | 26.4+1.7 S
ECP(1=10.0) 85.7+1.7 | 14.8+2.7 | 964+1.0 | 91.9+45 | 26.0+1.8 9
ECP(A=100.0) 85.7+18 | 148+28 | 964+1.0 | 91.8+4.3 | 25.8+1.9 i
ECP(A=1000.0) 86.0+£19 | 15.0+3.0 | 85.0+£0.3 | 88.7+2.1 | 26.7+3.4 g
| LS(a=0.01) | 83.7+25 | 17.2+4.1 | 91.9+0.9 | 85.8+54 | 28.2+2.9 | z
LS(a=0.05) 85.1+14 | 13.6+2.3 | 80.8+£0.9 | 843 +5.7 | 25.4+2.2 5
LS(a=0.1) 85.0+2.1 | 11.1+34 | 70.3+0.6 | 85.1+3.6 | 27.0+£2.2 g
| SVLS(o=1) | 845+1.9 | 14.0+2.6 | 924+1.0 | 91.8+2.3 | 229+ 1.8 | =
SVLS(0=2) 85.0+18 | 129+3.1 | 924+09 | 91.4+3.0 | 22.1+14 ;
SVLS(0=3) 85.0+£16 | 13.1+£2.7 | 92.1£0.9 | 91.2+25 | 219+14 Z
| MbLS(A=0.1,m=10) | 84.8+1.4 | 17.5+51 | 95.7+1.1 | 91.2+4.1 | 31.1+1.7 | =
MDbLS(A =0.1,m=8) 83.8+13 | 16.0+2.2 | 93.9+0.9 | 90.5+3.5 | 27.9+2.1 E
MbLS(A =0.1,m=5) 843+16 | 155+2.8 | 90.4+0.8 | 90.1£5.6 | 28.2+2.2 ;
MDbLS(A =0.1,m=3) 84.2+2.1 | 128+33 | 70.8+04 | 82.1+3.5 | 28.8+5.6 [:1
MbLS(A=1.0m=10) | 83.7+1.2 | 17.4+4.4 | 96.0+1.0 | 91.2+3.9 | 30.5+1.5 E
| MBLS(L=10.0,m=10) | 83915 | 17.824.1 | 950212 | 90.8+36 | 309 L6 | ;
TTA 85.6+1.7 | 145+3.1 | 96.3+09 | 925+4.0 | 27.2+1.6 =
| Bayes | 85.7+2.3 | 10.7+3.0 | 93.2+1.8 | 953+1.9 | 30.3+2.9 | g
Bayes + 100AvU 86.1£3.0 | 11.5+3.8 | 949+2.1 | 959+2.0 | 31.5+3.5 3
Bayes + 1000AvU 85.8+28 | 120+3.9 | 955+19 | 96.3+2.4 | 32.0+3.3 2
Bayes + 10000AvU 86.0+24 | 109+3.0 | 96.1+1.7 | 93.1+£2.1 | 29.3+£3.1 %
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Table 4.8: Volumetric (DICE), calibrative (ECE) and uncertainty-error correspondence
metrics (AvU-AUC, ROC-AUC, PRC-AUC) on prostate ID dataset. The experiment indi-
cated as bold is the one with the best performance. * indicates hyperparameters chosen
by the validation dataset.

Experiment DIC?; ECEﬁ % AVU—APZC 1 ROC—A};C 1 PRC—AEJZC 1
(x107) (x107) (x107) (x107) (x107)

Det 84.1+5.6 | 12.9+6.0 | 96.1+3.4 | 925+57 | 28.0£3.7
Det + 100AvU 83.7+6.7 | 16.6+7.2 | 95.7+3.3 | 91.6£6.2 | 27.2£2.9
Det + 1000AvU* 83.7+6.8 | 16.9+8.1 | 95.9+3.8 | 92.1+6.8 | 28.2+3.4
Det + 10000AvU 83.4+6.4 | 18.1+7.9 | 96.1+3.7 | 90.7+56 | 26.1+3.4

| Focal (y=1)* | 81.1+15.4 | 10.2+5.0 | 90.3+0.3 | 93.2+55 | 29.3+3.4 |
Focal (y=2) 83.1+6.2 | 104+6.8 | 81.6+25 | 92.9+53 | 30.1£3.7
Focal (y=3) 823+7.2 | 8.0+6.4 | 58.7+12 | 925+54 | 31.8+3.5

| ECP(A=0.1) | 84.1+54 | 165+7.0 | 96.1+3.4 | 923+6.0 | 27.6+3.9 |
ECP (1=1.0) 84.1+55 | 164+7.0 | 96.1+3.3 | 923+6.0 | 27.8+4.3
ECP (1=10.0)* 84.0+55 | 16.7+7.1 | 96.1+3.4 | 921+£6.0 | 27.6+4.3
ECP (1=100.0) 84.0£5.5 | 16.6+7.0 | 96.0+3.0 | 92.1£6.0 | 27.6 4.1
ECP (1=1000.0) 84.1+5.7 | 16.6+7.0 | 86.1+3.2 | 922459 | 27543

| LS(a=0.01) =~~~ | 825+83 | 18.0+9.4 [ 91.3+3.9 | 86.2+7.9 | 27.0+3.8 |
LS (2=0.05)* 83.4+7.2 | 151+86 | 80.4+29 | 83.2+7.8 | 25.1+3.1
LS (a=0.1) 84.1+5.6 | 11.6+7.0 | 70.1+1.8 | 84.7+6.2 | 26.9+3.3

| SVLS(0=1) | 83471 | 14.7+88 [ 92.0+3.7 | 90.9+7.4 | 229229 |
SVLS (0=2)* 83.5+6.7 | 14.0+8.1 | 91.9+4.1 | 90.5+7.9 | 21.7£2.6
SVLS(0=3) 83.2+8.1 | 14.3+9.7 | 91.5+3.9 | 91.0£6.8 | 23.1+3.1

| MbLS (A1=1.0m=3) | 83.2+63 | 133+7.8 [ 70.6+1.7 | 822+6.3 | 27.7+3.4 |
MDbLS (A = 1.0,m=5) 82.8+6.6 | 16.7+8.0 | 89.9+3.2 | 90.5+7.2 | 27.2+4.4
MbLS (1 =1.0,m=8) | 83.5+58 | 17.1+7.0 | 953+3.6 | 93.0+£5.2 | 27.8+4.1
MbLS (1 =1.0,m=10) | 84.2%53 | 18.1+6.1 | 95.5+3.3 | 91.7+6.1 | 265£3.5
MbLS(A=1.0,m=10)* | 84.2+4.9 | 17.9+7.4 | 95.6+29 | 922+56 | 269+3.6
MbLS(A =10.0m=10) | 83.9+5.2 | 17.9+8.0 | 95.1+3.2 | 91.9+59 | 26.2+4.1

| TTA | 838458 | 164+7.1 | 96.0+3.5 | 92756 | 28.8:3.9 |

| Ensemble | 845+57 | 11.3+6.5 | 952+3.5 | 94.3+4.3 | 30.0:4.6 |

| Bayes | 84.0£58 | 86+47 | 921+26 | 94.7+3.1 | 29.1+4.8 |
Bayes + 100AvU 84.1+6.4 | 12.0+6.2 | 94.4+3.1 | 95.5+29 | 28950
Bayes + 1000AvU* 84.9+6.9 | 8.9+6.0 | 94.5+32 | 95.7+3.2 | 30.5+4.5
Bayes + 10000AvU 85.2+59 | 11.0+6.3 | 94.2+3.6 | 95.9+3.5 | 30.224.0
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Table 4.9: Volumetric (DICE), calibrative (ECE) and uncertainty-error correspondence
metrics (AvU-AUC, ROC-AUC, PRC-AUC) on prostate OOD dataset. The experiment in-
dicated as bold is the one with the best performance. * indicates hyperparameters chosen

by the validation dataset.

Experiment DICFZT EC]% i AVU_APZC 1 ROC—AgC 1 PRC—AEJZC 1
(x107) (x107) (x107°) (x107) (x107)

Det 742126 | 15.6+63 | 923+54 | 87.9+7.5 | 22.1£6.2
Det + 100AvU 742+13.3 | 23.6+11.2 | 93.0+42 | 87.1£62 | 222+57
Det + 1000AvU* 745+13.0 | 27.6+14.3 | 922+57 | 882+7.6 | 22.0+7.1
Det + 10000AvU 72.7+15.1 | 27.6+14.3 | 924+52 | 823+94 | 19.6+6.2

| Focal(y=D)* | 71.2£174 | 12158 | 854£6.1 | 89.0+7.1 | 24.3+6.7 |
Focal(y=2) 76.7+10.8 | 12.8+82 | 72.0+93 | 87.2+7.6 | 224%64
Focal(y=3) 73.2+13.7 | 11.6+7.7 | 49.7+9.4 | 87.1£85 | 27.0+7.2

| ECP(A=0.1) | 746+125 [ 22.8+10.5 [ 921455 | 87.6+7.6 | 21.3+6.6 |
ECP(1=1.0) 73.9+13.1 | 23.2+10.7 | 91.9+56 | 87.2+72 | 21.2+64
ECP(1=10.0)* 748125 | 22.3+10.2 | 91.6+63 | 87.2+8.1 | 20.6+7.0
ECP(1=100.0) 74.9+123 | 22.7£105 | 92.1£55 | 87.7+8.0 | 21.5+£7.2
ECP(1=1000.0) 746125 | 22.7+103 | 922+56 | 87.6+7.7 | 21.5+6.7

| LS(a=0.0) | 71.6+15.1 [ 24.6+11.6 | 87.9+53 | 84.3+75 | 22.7+6.2 |
LS(a=0.05)* 745+13.0 | 21.7+115 | 77.2+46 | 79589 | 19.1+7.2
LS(a=0.1) 752+12.2 | 18.1+10.1 | 67.4+3.8 | 79.0£84 | 19.9+64

| SVLS(e=1) | 749+11.7 | 19.7+9.1 | 885+55 | 87.2+7.4 | 18.7+5.1 |
SVLS(0=2)* 76.9+11.5 | 17.9+9.3 | 883+52 | 87.2+72 | 164%5.2
SVLS(0=3) 743+13.5 | 21.4+126 | 88451 | 863+82 | 19.4%5.0

| MBLS(A=0.1,m=10) | 72.3+159 | 20.9+7.9 | 91.4+57 | 87.9+6.9 | 222%6.7 |
MbLS(A=0.1,m=8) | 74.1+13.5 | 20.7+8.7 | 88.3+8.2 | 85.0+10.4 | 18.8+8.8
MbLS(A=0.1,m=5) | 74.7+13.3 | 22.0+11.3 | 86.9+5.0 | 87.1£7.9 | 22.0£6.4
MbLS(A=0.1,m=3) | 74.0+13.3 | 20.5+11.7 | 68.6+2.9 | 78.0+7.2 | 21.5£6.7
MbLS(A=1.0,m=10)* | 73.6+12.5 | 19.9+7.4 | 91.8+3.4 | 865+72 | 21.8+5.6
MbLS(A =10.0,m=10) | 72.1+16.1 | 20.2+6.7 | 91455 | 86.5+9.0 | 22.2£6.7

N | 740+12.8 | 23.7+11.4 | 928+4.8 | 88.6+7.4 | 24.9:58 |

| Ensemble | 763+122 | 9.7+50 | 899+6.6 | 91.6+5.2 | 284%5.7 |

| Bayes | 706+16.6 | 11.8+72 | 862+6.0 | 89.1£7.4 | 257%5.1 |
Bayes + 100AvU 721+14.4 | 20.0+11.8 | 91.0+3.8 | 92.7+4.0 | 302+6.5
Bayes + 1000AvU* 763+12.6 | 11.4+6.7 | 895+62 | 90.6+6.9 | 262+74
Bayes + 10000AvU 76.6+12.7 | 17.1£10.1 | 88.6£6.5 | 90.4+6.3 | 23.3+74
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4.8.4 Visual Results

Visual results in Figure 4.2 and Figure 4.3 show pairs of consecutive CT/MR slices to better
understand the 3D nature of the output uncertainty across all models. We show examples
with both high and low DICE to investigate the presence and absence of uncertainty in
different regions of the model prediction.

4.8.5 Head-And-Neck CT

The first two rows of Figure 4.2a and Figure 4.2b show the mandible (i.e. lower jaw bone)
with only the Bayes+AvU model having overall low uncertainty in accurate regions and
high uncertainty in (or close to) inaccurate regions.

In the next set of rows for head-and-necks CTs, we observe the parotid gland, a salivary
organ, with (Figure 4.2a - Case 2) and without (Figure 4.2b - Case 2, Case 3) a dental
scattering issue. In both cases, while the Det model shows low uncertainty, the baseline
Bayes model shows high uncertainty in accurate regions. Usage of the AvU loss lowers
uncertainty in these regions, while still exhibiting uncertainty in the erroneous regions,
for e.g. the medial (i.e. internal) portion of the organ in Figure 4.2a (Case 2).

Moving on to our last case, we see the submandibular gland, another salivary gland
in Figure 4.2a (Case 3). The Ensemble, Focal, SVLS and MBLS models all display high
uncertainty in the core of the organ, which are also accurately predicted. On the other
hand, the AvU loss minimizes the uncertainty and shows uncertainty in the erroneous
region on the second slice.

4.8.6 Prostate MR

For the prostate datasets, we see two cases with high DICE in Figure 4.3a (Case 1) and
Figure 4.3b (Case 2) where the use of the AvU loss reduces uncertainty for the baseline
Bayes model.

We also see cases with low DICE in Figure 4.3a (Case 2) and Figure 4.3b (Case 1). Due
to their low DICE all models display high uncertainty, but the Bayes+AvU model shows
high overlap between its uncertain and erroneous regions. The same is also observed in
Figure 4.3b (Case 3).

Finally, in Figure 4.3a (Case 3), we do not see any clear benefit of using the AvU loss on
the Bayes model.
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4.8.7 BayesH model

Table 4.10: Volumetric (DICE) , calibrative (ECE) and uncertainty-error correspondence
metrics (ROC-AUC, PRC-AUC) for different Bayesian models. We evaluate head-and-neck
(H&N) CT and Prostate MR test datasets which are either in-distribution (ID) or out-
of-distribution (OOD). The arrows in the table header indicate whether a metric should
be high (1) or low (|). Here, ' and bold are used to indicate a statistical significance
and improved results upon comparing a Bayesian model and its AvU-loss version, while
underlined numbers indicate the best value for a metric across a dataset.

Test Model DIC?ZI ECPZ i ROC—A};C 1 PRC—A};CT
Dataset (x1077) (x107%) x107) (x107%)
Det 84.2+2.7 9.0+21 | 73.0+57 | 21.0+4.8
ID Ensemble 85.0 +2.6 8.6+2.1 | 786+4.7 | 257+6.8
— | " "Bayes | 83926 | 86+21 | 741+54 | 221+35 |
H&N CT Bayes+AvU | 83.6+25 | 7.6+25' | 76.1+5.6" | 25.1+5.3"
(RTOG) | BayesH | 83.6+29 | 92+26 | 704+7.0 | 20.1+3.8 |
BayesH+AvU | 84.1+2.7 | 8.4+24" | 74154 | 21.3+4.6
Det 781+46 | 129+2.6 | 622+45 | 241+3.7
00D Ensemble 78.6+5.2 | 10.6+24 | 64.7+49 | 282+5.1
——— | " " Bayes | 75.0+9.9 | 12.4+4.0 | 648+50 | 27.7+58 |
H&N CT Bayes+AvU | 76.3+7.6" | 12.1+3.7 | 65.8+5.0" | 30.1+6.5
(STRSeg) | 'BayesH | 77.5+6.6 | 126+33 | 61.1+4.1 | 235+4.7 |
BayesH+AvU | 78.8+5.17 | 12.1+3.2 | 64.8+3.8" | 23.8+4.0
D Det 84.1+56 | 129+6.0 | 925+57 | 28.0+3.7
Ensemble 845+57 | 113+65 | 943+43 | 30.0+4.6
Prostate |~ " Bayes | 84.0+58 | 8.6%47 | 947+3.1 | 29.1+48 |
MR | Bayes+tAvU | 84.9+6.9 | 89+6.0 | 95.7+3.2" | 30.5+4.5" |
(PrMedDeq) BayesH 82.3+5.2 93+43 | 93.6+29 | 28.4+42
BayesH+AvU | 84.5+6.3" | 94+65 | 949+3.1" | 30.1+4.9"
00D Det 742+126 | 156+6.3 | 87.9+75 | 22162
Ensemble | 763+122 | 9.7+50 | 91.6+52 | 28.4+57
Prostate |~ "Bayes | 70.6+16.6 | 11.8+7.2 | 89.1+7.4 | 257+51 |
MR | Bayes+tAvU | 76.3+12.6" | 11.4+6.7" | 90.6+6.9" | 26.2+7.4" |
(PRI2) BayesH 713+144 | 121467 | 88.9+6.3 | 25.1+4.9
BayesH+AvU | 74.1+13.8" | 11.9+6.2" | 89.9+6.2" | 25.9 +5.4"
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