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Introduction

Deep learning, a form of a pattern recognition algorithm, has shown much promise in
automating the contouring of anatomical structures for radiotherapy. However, such au-
tomation must be complemented by robust quality assurance (QA) mechanisms to ensure
clinical reliability. This thesis addresses the growing need for automated QA for con-
tours generated by deep learning models in head-and-neck radiotherapy. This chapter
first outlines the anatomical complexity of the head-and-neck region and the multi-step
radiotherapy (RT) workflow. Then the promise and limitations of deep learning-based
automation in contouring is discussed. Finally, it concludes by motivating the need for
automated tools that enable error detection and error correction of contours, forming the
central theme of this thesis.

1.1 Head-And-Neck Anatomy

The head-and-neck area consists of 25 important organs from a radiotherapy perspective
[1] as shown in Figure 1.1a, 1.1b. Note, that the head-and-neck region is considered sepa-
rate from the brain region. Structures within the head-and-neck region are responsible for
essential physiological functions — swallowing, breathing, salivation, taste, smell, speech
and vision. Within this region, tumors are classified according to the site where they
originate: laryngeal, pharyngeal (nasopharyngeal, oropharyngeal, hypopharyngeal), oral,
salivary, nasal, or para-nasal, as shown in Figure 1.1.

Radiotherapy involves the delivery of radiation to tumors, termed the target in clinical
terminology. This is done while simultaneously preserving healthy tissue, called organs-
at-risk (OAR). Preservation of these OARs is paramount during cancer treatment to main-
tain a patients’ quality of life post-treatment. However, the high density and proximity of
these anatomical structures present a major challenge for automated contouring. More-
over, unlike organs, tumor shapes and sizes vary between patients and also during the
course of treatment. Furthermore, factors like poor scan quality (e.g. CT, MR or PET)
make detection of anatomical structures challenging.

Such a challenging task is ripe for automation, however, inaccurate automated de-
lineations, especially those that go undetected, can lead to suboptimal radiation plans.
This then leads to either healthy tissue toxicity, poor tumor reduction or both. Therefore,
automated contouring must be accompanied by precise quality assessment (QA) mecha-
nisms that can highlight potential inaccuracies and enable correction, without placing an
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Figure 1.1: Contours for head-and-neck OARs on axial and sagittal views of a CT scan (a,b)
[1] and sites where tumors are present (c) [2].

additional burden on clinicians.

1.2 Radiotherapy Workflow and Automation Opportunities

To achieve the goal of targeting tumors while sparing OARs in radiotherapy, a complex
multi-step workflow is followed. This involves image acquisition, image contouring, dose
plan calculation, and finally dose plan delivery (Figure 1.2). Cancer treatment takes place
over multiple sessions of radiation called fractions. Treatment is often given between 33-
35 fractions [3]. Since the anatomy of a patient evolves over the course of treatment (e.g.,
tumor shrinkage or fat reduction), it would be ideal to rescan, recontour and replan to suit
the radiation to the latest anatomy. This advanced form of radiotherapy called adaptive
radiotherapy (ART) [4, 5], presents clinicians with challenges due to the added workload.
Each of the above steps present opportunities for automation. For example, contour-
ing, the focus of this thesis, is a very time-consuming part of the radiotherapy workflow
which is also beset with issues like inter- and intra-annotator variability [6-12]. While
automation techniques like deep learning have shown to significantly accelerate OAR and
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Figure 1.2: A multi-step radiotherapy workflow.

tumor contour generation, errors in predicted contours can go undetected without proper
quality assessment (QA) mechanisms, thereby introducing clinical risk. Automated QA
for such contours, especially with the increased motivation in clinics to use ART, is thus
critical to ensure treatment integrity over time [13, 14].

Radiotherapy dose planning is also time-consuming yet increasingly automatable, with
extensive research [15, 16] validating their clinical efficacy. Scan quality improvement is
also a hot topic of research [17-19], however both these topics fall outside the scope of the
present thesis.

The integration of new tools into routine clinical workflows involves a process known
as commissioning. This process ensures that these tools are safe, reliable, and effective
before and after their deployment. Commissioning can be broadly categorized into two
phases:

* Pre-commissioning validation: This phase occurs before a tool is introduced into
clinical practice. For instance, understanding how an auto-contouring tool’s out-
puts affect dose plans is crucial for patient safety during this stage.

¢ Post-commissioning quality assurance (QA): This phase focuses on ongoing QA to
identify and correct any errors that may arise during the daily clinical use of the de-
ployed tool. For e.g., this could include detecting potential auto-contouring errors.

The pre-commissioning phase is a particularly challenging task for clinics since they
may not have experience with the new tool. Also, it involves curating sufficient dataset
quantity and this is difficult for resource-constrained clinics. Thus, this task also offers
possibilities for automation.



1.3 Deep Learning for Auto-Contouring and its Limitations

Driven by the accelerating demands of modern radiotherapy, many deep learning-based
auto-contouring methods for radiotherapy have been explored [20-33] and tested for clin-
ical practice [34-41]. Researchers have released large datasets [42-44], investigated novel
preprocessing techniques, deep neural architectures, and loss functions to push the bound-
aries on medical image segmentation. Such extensive effort has resulted in improved
performance of these models, a promising indication for reductions in manual workload
and inter-annotator variability.

While the significant progress and growing confidence in deep learning models within
the community have made their integration into clinical practice inevitable and already
underway, these auto-contouring models still face limitations. They can struggle with
factors like poor contrast regions, small structures (e.g., optic nerves, swallowing muscles),
X-ray scattering in CT scans due to dental fillings, or handling conflicting information
from multiple modalities (e.g., CT + PET scans for tumor contouring). Additionally, deep
learning-based auto-contouring models often fail when used on scans from a different
clinic or machine than the ones they were trained on, known as an out-of-distribution
scenario.

Thus, although the adoption of these models has, to some extent, alleviated the con-
touring bottleneck in the radiotherapy workflow, it concurrently introduces a critical need
for robust and efficient quality assurance (QA). Therefore, the next logical phase of re-
search is to explore large-scale or human-interactive contour QA techniques to ensure the
reliability and safety of automatically generated contours. This is the next phase to ensure

further integration of deep learning solutions into routine clinical workflows.

1.4 Quality Assessment of Contour Automation

Auto-contouring tools can either be tested via clinically-oriented metrics or image-based
metrics. In the field of radiotherapy, much work has been done to validate auto-contouring
tools in the pre-commissioning phase using radiation dose-based metrics [41, 45-50]. The
goal here is to check how different the radiation plans are when made via automated
contours as compared to manual contours.

An alternative form of QA is to use post-commissioning image-based techniques which
are also more broadly applicable to the whole field of medical image segmentation. For
e.g., an issue with deep learning-based auto-contouring models is that they “fail silently”
when operating in out-of-distribution (OOD) scenarios. To abate this, solutions have been
proposed over the past 5 years to detect OOD samples [51-55]. While OOD techniques
classify the whole image as either in-distribution (ID) or OOD, other works focus on ex-
tracting pixel-level uncertainty to guide QA activities [56-75]. Note that this uncertainty
is often calculated using a deep learning models’ output probabilities. Furthermore, to
ensure that pixel-level uncertainty is trustworthy, the medical image segmentation com-

4



munity has explored the concept of calibration of a models output probabilities [76-79].
Yet other works train an additional deep learning model to classify auto-contours within
predefined categories such as acceptable/non-acceptable [80-83] on a slice-level.

Further work has also attempted to tackle the problem of how to quickly deal with er-
rors once detected using interactive segmentation techniques. Interactive segmentation
aims to efficiently refine faulty contours with minimal manual intervention. Very little
work existed prior to the start of this thesis [84] however, some work has been published
since then [85-92].

Inspired by previous work, this thesis proposes categorizing QA approaches as follows:

¢ Error Detection: Identifying regions where the model may have failed, using uncer-

tainty estimation or dose impact analysis.

¢ Error Correction: Providing efficient tools for refining faulty contours with minimal

manual intervention.

Leiden UMC Radiotherapy Patient Dashboard
Patient Uncertainty Score
Patient 1 ST
Patient 2
Patient 3
Patient 4
Patient 5
Patient 6
Patient

(a) Error Detection (b) Error Detection (c) Error Correction
(via dose) (via uncertainty)

Figure 1.3: Potential applications of the output of this thesis.

The themes of error-detection and error-correction can also be understood through
Figure 1.3 which is an illustration on potential user interfaces for these themes. Figure 1.3a
shows a clinicians desktop where the radiation dose of the patient along with the contour
is shown to determine whether contour QA shall have a significant impact on the patient.
Figure 1.3b shows another error detection view wherein the patients to consider for QA
are organized by the underlying models contouring uncertainty. Finally, in Figure 1.3c,
the clinician can do semi-automated editing of auto-contours via an Al pencil.

Previous works established techniques to perform clinical validation or proposed tech-
nical improvements to improve on widely accepted metrics for OOD detection or calibra-
tion. However, this thesis aims to extend the aforementioned works with a focus on the
clinician. It asks how one can define measures, explore novel techniques or QA at scale so
that research keeps the clinician at the center. For error detection, it focuses on how dose-
based clinical evaluations can be done at scale to compare various auto-contouring tools
or how one can use image-based uncertainty which actually aligns with the true error.

T H4LdVHD
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And finally for error correction, what are the tools needed and which are the metrics that
inform the utility for an interactive contour refinement technique in real world clinical
settings.

1.5 Thesis outline

The aim of this thesis is to develop and evaluate automated methods for both error detec-
tion and error correction of contours generated by deep learning-based auto-contouring
tools for head-and-neck radiotherapy. Beyond their technical contributions, the proposed
methods can also be viewed from a commissioning perspective for integrating such tools
into clinical workflows. This includes pre-commissioning validation, which involves as-
sessing whether an auto-contouring tool is safe and reliable enough for clinical intro-
duction. It also encompasses post-commissioning quality assurance (QA), focused on
identifying and correcting errors that may arise during daily clinical use once the tool has
been deployed.

This thesis is organized as follows:

Chapter 2 addresses pre-commissioning validation, exploring large-scale retrospec-
tive dose evaluations to quantify the clinical impact of auto-contouring errors. Before in-
troducing an auto-contouring tool into clinical practice, understanding how its contours
affect dose plans helps ensure patient safety. The proposed workflow emulates existing
clinical treatment planning protocols and reuses optimization parameters, functioning as
a form of robot process automation (RPA).

Chapter 3 focuses on post-commissioning error detection, investigating Bayesian mod-
els for automatically flagging potentially inaccurate regions in auto-generated contours.
The goal is to help clinicians quickly identify problematic areas requiring manual review
during routine clinical use. We also investigate loss functions and uncertainty metrics
and their role in evaluating uncertainty. This work establishes a new approach combin-
ing quantitative and qualitative metrics for selecting appropriate models for clinical QA
deployment.

Chapter 4 also relates to post-commissioning error detection, improving how well
uncertainty maps from Bayesian models correspond to true contouring errors. Better
uncertainty-error correspondence improves the utility of these maps for clinicians in real-
time QA of patient scans. To improve uncertainty-error correspondence we utilize a dif-
ferentiable version of an uncertainty metric and then evaluate on a per-pixel basis.

Chapter 5 transitions to post-commissioning error correction, evaluating an Al-assisted
contour refinement tool (“Al pencil”) that enables efficient correction of identified con-
touring errors. The tool’s speed and effectiveness are compared to the traditional manual
brush. A web-based interface and an Al pencil were developed, that supports 2D inter-
actions to refine 3D auto-contours. User experiments with both experts and non-experts
were done to compare the time-efficiency and contour quality of both tools.



Chapter 6 summarizes the thesis contributions and discusses future research direc-
tions on the topics of clinical validation, uncertainty in medical image segmentation and
human-centric Al techniques to speed up contour QA.
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Large-scale dose evaluation of deep learning

organ contours in head-and-neck radiotherapy
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Abstract

Background and Purpose: Retrospective dose evaluation for organ-at-risk auto-contours
has previously used small cohorts due to additional manual effort required for treatment
planning on auto-contours. We aimed to do this at large scale, by a) proposing and assess-
ing an automated plan optimization workflow that used existing clinical plan parameters
and b) using it for head-and-neck auto-contour dose evaluation.

Materials and Methods: Our automated workflow emulated our clinic’s treatment plan-
ning protocol and reused existing clinical plan optimization parameters. This workflow
recreated the original clinical plan (Pog) with manual contours (Pysc) and evaluated the
dose effect (Pog — Pyc) on 70 photon and 30 proton plans of head-and-neck patients. As
a use-case, the same workflow (and parameters) created a plan using auto-contours (P4c)
of eight head-and-neck organs-at-risk from a commercial tool and evaluated their dose
effect (Pprc — Pac).

Results: For plan recreation (Pog — Ppc), our workflow had a median impact of 1.0% and
1.5% across dose metrics of auto-contours, for photon and proton respectively. Computer
time of automated planning was 25% (photon) and 42% (proton) of manual planning time.
For auto-contour evaluation (Py;c — Pac), we noticed an impact of 2.0% and 2.6% for
photon and proton radiotherapy. All evaluations had a median ANTCP (Normal Tissue
Complication Probability) less than 0.3%.

Conclusions: The plan replication capability of our automated program provides a
blueprint for other clinics to perform auto-contour dose evaluation with large patient
cohorts. Finally, despite geometric differences, auto-contours had a minimal median dose
impact, hence inspiring confidence in their utility and facilitating their clinical adoption.



2.1 Introduction

Manual contouring of organs-at-risk (OAR) in radiotherapy is a time and resource-demanding
task [5, 93, 94], especially in head-and-neck cancer due to a large OAR count [95]. More-
over, it is plagued by inter- and intra-annotator variability [10, 11, 96, 97] and hence there
is a need for automation. In the last few years, availability of deep learning-based com-
mercial tools have reduced the barriers for clinics to implement auto-contouring technol-
ogy in daily practice. However, these tools may produce erroneous contours due to poor
contrast, organ deformations, surgical removal of an organ or when tested on different

patient cohorts [98]. Such cases may potentially lead to commercial providers providing

updates to the underlying deep learning models. Thus, as deep learning auto-contouring
tools are increasingly adopted in clinics, with the potential for future updates to models,
there is a growing need to benchmark them, preferably at large-scale and in an automated

manner.

As deep learning-based auto-contouring methods for head-and-neck OARs have been

BNCINROLARIGR(O:EM ¢ UILdVHD)

shown to offer satisfactory geometric performance [10, 99], the next step is to evaluate
their dose impact [100]. However, we observed that dose-based studies on auto-contours
tend to use either smaller (< 20) [41, 45, 46, 48, 49, 101, 102] or medium-sized (< 40)
[50], rather than larger [47] datasets. Studies using larger datasets simply superimpose the
automated contours on the clinical dose [47] which does not fully replicate the treatment
planning process. Conversely, studies using smaller or medium-sized test datasets ei-
ther made manual plans [41, 48-50], used knowledge-based planning [46], a template ap-
proach [45] or a priori multi-criteria optimization (MCO) [101, 102]. Since smaller datasets
may be affected by sampling bias, there is a need to perform dose analysis with a larger
patient cohort. However, a manual approach to plan optimization is simply not scalable.
Moreover, existing automated approaches [45, 46, 101], if not already clinically imple-
mented, require additional skills and resources. Therefore, there is a need for an auto-
mated approach to treatment planning that can be done at a large scale and also leverages

SYNOLNOD DONINYVHT d449d 40 NOLLVNTVAH SO0

existing clinical knowledge and work.

Thus, our contribution was to propose and assess a plan optimization method for ret-
rospective studies that is scalable due to its automated nature and easily implementable
due to the use of existing clinical resources (i.e., knowledge, tools and optimization pa-
rameters). We then used this approach in a use case to quantify auto-contour-induced
dose effects for head-and-neck photon and proton radiotherapy.

2.2 Materials and methods

2.2.1 Dataacquisition

Our dataset consists of 100 head-and-neck cancer patients, of which 70 had clinical plans
made for photon therapy, while 30 had proton plans, at Leiden University Medical Center

11
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Figure 2.1: Workflow for automated plan optimization and use-case of evaluating the
effect of automated contours on dose. By reusing original plan (Ppg) parameters, we
made a plan for both the manual contours (Pys¢) and automated contours(P¢), shown
with yellow and blue colors respectively. Dashed lines indicate the evaluation workflow
where both doses were evaluated on the manual contours. Pink, maroon and orange
contours are used to represent the manual, automated and PTV (DL1) contours respec-
tively. Finally, we used manual contours to compute dose metrics and normal tissue
complication probability (NTCP) [103] models and compare all plans.

(Leiden, The Netherlands) from 2021 to 2023. Patients were treated for either oropha-
ryngeal (71) or hypopharyngeal (29) cancers with cancer stages T1-4, N0-3 and M0. 92
patients were treated with curative intent, i.e., 7000cGy to the primary tumor, while others
were prescribed 6600cGy due to their post-operative nature. Details about CT scans used
in planning are written in Section 2.6.1. The study was approved by the Medical Ethics
Committee of Leiden, The Hague, Delft (G21.142, October 15, 2021). Patient consent was
waived due to the retrospective nature of the study.

2.2.2 Automated Contours

For automated contouring, a commercial deep learning model from RayStation-10B (Ray-
Search Labs, Sweden) - “RSL Head and Neck CT" (v1.1.3) was used. A subset of the OARs
which were used clinically for treatment planning were auto-contoured — Spinal Cord,
Brainstem, Parotid (L/R), Submandibular (L/R), Oral Cavity, Esophagus, Mandible and
Larynx (Supraglottic). See Section 2.6.2 for additional details.
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2.2.3 Treatment Planning Protocol

We used volumetric modulated arc therapy (VMAT) to generate a photon plan using a
6MYV dual arc beam. The elective and boost Planning Target Volumes (PTV), henceforth re-
ferred as DL1/DL2 (dose level 1/2) were prescribed 5425cGy/7000cGy in 35 fractions. For
post-operative patients, our clinic prescribed 5280cGy/6600cGy in 33 fractions instead.
Planning was done such that at least 98% of DL1 and DL2 volumes received 95% of the
prescribed dose (Vgs%) and also by keeping Dy o3¢ for DL2 below 107% of the prescribed
dose.

Proton plans consisted of six beam intensity modulated proton therapy (IMPT). Plan-
ning was done such that Vgs¢ = 98% for DL1/DL2 and Dy, < 107% for DL2 of the Clinical
Target Volume (CTV) in a 21-scenario robust optimization with 3mm setup and 3% proton
range uncertainty. For robust evaluation of CTV DL1/DL2 we instead use 28-scenarios and
test the voxel-wise minimum (vw-min) plan such that its Vgs9 = 98% [104] and voxel-wise

maximum (vw-max) of Dyg, < 107%.
2.2.4 Automated Treatment Planning

To make our automated program, a four-step script [105-107] was created which uses
manually defined beam settings and objective weights from the clinical plan (more details
in Section 2.6.3). This approach is also referred as robot process automation (RPA) [108],
a process wherein a program emulates a human.

In summary, for step 1, we began with an objective template i.e., a class solution with
a standard set of weights that focuses on targets and the body contour. Step 2 then added
dose-fall-off (DFO) objectives for organs which is the distance over which a specified high
dose falls to a specified low dose. In step 3, we introduced equivalent uniform dose (EUD)
objectives [109] on the OARs. Manual planning for the EUD objective involves iteratively
fine-tuning its parameters. Since only the parameters of the last iteration were available
to us, we instead followed a single-step optimization for this objective. Finally, in step 4,
we used patient-specific control structure contours to reduce OAR dose or sculpt the dose
to the targets. In the last step, we also updated any other weights the treatment planner
might have changed compared to the objective template. Note, these final weight updates
were asynchronous to manual planning, since we did not know when these weights were
updated in the aforementioned process. Note that each of the above steps underwent four
optimization cycles.

Using our automated program, we made two plans — 1) a plan optimized on man-
ual contours (Ppsc) and 2) a plan optimized on automated contours (P4¢) as shown in
Figure 5.1. For the targets, elective lymph nodes, and OARs not available in the auto-
contouring model we used manual contours which were used clinically for the original
plan (Ppg). The plans were made using the Python 3.6 scripting interface of the Treatment
Planning System (TPS) of RayStation. The scripts for this work are available at
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Figure 2.2: Box plots showing geometric (a) and surface metrics (b,c,d) for all our patients.
The scatter points indicate the metric values for each patient.

https://github.com/prerakmody/dose-eval-via-existing-plan-parameters.
2.2.5 Geometric Evaluation

We used volumetric and surface distance metrics like Dice Coefficient, Hausdorff Distance
95% (HD95) and Mean Surface Distance (MSD) to evaluate our contours. Moreover, we
also evaluated Surface DICE (SDC) with a margin of 3mm to gain insight into contour
editing time requirements [110].

2.2.6 Dose and NTCP Evaluation

Given that our plans — Pog, Pyvc and P4c have differences in the way they were created,
we need to compare them. Metrics relevant to OARs were calculated and plans were
compared in the following manner:

ADy =Dy p1 — Dy po. 2.1)

Here, x refers to the OAR for which we calculated a dose metric D and then compared it
between any pair of plans p1 and p2. Here, D can refer to Dy o3, (Spinal Cord, Brainstem),
Dean (Parotid, Submandibular, Oral Cavity, Larynx (Supraglottic), Esophagus) or Day,
(Mandible).
For normal tissue complication (NTCP) probability [103] evaluation, we used a similar
approach:
ANTCP, =NTCP,4 1 — NTCPy, 2, 2.2)
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Figure 2.3: Dose metrics for the original (i.e., clinical) photon plans (Pp¢) as well as plans
(reymade on manual (Pys¢) and automated (P,c) contours using an automated program.
Poc—Ppc shows the dose effect of the proposed planning process, while Py;¢c—P4c shows
the effect of using auto-contours. Here * represents a p-value < 0.05. In a) we see the
difference in the dose metric of each OAR when comparing across plans. The plots in b)
show us the metrics for the targets, while c) shows us the difference in NTCP values.
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where d refers to either Xerostomia or Dysphagia with a grade = 2 or = 3.

For the above AD, (dose) and ANTCP, values, we performed a Wilcoxon signed-rank
test (p < 0.05 is considered a significant difference) to evaluate if the differences between
plans are significant.
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2.3 Results

2.3.1 Geometric evaluation

Figure 2.2 shows five organs (Spinal Cord, Parotids, Submandibulars, Oral Cavity, Mandible)
had a median DICE = 0.78 (with additional summary measures tabulated in Section 2.6.2).
In Figure 2.2b we observed that in general the surface DICE values for the OARs are higher
than their DICE values, except for the oral cavity. Figure 2.2c and Figure 2.2d shows that
HD95 and MSD had trends similar to DICE in Figure 2.2a. OARs with a median DICE =
0.8 had their median HD95 less than 7.7mm and their median MSD less than 2.6mm. The
spinal cord had DICE values that are better than brainstem, but its HD95 range was as

long as brainstem.
2.3.2 Dose evaluation

The median absolute value of Ppg (original plan) - Py;c (automated plan using manual
contours) was 0.27Gy (1.0%), 1.66Gy (4.6%) and 0.21Gy (0.7%) for all, central nervous sys-
tem (CNS), i.e., Brainstem and Spinal Cord and non-CNS organs, respectively. The same
for Ppc - Pac (automated plan using auto-contours) was 0.58Gy (2.0%), 1.86Gy (5.4%)
and 0.46Gy (1.6%), with metrics of individual organs in Figure 2.3a listed in Section 2.6.4.
Figure 2.3b shows dose metrics for targets where, for Py;c and Pc, we achieved PTV (DL1)
(Vo5) = 98.0% for 76% and 60% of plans. However, 96% and 93% of Py;c and Py¢ plans
achieved PTV (DL1) (Vos) = 97.5%. For this metric, a statistically significant difference
was observed between Ppg and Pjsc as well as Py;c and P4c. Finally, Figure 2.3c shows
|ANTCP]| results, where the maximum median across all toxicities was 0.3% (individual
toxicity metrics in Section 2.6.5).

For proton, |Pog — Puc| had a median value of 0.33Gy (1.5%), 1.13Gy (11.5%) and
0.22Gy (0.8%) for all, CNS and non-CNS organs, respectively. The same for Py;c — Pac
was 0.48Gy (2.6%), 0.75Gy (6.9%) and 0.38Gy (1.8%). Figure 2.4b shows proton targets
wherein 58% and 62% of Py;c and P ¢ plans achieved PTV (DL1) (vw-min) (Vo4) = 98.0%,
while 82% and 80% achieved PTV (DL1) (vw-min) (Vo4) = 97.5%. Similar to photon, a
statistically significant difference was observed between Pog and Pysc as well as Py;c and
Pyc. For |ANTCP| (Figure 2.4c), the maximum median across all toxicities was 0.2%.

A weak Spearman correlation coefficient between DICE and dose differences (|Pysc —
P4cl) was observed for CNS organs (|ps| < 0.11), across both photon and proton (Fig-
ure 2.5). Conversely, the Parotids, Submandibulars and Oral Cavity had relatively higher
values (—0.43 < p; < —0.17). The remaining organs did not have similar correlations across
both radiotherapy treatments.

Finally, our automated plan optimization took 45 minutes and 2.5 hours of computer
time, compared to 3 and 6 hours of manual time (on average, as estimated by our clinic’s
planners), for photon and proton, respectively.
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Figure 2.4: Dose metrics for the original proton plans (Pog) as well as plans (re)made on
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Figure 2.5: Scatter plots for eight organs-at-risk from the auto-contouring module. Here
we plot the DICE (x-axis) against each organs absolute dose metric differences, i.e., |Py;c —
P | (y-axis) for photon (a-h) and proton (i-p) radiotherapy.

2.4 Discussion

This work aimed at proposing and assessing an automated plan optimization workflow
for retrospective studies that can be easily implemented by clinics due to its use of existing
clinical resources. Unlike previous works [41, 45, 46, 48, 49, 101, 102], we performed this
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at large-scale and for both photon and proton radiotherapy. To replicate our approach,
a clinic can simply use the scripting interface of their treatment planning system (TPS)
and convert their planning process into a step-by-step approach. This requires minimal
additional expertise (i.e., Python coding), for which many TPS solutions provide docu-
mentation. For head-and-neck radiotherapy, automated plans on manual contours (Pysc)
showed a negligible difference (i.e., median impact of 1.0% and 1.5% across organs), when
compared to the original clinical plan (Ppg) [111, 112]. Thus, the proposed evaluation
process could serve as a springboard for clinics to validate an auto-contouring model,
at large-scale, by simply reusing their existing plans. When using this program for the use
case of head-and-neck auto-contour evaluation, the plan using auto-contours (P4¢) had a
low dose impact when compared to the plan using using manual organ contours, for both
photon (2.0%) and proton (2.6%) planning. Additionally, minuscule differences in NTCP
values indicated that minor plan differences did not lead to large differences in long-term
radiation-induced toxicity. This could potentially promote confidence in the community
[113] to adopt auto-contouring to speed up clinical workflows.

For five out of eight OARs (i.e., Spinal Cord, Parotid, Submandibular, Oral Cavity and
Mandible), the average DICE scores may be considered on par with previous work (= 0.8)
[10, 45, 99] (see Section 2.6.2). A visual inspection of the remaining auto-contours, i.e.,
Larynx (SG), Brainstem (and by extension the Spinal Cord) (Figure 2.6, Section 2.6.6) indi-
cated that they had contouring protocols that differed from our clinic. Moreover, the auto-
contouring model was trained on a different patient cohort, leading to additional contour
differences with our clinical dataset. Finally, we chose to not perform any additional
refinement on manual contours, since they were also used for making clinical plans (Ppg)
delivered to patients. For e.g. in the first row of Figure 2.6, we see that only the caudal
section of the Brainstem was annotated. Treatment planners find optimizing this section
sufficient due to its potential for high dose from tumor proximity. The aforementioned
reasons are why we noticed reduced measures for Larynx (SG), Brainstem and Spinal Cord
in Figure 2.2.

A critique of using unmodified manual contours may be that a lack of “gold-standard"
contours will not give accurate geometric measures. Since our primary goal however was
dose evaluation using existing clinical resources (i.e., unmodified manual contours), we
proceed without any refinement. Also, in an auto-contouring dose evaluation scenario,
it is already sufficient to know that plans made on auto-contours are equivalent to plans
made on manual contours as seen in Figure 2.3b (photon) and Figure 2.4b (proton). Thus,
our approach of using existing manual contours improves the ease-of-implementation of
auto-contour dose evaluation studies and enables evaluation at large-scale.

To evaluate the quality of our automated plans, we first assessed target dose metrics.
We use PTV (DL1) (Vg5%) for photon and CTV (DL1) (Vg49) (vw-min) for proton, since
planners prioritize them due to their difficulty. Hence it serves as a good benchmark for
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our automated plans. Results indicated that most of our plans (= 93% for photon and
> 80% for proton) were of near-clinical quality (i.e., = 97.5%). Those plans that did not
strictly achieve clinical quality (i.e., = 98%) on the aforementioned metrics, had reduced
dose coverage in either the most cranial or caudal slices. In a retrospective study for dose-
evaluation of auto-contours, such a minor error will have a minimal effect on the dose
metrics of organs we are interested in.

Figure 2.4b shows that most proton plans, including Ppg, tended to have hotspots,
i.e., Dog (vw — max) = 107%, unlike most photon plans which did not, i.e., Dy g3¢c < 107%
(Figure 2.3b). In our dataset, these proton plans were made for performing a plan com-
parison between photon and proton (via NTCP), according to the model-based selection
[114]. If during proton treatment planning, the NTCP differences already indicated either
a) high organ sparing or b) not sufficiently better organ sparing than photons, planners
did not further optimize this plan. However, given that dose hotspots are quite small, they
did not affect dose metrics for the auto-contoured organs in our study. Finally, differences
in plans were also caused because the same plan optimization process when run twice,
may lead to similar, but not exactly the same solution due to randomness in initialization.

Figure 2.3 shows that of all the organs the Spinal Cord and Brainstem had wider box-
plots for both Ppg — Pyc and Py — Pac. This is because the ADy p3cc metric is inherently
more sensitive to dose changes than ADpean. This is seen in the first row of Figure 2.6
where similar DICE values for the Brainstem output vastly different dose differences. For
proton (Figure 2.4), we saw a similar trend for Ppg — Py, but not for Ppsc — Pac. This
indicated that proton planning is more susceptible to workflow differences than contour
differences of Brainstem and Spinal Cord, for our cohort of oro- and hypopharyngeal
cancers, which are at a distance from these organs.

Figure 2.3a, 2.3c (photon) and Figure 2.4a, 2.4c (proton) show statistically significant
differences, but from a clinical standpoint, the minor differences in organ dose metrics
and ANTCP values may be clinically irrelevant.

Moving on to the effect of DICE on dose metric of organs (Figure 2.5), one would expect
that a decrease in DICE would lead to higher AcGy values for organs. This was true for the
Parotids, Submandibulars (Figure 2.6) and Oral Cavity across both photons and protons
(=0.43 < ps = —0.17). The Brainstem and Spinal Cord showed poor correlation scores for
both forms of radiotherapy, primarily due to the sensitive nature of the Dy o3¢ metric. The
Esophagus also showed low correlation, since, in many cases, it is caudally far away from
the tumor regions for the patients in our cohort. The Larynx showed a high correlation for
photon, but not for proton, which could be an effect of sample size. Finally, the Mandible,
an organ with high DICE, showed opposite trends in photon and proton. Overall, we
noticed that there was a low correlation between DICE and dose metrics.

This work was inspired by prior research on treatment plan scripting [105, 106] to
scale-up dose evaluation for auto-contours. However, some plans were still not of the
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(a) Brainstem (DICE=0.13, |ADg g3cc| = 6.0%)  (b) Brainstem (DICE=0.19, |ADg g3¢cl = 27.2%)

(c) Submand (R) (DICE=0.82, |ADyean! =1.7%) (d) Submand (L) (DICE=0.42, |ADyean| = 84.9%)

(f) Parotid (R) (DICE=0.63, |ADeanl| = 20.5%)

(g) Larynx (SG) (DICE=0.64, |ADmean! = 0.5%) (h) Larynx (SG) (DICE=0.55, |ADmean!| =2.3%)

Figure 2.6: CT scans of photon (a-d) and proton (e-h) patients overlayed with a dose
distribution as well as PTV (DL1) (orange), PTV (DL2) (blue), manual (pink) and auto-
mated (maroon) contours. Each example shows the Pog, Pyc and Pyc plans from left to
right. The dose metric in the sub-captions compares the absolute percentage difference
of P MC — P AC-

highest possible quality since our four-step replication of the clinical process is a close,
but imperfect emulation of a treatment planners approach. Non-iterative EUD optimiza-
tion (step 3), lack of synchrony in weight updates between the manual and automated
approach (step 4), and re-use of control structures from Pog to Pyc and Pac (step 4),
led to small deviations from the original planning process. These limitations cause Py;c
and P,c dose metrics to be imprecise which could potentially impact our results. For
future work we would like to more closely mimic the optimization steps as well as consider
control structures specific to each plan, rather than simply copying them.

To conclude, we showed an automated approach to plan creation for retrospective
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studies that was employed for the use-case of evaluating the dose impact of auto-contouring
software, at scale. We hope our results showcasing low dose impact of auto-contours will
inspire others to investigate and eventually use them in clinical settings.
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2.6 Appendix

2.6.1 DataAcquisition

The CT scans of our dataset had a dimension of 512 x 512 pixels in the spatial plane with a
pixel spacing in the range of [0.92-1.36] mm. Each CT slice was 2mm thick and each scan
had between [128,199] slices. The scans were acquired from a Brilliance Big Bore (Philips
Healthcare, Ohio, USA) with 120kV and 250mAs. Post acquisition, 64% of patients had
Orthopedic Metal Artifact Reduction (O-MAR) processing done.

2.6.2 Automated Contours

The auto-contouring model of RayStation 10B (results in Table 2.1 and Table 2.2) first
performed registration of the chosen CT scan using an atlas of CTs to narrow down CT
size so it fits within the graphical processing unit (GPU) used for deep learning. Once reg-
istered, the mid-point of each OAR is detected and a 3D bounding box is cropped around
that. This cropped area is then passed to a neural net trained for contouring that specific
OAR. Each OAR-specific neural net is based on the UNet segmentation architecture whose
output is a 3D probabilistic mask for that OAR. As a post-processing step, smoothing is
performed on the surfaces of OARs. The model was trained using Tensorflow, an open-
source deep neural net software package. During training, rotations, translations and
elastic deformations were used to augment the training data. Details on patient cohort
were not made public by the manufacturer.

22



Rol DICE SDC @ 3mm HD95 (mm) MSD (mm)
Spinal Cord (Dg.03¢¢) 0.78 [0.61,0.93] | 0.92[0.76,0.97] | 10.0[1.1,69.4] | 0.9 [0.2,1.4]
Brainstem (Dg 03¢c) 0.70 [0.07,0.95] | 0.72[0.18,0.95] | 13.1[2.5,49.0] | 3.1[1.1,8.3]
Parotid (L) (Dyean) 0.85[0.75,0.94] | 0.91[0.78,0.98] | 5.0 [2.3,12.3] 1.5[0.6,3.2]
Parotid (R) (Dnean) 0.86 [0.74,0.94] | 0.92[0.75,0.98] | 4.6 [2.2,15.7] 1.40.6,4.2]
Submand (L) (Dyeqn) | 0.84[0.59,0.93] | 0.96 [0.74,1.00] | 3.1[1.7,16.3] 1.0 [0.5,5.3]
Submand (R) Dneqn) | 0.85[0.68,0.92] | 0.96[0.75,1.00] | 3.1[1.7,16.3] 1.1 [0.6,3.5]
Oral Cavity (Dean) 0.84 [0.77,0.92] | 0.74[0.59,0.90] | 7.7 [4.3,12.0] 2.6 [1.5,3.3]
Larynx (SG) (Dmean) 0.54 [0.36,0.65] | 0.63[0.51,0.80] | 15.9[7.8,25.0] | 5.7 [2.8,10.2]
Esophagus (Dean) 0.66 [0.28,0.90] | 0.75[0.41,0.97] | 20.4 [2.5,63.9] | 1.4 [0.3,18.8]
Mandible (D;eqn) 0.88[0.81,0.97] | 0.94 [0.87,1.00] | 4.5[1.1,14.0] 1.51[0.2,3.4]

Table 2.1: Summary measures (median [5°" percentile, 95" percentile]) for volumetric
and surface metrics of auto-contours of RayStation 10B.

Rol DICE SDC @ 3mm HD95 (mm) MSD (mm)
Spinal Cord (Dg.03¢c) 0.77[0.74,0.80] | 0.89[0.87,0.91] | 19.2[13.6,24.7] | 0.8 [0.7,0.9]
Brainstem (Dg 03¢c) 0.61 [0.61,0.67] | 0.66 [0.60,0.72] | 18.0[14.4,21.5] | 3.8 [3.3,4.5]
Parotid (L) (Dyean) 0.84 [0.84,0.86] | 0.89[0.87,0.91] | 5.8 [4.8,6.8] 1.7 [1.5,1.8]
Parotid (R) (Dean) 0.85[0.85,0.86] | 0.89[0.87,0.91] | 5.8 [4.9,6.9] 1.7 [1.5,2.0]
Submand (L) (Dyeqn) | 0.80[0.80,0.84] | 0.90 [0.87,0.94] | 6.2 [4.3,8.9] 2.3[1.1,4.3]
Submand (R) Deqn) | 0.82[0.82,0.84] | 0.92[0.89,0.94] | 4.8 [3.9,5.7] 1.4 [1.1,1.7]
Oral Cavity (Dean) 0.84 [0.82,0.86] | 0.74[0.71,0.76] | 7.9 [7.2,8.6] 2.6 [2.4,2.9]
Larynx (SG) (Dmean) 0.51 [0.47,0.54] | 0.63[0.58,0.67] | 15.4[13.7,17.3] | 6.1[5.3,7.0]
Esophagus (D ean) 0.66 [0.61,0.70] | 0.75[0.71,0.80] | 23.8 [18.6,29.3] | 5.8 [4.0,7.8]
Mandible (D,;eqn) 0.88 [0.85,0.90] | 0.94[0.92,0.95] | 6.1 [4.7,7.6] 1.6 [1.3,1.9]

Table 2.2: Summary measures (sample mean [bootstrapped 95% confidence interval]) for
volumetric and surface metrics of auto-contours of RayStation 10B.
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2.6.3 Automated Planning

For automated planning, we replicated the beam setup, OAR/target objectives for both
photon and proton as per our institutions clinical head-and-neck protocol.

For photon (Table 2.3), our VMAT plans are made on an isotropic dose grid of 0.2cm
The photon beams were commissioned on an Elekta Synergy system with Agility multi-
leaf collimator.

For proton (Table 2.4), our IMPT plans are made on an isotropic dose grid of 0.3cm.

This dose is delivered using pencil beam scanning (PBS) on a Varian ProBeam machine.
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Step Rol Function Description Weight
1 PTV (DL1) MinDose 100% of DL1 prescription 80.0 — {VDT}
1 PTV (DL1) MaxDose 102% of DL1 prescription 50.0 — {VDT}
1 ring < MaxDose 96% of DL1 prescription 0.0 — {VDT}
PTV (DL1)
1 PTV (DL2) MinDose 100% of DL2 prescription 80.0 — {VDT} 9
1 PTV (DL2) MaxDose 102% of DL2 prescription 50.0 — {VDT} %
1 PTV (DL2) UniformDose 100% of DL2 prescription 10.0 g
1 Body DoseFallOff From 100% to 0% of DL1 prescription 1.0 =
over 5.0 cm =
1 Body DoseFallOff From 100% to 26% of DL1 prescription 2.0 t
over 2.0 cm %
1 Body DoseFallOff From 100% to 64% of DL1 prescription 10.0 =
over 0.5 cm 9
1 Ghostcranial DoseFallOff From 100% to 0% of DL1 prescription 0.5 =3
over 1.0 cm a
1 Ghostgar(,) DoseFallOff From 100% to 46% of DL1 prescription 1.0 3
over 2.0 cm z
1 Ghostgyrr) DoseFallOff From 100% to 46% of DL1 prescription 1.0 9
over 2.0 cm >
Brainstem MaxEUD eudParameterA=50 (maxEUD=4000 cGy) 3.0 Z
1 Brainstem MaxEUD eudParameterA=50 (maxEUD=4400 cGy) 3.0 §
(+3 cm) =
1 Spinal Cord MaxEUD eudParameterA=50 (maxEUD=4000 cGy) 3.0 ::>;
1 Spinal Cord MaxEUD eudParameterA=50 (maxEUD=4400 cGy) 3.0 S
(+3 cm) °
2.1 Other Organs DoseFallOff From 100% to 20% of DL1 prescription 1.0 =
over 2.0 cm E
2.2 Other Organs DoseFallOff From 100% to 0% of DL1 prescription 1.0 o
over 2.0 cm E
(as determined by treatment planner) ;
3 Other Organs MaxEUD eudParameterA=>50, 1.0 =
maxEUD={VDT} Q
4 Control Structures {MinDose, Dose={VDT} {VDT} 8
MaxDose} E
o
=
Table 2.3: Our 4-step emulation of the manual photon optimization process of our clinic. @

In each step, we also optimize for the objectives of the previous steps. We use VDT
as an abbreviation for the phrase “value determined by treatment planner". The —
indicates that the weight is modified at the end of Step 4.. Here DL1/DL2 stands for
electives/boost regions of the tumor and prescription refers to a value of cGy that was
assigned to a region-of-interest (Rol). Here “Other Organs" refers to Cochlea (L/R), Parotid
(L/R). Submandibular (L/R), Muscle Constrictor (S/M/I), Cricopharyngeus, Larynx (SG),
Glottic Area, Trachea, Esophagus and Oral Cavity. The rows shown here are created as
objectives in our clinic’s treatment planning solution.
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Step Rol Function Description Weight Robust
1 CTV (DL1) MinDose 100% of DL1 prescription 800.0 — {VDT} *
1 CTV (DL1) - MaxDose 102% of DL1 prescription 20.0 — {VDT} *

(CTV(DL2) + 3 mm)
1 CTV (DL1) - MaxDose 102% of DL1 prescription 80.0 — {VDT} *
(CTV(DL2) + 2 cm)
1 CTV (DL2) MinDose 100% of DL2 prescription 800.0 — {VDT} *
1 CTV (DL2) MaxDose 100% of DL2 prescription 50.0 — {VDT} *
1 CTV (L) MinDose 0 cGy and Beam={1,2,3} 0.0
1 CTV([R) MinDose 0 cGy and Beam={4,5,6} 0.0
1 Body DoseFallOff | From 101% to 0% of DL2 1.0
prescription over 2.0 cm
1 Body MaxDose 67% of DL2 prescription 10000.0
for each beam
1 Body MaxDose 107% of DL2 prescription 100.0 *
2 Mandible MaxDose 107% of DL2 prescription | 500.0 — {VDT} *
2 Organ Set 1 DoseFallOff | From 101% to 0% of DL2 1.0
prescription over 2.0 cm
2 Organ Set 2 DoseFallOff | From 101% to 0% of DL2 1.0
prescription over 2.0 cm
3.1 Organ Set 2 MaxEUD eudParameterA=1, 1.0
maxEUD={VDT}
3.2 Organ Set 2 - MaxEUD eudParameterA=1, 1.0
(CTV (DL1) + 3 mm) maxEUD={VDT}
4 Control Structure {MinDose, Dose={VDT} {VDT} {*}
MaxDose}

Table 2.4: Our 4-step emulation of the manual proton optimization process of our clinic.
In each step, we also optimize for the objectives of the previous steps. We use VDT as an
abbreviation for the phrase “value determined by treatment planner". The — indicates
that the weight is modified at the end of Step 4.. Here DL1/DL2 stands for elective/boost
regions of the CTV and prescription refers to a value in cGy that was assigned to a region-
of-interest (Rol). “Organ Set 1" refers to Mandible, Brainstem, Spinal Cord, Esophagus,
Trachea, Larynx (SG), Trachea and Glottic Area, while “Organ Set 2" refers to Parotid (L/R),
Submandibular (L/R), Muscle Constrictor (S/M/1), and Oral Cavity. The * mark is used to
indicate those objectives which are robustly optimized. The rows shown here are created

as objectives in our clinic’s treatment planning solution.
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2.6.4 Organ Dose Metrics

We show dose metrics for organs available in the RayStation 10B auto-contouring module
for photon (Table 2.5 and Table 2.6) and proton (Table 2.7 and Table 2.8). For the purpose
of our study, we only included organs with available auto-contours, although additional
organs-at-risk are evaluated clinically.

metric values (in Gy) for Pog — Pyc and Pysc — Pac in photon radiotherapy.

Rol |PoG — Pucl| |Pyvc = Pacl
Spinal Cord (Dg 03¢¢) 1.45[0.06,5.51] | 1.13[0.18,5.16]
Brainstem (Dg 3¢c) 1.88 [0.05,6.77] | 2.17[0.21,6.37] 9
Parotid (L) (Dymean) 0.12[0.02,0.72] | 0.321[0.02,2.10] 2
Parotid (R) (Dyean) 0.13 [0.01,0.68] | 0.42 [0.03,1.66] 5
Submand (L) (Dyean) | 0.27 [0.02,1.20] | 0.45 [0.05,2.37] >
Submand (R) Deqn) | 0.21[0.01,1.28] | 0.35[0.04,1.80] o
Oral Cavity (Dyean) 3.24[0.01,0.86] | 0.35[0.05,1.32] 5
Larynx (SG) (Dmean) 0.39 [0.03,1.47] | 0.39[0.21,4.24] o
Esophagus (D ean) 0.24 (0.01,1.64] | 0.65 [0.04,3.43] =
Mandible (Dyg) 0.37 [0.03,3.43] | 0.43[0.06,2.12] ;
Z
Table 2.5: Median [5°" percentile, 95/ percentile] of the absolute dose metric values (in .g.
Gy) for PoG — Pymc and Py — Pac in photon radiotherapy. 5
Rol |PoG — Pucl |Prmc — Pacl <
Spinal Cord (Dg 03¢c¢) 2.01[1.51,2.56] | 1.90[1.49,2.32] =
Brainstem (Dg 3¢c) 2.431.90,3.01] | 2.82[2.36,3.34] 5
Parotid (L) (Dyean) 0.21 [0.15,0.28] | 0.66 [0.49,0.85] S
Parotid (R) (Dnean) 0.21 [0.15,0.27] | 0.62 [0.48,0.80] S
Submand (L) (Dyean) | 0.39 [0.30,0.49] | 0.80 [0.52,1.22] =
Submand (R) (Dmean) | 0.3310.23,0.45] | 0.59 [0.42,0.80] =
Oral Cavity (D nean) 0.320.24,0.42] | 0.49[0.40,0.58] =
Larynx (SG) (Dmean) 0.55[0.39,0.74] | 1.65 [1.25,2.07] E
Esophagus (Dyean) 0.41 [0.29,0.54] | 1.05[0.80,1.38] @
Mandible (Dyg) 0.81 [0.48,1.22] | 0.97 [0.54,1.60] %
Table 2.6: Sample mean [bootstrapped 95% confidence interval] of the absolute dose %
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Rol |PoG — Pucl| |Pyc —Pacl

Spinal Cord (Dg 03¢¢) 2.08 [0.03,8.82] | 0.70[0.12,2.40]
Spinal Cord (Dg 03¢¢) (vw-max) | 1.90 [0.05,8.07] | 0.72[0.15,2.57]
Brainstem (Dg g3c¢c) 0.72 [0.05,3.79] | 0.59[0.03,2.77]
Brainstem (Dg g3¢¢) (VW-max) 0.98 [0.13,4.30] | 1.00[0.19,2.81]
Parotid (L) (Dyean) 0.10 [0.02,0.39] | 0.48[0.07,1.99]
Parotid (R) Dmean) 0.14 [0.01,0.43] | 0.40[0.03,1.80]
Submand (L) (Dyean) 0.21 [0.06,0.79] | 0.28 [0.05,1.85]
Submand (R) Dean) 0.18 [0.03,0.70] | 0.27[0.01,1.89]
Oral Cavity (Dyean) 0.08 [0.02,0.39] | 0.31[0.03,0.73]
Larynx (SG) (Dmean) 0.37[0.01,1.36] | 0.56[0.19,3.26]
Esophagus (D eqn) 0.31 [0.01,3.03] | 0.23[0.07,0.77]
Mandible (D2g) 0.44 [0.01,2.19] | 0.79 [0.06,2.92]
Mandible (D2y) (vw-max) 0.52 [0.01,2.98] | 0.46[0.08,2.13]

Table 2.7: Median [5™" percentile, 95”’percentile] of the absolute dose metric values (in

Gy) for Pog — Ppc and Pysc — P4c in proton radiotherapy.

Table 2.8:

Rol |PoG — Pucl| |Pyvc = Pacl

Spinal Cord (Dg 03¢¢) 2.92[1.93,4.00] | 0.92[0.65,1.20]
Spinal Cord (Dg 03¢c) (vw-max) | 2.93[1.92,4.06] | 1.08 [0.79,1.40]
Brainstem (Dg g3¢c) 1.07 [0.67,1.54] | 0.89 [0.60,1.20]
Brainstem (Dg g3¢¢) (VW-max) 1.35[0.90,1.84] | 1.27[0.92,1.70]
Parotid (L) (Dyean) 0.16 [0.11,0.21] | 0.63[0.43,0.87]
Parotid (R) Dmean) 0.15[0.11,0.20] | 0.62[0.41,0.86]
Submand (L) (Dyean) 0.32[0.20,0.47] | 0.511[0.32,0.73]
Submand (R) Dean) 0.27 [0.18,0.37] | 0.71[0.29,1.41]
Oral Cavity (Dyean) 0.15[0.10,0.21] | 0.34[0.26,0.42]
Larynx (SG) (Dmean) 0.59 [0.39,0.83] | 0.88[0.54,1.30]
Esophagus (D eqn) 0.75[0.42,1.19] | 0.34[0.25,0.45]
Mandible (D2g) 0.88 [0.49,1.40] | 1.00[0.69,1.34]
Mandible (D2y) (vw-max) 0.95[0.58,1.36] | 0.79[0.54,1.08]

Sample mean [bootstrapped 95% confidence interval] of the absolute dose

metric values (in Gy) for Pog — Ppc and Pysc — Pac in proton radiotherapy.
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2.6.5 NTCP

For NTCP scores (Table 2.9 and Table 2.10), we used the formulae and parameters from the

National Indication Protocol for Proton therapy (Landelijk Indicatie Protocol Protonen-

therapie) [103]. From this document, we referred to Section 3.3.3 and 3.3.4 for xerostomia

and Section 3.4.3 and 3.4.4 for dysphagia. For all four toxicities, we used a baseline score

of 0
Photon Proton
[Poc — Pumcl | |1Pmc—Pacl | 1PoG—Pucl | |Pmc—Pacl
Xerostomia Grade =2 | 0.1 [0.0,0.5] 0.3 0.0,0.9] 0.1[0.0,0.3] 0.2 [0.0,1.0]
Xerostomia Grade =3 | 0.0 [0.0,0.2] 0.1[0.0,0.3] | 0.0[0.0,0.1] 0.1 [0.0,0.3]
Dysphagia Grade = 2 0.2 [0.0,0.9] 0.2 [0.0,0.6] 0.0 [0.0,0.3] 0.1 [0.0,0.3]
Dysphagia Grade =3 | 0.1[0.0,0.7] 0.1[0.0,0.5] | 0.0[0.0,0.1] 0.0 [0.0,0.1]

Table 2.9: Summary measures (median [5 percentile, 95" percentile]) for ANTCP (%)
values in photon and proton radiotherapy for |Pog — Ppcl and | Pprc — Pacl-

Photon Proton
|Poc — Pmcl | |Pmc—Pacl | 1Poc—Pumcl | |Pmc—Pacl
Xerostomia Grade =2 | 0.2 [0.1,0.2] 0.4 [0.3,0.4] 0.1[0.1,0.2] 0.3 [0.2,0.5]
Xerostomia Grade =3 | 0.1[0.0,0.1] 0.1[0.1,0.2] 0.0 [0.0,0.1] 0.11[0.1,0.2]
Dysphagia Grade = 2 0.310.2,0.4] 0.2 [0.2,0.3] 0.1[0.1,0.1] 0.11[0.1,0.1]
Dysphagia Grade = 3 0.2 [0.1,0.3] 0.2 [0.1,0.2] 0.0 [0.0,0.0] 0.0 [0.0,0.0]

Table 2.10: Sample mean [bootstrapped 95% confidence interval]) for ANTCP (%) values
in photon and proton radiotherapy for |Pog — Ppcl and |Ppc — Pacl-
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2.6.6 Visual Results

(a) Brainstem (DICE=0.83, |ADg g3¢c| = 5.3%) (b) Brainstem (DICE=0.81, |[ADg 03¢c| = 28.1%)

(e) Oral Cavity (DICE=0.42, |ADmean| = 4.1%) (f) Oral Cavity (DICE=0.87, [ADmean| = 2.4%)

(g) Spinal Cord (DICE=0.80, |ADg g3cc| = 11.2%)  (h) Spinal Cord (DICE=0.57, |ADg g3cc| = 21.8%)

(i) Submand (R) (DICE=0.82, |ADsean! = 1.3%)  (j) Submand (R) (DICE=0.80, |AD sean| = 2.6%)

Figure 2.7: This figure shows CT scans of photon (a-f) and proton (g-j) patients overlayed
with a dose distribution as well as PTV (DL1) (orange), PTV (DL2) (blue), manual (pink)
and automated (maroon) contours. Each example shows the Pog, Pyc and Pac plans
from left to right. The dose metric in the sub-captions compares the absolute percentage
difference of Ppjc — Pac.
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3

Comparing Bayesian Models for Organ

Contouring in Head and Neck Radiotherapy

This chapter was adapted from:

Mody, Prerak P, Nicolas Chaves-de-Plaza, Klaus Hildebrandt, René van Egmond, Huib de
Ridder, and Marius Staring. "Comparing Bayesian models for organ contouring in head
and neck radiotherapy." In Medical Imaging 2022: Image Processing, vol. 12032, pp. 100-
109. SPIE, 2022.
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Abstract

Deep learning models for organ contouring in radiotherapy are poised for clinical usage,
but currently, there exist few tools for automated quality assessment (QA) of the predicted
contours. Bayesian models and their associated uncertainty, can potentially automate
the process of detecting inaccurate predictions. We investigate two Bayesian models for
auto-contouring, DropOut and FlipOut, using a quantitative measure — expected calibra-
tion error (ECE) and a qualitative measure — region-based accuracy-vs-uncertainty (R-
AvU) graphs. It is well understood that a model should have low ECE to be considered
trustworthy. However, in a QA context, a model should also have high uncertainty in
inaccurate regions and low uncertainty in accurate regions. Such behaviour could direct
visual attention of expert users to potentially inaccurate regions, leading to a speed-
up in the QA process. Using R-AvU graphs, we qualitatively compare the behaviour of
different models in accurate and inaccurate regions. Experiments are conducted on the
MICCAI2015 Head and Neck Segmentation Challenge and on the DeepMindTCIA CT
dataset using three models: DropOut-DICE, Dropout-CE (Cross Entropy) and FlipOut-
CE. Quantitative results show that DropOut-DICE has the highest ECE, while Dropout-
CE and FlipOut-CE have the lowest ECE. To better understand the difference between
DropOut-CE and FlipOut-CE, we use the R-AvU graph which shows that FlipOut-CE has
better uncertainty coverage in inaccurate regions than DropOut-CE. Such a combination
of quantitative and qualitative metrics explores a new approach that helps to select which
model can be deployed as a QA tool in clinical settings.



3.1 Introduction

Radiotherapy is an important cancer treatment option due to its ability to treat cancerous
tissue while simultaneously sparing healthy tissue [115]. During treatment planning there
is a requirement to acquire diagnostic 3D images like CT, MR and PET scans and contour
the healthy tissue or organs at risk (OAR) as well as tumorous tissue. This contouring
task is time-consuming and is also subject to inter- and intra-annotator disagreement [6,
8]. As deep learning models have made great progress in this field [23, 24, 26, 28, 29]
they are widely being considered as an automated technique to speed up and standardize
the contouring process [34, 35]. However, to deploy such models in a clinical setting,
a manual quality assessment (QA) of predicted contours needs to be performed before
they can be used for radiation dosage calculation, which again, introduces a delay. This
work investigates the potential usage of uncertainty heatmaps produced by Bayesian deep
learning models to help speed up the manual QA process for OARs, by directing human

attention to inaccurately segmented regions.

Organ contours are extracted by classifying the 3D voxels of a scan into different cate-
gories. It is well accepted that for a predictive classification model to be trusted, it should
be calibrated. This means that its output confidence (i.e. probability value) should cor-
respond to the likelihood of being accurate. In other words, in a calibrated model, voxels
predicted to belong to an OAR with probability p, should have an accuracy equal to p. It
has been previously shown that well-calibrated model confidences also produce uncer-
tainty measures that correspond to inaccurate regions [76, 77]. Such a property may be
useful in a radiotherapy QA context to direct visual attention of clinicians to inaccurate
regions. Thus, this work further investigates this claim, for the purpose of choosing a
model for clinical deployment, by analysing two deep Bayesian models - DropOut [116]
and FlipOut [117]. Bayesian models were chosen as they offer a principled approach to
capture uncertainty. We use a combination of a commonly used quantitative metric for
model confidence calibration - expected calibration error (ECE) [118] and propose a new
qualitative metric for uncertainty calibration - region-based accuracy-vs-uncertainty (R-
AvU) graphs. Motivated by the observation that some models may provide us with similar
ECE values, we use the R-AvU graphs to understand the differences in their uncertainty
behavior. Previous uncertainty evaluation metrics like AvU [119] provide a single scalar
value by performing an analysis on the accuracy and uncertainty of each voxel in a scan.
To achieve a perfect AvU score, a model must have only accurate and certain or inaccurate
and uncertain voxels, i.e. perfectly calibrated uncertainty. We believe this metric has the
right motivation, but its formulation may not be sufficient from a QA perspective as it
does not offer clear insight into the uncertainty calibration in accurate and inaccurate re-
gions. Such region-specific insight is useful as high uncertainty in inaccurate regions and
low uncertainty in accurate regions can provide heatmaps that could help direct visual
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attention during QA. Hence, the R-AvU graph uses the building blocks of the AvU metric
and plots the uncertainty probabilities in accurate and inaccurate regions across a range
of uncertainty thresholds. We use entropy as an uncertainty metric in our experiments,
which has been previously shown to capture both data and model uncertainty [120].

3.2 Method

3.2.1 Data

CT scans along with annotations for 9 organs at risk (OAR) in the head-and-neck area
were used from the MICCAI 2015-Head and Neck Segmentation Challenge dataset [20].
This dataset provided 33 training and 10 test samples from the RTOG 0522 clinical trial
[121]. Models trained on this dataset were also evaluated on a separate dataset titled
DeepMindTCIA [22] which contains 15 patients. The DeepMindTCIA dataset also refers
to the RTOG 0522 clinical trial along with the TCGA-HNSC [21] collection on The Cancer
Imaging Archive (TCIA). Duplicate RTOG 0522 patients were removed from the DeepMind
TCIA dataset if they were already present in the MICCAI dataset. Each CT volume is resam-
pled to a resolution of (0.8, 0.8, 2.5) mm and cropped with a bounding box of dimensions
(240,240,80) around the brainstem. The resampling and subsequent training was done at
a fixed resolution so that it is convenient for the convolution kernels to learn anatomical
feature extraction. The scans were cropped around the brainstem to reduce the compu-
tational complexity of patch extraction. The Hounsfield units were trimmed from -125 to
+225 to better capture contrast for soft tissues. The models consumed random 3D patches
of size (140,140,40) that were augmented with 3D translations, 3D rotations, 3D elastic

deformations and Gaussian noise.
3.2.2 Neural Architecture

The base convolutional neural network (CNN) of our Bayesian models is inspired by Fo-
cusNet [24], a deterministic model. This model is a standard encoder-decoder architec-
ture that uses Squeeze and Excitation [122] modules for improved feature extraction via
channel attention, a DenseASPP [123] module to obtain sufficient receptive field and fi-
nally a supplementary network to prevent foreground-background imbalance for smaller
organs at risk (OAR) like optic nerves and optic chiasm. Our implementation avoids the
supplementary network for the sake of simplicity. We add Bayesian layers in the DenseA-
SPP module which forms the middle layers of FocusNet.

A choice of either DropOut [124] or FlipOut [125] layers were used for Bayesian mod-
elling. Bayesian modelling of a predictive model involves placing a prior over the models
weights p(W) and updating its posterior p(W|D) via observations D = (X, Y) where X and
Y are training inputs and outputs respectively. Learning a distribution over the model
weights, instead of simply learning fixed scalar values, helps us capture how much the
output can vary when provided some input. Thus, Bayesian modelling helps us infer the
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output distribution p(y|x, D) where x is a test sample and y is its associated output by
marginalizing over the posterior:

p(ylx, D) = Ew-pwp)[p(ylx, W)I. (3.1)

Theoretically, the DropOut model estimates the posterior distribution of a deep Gaus-
sian process (a Bayesian inference tool) by placing a Bernoulli distribution with parameter
pa on the neural net weights. This was shown to be equivalent to performing dropout on
the outputs of the layer that those weights belong to. Here output refers to the result of
a convolution operation i.e. wy, * x, where wy, is the kernel weight and xj, is the input
in some hidden layer and dropout refers to randomly setting this output to zero with
probability p;. FlipOut on the other hand assumes the weight distribution to be Gaussian.
In practice, Monte-Carlo sampling via multiple forward passes is used to estimate or infer
p(ylx, D). Thus, in every forward pass, Dropout and FlipOut perform output space and
weight space perturbations respectively. This is because during each forward pass the
DropOut model drops outputs randomly while the FlipOut model samples new weights
from a Gaussian distribution. Our DropOut model contains ~500k parameters, while
the FlipOut model contains twice those parameters due to the Gaussian assumption. We
chose a fixed probability of p; = 0.25 for the Dropout model.

3.2.3 Training and Inference

During a single forward pass, the models produce 3D probability maps for each OAR, with
each voxel being represented by a vector containing probability values for each OAR that
sum to 1. An argmax operator is applied on each voxel’s probability vector to assign it
an OAR. For each OAR, we assume its 3D predicted probability map to be P, and the
corresponding ground truth probability map to be Y, = {0, 1}, where c € C stands for OAR
class id. The models are trained using either soft-DICE [126] or cross-entropy (CE) loss,
which is calculated for each OAR and then averaged to calculate the gradient for back
propagation. During training, we perform only a single forward pass to calculate the loss.
The DICE loss is calculated as follows:

N . .
23 (PeY)
=l
DICE. = NN (3.2)
2 P+ Y.
i=1 i=1
1 C
LDICEzl_E(wCZDICEC ) 3.3)
c=1

where P! represents the predicted probability of one of N voxels, Y/ is its corresponding
ground truth and w, is the weight assigned to each class. We use a weighted approach
since the OARs in the head and neck region suffer from an imbalanced class problem.
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The weights are inversely proportional to the average voxel count of each OAR. Similar
to DICE, the standard CE loss only penalizes the foreground of each organs probability
map i.e. 1;y,-1;. Our modified CE loss inspired by [127] also penalizes the background i.e.
1¢1-v,)=1; of these probability maps for additional supervision as follows:

N .
CEforeground = Z(]l{YCiZI} In(Pp)) (3.4)
i=1
N .
CEpackground = Z(]l{(l—YCi):l}ln(l -P)) (3.5)
i=1
1 C
Leg = E We (CEforeground + CEhackground) ’ (3.6)
c=1

which showed improved performance when compared to using the standard CE loss.

To train the FlipOut model, one minimizes the CE loss as well as the KL-Divergence
term between the Gaussian prior p(w) and the estimated posterior p(w|D) [125]. For
inferring the predictive distribution p(y|x, D) from the model posterior p(W|D), Monte
Carlo sampling is performed. We perform M = 30 forward passes, each time sampling
from the posterior to produce 3D activation maps (P;),, for each OAR. These are then
averaged (P.) and passed through the argmax operator to yield the output ¥ containing
OAR ids.

I
Pe=+- W;(Pc)m 3.7)
¥ = arginax [P] 3.8)
c=1

We train and evaluate 4 Bayesian models c.f. DropOut-CE-Basic, DropOut-DICE, DropOut-

CE and FlipOut-CE along with some deterministic variants. Here Dropout-CE-Basic is the
model trained with the foreground-only cross entropy loss while DropOut-CE is trained
with the modified-CE loss described above. In the deterministic (i.e. non-Bayesian) vari-
ants c.f. DropOut-DICE-Det and DropOut-CE-Det, only a single forward pass (i.e M = 1) is
performed. A deterministic analysis on FlipOut-CE is not done as its design leads to new
weights being sampled in every forward pass. The models were trained for a 1000 epochs
with the Adam optimizer and a fixed learning rate of 0.001, with one epoch looping over
33 patients in the MICCAI2015 training subset.

3.2.4 Uncertainty

Using the probability maps (P.);, of each OAR, we compute the entropy maps and use
them as uncertainty maps. Entropy is a term derived from information theory that cap-
tures the average amount of uncertainty present in a signal. Thus, if Monte Carlo (M)
sampling in a Bayesian network leads to highly varying probability vectors for a voxel,
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Figure 3.1: These figures show the behaviour of entropy for a simple binary classification
problem of one voxel. Here p represents the foreground class probability and e refers
to the amount of output probability variability across Monte Carlo runs. The left figure
shows uncertainty behavior when the output probability has some variability, while the
right figure shows uncertainty behaviour in case of extreme probability changes.

it would have higher entropy. To calculate the 3D entropy map H(y|x, D), we use the
averaged probability heatmaps P, of each OAR:

C
H(ylx,D)=—-)_ P.-log(P,), (3.9)
i=1

which has a maximum value when the average probability vector };é for each voxel i has
all its values as % In our case of C=10 (9 OARs + background), the maximum entropy value
is 2.3.

In Figure 3.1, we use a toy binary classification problem (e.g. foreground vs back-
ground classification for a single voxel) to understand the behavior of these metrics. In the
left figure, we add uniform variability parameterized by € to the foreground class probabil-
ity p to replicate possible Monte Carlo outputs. Here, entropy is maximum at p = 0.5, i.e
the model assigns equal probability to both foreground and background. It is lowest when
the model is confident in its predictionsi.e. p = {0, 1}. Also, while increasing the amount of
variation across different Monte Carlo outputs, there is no behavioral change in entropy
as seen by the overlap of the curves. In the right figure, we investigate an extreme case
wherein Monte Carlo sampling outputs probabilities such as [p,1-p, p, .. .]. Thisreplicates
extreme probability swings which might represent the case of a boundary voxel between
an OAR and background where contrast is poor and hence the model is uncertain. Such
outputs maximize the entropy across all probabilities.

37

INOILDHLA(J 40U PESRERNAASIP)

STHAOIAN NVISHAVY ONIUVAINOD




3.2.5 Evaluation

For evaluation, we use two metrics: the expected calibration error (ECE) [118] for model
confidence calibration and then region-based accuracy-vs-uncertainty (R-AvU) for un-
certainty calibration. For e.g. in a foreground-background classification problem, if 100
voxels are assigned the foreground class with 70% probability, then we should expect that
70 of those voxels have been assigned the correct class. The error between the model
confidence and its accuracy is considered as calibration error. When the same is averaged
across multiple probability bins, we obtain the expected calibration error. Specifically, for
each OAR, we calculate ECE, by assigning the probability of each predicted OAR voxel i
to one of B=10 equally spaced bins (Bj) between 0 and 1 as follows:

1
ECE, = E(acc(Bp) - conf(Bp)), (3.10)
1
acc(Bp)=— ) 1y _y, (3.11)
Byl &5,
1
conf(B,) = — ) (Po);. (3.12)
|BP| i€By

Here Y, is the ground truth map, Y, is the predicted map and P, is the probability map
belonging to a particular OAR. The lower the ECE values, the more calibrated a model is.
Finally, to compute the R-AvU graphs we use uncertainty heatmaps to create line plots for
the probability of uncertainty in inaccurate (p(u|i)) regions as well as the probability of
uncertainty in accurate (p(u|a, ~ a)) regions. In the context of this graph, each voxel has
two properties: its accuracy and uncertainty. Each voxel is then categorized as ng,¢, 14y,
n;c and n;, where n stands for the number of voxels, a for accurate, i for inaccurate, ¢ for
certain and u for uncertain. Using these terms, we find the two curves in the R-AvU graph

. N
p(uli) = (3.13)
iut Nic
n
pula,~a)= —2— (3.14)
Nau t+ Nac

We define accurate regions as those containing true positive (TP) voxels. We include
the ~ a term to denote almost TP voxels, as due to inter- and intra-observer variation, it
is common to disregard false positive (FP) and false negative (FN) voxels very close to the
ground truth contours. This is done by an erosion followed by a dilation on the inaccurate
regions using a (3,3,1) filter which removes any small regions of error. The remaining FP
and FN voxels are then considered as the inaccurate regions. Such an interpretation may
be useful for radiotherapy QA, where smaller contouring errors may not have significant
downstream effects on the calculated radiation dose for healthy tissue. Thus, such areas
can be considered accurate enough and it is preferable from a visual attention standpoint
that a model has lower uncertainty in these regions.
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3.3 Results
3.3.1 Volumetric Performance

Figure 3.2 shows OAR DICE scores for the MICCAI 2015 test dataset on the left and for
the DeepMindTCIA dataset on the right. For both datasets, the mandible and the brain-
stem (BStem) achieve the highest scores followed closely by the parotid and submandibu-
lar (SMD) glands while the optic organs (Opt Nrv L, Opt Nrv R and Opt Chiasm) have
lower DICE scores overall. In the DeepMindTCIA dataset, we see various outliers for the
right submandibular gland (SMD R). For the MICCAI 2015 test dataset, all models, ex-
cept DropOut-CE-Basic have equivalent average performance in terms of standard med-
ical segmentation metrics, i.e DICE (~0.77 - 0.78) and Hausdorff Distance 95% (~5mm -
7mm). We run a Wilcoxon signed-rank test on the Bayesian models and achieve p-values
of 0.625 between DropOut-DICE and DropOut-CE, 0.275 between DropOut-DICE and
FlipOut-CE and 1.0 between DropOut-CE and FlipOut-CE for the average DICE scores.
For the average Hausdorff Distance 95% we achieve p-values of 0.027 between DropOut-
DICE and DropOut-CE, 0.375 between DropOut-DICE and FlipOut-CE and 0.232 between
DropOut-CE and FlipOut-CE. The results indicate that for the most part the models are not

significantly different. Thus, we may compare these models using other metrics such as

INOILDHLA(J 40U PESRERNAASIP)

Expected Calibration Error (ECE) and Region-Accuracy vs Uncertainty (R-AvU). No statis-
tical tests or additional metrics were used to study the DropOut-CE-Basic model due to its
poor performance on average DICE (0.58) and average Hausdorff Distance 95% (15.95mm).
Tensorflow [128] code to reproduce these results can be found at
https://github.com/prerakmody/hansegmentation-uncertainty-qa.

3.3.2 Expected Calibration Error

Figure 3.3 shows for both datasets that Dropout-DICE and DropOut-CE always have lower

STHAOIAN NVISHAVY ONIUVAINOD

ECE than their deterministic counterparts Dropout-Dice-Det and DropOut-CE-Det. DropOut-
CE on average has a lower ECE than DropOut-DICE, while FlipOut-Det and FlipOut-CE
have similar ECE. The same holds for DropOut-CE and FlipOut-CE. For organs, we notice
that the optic organs have the highest ECE compared to other organs for both datasets.
The submandibular glands (SMD L and SMD R) and the right parotid gland have outliers

in the DeepMindTCIA dataset as shown on the right side of Figure 3.3.

3.3.3 Region - Accuracy vs Uncertainty

Figure 3.4 represents p(u|i) as a solid line plot and p(ula,~ a) as a dotted line plot for
entropy. A model for efficient QA would have high p(u|i) and low p(ula, ~ a). The p(uli)
and p(ula,~ a) of the FlipOut-CE model is higher than that of the DropOut-CE model
for the entire range of uncertainty thresholds. For entropy as the uncertainty metric, the
DropOut-DICE model always has values lower than DropOut-CE and FlipOut-CE for both
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Figure 3.2: Boxplot depicting the DICE scores for the MICCAI2015 test dataset (a) and the
DeepMindTCIA dataset (b). The x-axis shows the different organs and the average over all
organs.

p(uli) and p(ula,~ a). Similar trends are noticed for the DeepMindTCIA dataset, though
the probability values are slightly reduced.

For visual results, we look at Figure 3.5 where the first column shows a CT slice and the
second column shows the ground truth (GT) mask. The third, fourth and fifth columns
are the deep learning predictions and the remaining columns are their corresponding
uncertainty heatmaps. The first row in the figure shows a result from the MICCAI2015
test dataset representing a false positive prediction for the top slice of the brainstem.
The second and third rows show predictions for the DeepMindTCIA dataset of the left
parotid gland and mandible respectively. In these figures, red represents false positive,
blue represents false negative and white represents true positive predictions.
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Figure 3.3: Boxplot depicting the Expected Calibration Error (ECE) with M=10 bins for the
MICCAI2015 test dataset (a) and the DeepMindTCIA dataset (b). The x-axis shows the
different organs and the average.

3.4 Discussion and conclusion

This work exploited an existing deterministic model (i.e. FocusNet [24]) and investigated
the model confidence calibration and uncertainty behavior of its Bayesian versions for
efficient QA in a clinical radiotherapy setting. All Bayesian models, when averaged across
organs at risk (OAR), performed equally well in terms of volumetric and surface distance
measures, allowing us to compare across other metrics like expected calibration error
(ECE) and region-based accuracy-vs-uncertainty (R-AvU). Using a modified cross entropy
loss for our models improved their performance in comparison to its standard version as
additional supervision is provided for both the foreground and background of each OAR. It
was also important to use weights for each OAR to handle the problem of class imbalance.
The right plot in Figure 3.2 shows low DICE scores for the right submandibular gland (SMD
R) in the DeepMindTCIA dataset. This is because, in general, our models have reduced
performance for the TCGA-HNSC patients when compared to the RTOG 0522 patients
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Figure 3.4: Line plots showing the uncertainty behaviour of different models in inaccurate
(p(uli)) and accurate (p(ula,~ a)) regions for the MICCAI2015 test set (left) and the
DeepMindTCIA dataset (right).
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Figure 3.5: The first two columns depict the raw and ground truth data from the datasets,
while the remaining columns show model predictions and their associated entropy
heatmaps. In the predicted masks, white voxels are true positives, red voxels are false
positives while blue voxels are false negatives.

due to poor contrast in the TCGA-HNSC CT scans.

Post model training, it is important to evaluate the ECE of a predictive model to check
if it produces probability estimates that reflects its true underlying interpretation of a test
sample. The boxplots in Figure 3.3 shows that performing Bayesian inference in neural
networks always reduces or maintains calibration error (ECE). Thus, all subsequent model
comparisons in this work only consider Bayesian models. It is also observed that CE
as a loss function leads to reduced ECE compared to DICE, as also found by others[76].
This may be since CE is a strict scoring rule and hence achieves more reliable probability
estimates. Also note that the modified CE achieved similar accuracy compared to DICE.
This is an important result as most works in medical image segmentation rely on using
the DICE loss. Once again, similar to DICE performance, the right submandibular gland
(SMD R) in the DeepMindTCIA dataset has outlier ECE values. This is due to the fact the
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models are highly confident but yet inaccurate, leading to large calibration errors.

Given that DropOut-CE and FlipOut-CE have similar ECE values, we refer to the R-AvU
graphs to understand differences in their behavior in the context of output uncertainty.
For entropy, the FlipOut-CE model has better uncertainty coverage than other models
in inaccurate regions. This is reflected in Figure 3.4 where both its p(u|i) and p(ula, ~
a) curves are higher than that of DropOut-CE. This means that FlipOut-CE misses less
inaccurate regions than DropOut-CE, but also directs visual attention to areas that are
accurate, more so than DropOut-CE, potentially slowing down QA. A possible reason for
the behavior of FlipOut-CE could be that it uses a Gaussian distribution which might be
more representative of the weight distribution than the Bernoulli distribution. Entropy for
Dropout-DICE, which has the highest ECE, has uncertainty curves that do not sufficiently

cover incorrect regions, thus reducing its potential as a contour QA candidate.

Focusing on the bright areas in Figure 3.5, the first and third row show that FlipOut-CE
provides a better coverage of erroneous regions, while in the second row the bright areas
of DropOut-DICE correspond to errors in the different lobes of the left parotid gland. In
the third row of Figure 3.5 for CE-trained models, we see that there exists high uncertainty
in the erroneous regions and low uncertainty along the borders of the mandible. The low
uncertainty could be the effect of different annotation quality for different patients in the
training data which leads to data-based uncertainty along the border regions of an OAR.
A similar effect for CE-trained models is seen in row 2 for the left parotid gland, but in this
case there is high uncertainty in both high and low error regions which does not satisfy our
requirements for visual attention. It is due to this effect that the p(u|a) curves have high
probability values. Finally, uncertainty does not exactly correspond to voxel-wise error, so
an additional visualization tool on top of the output uncertainty heatmaps may improve
acceptability from clinical users.

To conclude, we show that considering both foreground and background regions in
the probability maps of organs for the cross entropy (CE) loss improves model perfor-
mance over the standard practice of only using the foreground regions. This is beneficial,
as CE-trained models have better model confidence calibration than DICE trained mod-
els. We also explored how the combined use of a quantitative and qualitative measure
can support the analysis and selection of Bayesian models for radiotherapy QA. It was
observed, that on average, FlipOut-CE has more uncertainty coverage of both inaccurate
and accurate regions than the DropOut models, possibly due to the Gaussian assumption
in FlipOut compared to the Bernoulli assumption in DropOut. Future work may consider
additional training objectives to push apart the p(uli) and p(ula,~ a) curves with the
p(uli) curve having high values and the p(u|a, ~ a) curves having lower values. This will
ensure visual attention in erroneous regions through the use of uncertainty heatmaps.
One may also explore the use of uncertainty metrics like mutual information that only
capture model uncertainty [120], unlike entropy that captures both data and model un-
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certainty. It might be worthwhile to investigate which uncertainty metric is more useful
within clinical workflows. Finally, this study could also be done for a contour propagation
scenario in adaptive radiotherapy to observe if similar results are obtained.
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Abstract

Increased usage of automated tools like deep learning in medical image segmentation
has alleviated the bottleneck of manual contouring. This has shifted manual labour
to quality assessment (QA) of automated contours which involves detecting errors and
correcting them. A potential solution to semi-automated QA is to use deep Bayesian
uncertainty to recommend potentially erroneous regions, thus reducing time spent on
error detection. Previous work has investigated the correspondence between uncertainty
and error, however, no work has been done on improving the “utility" of Bayesian un-
certainty maps such that it is only present in inaccurate regions and not in the accu-
rate ones. Our work trains the FlipOut model with the Accuracy-vs-Uncertainty (AvU)
loss which promotes uncertainty to be present only in inaccurate regions. We apply
this method on datasets of two radiotherapy body sites, c.f. head-and-neck CT and
prostate MR scans. Uncertainty heatmaps (i.e. predictive entropy) are evaluated against
voxel inaccuracies using Receiver Operating Characteristic (ROC) and Precision-Recall
(PR) curves. Numerical results show that when compared to the Bayesian baseline the
proposed method successfully suppresses uncertainty for accurate voxels, with similar
presence of uncertainty for inaccurate voxels. Code to reproduce experiments is available
at https://github.com/prerakmody/bayesuncertainty-error-correspondence.


https://github.com/prerakmody/bayesuncertainty-error-correspondence

4.1 Introduction

In recent years, deep learning models are being widely used in radiotherapy for the task
of medical image segmentation. Although these models have been shown to accelerate
clinical workflows [129, 130], they still commit contouring errors [131]. Thus, a thorough
quality assessment (QA) needs to be conducted, which places a higher time and man-
power requirement on clinical resources. This creates a barrier to the adoption of such
deep learning models [132]. Moreover, it also creates an obstacle for adaptive radiotherapy
(ART) workflows, which have been shown to improve a patient’s post-radiation quality-of-
life [4]. This obstacle arises due to ART’s need of regular contour updates. Currently, com-
mercial auto-contouring tools do not have the ability to assist with quick identification

and rectification of potentially erroneous predictions [131, 132].

Quality assessment (QA) of incorrect contours would require two steps — 1) error detec-
tion and 2) error correction [133]. Currently, errors are searched for by manual inspection
and then rectified using existing contour editing tools. Error detection could be semi-
automated by recommending either potentially erroneous slices of a 3D scan [63], or
by highlighting portions of the predicted contours [58] or blobs [61]. Upon detection
of the erroneous region, the contours could be rectified using point or scribble-based
techniques [134, 135] in a manner that adjacent slices are also updated. For this work,
we will focus on error detection.

Various approaches to error detection have suggested using Bayesian Deep Learning
(BDL) and the uncertainty that it can produce as a method to capture potential errors
in the predicted segmentation masks [56, 58, 61, 63, 64, 66, 69]. Although such works
established the potential usage of uncertainty in the QA of predictions, it may not be
sufficient in a clinical workflow that relies on pixel-wise uncertainty as a proxy for error
detection. In our experiments with deep Bayesian models, we observed that the relation-
ship between prediction errors and uncertainty is sub-optimal, and hence has low clinical
“utility". Ideally, for semi-automated contour QA, the uncertainty should be present only
in inaccurate regions and not in the accurate ones. At times, literature usually refers to
this as uncertainty calibration [69, 136-139], but we find this term incorrect as historically,
calibration is referred to in context of probabilities of a particular event [140]. Thus, we
believe it is semantically incorrect to say uncertainty calibration and instead propose to

use the term uncertainty-error correspondence.

To create a Bayesian model that is incentivized to produce uncertainty only in inaccu-
rate regions, we use the Accuracy-vs-Uncertainty (AvU) metric [141] and its probabilistic
loss version [137] during training of a UNet-based Bayesian model [142]. This loss pro-
motes the presence of both accurate-if-certain (n,;) as well as inaccurate-if-uncertain
(nj,) voxels in the final prediction (Figure 4.1). With uncertainty present only around
potentially inaccurate regions, one can achieve improved synergy between clinical experts
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Figure 4.1: Method overview - A 3D medical scan (e.g. CT/MR) is input into a UNet-based
Bayesian neural net to produce both predicted contours (Pred) and predictive uncer-
tainty (Unc). While the cross-entropy loss is used to improve segmentation performance,
the Accuracy-vs-Uncertainty (AvU) loss is used to improve uncertainty-error correspon-
dence. The AvU loss is computed by comparing the prediction with the ground truth
(GT) at a specific uncertainty threshold using four terms: count of accurate-and-certain
(nac), accurate-and-uncertain (nay), inaccurate-and-certain (n;c) and inaccurate-and-
uncertain (ny) voxels.

and their deep learning tools during the QA stage. Our work is the first to use the AvU
loss in a dense prediction task like medical image segmentation and also with datasets
containing natural and not synthetic variations as was previously done [137]. This work
extends our conference paper [143] with additional datasets, experiments and metrics.
There, we adapt the original AvU loss by considering the full theoretical range of uncer-
tainties in the loss, rather than one extracted from the validation dataset [137]. For our
work we use the predictive entropy as an uncertainty metric [144].

Several other approaches have been considered in context of uncertainty, for e.g. en-
sembles, test time augmentation (TTA) and model calibration. While ensembles of mod-
els have good segmentation performance [62, 66], they are parameter heavy. TTA [60, 73]
performs inference by modulating a models inputs, but does not perform additional train-
ing, so may be unable to transcend its limitations. Calibration techniques attempt to make
predictions less overconfident [71, 145-149], however they do not explicitly align model
errors with uncertainty. All the above methods are benchmarked on the truthfulness of
their output probabilities (when compared against voxel accuracies) using metrics like
expected calibration error (ECE). However, a model with lower ECE than its counterparts
may not necessarily have higher uncertainty-error correspondence.

Finally, to evaluate calibrative and uncertainty-error correspondence metrics, one needs
to compute the “true" inaccuracy map. Similar to our conference paper [143] and inspired
by [58], we classify inaccuracies of predicted voxel maps into two categories: “errors"
and “failures" (see Section 4.8.1). Segmentation “errors" are those inaccuracies which
are considered an artifact similar to inter-observer variation, a phenomenon common
in medical image segmentation [9, 150]. Thus, we consider these smaller inaccuracies
to be accurate in our computations, under the assumption they do not require clinical
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intervention. In the context of contour QA, such voxels should ideally be certain. Hence,
only the segmentation “failures" are a part of the “true" inaccuracy map used to calculate
the calibrative and uncertainty-error correspondence metrics.

To summarize, our contributions are as follows:

¢ For the purpose of semi-automated quality assessment of predicted contours, we
aim to improve uncertainty-error correspondence (unc-err) in a Bayesian medi-
cal image segmentation setting, pioneering this in the context of radiation therapy:.
Specifically, we propose using the loss form of the Accuracy-vs-Uncertainty (AvU)
metric while training a deep Bayesian segmentation model.

* We compare our Bayesian model with the AvU loss against an ensemble of deter-
ministic models, five approaches employing calibration-based losses and also test
time augmentation. We also perform an architectural comparison by comparing
models with Bayesian convolutions placed in either the middle layers or decoder
layers of a deep segmentation model.

¢ We benchmark unc-err of the segmentation models on both in- and out-of-distribution
radiotherapy datasets containing head-and-neck CT and Prostate MR scans. Models
are benchmarked on these datasets across discriminative, calibrative and uncertainty-

error correspondence metrics.
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4.2 Related Works

4.2.1 Epistemic and aleatoric uncertainty

Recent years have seen an increase in work that utilizes probabilistic modeling in deep
medical image segmentation. The goal has been to account for uncertainty due to noise
in the dataset (aleatoric uncertainty) as well as in the limitations of the predictive mod-
els learning capabilities (epistemic uncertainty). Noise in medical image segmentation
refers to factors like inter- and intra- annotator contour variation [9, 150] due to factors
such as poor contrast in medical scans. Works investigating aleatoric uncertainty model
the contour diversity in a dataset by either placing Gaussian noise assumptions on their
output [67] or by assuming a latent space in the hidden layers and training on datasets
containing multiple annotations per scan [151]. A popular and easy-to-implement ap-
proach to model for aleatoric uncertainty is called test-time augmentation (TTA) [57].
Here, different transformations of the image are passed through a model, and the resulting
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outputs are combined to produce both an output and its associated uncertainty.

In contrast to aleatoric uncertainty, epistemic uncertainty could be used to identify
scans (or parts of the scan) that are very different from the training dataset. Here, the
model is unable to make a proper interpolation from its existing knowledge. Methods
such as ensembling [62] and Bayesian posterior inference (e.g., Monte-Carlo DropOut,
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Stochastic Variational Inference) [56, 58, 61, 63, 64, 137, 152] are common methods to
model epistemic uncertainty in neural nets. While Bayesian modeling is a more math-
ematically motivated and hence, principled approach to estimating uncertainty, ensem-
bles have been motivated by the empirically-proven concept of bootstrapping. In con-
trast to Bayesian models where the perturbation is modelled by placing distributions on
weights, ensembles use either different model weight initializations, or different subsets
of the training data. In Bayesian inference techniques, perturbations are introduced in
the models activation or weight space. Dropout [153] and DropConnect [154] are popular
techniques that apply the Bernoulli distribution on these spaces. Stochastic variational
inference (SVI) is another type of weight space perturbation that usually assumes the
more expressive Gaussian distribution on the weights. Bayes by Backprop [155] and its
resource-efficient variant such as FlipOut [142] are examples of SVI. For our work, we
consider approaches that are designed for both epistemic uncertainty (Ensembles and

SVI models) as well as aleatoric uncertainty (TTA).
4.2.2 Uncertainty use during training

Other works also use the uncertainty from a base segmentation network to automatically
refine its output using a follow-up network. This refinement network can be graphical
[156] or simply convolutional [58]. Uncertainty can also be used in an active learning
scenario, either with [157] or without [68] interactive refinement. Shape-based features of
uncertainty maps have also been shown to identify false positive predictions [72]. Simi-
larly, we too use uncertainty in our training regime, but with the goal of promoting uncer-
tainty only in those regions which are inaccurate, an objective not previously explored in
medical image segmentation.

4.2.3 Model calibration

In context of segmentation, model calibration error is inversely proportional to the align-
ment of a models output probabilities with its pixel-wise accuracy. Currently there is
no proof that reduction in model calibration error leads to improved uncertainty-error
correspondence. However, a weak link can be assumed since both are derived from a
models output probabilities. It is well known that the probabilities of deterministic mod-
els trained on the cross entropy (CE) loss are not well calibrated [145]. This means that
they are overconfident on incorrect predictions and hence fail silently. This, which is an
undesirable trait in context of segmentation QA and needs to be resolved.

To abate this overconfidence issue, methods such as post-training model calibration
(or temperature scaling) [65, 145, 158], ensembles [62, 159], calibration-focused training
losses [146, 148, 149, 160] and calibration-focused training targets [71, 147] have been
shown to improve model calibration for deterministic models. Temperature scaling, a
post-training model calibration technique, has been shown to perform poorly in out-of-
domain (OOD) settings [159], relies wholly on an additional validation dataset and/or
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needs explicit shape priors [65]. FinerLocal temperature scaling techniques have been
proposed that calibrate on the image or pixel level [158], however they are still concep-
tually similar to the base method and are hence plagued by the same concerns. Others
[65] used a shape prior module for out-of-domain robustness, but they only introduced
synthetic textural variations in their work.

Another approach to model calibration is to regularize a model during train to pro-
mote uncertainty. For e.g. the ECP [146] technique explicitly adds the negative entropy to
the training loss. Conversely, the Focal loss [148, 161] achieves thisattempts to calibrate
a model implicitly by assigning lower weights (during training) to more confident predic-
tions. Other methods smooth the hard targets of the ground truth towards a uniform dis-
tribution in the limit. For e.g. Label Smoothing [147, 162] does this by modifyingmodifies
the class distribution of a pixel by calculating a weighted average (using parameter a)
between the hard target and a uniform distribution. On the other hand, Spatial Vary-
ing Label Smoothing (SVLS) [71] modifies a pixel’s class allocation by considering classes
around it. To avoid excessively making the models predictions uniform, Margin-based La-
bel Smoothing (MBLS) [149, 163] reformulates the above approaches by showing that they

essentially perform loss optimization where an equality constraint is applied on a pixels
logits. MBLS attempts to achieve the best discriminative-calibrative trade-off by softening
this equality constraint. They subtract the max logit of a pixel with its other logits and
only penalize those logit distances that are greater than a predetermined margin. Others
extend thisthe MBLS framework by further tuningeither learning class-specific weights
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for the equality constraint [164] or reformulating SVLS to a similar formulation similar to
MBLS [160]. Although these methods attempt to make models less overconfident, they do
not explicitly align a model’s error to its uncertainty.

There also exist other approaches to model calibration for e.g., multi-task learning
[52], mixup augmentation [165] and shape priors [166]. Multi-task learning requires addi-
tional data that may not always be present, while mixup creates synthetic samples which
are not representative of the real data distribution. Finally, shape priors may not be appli-
cable to tumors with variable morphology.

Model calibration techniques are evaluated by metrics like Expected Calibration Error
(ECE) and its variants [167], however others have also proposed terms like Uncertainty-
Calibration Error (UCE) [168, 169]. While ECE evaluates the equivalency between ac-
curacy and predicted probability, UCE compares inaccuracy and uncertainty. However,
while it is semantically appropriate to expect an average probability of p (0 < p < 1) to
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give the same average accuracy (i.e., the mathematical formulation of ECE), the same is
not appropriate for inaccuracy and uncertainty u (0 < u < 1). Hence, UCE isnot applicable
to our work.

To conclude, the issue with each of the aforementioned techniques for epistemic, aleatoric
and calibrative modeling is that they do not explicitly train the model to develop an innate
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sense of potential errors on a given segmentation task. Given that this is the primary
requirement from a contour QA perspective, these models may be unable to have good
uncertainty-error correspondence.

4.3 Methods

4.3.1 Neural Architecture

We adopt the OrganNet2.5D neural net architecture [170] which is a standard encoder-
decoder model connected by four middle layers. It contains both 2D and 3D convolutions
in the encoder and decoder as well as hybrid dilated convolutions (HDC) in the middle.
This network performs fewer pooling steps to avoid losing image resolution and instead
uses HDC to expand the receptive field. To obtain uncertainty corresponding to the out-
put, we add stochasticity to the deterministic convolutional operations by replacing them
with Bayesian convolutions [142, 155]. We experiment with replacing deterministic layers
in both the HDC as well as the decoder layers to understand the effect of placement.

In a Bayesian model, a prior distribution is placed upon the weights and is then up-
dated to a posterior distribution on the basis of the training data. During inference (Equa-
tion (4.1)), we sample from this posterior distribution p(W|D) to estimate the output dis-

tribution p(y|x, D) with x, y and W being the input, output and neural weight respectively:

PW1%,D) = Bw—pwin) | py1x, W)). @.1)

This work uses a Bayesian posterior estimation technique called stochastic variational
inference, where instead of finding the true, albeit intractable posterior, it finds a distribu-
tion close to it. We chose FlipOut-based [142] convolutions which assume the distribution
over the neural weights to be a Gaussian and are factorizable over each hidden layer. Pure
variational approaches would need to sample from this distribution for each element of
the mini-batch [155]. However, the FlipOut technique only samples once and multiplies
that random sample with a Rademacher matrix, making the forward pass less computa-

tionally expensive.
4.3.2 Training Objectives

In this section , we use a notation format, where capital letters denote arrays while non-
capital letters denote scalar values.

4.3.2.1 Segmentation Objective

Upon being provided a 3D scan as input, our segmentation model predicts for each class
c € C, a 3D probability map P, of the same size. Each voxel i € N has a predicted prob-
ability vector P! containing values p’ for each class that sum to 1 (due to softmax). To

calculate the predicted class of each voxel };i, we do:

yi= argmaxpz. (4.2)
ceC
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To generate a training signal, the predicted probability vector Piis compared to the
corresponding one-hot vector Y’ in the gold standard 3D annotation mask. Y? is com-
posed of yé € {0,1}. Inspired by [171, 172], we re-frame the binary cross-entropy loss
(Equation (4.3)), as penalizing both the foreground (yé = 1) and background ((1 - yé') =1
voxels of the probability maps of each class with a weight w,:

1
Lcg=—— E
CE |C|( We

ceC

Y (vim@h+a-yhma- ﬁé))‘). 4.3)

ieN

Note, we do not utilize the DICE loss for training as it has been shown to have lower
model calibration metrics [173]. Also, since the CE loss is susceptible to fail during a class-
imbalance, we use its weighted version.

4.3.2.2 Uncertainty Objective

In a Bayesian model, multiple forward passes (m € M) are performed and the output 3D
probability maps (P;),, of each pass are averaged to output P, (Equation (4.1)). Using
P, we can calculate a host of statistical measures like entropy, mutual information and
variance. We chose entropy as it has been shown to capture both epistemic uncertainty,
which we explicitly model in FlipOut layers, as well as aleatoric uncertainty, which is
implicitly modeled due to training data [144]. We use the predicted class probability vector
P for each voxel and calculate its (normalized) entropy u':

. 1 Ai A,
P — In(p?).
T CEZCPC n(pf) (4.4)

Since we have access to the gold standard annotation mask, each voxel has two prop-
erties: accuracy and uncertainty. Accuracy is determined by comparing the gold standard
class y' to the predicted class );i. We use this to classify them in four different categories
represented by 1,¢, nau, Nic and ny,, where n stands for the total voxel count and a, i, u, ¢
represent the accurate, inaccurate, uncertain and certain voxels. A visual representation
of these terms can be seen in Figure 4.1. Here, a voxel is determined to be certain or
uncertain on the basis of a chosen uncertainty threshold ¢ € T where the maximum value
in T is the maximum theoretical uncertainty threshold [143]. The aforementioned four
terms are the building blocks of the Accuracy-vs-Uncertainty (AvU) metric [141] as shown
in Equation (4.5) - Equation (4.7) and it has a range between [0,1]. A higher value indicates
that uncertainty is present less in accurate regions and more in inaccurate regions, thus

improving the “utility" of uncertainty as a proxy for error detection.
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Ngct + Byt

AVU' = 4.5)
Ngct + Mgyt + Nt + Nyt
nle= Y 1, nb= Y 1 (4.6)
e b
nitc = Z 1’ nitu = Z 1 (4'7)
ie{)’ijj)éit&} ie{yﬁygt&}

To maximize AvU for a neural net, one can turn it into a loss metric to be minimized.
As done in [137] for an image classification setting, we minimize its negative logarithm
(Equation (4.8)) to improve mathematical stability of gradient descent. However, the AvU
metric, as defined above, is not differentiable with respect to the neural net’s weights.
This is due to all its constituent terms being produced either due to thresholding or max
operations which introduce discontinuities that disrupt gradient flows.. This is because
the model’s outputs are simply used to create a mask and hence no backpropagation can
take place. The AvU metric is made differentiable by instead using the uncertainty u’
derived from Pi (Equation (4.4)), thus allowing for gradient flows. Also, a smooth non-
linear operation i.e., tanh is used to constrain its value (Equation (4.9)). The differentiable
uncertainty term is multiplied by other scalar weighing terms c.f. the maximum probabil-
ity ( ;; i = max(P')) and accuracy/inaccuracy mask for a voxel. All these operations together
allow us to calculate proxy values for nac, nay, nic and n;,. In addition, rather than evalu-
ating the loss at a single uncertainty threshold, we integrate over the theoretical range of
the uncertainty metric. Thresholding is done by once again multiplying the uncertainty
value with a binary mask. The benefits of this thresholding were shown in our conference

paper [143]:
nl +n!
LAVUt = —ln(l + % ,
1 Nac + 1y @8)
LAVU = ? Z LAvUt)
teT
where
Mac= D pi-(1-tanh(u')), L=y, pi-tanh(u?)
. =9 & ) =7 &
le{yuét } ’E{yui);t } €9)
ni= Y (-p)-(-tanh@?), ni= Y  (1-pi) tanh(). '
ViV & - Jyi#yi &
’E{yuét } ’E{yu,»);t }
Finally, the total loss L combines the segmentation and uncertainty loss as:
L=Lcg+a-Lay. (4.10)
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4.3.3 Evaluation

4.3.3.1 Discriminative and Calibration Evaluation

We evaluate all models on the DICE coefficient for discriminative performance. Cali-
bration is evaluated using the Expected Calibration Error (ECE) [145]. Numerical results
are compared with the Wilcoxon signed-ranked test where a p-value < 0.05 is considered
significant.

4.3.3.2 Uncertainty Evaluation

As the model is trained on the Accuracy-vs-Uncertainty (AvU) metric, we calculate the
AvU scores up to the maximum normalized uncertainty of the validation dataset. A curve
with the AvU score on the y-axis and the uncertainty threshold on the x-axis is made and

the area-under-the-curve (AUC) for each scan is calculated. AUC scores provide us with
a summary of the model performance regardless of the uncertainty threshold, and hence

we use it to compare all models.

The AvU metric outputs a single scalar value for the whole scan and does not offer
much insight into the differences in uncertainty coverage between the accurate and in-
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accurate regions. To abate this, we compare the probability of uncertainty in inaccurate
regions p(u|i) to the probability of uncertainty in accurate regions p(u|a). Let us plot
p(uli) and p(u|a) on the y-axis and x-axis of a graph respectively, and define nj,, nay, Rac
and nj, as the count of true positives, false positives, true negatives and false negatives
respectively. Thus, p(uli) is the true positive rate and p(u|a) is the false positive rate.
Computing this at different uncertainty thresholds provides us with the Receiver Operat-
ing Characteristic (ROC) curve, which we call the uncertainty-ROC curve [154].

Given that ROC curves are biased in situations with class imbalances between positive
(inaccurate voxels) and negative (accurate voxels) classes, we also compute the precision-
recall curves [69].Here, precision is the probability of inaccuracy given uncertainty p(i|u)
and recall is the probability of uncertainty given inaccuracy p(u|i). Note, that the precision-
recall curves do not make use of n,c, which can be high in count for a well-performing
model.
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Finally, to calculate the calibrative and uncertainty-correspondence metrics, we need
an inaccuracy map. We use an inaccuracy map based on the concept of segmentation
“failures" and “errors" (Section 4.8.1). To do this, we perform a morphological opening
operation using a fixed kernel size of (3,3,1).
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4.4 Experiments and Results

4.4.1 Datasets
4.4.1.1 Head-and-Neck CT

Our first dataset contained Head and Neck CT scans of patients from the RTOG 0522
clinical trial [174]. The annotated data, which had been collected from the MICCAI2015
Head and Neck Segmentation challenge, contained 33 CT scans for training, 5 for valida-
tion and 10 for testing [42]. We further expanded the test dataset with annotations of 8
patients belonging to the RTOG trial from the DeepMindTCIA dataset (DTCIA) [43]. This
dataset included annotations for the mandible, parotid glands, submandibular glands
and brainstem. Although there were annotations present for the optic organs, we ig-
nored them for this analysis as they are smaller compared to other organs and require
special architectural design choices. Since the train and test patients came from the same
study, we considered this as an in-distribution dataset. We also tested our models on the
STRUCTSeg (50 scans) dataset [175], hereby shortened as STRSeg. While the RTOG dataset
contained American patients, the STRSeg dataset was made up of Chinese patients and
hence considered out-of-distribution (OOD) in context of the training data. The uncer-
tainties of this dataset were evaluated to a value of 0.4 since that is the maximum empirical
normalized entropy.

4.4.1.2 Prostate MR

Our second dataset contained MR scans of the prostate for which we use the Prosta-
teX repository [176] containing 66 scans as the training dataset. The Medical Decathlon
(Prostate) dataset with 34 scans [177] and the PROMISE12 repository with 50 scans [178]
served as our test dataset. The Medical Decathlon dataset (abbreviated as PrMedDec
henceforth) contained scans from the same clinic as the ProstateX training dataset. We
combined the Peripheral Zone (PZ) and Transition Zone (TZ) from the MedDec dataset
into 1 segmentation mask. The PROMISE12 dataset (abbreviated as PR12) was chosen for
testing since literature [62] has shown lower performance on it and hence it serves as a
good candidate to evaluate the utility of uncertainty. This dataset is different from Prosta-
teX due to the usage of an endo-rectal coil in many of its scans as well as the presence
of gas pockets in the rectum and dark shadows due to the usage of older MR machines.
Thus, although these datasets contained scans of the prostate region, there exists a sub-
stantial difference in their visual textures. The maximum empirical normalized entropy of
this 2-class dataset is 1.0 and hence the uncertainty-error correspondence metrics were
calculated till this value.

4.4.2 Experimental Settings
We tested the Accuracy-vs-Uncertainty (AvU) loss on four datasets containing scans of

different modalities and body sites. We trained 11 models: Det (deterministic), Det+AvU,
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Ensemble, Focal, LS (Label Smoothing), SVLS (Spatially Varying Label Smoothing), MbLS
(Margin based Label Smoothing), ECP (Explicit Confidence Penalty), TTA (Test-Time Aug-
mentation), Bayes and Bayes + AvU. As the names suggest, Bayes and Bayes + AvU are
Bayesian versions of the deterministic OrganNet2.5D model [170]. The baseline Bayes
model contained Bayesian convolutions in its middle layers and was trained using only
the cross-entropy (CE) loss. The Bayes + AvU was trained using both the CE and Accuracy-
vs-Uncertainty (AvU) loss. Two additional Bayesian models were trained which tests if
the placement of the Bayesian layers had any effect: BayesH and BayesH + AvU. Here,
BayesH refers to the Bayesian model with Bayesian layers in the head of the model (i.e the
decoder). Results for these models can be found in Section 4.8.7.

The Ensemble was made of M =5 deterministic models with different initializations
[159]. For TTA, we applied Gaussian noise and random pixel removals for M = 5 times each
and then averaged their outputs. The hyperparameters of the other models were chosen
on the basis of the best discriminative, calibrative and uncertainty-error correspondence
metrics on the validation datasets (Section 4.8.3). For the calibration focused methods we
used the following range of hyperparameters: Focal (y = 1,2, 3), MbLS (m = 8, 10, 20, 30) for
head-and-neck CT, MbLS (m = 3,5, 8, 10) for prostate MR, LS (a = 0.1,0.05,0.01), SVLS (y =
1,2,3) and ECP (A =0.1,1.0,10.0, 100.0) for head-and-neck CT and ECP (A =0.1,1.0,10.0,
100.0,1000.0) for prostate MR. For the AvU loss, we evaluated weighting factors in the
range [10,100,1000,10000] for the head-and-neck dataset, and [100,1000,10000] for the
Prostate dataset.

We trained our models for 1000 epochs using the Adam optimizer with a fixed learning
rate of 1073, The deterministic model contained =~ 550K parameters and thus the En-
semble contained = 2.75M parameters. Since the Bayesian models double the parameter
count in their layers they incurred an additional parameter cost and ended up with a total
of = 900K parameters.

4.4.3 Results

In Section 4.4.3.1 and Section 4.4.3.2 we show discriminative (DICE), calibrative (ECE) and
uncertainty-error correspondence metrics (ROC-AUC, PRC-AUC) for the two datasets.

4.4.3.1 Head-and-neck CT

Results in Table 4.1 showed that the AvU loss on the Bayes model significantly improved
calibrative and uncertainty-error correspondence (unc-err) metrics for both in-distribution
(ID) and out-of-distribution (OOD) datasets. The Bayes+AvU model also always performed
better than the Det, calibration-focused and TTA models for unc-err metrics. Also, its ECE
scores were in most cases better than calibration-focused models. However, there was no
clear distinction between the performance of the Ensemble and Bayes+AvU model for ECE
and unc-err metrics across both datasets. Also, the AvU loss did not benefit the unc-err
metrics for the Det model, in both datasets. Of all the calibration-focused models, LS had
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Table 4.1: Volumetric (DICE), calibrative (ECE) and uncertainty-error correspondence
(ROC-AUC, PRC-AUC) metrics for all models. Here, we evaluate head-and-neck (H&N)
CT test datasets which are either in-distribution (ID) or out-of-distribution (OOD). The
arrows in the table header indicate whether a metric should be high (1) or low (|). Here,
 and bold are used to indicate a statistical significance and improved results upon com-
paring a Bayesian model and its AvU-loss version, while underlined numbers indicate the
best value for a metric across a dataset.

Test Model DICEZT ECE % ROC—A[;C 1 PRC—AUZC 1
Dataset (x107%) x107°) (x107) (x107%)
Det 842+27 [ 9.0+21 [ 73.0+57 |21.0+4.8
Det+AvU | 83.8+29 | 8.6+27 | 73.1+6.0 | 20.8+4.0
| Focal | 843+24 | 93+15 | 703+55 | 18232 |
D ECP 84.4+23 | 9.0+20 | 73.8+54 | 21.0+£3.7
LS 83.0+3.0 | 75+2.2 | 62.6+33 | 17.5+4.0
H&N CT SVLS 842+26 | 9.0+20 | 708+7.1 | 18.1+35
®IOG | MbLS | 84.0+26 | 92421 | 675457 | 195+35 |
TTA 84.1+28 | 9.1+21 | 729+59 |20.8+39
| Ensemble | 85.0+26 | 7.8+1.8 | 78.6+4.7 | 25.7+6.8 |
| Bayes | 83.9+26 | 86+21 | 741+54 |221+35 |
Bayes+AvU | 83.6+25 | 7.6+2.5" | 76.1+5.6" | 25.1 +5.3"
Det 78.1+4.6 | 129+2.6 | 622+45 | 24.1+3.7
Det+AvU | 78.6+4.7 | 127+3.0 | 60.8+4.7 | 22.4+4.1
| Focal |7 772+6.7 | 125+29 | 57.0+46 | 209+42 |
00D ECP 78.8+4.3 | 125+2.6 | 61.5+4.8 | 23.2+3.6
LS 77.7+6.0 | 103+2.9 | 56.7+3.3 | 20.6+4.3
H&N CT SVLS 79.0+6.0 | 11.3+25 | 59.9+54 | 21.6+2.7
(STRSegy | MPLS_ __ | 775463 | 134230 | 569250 | 215236 _|
TTA 78.1+4.6 | 127+2.6 | 62.7+46 | 249+41
| Ensemble | 78.6+5.2 | 10.6+2.4 | 64.7+49 | 282%51 |
| Bayes | 75.0+9.9 | 124+4.0 | 64.8+50 | 27.7+58 |
Bayes+AvU | 76.3+7.7 | 12.1+3.7 | 65.8+5.0" | 30.1 +6.5"

the lowest ECE and unc-err metrics, while the ECP model had the best unc-err metrics.
When compared to Det, the TTA model improved calibrative and unc-err metrics for the
OOD dataset, while maintaining it for the ID dataset.

Visually, the Bayes+AvU model was able to successfully suppress uncertainty in the
true positive (TP) (Case 1/2 in Figure 4.2a) and true negative (TN) (Case 3 in Figure 4.2a)
regions of the predicted contour. Moreover, it also showed uncertainty in false positive
(FP) regions while also suppressing uncertainty in TP regions (Case 3 in Figure 4.2b).
Calibrative models (e.g. Focal, LS, SVLS) tended to be quite uncertain in TP or TN regions,
which may lead to additional QA time. Detailed descriptions are provided in Section 4.8.4.
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Table 4.2: Volumetric (DICE), calibrative (ECE) and uncertainty-error correspondence
(ROC-AUC, PRC-AUC) metrics for all models. Here, we evaluate Prostate MR test datasets
which are either in-distribution (ID) or out-of-distribution (OOD). The arrows in the table
header indicate whether a metric should be high (1) or low (}). Here, fand bold are used to
indicate a statistical significance and improved results upon comparing a Bayesian model
and its AvU-loss version, while underlined numbers indicate the best value for a metric
across a dataset.

Test Model DICEZT ECE i ROC—AgC 1 PRC—AUZC 1
Dataset (x107%) x107) x107%) (x107%)
Det 84.1+56 | 129+6.0 | 925+57 | 28.0+3.7
Det+AvU | 83.7+6.8 | 169+8.1 | 921+6.8 | 282+3.4
| Focal | 81.1+154 | 102+50 | 93.2+55 | 293+34 |
D ECP 84.0+55 | 16.7+7.1 | 921+6.0 | 27.6+423
- LS 83.4+72 | 151+86 | 832+7.8 | 251+3.1
Prostate SVLS 835+6.7 | 14.0+8.1 | 905+7.9 | 21.7+2.6
MR MbLS 842+49 | 179+74 | 922+56 | 269+3.6
(PrMedDec) | TTA | 83.8£58 | 164+7.1 | 92.7+56 | 28.8+39 |
| Ensemble | 84.5+5.7 | 11.3+65 | 943+43 | 300+4.6 |
| Bayes | 84.0+58 | 8.6+4.7 |947+31 |291+48 |
Bayes+AvU | 84.9+6.9 | 8.9+6.0 95.7+3.2" | 30.5+4.5"
Det 742+126 | 156+6.3 | 87.9+75 | 22.1+6.2
Det+AvU | 745+13.0 | 27.6+14.3 | 882+7.6 | 22.0+7.1
| Focal | 712+17.4 | 121+58 | 89.0+7.1 | 24367 |
00D ECP 748+125 | 223+10.2 | 87.2+8.1 | 20.6+7.0
- LS 745+13.0 | 21.7+11.5 | 795+89 | 19.1+7.2
Prostate SVLS 769+115 | 17.9+9.3 | 87.2+7.2 | 164+5.2
MR MbLS 73.6+125 | 199+7.4 | 865+7.2 | 21.8+5.6
(PR12) | TTA |- 740+12.8 | 23.7+11.4 | 88.6+7.4 | 24958 |
| Ensemble | 76.3+12.2 | 9.7+5.0 | 91.6+5.2 | 28.4+5.7 |
| Bayes | 7 70.6+16.6 | 11.8+7.2 | 89.1+7.4 | 257+5.1 |
Bayes+AvU | 76.3+12.6 | 11.4+6.7 | 90.6+6.9" | 26.2+7.4"

4.4.3.2 Prostate MR

Similar to the head-and-neck CT dataset, the use of the AvU loss on the baseline Bayes
model significantly improved its uncertainty-error correspondence (unc-err) while main-
taining calibration performance (Table 4.2). Moreover, it improved the DICE values such
that its one of the most competitive amongst all models. Also, the Bayes+AvU had better
performance in both unc-err and calibrative metrics when compared to the Det, calibration-
focused and TTA models. When comparing to the Ensemble, the Bayes+AvU had sim-
ilar DICE. While Bayes+AvU had better calibrative and unc-err performance in the in-
distribution (ID) dataset, the Ensemble performed better in the out-of-distribution (OOD)
setting. The AvU loss had no positive effect on the DICE and unc-err performance of the
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Det model in both the ID and OOD setting, however there was an increase in ECE.

Visual results show that the Bayes+AvU successfully suppresses uncertainty in the true
negative (Case 1 in Figure 4.3a, Case 2 in Figure 4.3b) and true positive (Case 2 in Fig-
ure 4.3a) regions of the predicted contour. It also shows uncertainty in the false positive
regions (Case 2 in Figure 4.3a, Case 1/3 in Figure 4.3b)

4.5 Discussion

Although medical image segmentation using deep learning can now predict high quality
contours which can be considered clinically acceptable, a manual quality assessment (QA)
step is still required in a clinical setting. To truly make these models an integral part of
clinical workflows, we need them to be able to express their uncertainty and for those
uncertainties to be useful in a QA setting. To this end, we test 11 models which are either
Bayesian, deterministic, calibration-focused or ensembled.

4.5.1 Discriminative and Calibrative Performance

In context of DICE and ECE, the use of the AvU loss on the baseline Bayes model always
showed results which have never statistically deteriorated. Moreover, the DICE results for
the in-distribution (ID) head-and-neck dataset (RTOG) were on-par with existing state-of-
the-art models (83.6 vs 84.7 for [43]). The same held for the ID Prostate dataset (PRMed-
Dec) where results were better than advanced models (84.9 vs 83.0 for [177]). These results
validate the use of our neural architecture [170], and training strategy.

Secondly, although the Ensemble model, in general, had better or equivalent DICE and
ECE scores across all 4 datasets, it also required 3x more parameters than the Bayes+AvU
model. Also, as expected, and due to 5x more parameters, the Ensemble model performed
better than the Det model for DICE and ECE.

Finally, in the regime of segmentation “failures” as the inaccuracy map, the calibrative
methods did not generally have improved calibration performance when compared to
the Det model. In theory, these models regularize the model’s probabilities by making
it more uncertain and hence avoid overconfidence. In practice however, this leads to
the predicted contours being uncertain along their accurate boundaries, most evident in
visual examples of the Focal and SVLS model (see Figure 4.2 and Figure 4.3). Also, visual
image characteristics in different regions of the scan that are similar to the segmented
organs may cause these models to showcase uncertainty in those areas (for e.g. patches of
uncertainty in Case 3 of Figure 4.2a).

4.5.2 Uncertainty-Error Correspondence Performance

Although calibrative metrics are useful to compare the average truthfulness of a model’s
probabilities, they may not be relevant to real-world usage in a pixel-wise segmentation
QA scenario. Considering a clinical workflow in which uncertainty can be used as a proxy
for error-detection, we evaluate the correspondence between them. Results showed that
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Figure 4.2: Uncertainty-error correspondence for the head-and-neck (H&N) CT (a,b)
dataset. Slices of the CT scans are shown in pairs to understand the 3D nature of
segmentation uncertainty heatmaps. The color bar on the right depicts the range of
uncertainty values while green and blue are used for ground truth and prediction contours
respectively.
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(a) Prostate MR (PrMedDec) (in-distribution)
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(b) Prostate MR (PR12) (out-of-distribution)

Figure 4.3: Uncertainty-error correspondence for the Prostate MR (a,b) dataset. Slices of
the MR scans are shown in pairs to understand the 3D nature of segmentation uncertainty
heatmaps. The color bar on the right depicts the range of uncertainty values while green
and blue are used for ground truth and prediction contours respectively.
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Figure 4.4: The figures above show the distribution of the uncertainty-error correspon-
dence metrics as curves and boxplots (with swarm plots) for patients from the RTOG
clinical trial (a-f) as well as for the Medical Decathlon (Prostate) dataset (g-1). We only
evaluate up to the maximum uncertainty of each dataset as the metrics do not change
beyond that.

across both in- and out-of-distribution datasets, the Bayes+AvU model has one of the
highest uncertainty-error correspondence metrics. Similar trends were observed for the
BayesH+AvU (Section 4.8.7) model, however Bayes+AvU was better. We hypothesize that
this is due to perturbations in the bottleneck of UNet-like models having a better under-
standing of semantic concepts (e.g., shape, size etc) than the decoder layers. However, the
AvU loss did not offer benefit to the Det model on both datasets indicating that this loss
may rely on the model to already exhibit some level of uncertainty.

An interesting case is shown in Figure 4.2b (Case 3) which showed uncertainty on the
white blob (a vein) in the middle of the grey tissue of the organ. Many models showed
uncertainty on the vein due to a difference in its texture from that of the organ. However,
this information may be distracting to a clinician as they are using uncertainty for error
detection. Given that there were no segmentation “failures”, our Bayes+AvU model suc-
cessfully suppressed all uncertainties. In another case (Figure 4.2a - Case 3), we saw that
for 3D segmentation, uncertainty is also 3D in nature. Our Bayes+AvU model had an error
in the second slice and correctly showed uncertainty there. However, this uncertainty
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overflowed on the first slice and hence penalized the uncertainty-error correspondence
metrics. Such results indicate that during contour QA, the clinician can potentially trust
our AvU loss models more than other models as they are better indicative of potential
errors. This reduces time wasted analyzing false positive regions (i.e., accurate but uncer-
tain) and hence increases trust between an expert and deep learning-based contour QA
tools. Also note that in general, the two-class prostate dataset visually showcased higher
levels of uncertainty than the six-class head-and-neck dataset.

As seen in Table 4.1, Table 4.2 and Figure 4.4, there is no clear choice between the top
two performing models i.e., Bayes+AvU and Ensemble for uncertainty-error correspon-
dence. The visual results, however, indicate that the Ensemble model is more uncertain
in accurate regions. Also, for all the datasets, the Det model has high AvU scores when
compared to the Bayes+AvU model (Section 4.8.3). Here, it is important to consider that
the AvU metric (Equation (4.7)) is essentially uncertainty accuracy, and thus, also comes
with its own pitfalls. Given that all models had a DICE value which leads to more accurate
terms and less inaccurate terms, the AvU metric got skewed due to the large count of n,¢
terms. However, upon factoring the ROC and PRC curves, it becomes evident that the Det
model is not the best performing for uncertainty-error correspondence.

Finally, all calibration-focused methods - Focal, ECE LS, SVLS and MBLS had ROC
and PRC metrics lower than the baseline Bayes model indicating that training for model
calibration may not necessarily translate to uncertainty outputs useful for error detection.

4.5.3 Future Work

In a radiotherapy setting, the goal is to maximize radiation to tumorous regions and min-
imize it for healthy organs. This goal is often not optimally achieved due to imperfect
contours caused by time constraints and amorphous region-of-interest boundaries on
medical scans. Thus, an extension of our work could evaluate the contouring correc-
tions made by clinicians in response to uncertainty-proposed errors in context of the dose
changes to the different regions of interest. Such an experiment can better evaluate the
clinical utility of an uncertainty-driven error correction workflow.

4.6 Conclusion

This work investigates the usage of the Accuracy-vs-Uncertainty (AvU) metric to improve
clinical “utility" of deep Bayesian uncertainty as a proxy for error detection in segmen-
tation settings. Experimental results indicate that using a differentiable AvU metric as an
objective to train Bayesian segmentation models has a positive effect on uncertainty-error
correspondence metrics. We show that our AvU-trained Bayesian models have equivalent
or improved uncertainty-error correspondence metrics when compared to various cali-
brative and uncertainty-based methods. Given that our approach is a loss function, it can
be used with other neural architectures capable of estimating uncertainty.
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Given that deep learning models have shown the capability of reaching near expert-
level performance in medical image segmentation, one of the next steps in their evolution
is evaluating their clinical utility. Our work shows progress on this using a uncertainty-
driven loss in a Bayesian setting. We do this for two radiotherapy body-sites and modali-
ties as well in an out-of-distribution setting. Our hope is that the community is inspired by
our positive results to further contribute to human-centric approaches to deep learning-
based modeling.
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4.8 Appendix

4.8.1 Segmentation “Failures" and “Errors"

(a) Contours (b) Inaccuracy Map (c) Segmentation Errors(d) Segmentation Fail-
ures

Figure 4.5: The green and blue contours in a) show the ground truth (GT) and predicted
contours. In b) we see the inaccuracy map in black, while c) and d) show the smaller
segmentation “errors” and larger segmentation “failures” respectively.

4.8.2 Weightage of AvU loss

The table below show the weights used for the AvU loss which were finetuned on the
validation datasets of the head-and-neck CT and prostate MR. The final weightage was
chosen by identifying the inflection point at which the ROC-AUC and PRC-AUC drop
precipitously. Given that the AvU loss is a log term, its values are inherently small (< 1.0).
This is then added to the cross-entropy term, which is a sum of logs (Eqn (3)) over all the
voxels (=N) and all the classes (=C). Thus, we used a balancing term in the range of 10! to

10°%.
Table 4.3: Uncertainty-error correspondence results (higher is better) to select the weigh-

tage of the AvU loss. Underlined numbers indicate the maximum value for a metric.

Validation Model AVU-AUC ROC-AUC PRC-AUC
Dataset (x1072) (x1072) (x1072)

Bayes 341+£0.7 | 79.1£4.7 | 25.9+£2.9

H&N CT Bayes + 10AvU 345+0.9 | 78.2+6.0 | 26.1+3.4

(MICCAI2015) Bayes + 100AvU 355+0.6 | 79.6+4.8 | 28.0+3.5

Bayes + 1000AvU 35.9+6.9 | 76.4+£5.8 | 23.1+1.7

Prostate Bayes 93.2+1.8 | 953+1.9 | 30.3+£2.9

MR Bayes + 100AvU 949+2.1 | 959+2.0 | 31.5+35

(ProstateX) Bayes + 1000AvU 955+1.9 | 96.3+24 | 32.0+3.3

Bayes + 10000AvU | 96.1+1.7 | 93.1+2.1 | 29.3+3.1
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4.8.3 Hyperparameter selection

In the tables shown below, we report results for different hyperparameters of different
model classes. If the DICE of a hyperparameter is 10.0 points lower than the class max-
imum, we ignore it. We also ignore models with large drops in ECE or AvU-AUC when
compared to models in its own class. To choose the best hyperparameter, it has to perform
as the best in four out of the five metrics, else we chose the middlemost hyperparameter.
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Table 4.4: Volumetric (DICE), calibrative (ECE) and uncertainty-error correspondence
metrics (AvU-AUC, ROC-AUC, PRC-AUC) on head-and-neck validation dataset for the
purpose of hyperparameter selection. The experiment indicated as bold is the one with
the best performance.

Experiment DICEZT ECE i AVU-AUZC 1 ROC—AléC 1 PRC—AU2C 1
(x1074) (x1074) (x107%) (x1074) (x107%)

Det 83.6+22 | 85+1.6 |351+1.1 |748%50 | 245+0.9
Det + 10AvU 834+1.7 | 84+16 |354+10 | 744248 | 23.2+14
Det + 100AvU 83.6+14 | 81%15 |361+06 75629 | 234x2.1
Det + 1000AvU 58.1+6.9 | 14.7+4.0 | 30.2+1.6 | 78.8+4.6 | 23.0+10.6

| Focal(y=1) | ¢ 84.1£0.8 | 8.0+0.6 | 32407 [ 73.9+4.1 | 21.5+3.4 |
Focal(y=2) 834+13 | 9.6+83 |248+1.1 | 73.7+1.6 | 22.7+4.1
Focal(y=3) 84.1+1.9 | 155+1.9 | 175+74 | 73.1+3.2 | 126+1.9

| ECP(A=0.1) | ¢ 83.9+13 | 83+13 |353+08 | 751+43 | 223+0.8 |
ECP(1=1.0) 84.0+1.1 | 85+08 | 35407 |753+3.2 | 234+14
ECP(1=10.0) 832+21 | 87+13 |352+08 | 749+39 | 24621
ECP(1=100.0) 81.2+6.4 | 17.9+1.5 | 28.7+2.8 | 65456 | 17.5+5.2

| LS(a=0.01) | ¢ 83.0£2.1 | 81+13 |326+09 [ 709+26 | 23.4+2.7 |
LS(a=0.05) 83.6+1.2 | 61+1.0 |249+04 |645+33 | 18.1£2.0
LS(a=0.1) 835+1.2 | 79%12 |175+0.1 | 63.9+22 | 22211

| SVLS(o=1) | ¢ 83.5+13 | 7.7+0.7 |323+0.8 [ 71.5+25 | 19.9+0.4 |
SVLS(0=2) 835+1.7 | 81+09 |[31.8+1.0|705+38 | 17.7+15
SVLS(0=3) 84.1+2.0 | 7.7+0.7 |31.9+1.0 | 71.3+4.4 | 19.2+3.2

MbLS(1=0.1,m=30) | 82.7+1.8 | 85+0.6 | 349:1.0 | 74.0+43 | 23.1+1.2
MbLS(A=0.1,m=20) | 84.4+14 | 80+1.1 |352+07 | 72333 | 204+1.0
MbLS(A=0.1,m=10) | 82.7+18 | 85+0.6 |329+0.7 | 68.4+3.0 | 21.7+2.2
MbLS(A=0.1,m=8) | 62.9+7.6 | 18.75+1.4 | 26.0+0.4 | 74.9+4.0 | 39.1x2.7
MbLS(A=1,m=20) | 832+13 | 89%1.5 |[350+09 | 724+4.4 | 225+1.1
MbLS(1=10,m=20) | 83.4+14 | 85+20 |342+11 |722+44 | 23.1+2.0

MDbLS(A =100,m=20) | 81.8+1.8 8.0+1.1 321+£0.9 | 69.6+x4.8 | 21.0x23

TTA 83.5£22 | 85+17 |349x1.1 [753+52 | 25217

[ Ens ¢ 84.9+16 | 6.8+09 |341+1.1 [808+32 | 28.2+4.1 |

| Bayes | ¢ 84.2+29 | 7.8+13 | 34107 [ 791+4.7 | 259+29 |
Bayes + 10AvU 83.1£29 | 7.6+20 |345+09 | 78.2+6.0 | 26.1+3.4
Bayes + 100AvU 83.2+1.7 | 70+19 |355+06 | 79.6+4.8 | 28.0+35
Bayes + 1000AvU 843+1.0 | 75+1.5 |359+6.9 | 764+58 | 23.1+1.7
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Table 4.5: Volumetric (DICE), calibrative (ECE) and uncertainty-error correspondence
metrics (AvU-AUC, ROC-AUC, PRC-AUC) on head-and-neck iD dataset. The experiment
indicated as bold is the one with the best performance. * indicates hyperparameters
chosen by the validation dataset.

Experiment DICEZT ECE i AVU—AUZC i ROC—A[;C i PRC-AUZC 1
(x107%) (x1074) (x1079) (x1079) (x1074)
Det 84.2+27 | 9.0x2.1 355+15 | 73.0£5.7 | 21.0+4.8
Det + 10AvU 83.7+2.3 93+22 35.7+13 | 70.6+£5.3 | 20.0+£3.6
Det + 100AVU* 83.8+29 | 8627 | 36.2+1.4 | 73.1£6.0 | 20.8+4.0
Det+1000AU |- 623256 | 121229 | 30.7£12 | 78046 | 160290 | =
Focal(y=1)* 843+24 | 93+15 325+0.9 | 70.3+55 | 18.2+3.2 E
Focal(y=2) 84.2+20 | 11.2+1.6 | 25.1+£0.7 | 69.4+4.9 | 17.2+3.0 E
Focal(y=3) 83.9+25 | 15.7+£23 | 179+£53 | 70.5+£5.0 | 12.2+2.9 i
ECP(A=0.1) 84.4+22 | 89+£21 | 357+1.3 | 729+6.3 | 20.1+3.8 -
ECP(A=1.0)* 84.4+23 | 9.0+£20 | 359+1.3 | 73.8+£54 | 21.0+3.7 Z
ECP(A=10.0) 84.3+2.7 | 9.2+24 | 358+1.4 | 73.5+£6.0 | 20.6+4.3 S
ECP(1=100.0) 70.8+3.9 | 186+2.8 | 21.4+£2.7 | 58.7+2.6 | 28.9+7.1 9
| LS(a=0.01) | 83.4+28 | 9.0+29 | 329+0.1 | 66.1+57 | 18.4+3.6 | =
LS(a=0.05)* 83.0£3.0 75+2.2 25.1+0.5 | 62.6+3.3 | 17.5+4.0 g
LS(a=0.1) 84.1+2.3 | 8429 17.5+0.1 | 62.3+£25 | 185+3.5 Z
| SVLS(e=1)* | 83.9+25 | 9.0+23 | 326+1.1 | 69.6+83 | 18.8+2.8 |
SVLS(0=2) 842+26 | 9.0+£20 | 322+1.1 | 70.8+7.1 | 18.1+£35
SVLS(0=3) 83.9+2.7 | 9.0+22 32.1+1.2 | 693+7.0 | 18.8+2.8

MbLS(A=0.1,m=30) | 83.7+2.6 | 9.0£2.0 | 354=1.2 | 70.0£5.6 | 19.7x4.1
MbLS(A =0.1,m=20)* | 84.0+2.6 | 9.2+2.1 | 353+1.3 | 67.5+5.7 | 19.5+35
MbLS(A=0.1,m=10) | 82.4+2.6 | 9.8+28 | 33.1+1.2 | 64.1+7.0 | 18.3%3.1
MbLS(A=0.1,m=8) | 62.4+82 | 189+16 | 263+0.4 | 73.6+6.6 | 383x4.1
MbLS(A=1,m=20) | 834+25| 92+26 | 35413 | 71.3+7.0 | 20.1+3.6
MbLS(A=10,m=20) | 83.0+3.4 | 95+28 | 34.6+1.4 | 69.1£6.0 | 20.1+4.1

MDbLS(A =100,m=20) | 82.5+3.2 | 9.1+3.0 | 324+14 | 682+7.3 | 19.0+2.9
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TTA 84.1+28 | 9121 [355+14 | 72.9+59 | 20.8+3.9

(Ens | 85.0+£2.7 | 7.8+19 [345+12 | 78.6+4.7 | 257+6.8 |

| Bayes | 83.9+2.6 | 8.7+21 [345+12 | 74.1+54 | 221+3.5 |
Bayes + 10AvU 83.4+28 | 8.7+24 | 347+13 | 74.7+4.9 | 244241
Bayes + 100AvU* 83.6+25 | 7.6+25 | 356+12 | 76.1+56 | 25.1%5.3
Bayes + 1000AvU 83.5+3.0 | 85+3.4 | 36.1+15 | 77.2+6.0 | 24.7+45
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Table 4.6: Volumetric (DICE), calibrative (ECE) and uncertainty-error correspondence
metrics (AvU-AUC, ROC-AUC, PRC-AUC) on head-and-neck OOD dataset. The experi-
ment indicated as bold is the one with the best performance. * indicates hyperparameters
chosen by the validation dataset.

Experiment DICE21 ECE % AVU-AUZC 1 ROC-AL;C 1 PRC—AUZC 1
(x107) (x107) (x107) (x107) (x107)

Det 781+4.6 | 12.9+26 | 33.4+14 | 62245 | 241237
Det + 10AvU 76.3+6.9 | 13.7+35 | 33.3+1.7 | 58.3+4.6 | 23.3+4.4
Det + 100AvU* 78.6+4.7 | 12.7+£3.0 | 34.2+15 | 60.8+4.7 | 22424.1
Det + 1000AvU 425+72 | 12.1+21 | 28.9+1.7 | 66.1+5.8 | 19.0+6.2

| Focal(y=1)* =~ | 77.2£6.7 | 125+29 [ 30.6+1.7 | 57.0+4.6 | 20.94.2 |
Focal(y=2) 77752 | 12.2+19 | 24.1+09 | 57.5+4.6 | 21.0x4.1
Focal(y=3) 79.0+52 | 13.3+1.6 | 18.6+0.7 | 59.8+4.9 | 16.6+3.9

| ECP(A=0.1) | 785+49 | 12.6+28 [ 33.5+16 | 59.8+4.9 | 22.0+3.8 |
ECP(1=1.0)* 78.8+43 | 125426 | 36.6+1.5 | 61.5+4.8 | 23.2+3.6
ECP(1=10.0) 78.9+45 | 124+25 | 338+15 | 60.1+4.7 | 22.1+35
ECP(1=100.0) 62.0+6.1 | 20.0+1.8 | 19.9+29 | 56.0+2.8 | 36.5+9.7

| LS(@=0.1) | 77.7£6.0 | 89+27 [ 17.9+03 | 57.6+1.9 | 23.9+4.4 |
LS(a=0.05)* 77.7+6.0 | 103+29 | 243+0.7 | 56.7+3.3 | 20.6+4.3
LS(a=0.01) 77.9+54 | 133428 | 31.1+15 | 58.6+3.9 | 224+3.7

| SVLS(o=1)* | 78361 | 11.5+3.0 [ 314+1.4 | 61.1+4.9 | 233233 |
SVLS(0=2) 79.0+6.0 | 11.3+2.5 | 314+12 | 59.9+54 | 21.6+2.7
SVLS(0=3) 78.6+5.1 | 11.5+29 | 31.1+15 | 58.7+5.0 | 225+ 3.8

MbLS(1=0.1,m=30) | 76.5+7.1 | 13.6+3.9 [ 32.1+2.9 | 58.9+4.1 | 24.7+7.7
MbLS(A =0.1,m=20)* | 77.5+6.3 | 13.4+3.0 | 33.4+15 | 56.9+50 | 21.5+3.6
MbLS(A=0.1,m=10) | 76.8+6.3 | 13.0+3.2 | 31.7+1.4 | 53.0+4.5 | 20.6+3.9
MbLS(A=0.1,m=8) | 50.3+10.6 | 20.1+2.8 | 26.2+0.9 | 61.1+7.1 | 34.1+3.7
MbLS(A=1,m=20) | 773+6.2 | 13.2+2.8 | 33.3+1.6 | 61.0+4.5 | 23.4+4.1
MbLS(A =10,m=20) | 78.1+53 | 13.0+2.9 | 32.9+15 | 57.0+4.1 | 21.7+3.5

MDbLS(A = 100,m=20) 782+x4.9 | 127+25 | 31.6+1.3 | 55.0£5.1 | 19.7+£3.5

TTA 78.1+4.6 | 12.7+2.6 [ 33.2+15 | 62.7+4.6 | 24.9x4.1

Ens [ 786+52 | 10.6+24 [ 321+19 | 64.7+4.9 | 282%5.1 |

| Bayes [ 75.0£9.9 | 124+4.0 [ 322+18 | 64.8+50 | 27.7+5.8 |
Bayes + 10AvU 749495 | 124+4.0 | 321420 | 652+4.6 | 29.1%6.1
Bayes + 100AvU* 76.3+7.7 | 121+3.7 | 33.2+1.7 | 65.8+5.0 | 30.1+6.5
Bayes + 1000AvU 755+8.2 | 143+4.1 | 335+1.8 | 69.3+5.6 | 32.9+6.9
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Table 4.7: Volumetric (DICE), calibrative (ECE) and uncertainty-error correspondence
metrics (AvU-AUC, ROC-AUC, PRC-AUC) on prostate validation dataset for the purpose
of hyperparameter selection. The experiment indicated as bold is the one with the best
performance.

Experiment DICE21 ECE i AVU—AUZC 1 ROC—AI;C 1 PRC-AUZC 1
(x1074) (x1074) (x1074) (x1074) (x1074)

Det 859+18 | 144+3.2 | 965+0.9 | 926+4.1 | 26.5+1.5

Det + 100AvU 84.8+23 | 16.3+3.9 | 96.1+09 | 91.7+4.2 | 279+2.8

Det + 1000AvU 84.8+19 | 16.0+3.0 | 96.4+£0.9 | 93.6+3.2 | 29.2+1.0
 Det+10000AVU | 84.9£35 | 167251 | 965210 | 91827 | 259223 | s
Ensemble 854+17 | 134+3.0 | 96.0+1.0 | 948+24 | 314+1.6 E
| Focal(y=1) | 845+2.7 | 13.3+43 | 90.7+1.1 | 93.0+4.1 | 29.4+1.7 | =
Focal(y=2) 84.4+2.1 9.8+26 | 825+1.0 | 93.8+£2.3 | 30.9+2.1 i
Focaly=3) | 845219 | 64:L5 | 58913 | 920:43 | 305226 | -
ECP(A=0.1) 859+18 | 146+3.0 | 96.5+0.9 | 91.9+4.2 | 25.8+1.7 Z
ECP(A=1.0) 85.7+18 | 147+3.0 | 96.4+1.0 | 923+3.9 | 26.4+1.7 S
ECP(1=10.0) 85.7+1.7 | 14.8+2.7 | 964+1.0 | 91.9+45 | 26.0+1.8 9
ECP(A=100.0) 85.7+18 | 148+28 | 964+1.0 | 91.8+4.3 | 25.8+1.9 i
ECP(A=1000.0) 86.0+£19 | 15.0+3.0 | 85.0+£0.3 | 88.7+2.1 | 26.7+3.4 g
| LS(a=0.01) | 83.7+25 | 17.2+4.1 | 91.9+0.9 | 85.8+54 | 28.2+2.9 | z
LS(a=0.05) 85.1+14 | 13.6+2.3 | 80.8+£0.9 | 843 +5.7 | 25.4+2.2 5
LS(a=0.1) 85.0+2.1 | 11.1+34 | 70.3+0.6 | 85.1+3.6 | 27.0+£2.2 g
| SVLS(o=1) | 845+1.9 | 14.0+2.6 | 924+1.0 | 91.8+2.3 | 229+ 1.8 | =
SVLS(0=2) 85.0+18 | 129+3.1 | 924+09 | 91.4+3.0 | 22.1+14 ;
SVLS(0=3) 85.0+£16 | 13.1+£2.7 | 92.1£0.9 | 91.2+25 | 219+14 Z
| MbLS(A=0.1,m=10) | 84.8+1.4 | 17.5+51 | 95.7+1.1 | 91.2+4.1 | 31.1+1.7 | =
MDbLS(A =0.1,m=8) 83.8+13 | 16.0+2.2 | 93.9+0.9 | 90.5+3.5 | 27.9+2.1 E
MbLS(A =0.1,m=5) 843+16 | 155+2.8 | 90.4+0.8 | 90.1£5.6 | 28.2+2.2 ;
MDbLS(A =0.1,m=3) 84.2+2.1 | 128+33 | 70.8+04 | 82.1+3.5 | 28.8+5.6 [:1
MbLS(A=1.0m=10) | 83.7+1.2 | 17.4+4.4 | 96.0+1.0 | 91.2+3.9 | 30.5+1.5 E
| MBLS(L=10.0,m=10) | 83915 | 17.824.1 | 950212 | 90.8+36 | 309 L6 | ;
TTA 85.6+1.7 | 145+3.1 | 96.3+09 | 925+4.0 | 27.2+1.6 =
| Bayes | 85.7+2.3 | 10.7+3.0 | 93.2+1.8 | 953+1.9 | 30.3+2.9 | g
Bayes + 100AvU 86.1£3.0 | 11.5+3.8 | 949+2.1 | 959+2.0 | 31.5+3.5 3
Bayes + 1000AvU 85.8+28 | 120+3.9 | 955+19 | 96.3+2.4 | 32.0+3.3 2
Bayes + 10000AvU 86.0+24 | 109+3.0 | 96.1+1.7 | 93.1+£2.1 | 29.3+£3.1 %
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Table 4.8: Volumetric (DICE), calibrative (ECE) and uncertainty-error correspondence
metrics (AvU-AUC, ROC-AUC, PRC-AUC) on prostate ID dataset. The experiment indi-
cated as bold is the one with the best performance. * indicates hyperparameters chosen
by the validation dataset.

Experiment DIC?; ECEﬁ % AVU—APZC 1 ROC—A};C 1 PRC—AEJZC 1
(x107) (x107) (x107) (x107) (x107)

Det 84.1+5.6 | 12.9+6.0 | 96.1+3.4 | 925+57 | 28.0£3.7
Det + 100AvU 83.7+6.7 | 16.6+7.2 | 95.7+3.3 | 91.6£6.2 | 27.2£2.9
Det + 1000AvU* 83.7+6.8 | 16.9+8.1 | 95.9+3.8 | 92.1+6.8 | 28.2+3.4
Det + 10000AvU 83.4+6.4 | 18.1+7.9 | 96.1+3.7 | 90.7+56 | 26.1+3.4

| Focal (y=1)* | 81.1+15.4 | 10.2+5.0 | 90.3+0.3 | 93.2+55 | 29.3+3.4 |
Focal (y=2) 83.1+6.2 | 104+6.8 | 81.6+25 | 92.9+53 | 30.1£3.7
Focal (y=3) 823+7.2 | 8.0+6.4 | 58.7+12 | 925+54 | 31.8+3.5

| ECP(A=0.1) | 84.1+54 | 165+7.0 | 96.1+3.4 | 923+6.0 | 27.6+3.9 |
ECP (1=1.0) 84.1+55 | 164+7.0 | 96.1+3.3 | 923+6.0 | 27.8+4.3
ECP (1=10.0)* 84.0+55 | 16.7+7.1 | 96.1+3.4 | 921+£6.0 | 27.6+4.3
ECP (1=100.0) 84.0£5.5 | 16.6+7.0 | 96.0+3.0 | 92.1£6.0 | 27.6 4.1
ECP (1=1000.0) 84.1+5.7 | 16.6+7.0 | 86.1+3.2 | 922459 | 27543

| LS(a=0.01) =~~~ | 825+83 | 18.0+9.4 [ 91.3+3.9 | 86.2+7.9 | 27.0+3.8 |
LS (2=0.05)* 83.4+7.2 | 151+86 | 80.4+29 | 83.2+7.8 | 25.1+3.1
LS (a=0.1) 84.1+5.6 | 11.6+7.0 | 70.1+1.8 | 84.7+6.2 | 26.9+3.3

| SVLS(0=1) | 83471 | 14.7+88 [ 92.0+3.7 | 90.9+7.4 | 229229 |
SVLS (0=2)* 83.5+6.7 | 14.0+8.1 | 91.9+4.1 | 90.5+7.9 | 21.7£2.6
SVLS(0=3) 83.2+8.1 | 14.3+9.7 | 91.5+3.9 | 91.0£6.8 | 23.1+3.1

| MbLS (A1=1.0m=3) | 83.2+63 | 133+7.8 [ 70.6+1.7 | 822+6.3 | 27.7+3.4 |
MDbLS (A = 1.0,m=5) 82.8+6.6 | 16.7+8.0 | 89.9+3.2 | 90.5+7.2 | 27.2+4.4
MbLS (1 =1.0,m=8) | 83.5+58 | 17.1+7.0 | 953+3.6 | 93.0+£5.2 | 27.8+4.1
MbLS (1 =1.0,m=10) | 84.2%53 | 18.1+6.1 | 95.5+3.3 | 91.7+6.1 | 265£3.5
MbLS(A=1.0,m=10)* | 84.2+4.9 | 17.9+7.4 | 95.6+29 | 922+56 | 269+3.6
MbLS(A =10.0m=10) | 83.9+5.2 | 17.9+8.0 | 95.1+3.2 | 91.9+59 | 26.2+4.1

| TTA | 838458 | 164+7.1 | 96.0+3.5 | 92756 | 28.8:3.9 |

| Ensemble | 845+57 | 11.3+6.5 | 952+3.5 | 94.3+4.3 | 30.0:4.6 |

| Bayes | 84.0£58 | 86+47 | 921+26 | 94.7+3.1 | 29.1+4.8 |
Bayes + 100AvU 84.1+6.4 | 12.0+6.2 | 94.4+3.1 | 95.5+29 | 28950
Bayes + 1000AvU* 84.9+6.9 | 8.9+6.0 | 94.5+32 | 95.7+3.2 | 30.5+4.5
Bayes + 10000AvU 85.2+59 | 11.0+6.3 | 94.2+3.6 | 95.9+3.5 | 30.224.0
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Table 4.9: Volumetric (DICE), calibrative (ECE) and uncertainty-error correspondence
metrics (AvU-AUC, ROC-AUC, PRC-AUC) on prostate OOD dataset. The experiment in-
dicated as bold is the one with the best performance. * indicates hyperparameters chosen

by the validation dataset.

Experiment DICFZT EC]% i AVU_APZC 1 ROC—AgC 1 PRC—AEJZC 1
(x107) (x107) (x107°) (x107) (x107)

Det 742126 | 15.6+63 | 923+54 | 87.9+7.5 | 22.1£6.2
Det + 100AvU 742+13.3 | 23.6+11.2 | 93.0+42 | 87.1£62 | 222+57
Det + 1000AvU* 745+13.0 | 27.6+14.3 | 922+57 | 882+7.6 | 22.0+7.1
Det + 10000AvU 72.7+15.1 | 27.6+14.3 | 924+52 | 823+94 | 19.6+6.2

| Focal(y=D)* | 71.2£174 | 12158 | 854£6.1 | 89.0+7.1 | 24.3+6.7 |
Focal(y=2) 76.7+10.8 | 12.8+82 | 72.0+93 | 87.2+7.6 | 224%64
Focal(y=3) 73.2+13.7 | 11.6+7.7 | 49.7+9.4 | 87.1£85 | 27.0+7.2

| ECP(A=0.1) | 746+125 [ 22.8+10.5 [ 921455 | 87.6+7.6 | 21.3+6.6 |
ECP(1=1.0) 73.9+13.1 | 23.2+10.7 | 91.9+56 | 87.2+72 | 21.2+64
ECP(1=10.0)* 748125 | 22.3+10.2 | 91.6+63 | 87.2+8.1 | 20.6+7.0
ECP(1=100.0) 74.9+123 | 22.7£105 | 92.1£55 | 87.7+8.0 | 21.5+£7.2
ECP(1=1000.0) 746125 | 22.7+103 | 922+56 | 87.6+7.7 | 21.5+6.7

| LS(a=0.0) | 71.6+15.1 [ 24.6+11.6 | 87.9+53 | 84.3+75 | 22.7+6.2 |
LS(a=0.05)* 745+13.0 | 21.7+115 | 77.2+46 | 79589 | 19.1+7.2
LS(a=0.1) 752+12.2 | 18.1+10.1 | 67.4+3.8 | 79.0£84 | 19.9+64

| SVLS(e=1) | 749+11.7 | 19.7+9.1 | 885+55 | 87.2+7.4 | 18.7+5.1 |
SVLS(0=2)* 76.9+11.5 | 17.9+9.3 | 883+52 | 87.2+72 | 164%5.2
SVLS(0=3) 743+13.5 | 21.4+126 | 88451 | 863+82 | 19.4%5.0

| MBLS(A=0.1,m=10) | 72.3+159 | 20.9+7.9 | 91.4+57 | 87.9+6.9 | 222%6.7 |
MbLS(A=0.1,m=8) | 74.1+13.5 | 20.7+8.7 | 88.3+8.2 | 85.0+10.4 | 18.8+8.8
MbLS(A=0.1,m=5) | 74.7+13.3 | 22.0+11.3 | 86.9+5.0 | 87.1£7.9 | 22.0£6.4
MbLS(A=0.1,m=3) | 74.0+13.3 | 20.5+11.7 | 68.6+2.9 | 78.0+7.2 | 21.5£6.7
MbLS(A=1.0,m=10)* | 73.6+12.5 | 19.9+7.4 | 91.8+3.4 | 865+72 | 21.8+5.6
MbLS(A =10.0,m=10) | 72.1+16.1 | 20.2+6.7 | 91455 | 86.5+9.0 | 22.2£6.7

N | 740+12.8 | 23.7+11.4 | 928+4.8 | 88.6+7.4 | 24.9:58 |

| Ensemble | 763+122 | 9.7+50 | 899+6.6 | 91.6+5.2 | 284%5.7 |

| Bayes | 706+16.6 | 11.8+72 | 862+6.0 | 89.1£7.4 | 257%5.1 |
Bayes + 100AvU 721+14.4 | 20.0+11.8 | 91.0+3.8 | 92.7+4.0 | 302+6.5
Bayes + 1000AvU* 763+12.6 | 11.4+6.7 | 895+62 | 90.6+6.9 | 262+74
Bayes + 10000AvU 76.6+12.7 | 17.1£10.1 | 88.6£6.5 | 90.4+6.3 | 23.3+74
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4.8.4 Visual Results

Visual results in Figure 4.2 and Figure 4.3 show pairs of consecutive CT/MR slices to better
understand the 3D nature of the output uncertainty across all models. We show examples
with both high and low DICE to investigate the presence and absence of uncertainty in
different regions of the model prediction.

4.8.5 Head-And-Neck CT

The first two rows of Figure 4.2a and Figure 4.2b show the mandible (i.e. lower jaw bone)
with only the Bayes+AvU model having overall low uncertainty in accurate regions and
high uncertainty in (or close to) inaccurate regions.

In the next set of rows for head-and-necks CTs, we observe the parotid gland, a salivary
organ, with (Figure 4.2a - Case 2) and without (Figure 4.2b - Case 2, Case 3) a dental
scattering issue. In both cases, while the Det model shows low uncertainty, the baseline
Bayes model shows high uncertainty in accurate regions. Usage of the AvU loss lowers
uncertainty in these regions, while still exhibiting uncertainty in the erroneous regions,
for e.g. the medial (i.e. internal) portion of the organ in Figure 4.2a (Case 2).

Moving on to our last case, we see the submandibular gland, another salivary gland
in Figure 4.2a (Case 3). The Ensemble, Focal, SVLS and MBLS models all display high
uncertainty in the core of the organ, which are also accurately predicted. On the other
hand, the AvU loss minimizes the uncertainty and shows uncertainty in the erroneous
region on the second slice.

4.8.6 Prostate MR

For the prostate datasets, we see two cases with high DICE in Figure 4.3a (Case 1) and
Figure 4.3b (Case 2) where the use of the AvU loss reduces uncertainty for the baseline
Bayes model.

We also see cases with low DICE in Figure 4.3a (Case 2) and Figure 4.3b (Case 1). Due
to their low DICE all models display high uncertainty, but the Bayes+AvU model shows
high overlap between its uncertain and erroneous regions. The same is also observed in
Figure 4.3b (Case 3).

Finally, in Figure 4.3a (Case 3), we do not see any clear benefit of using the AvU loss on
the Bayes model.
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4.8.7 BayesH model

Table 4.10: Volumetric (DICE) , calibrative (ECE) and uncertainty-error correspondence
metrics (ROC-AUC, PRC-AUC) for different Bayesian models. We evaluate head-and-neck
(H&N) CT and Prostate MR test datasets which are either in-distribution (ID) or out-
of-distribution (OOD). The arrows in the table header indicate whether a metric should
be high (1) or low (|). Here, ' and bold are used to indicate a statistical significance
and improved results upon comparing a Bayesian model and its AvU-loss version, while
underlined numbers indicate the best value for a metric across a dataset.

Test Model DIC?ZI ECPZ i ROC—A};C 1 PRC—A};CT
Dataset (x1077) (x107%) x107) (x107%)
Det 84.2+2.7 9.0+21 | 73.0+57 | 21.0+4.8
ID Ensemble 85.0 +2.6 8.6+2.1 | 786+4.7 | 257+6.8
— | " "Bayes | 83926 | 86+21 | 741+54 | 221+35 |
H&N CT Bayes+AvU | 83.6+25 | 7.6+25' | 76.1+5.6" | 25.1+5.3"
(RTOG) | BayesH | 83.6+29 | 92+26 | 704+7.0 | 20.1+3.8 |
BayesH+AvU | 84.1+2.7 | 8.4+24" | 74154 | 21.3+4.6
Det 781+46 | 129+2.6 | 622+45 | 241+3.7
00D Ensemble 78.6+5.2 | 10.6+24 | 64.7+49 | 282+5.1
——— | " " Bayes | 75.0+9.9 | 12.4+4.0 | 648+50 | 27.7+58 |
H&N CT Bayes+AvU | 76.3+7.6" | 12.1+3.7 | 65.8+5.0" | 30.1+6.5
(STRSeg) | 'BayesH | 77.5+6.6 | 126+33 | 61.1+4.1 | 235+4.7 |
BayesH+AvU | 78.8+5.17 | 12.1+3.2 | 64.8+3.8" | 23.8+4.0
D Det 84.1+56 | 129+6.0 | 925+57 | 28.0+3.7
Ensemble 845+57 | 113+65 | 943+43 | 30.0+4.6
Prostate |~ " Bayes | 84.0+58 | 8.6%47 | 947+3.1 | 29.1+48 |
MR | Bayes+tAvU | 84.9+6.9 | 89+6.0 | 95.7+3.2" | 30.5+4.5" |
(PrMedDeq) BayesH 82.3+5.2 93+43 | 93.6+29 | 28.4+42
BayesH+AvU | 84.5+6.3" | 94+65 | 949+3.1" | 30.1+4.9"
00D Det 742+126 | 156+6.3 | 87.9+75 | 22162
Ensemble | 763+122 | 9.7+50 | 91.6+52 | 28.4+57
Prostate |~ "Bayes | 70.6+16.6 | 11.8+7.2 | 89.1+7.4 | 257+51 |
MR | Bayes+tAvU | 76.3+12.6" | 11.4+6.7" | 90.6+6.9" | 26.2+7.4" |
(PRI2) BayesH 713+144 | 121467 | 88.9+6.3 | 25.1+4.9
BayesH+AvU | 74.1+13.8" | 11.9+6.2" | 89.9+6.2" | 25.9 +5.4"

75

NOILDHLA( 40UYH REARIERRAASIP)

HONHANOdSHYIYOD HOHYYH -ALNIVLUAON ) ONIAOYdIN]







D

Manual Brush vs Al Pencil: Evaluating tools for
auto-contour refinement of head-and-neck

tumors on CT+PET scans

TIONHd [V SA HSNYY TVANVIA :NOLLOHYYOD HOUYH [EeRiIEANAAZI9)

This chapter was adapted from:

Mody, Prerak, Nicolas Chaves de Plaza, Mark Gooding, Martin de Jong, Mischa de Ridder,
Niels den Hans, Jos Elbers, Klaus Hildebrandt, Marius Staring. "Manual Brush vs Al Pen-
cil: Evaluating tools for auto-contour refinement of head-and-neck tumors on CT+PET
scans." (submitted)
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Abstract

Background and Purpose: To resolve errors in auto-contours, clinicians currently use
manual brush-like tools. These can be inefficient, especially for larger errors since one
needs to rectify each incorrect pixel. An alternative is Al-assisted contour refinement
using sparse visual cues like pencil strokes (or scribbles) drawn within false-positive and
false-negative regions. However, existing Al pencil methods are limited to evaluations
using either robot users or contour refinements being propagated only in 2D. We bridge
these gaps and compare the time-efficiency and contour quality of the manual brush
against the Al pencil for auto-contour refinement.

Materials and Methods: We designed a web-based interface and an Al pencil to conduct
auto-contour refinement sessions with both tumor contouring experts (x4) and non-
experts (x7) across 6 patients. Our Al pencil supports 2D interactions to refine 3D tumor
contours on head-and-neck CT + PET scans. We compared the efficiency (time) and
effectiveness (DICE / surface DICE @ 2mm) of the manual brush and Al pencil.

Results: For tumor auto-contour refinement, the Al pencil was [5%-78%] faster across 42
non-expert sessions and [16%-97%)] faster across 24 expert sessions. The average inter-
observer variability (calculated by DICE / surface DICE@2mm) across 6 patients was
equivalent between the manual brush (0.89/0.90) and Al pencil (0.90/0.92) for the expert
sessions.

Conclusions: The Al pencil offers a promising alternative to traditional manual brushes
in auto-contouring based radiotherapy workflows. It improves the time efficiency while
maintaining final contour quality for auto-contour refinement.



5.1 Introduction

Auto-contouring in radiotherapy has made great progress over the last 5 years with im-
provements in Al (i.e., deep learning) models and a proliferation of clinically-available
commercial tools [179-182]. Widespread use of these Al-based auto-contouring tools can
be attributed to the time gains they provide. However, as these tools are still imperfect,
clinicians currently perform a time-consuming manual quality assessment (QA) and re-
finement step [citations]. This bottleneck offsets some of the time gains provided by auto-
contouring.

A few automated techniques have been proposed to reduce the auto-contour refine-
ment bottleneck by either error-detection [80, 81, 183] or error-correction [84, 91, 92, 184].
This work focuses on the kind of error-correction wherein a user provides sparse feedback
iteratively to improve an imperfect auto-contour. This feedback is usually sparse visual
cues like pencil strokes (in the form of dots or scribbles) in the erroneous regions to rectify
them. Literature on contouring with sparse user input has mostly reported on single-
step auto-contouring with 2D [85-87] or 3D [88-90, 185-187] models. Few works report
on results of iterative contour refinement (84, 91, 92, 184]. Two of the iterative contour
refinement studies conducted a study with clinical users and reported time savings [92,
184] with models that takes a single modality as input. Since time-based evaluation with
real clinical users is important, we build on this trend with a lightweight and multi-modal
3D model and also track the evolution of contouring metrics as more interactions were

provided by the user.

Thus, our main aim was to compare the time efficiency and contour quality of auto-
contour refinement with human users across two tools. Non-experts as well as experts
participated in our study on head-and-neck tumor contour refinement using both our
proposed Al pencil (capable of using sparse 2D inputs to make 3D improvements) or
the traditional manual brush. Additionally, we report on interaction dynamics like pixels
drawn during refinement as well as inter observer variablity [188], for the multi-step re-
finement process. To accomplish the above, we designed and open-sourced a web-based
contouring interface (Figure 5.1a)
(https://github.com/prerakmody/interactive-autocontour-refinement)

5.2 Materials and methods

To compare the two contour refinement tools, we used a head-and-neck tumor dataset
(Section 5.2.1) and trained both an auto-contouring and contour-refinement model (i.e.,
Al pencil) on it (Section 5.2.2). The contour refinement tools were then evaluated (Sec-
tion 5.2.3 on a web interface (Section 5.2.4) by our users (Section 5.2.5).
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Figure 5.1: a) Web interface to perform contour refinement which shows ax-
ial/sagittal/coronal views for both PET + CT scans. On the top of the interface, the user
can select contour editing tools (manual brush or Al pencil) and a patient from a list. b)
Training workflow (left) showing the same database used to train the auto-contouring
and contour-refinement models. Testing workflow (right) showing how auto-contours
are modified by (non) experts using brushes (manual) or scribbles (Al-assistance). c)
Inputs used within the neural net to make contour refinements with ground-truth (green),
prediction (red) and refinement (pink).
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5.2.1 Dataset

A head-and-neck tumor dataset from the Hecktor2022 challenge was used [44] which
contains 524 pairs of CT and PET scans from seven clinics. The data originated from
four countries; we used data from three of them (Canada, Switzerland, United States of
America; 452 pairs) for training and validation, and from the remaining country (France;
72 pairs) for testing. More details can be found in Section 5.7.1.

5.2.2 Auto-contour and contour-refinement model training

A standard UNet architecture (~1.2M parameters) implemented in the MONAI framework
[189] was chosen for both the auto-contouring and the contour-refinement model. Each
model was trained using the standard cross-entropy loss. The goal here was not to achieve
the best contouring performance, but rather to provide an initial segmentation for con-
tour refinement. More details can be found in Section 5.7.2.

The auto-contouring model took as input the CT and PET scans and outputted a tumor
mask, and was trained using the ground truth annotations. The contour-refinement (i.e.,
Al pencil) model took five inputs: CT, PET, the previously predicted contour, tumor scrib-
bles and non-tumor scribbles and outputs a refined contour (Figure 5.1c). This model
was trained using the mask predictions of the auto-contouring model as input. During
training we simulated human scribbles by generating logic-based 2D scribbles in the false
positive (FP) and false negative regions (FN) of the auto-contour models’ predictions [84].
Depending on the region (i.e. FP or FN), the scribble was passed either as a tumor (for
FN) or non-tumor (for FP) scribble. The model was then trained by comparing the refined

predictions against the gold-standard.
5.2.3 Model (auto-contour and contour-refinement) validation

The outputs of both models were evaluated using the DICE metric and the surface DICE
(@2mm) metric. The 2mm threshold was motivated by the HD50 results in [190]. The
single-step auto-contouring model produced only one value for these metrics per patient.
However, the contour refinement tools - the manual brush and Al pencil (i.e., contour-
refinement model) were applied iteratively and hence evaluated at each interaction with
the above metrics.

To verify whether both tools produced similar contours, we compute the inter-tool
variability per patient by comparing the final contours from the manual brush and Al
pencil. Moreover, we computed inter-observer-variability (IoV) [188] for each tool to de-
termine if automation tools lead to standardization. The IoV computes metrics between
the contours of multiple observers (using the same tool) and reports the median. A higher
value indicates more agreement between the observers.

Finally, we logged the time taken for both refinement tools and compared them. User
interaction count, pixels drawn, and slices scrolled were also logged as they directly influ-
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enced the total time taken. An interaction was defined as a complete mouse click (press
and release). Savings provided by the Al pencil when compared to the manual brush were
also shown in percentages as:

AM (%) = (Mmanual - MAI) /Mmanual» (5.1)

where M can be either total time, total interactions, total pixels drawn, or total slices
scrolled.

5.2.4 Web-based tool

Aweb-based user interface (Figure 5.1a) was developed using off-the-shelf libraries for the
frontend (cornerstone3D [191]), backend (FastAPI [192]) and DICOM database (Orthanc
[193]). This interface provided the manual brush, Al pencil as well as panning, zooming
and scrolling capabilities for both the registered PET and CT scans. Shortcuts were pro-
vided to show/unshow contours, to change size of the manual brush as well as to switch
between the foreground (tumor) and background (non-tumor) scribbles of the Al pencil.
For more details check Section 5.7.3.

5.2.5 User Cohort

To compare the manual brush against the Al pencil, four head-and-neck tumor contour-
ing experts (radiation oncologists with 2/4/11/21 years of experience) and seven non-
experts (PhD candidates on Al in medical imaging) participated in this study. To support
the non-experts, the ground truth tumor contour was given to them as a reference, and
they were tasked to refine towards it. The experts were not shown the reference contours,
and they were tasked to refine based on their expert opinion.

To compute the evaluation metrics, for the non-experts we compared each interaction
against the reference contour, while for the experts we compared against their personal
final contour. Consequently, the final metric value for the experts would always be the
maximal (1.0).

We conducted our study in sessions, where in each session, the user is assigned a
patient and a contour-refinement tool (manual brush or Al pencil, see Figure 5.1b). All
users initially underwent training sessions with four patients from the validation dataset,
before the start of the study. For each user, there is a gap of at least one week between the
manual brush and Al pencil sessions of a patient. This reduces potential learning effects

on the anatomy of that patient.

5.3 Results

The auto-contouring model achieved an average DICE score of 0.76 and average surface
DICE score (@2mm) of 0.72 on the test set. From this set, we selected 5 patients with a
surface DICE in the [0.65,0.7] range as cases in need of QA, and 1 patient with a surface
DICE of 0.88 as a high-quality case.
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P1 P2 P3 P4 P5 P6
NEI 536 (78%) 1018 (65%) 322 (29%) 328 (46%) 96 (20%) 722 (52%)
NE2 326 (68%) 403 (57%) 440 (64%) 167 (38%) 112 (31%) 514 (56%)
NE3 319 (57%) 402 (55%) 391 (57%) 197 (47%) 223 (36%) 676 (58%)
NE4 90 (22%) 125 (24%) 194 (40%) 180 (54%) 130 (49%) 110 (19%)
NE5 112 (25%) 324 (50%) 96 (29%) 271 (54%) 201 (61%) 52 (10%)
NE6 440 (56%) 494 (78%) 229 (51%) 189 (38%) 340 (70%) 826 (61%)
NE7 199 (33%) 121 (21%) 289 (41%) 7 (5%) 246 (49%) 305 (43%)
Range [90,536] [121,1018] (96,440] [17,328] [96,340] (52,826
(min, max) | ((22%,78%]) | ([21%,78%)) | ((29%,64%]) | (5%,54%)) | ([20%,70%]) | ([10%,61%])
Table 5.1: Time savings in non-expert (NE) sessions.
P1 P2 P3 P4 P5 P6
El 276 (54%) 135 (52%) 52 (20%) 676 (86%) 408 (88%) 775 (97%)
E2 504 (70%) 307 (70%) 138 (42%) 304 (63%) 361 (85%) 666 (76%)
E3 230 (50%) 151 (73%) 29 (16%) 251 (85%) 238 (75%) 223 (68%)
E4 118 (40%) 71 (47%) 46 (34%) 222 (78%) 55 (83%) 292 (78%)
Range [118,504] [71,307] [29,138] [222,676] 55,408] [223,775]
(min, max) | ([40%,70%]) | ([47%,73%]) | ([16%,42%]) | ((63%,86%]) | ([75%,88%)) | ([68%,97%))
Table 5.2: Time savings in expert (E) sessions.
P1 P2 P3 P4 P5 P6
NE1 97 (59%) 103 (61%) 136 (69%) 88 (67%) 49 (56%) 202 (73%) Q
NE2 56 (58%) 60 (66%) 78 (75%) 69 (72%) 43 (67%) 128 (81%) 5
NE3 105 (74%) 26 (30%) 102 (69%) 73 (70%) 73 (82%) 116 (65%) E
NE4 98 (65%) 46 (42%) 170 (80%) 88 (83%) 95 (84%) 178 (78%) o
NE5 55 (56%) 8 (14%) 62 (65%) 67 (67%) 64 (81%) 62 (52%) -
NE6 130 (73%) 19 (19%) 111 (70%) 65 (65%) 118 (87%) 121 (66%) =
NE7 152 (64) 49 (44%) 109 (71%) 47 (55%) 87 (76%) 158 (75%) o
Range (55,130] [8,103] [62,170] [47,88] [43,118] [62,202] A
(min, max) | ((56%,74%)) | ((14%,66%]) | ([65%,80%]) | ([55%,83%]) | (156%,87%]) | ([52%,81%) °
;
Table 5.3: Interaction count savings in non-expert (NE) sessions. ;
P1 P2 P3 P4 P5 P6 z
El 99 (77%) 19 (55%) 41 (67%) 117 (88%) 117 (95%) 190 (97%) 2
E2 119 (85%) 40 (78%) 66 (80%) 76 (80%) 69 (86%) 143 (88%) =
E3 91 (81%) 18 (72%) 33 (66%) 78 (90%) 57 (90%) 87 (93%) g
E4 72 (74%) 38 (84%) 43 (62%) 79 (90%) 26 (92%) 104 (95%) -
Range [72,119] [19,40] 33,66 [76,117] [26,117] (87,190] =
(min, max) | ([74%,85%]) | ([55%,84%]) | ([62%,80%]) | ([80%,90%]) | ([86%,95%)) | ([88%,97%)) g
Table 5.4: Interaction count savings in expert (E) sessions. >
-
o
Table 5.5: Time (a,b) and interaction count (c,d) savings provided by the Al pencil when f

compared to manual brush for experts (E) and non-experts (NE) across patients (P).
Time savings are in seconds and the percentages indicate how fast the Al pencil is when
compared to the manual brush (i.e., (Tvianual — TAD / TManual-

Upon comparing the tools for the refinement of auto-contours, the Al pencil was [5%—
78%] faster for non-expert sessions (Table 5.1) and [16% — 97%] for expert sessions (Ta-
ble 5.2). The same can be seen in line plots of Figure 5.2 depicting DICE (surface DICE @
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2mm) performance across time. This is because the Al pencil required [14% — 87%] and

[55% — 97%) fewer interactions for non-expert (Table 5.3) and expert (Table 5.4) sessions,
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Figure 5.2: Line plots (with 95% CI) comparing contour refinement sessions for manual
brush (in blue) and Al pencil (in orange) tools across 7 non-experts (a-f) and 4 experts (g-
). Here each session corresponds to a user (non-expert/expert) refining one patient (P)
using a specific tool. The timing of each session is normalized into the [0,100] range by
taking the max time across manual brush and Al pencil sessions and assigning it a value
of 100. The normalized time on the x-axis is a combination of the slice navigation and
contour editing time for each session.

Additionally, Figure 5.3 shows a histogram plot of pixels drawn during contour refine-
ment which is [63% —93%] and [81% —99%] less for the Al pencil than the manual brush
for non-expert and expert sessions, respectively (Section 5.7.4). Figure 5.4 shows visual
examples of scribbles and the contours they produce. Al pencil scribbles can be used

to deal with both false positives (Figure 5.4a, 5.4c, 5.4d, 5.4f, 5.4g, 5.4h, 5.4i) and false
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negatives (Figure 5.4b, 5.4e, 5.4j). While most scribbles were shorter in length others were
lengthier and explicit with their feedback (Figure 5.4f, 5.4i). Regardless of the style of the
scribble, a sparse scribble in 2D (on slice s) propagates its changes in 3D. This is seen when
one observes the updated contour on slices s-1 and s+1. While some interactions align the
refined contour with the reference contour with a single scribble (Figure 5.4g, 5.4h), others
still require more interaction (Figure 5.4i, 5.4j)

For inter-tool variability, we compared the experts final contours obtained via the
manual brush and the Al pencil, and noticed DICE (surface DICE @ 2mm) of patients
in the range of [0.72,0.87]([0.68,0.83]) (Table 5.6). Finally, the IoV metric [188] was in the
range of [0.81,0.96](0.74,0.94) for the manual brush and [0.88,0.95](0.85,0.95) for the Al

encil Table 5.7.

P1 P2 P3 P4 P5 P6
El 0.78 (0.66) | 0.85(0.74) | 0.81 (0.77) | 0.67 (0.58) | 0.87(0.92) | 0.80 (0.74)
E2 0.85 (0.85) | 0.87 (0.82) | 0.80(0.83) | 0.71 (0.62) | 0.81 (0.80) | 0.81 (0.81)
E3 0.87 (0.86) | 0.89 (0.85) | 0.83 (0.84) | 0.74 (0.74) | 0.81(0.85) | 0.76 (0.66)
E4 0.84 (0.77) | 0.88(0.83) | 0.80 (0.78) | 0.78 (0.76) | 0.81 (0.74) | 0.77 (0.65)
Avg
Patient | 0.84 (0.79) | 0.87(0.81) | 0.81 (0.81) | 0.72(0.68) | 0.83 (0.83) | 0.79 (0.71)
Dice
Table 5.6: Metrics between the final contours of the tools.
P1 P2 P3 P4 P5 P6
Manual
Brush | 0.81(0.74) | 0.96 (0.91) | 0.94 (0.94) | 0.89(0.93) | 0.82 (0.85) | 0.89 (0.92)
TIoV
Al
Pencil | 0.88(0.85) | 0.95(0.94) | 0.87 (0.89) | 0.88 (0.95) | 0.87 (0.93) | 0.93 (0.95)
TIoV

Table 5.7: Interobserver Variability (IoV) across patients.

Table 5.8: Dice (Surface Dice @ 2mm) when comparing a patients final contours across
manual brush and Al pencil (a). The same metrics were also used to show inter-observer
variability (IoV) for both tools as computed in [188].

5.4 Discussion

The widespread adoption of auto-contouring has reduced the contouring bottleneck in
radiotherapy. Speeding up quality assessment (QA) of these auto-contours will further
diminish this bottleneck. We investigated the use of an Al pencil for this purpose and com-
pare its time-effectiveness, user load and capability for contour standardization against
the standard manual brush. Our Al pencil could understand sparse visual cues and was
able to propagate the 2D cue to 3D updates (Figure 5.4). This reduced the total effort to
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QA the auto-contours as seen in Table 5.5 and Figure 5.2.
5.4.1 Time for auto-contour refinement

As a proof of principle, we first conducted our auto-contour refinement session with non-
experts. They were shown the reference contour since they need to be provided a target
contour to achieve. Since both the manual brush and Al pencil sessions aim to refine
the predicted auto-contour to the same reference, their timing curves can be directly
compared. The results (Table 5.1, Figure 5.2a - 5.2f) show that the use of the Al pencil
speeds up auto-contour refinement with early and obvious advantage in a majority of
cases (Figure 5.2a, 5.2b, 5.2d, 5.2e, 5.2f). For case Figure 5.2c, which was the case with the
high initial DICE, we observed an early drop in performance of the Al pencil, recovering
from this after 20% of the manual brush interactions. A potential explanation of this
behavior is the fact that the two AI models were not internally aligned, meaning that the
first iteration of the Al pencil, i.e. still having little manual input, may default to its own
prediction of the contour.

Having established a proof-of-principle with the non-experts, we then tested our Al
pencil in a real-world setting where the experts did not see the reference contour. In
half the cases (Figure 5.2j, 5.2k, 5.21), we could see a clear and early improvement due
to the use of the Al pencil. In other cases (Figure 5.2g, 5.2h) we also saw smaller or later
improvements over the manual brush. And finally, similar to the non-experts, we saw a
drop and eventual rise for case Figure 5.2i. Note that for experts, their final contour served
as the reference standard for each of their refinement steps, as it reflected their internal
judgment on the true tumor contour.

Finally, it can be seen from Figure 5.2 that the manual brush slowly but steadily in-
creased contour quality, while the Al pencil increased more sharply and then plateaued.
This is because the manual brush could only edit one slice at a time while the AI pencil
had the capability of using sparse 2D scribble inputs to refine contours in 3D.

5.4.2 Contour Consistency

The inter-tool variability of the tumor refinement sessions (Table 5.6) indicated that the
experts produced similar contours regardless of the tool. These numbers provided a sense
of validity to the final contours submitted in this study. In daily clinical practice, our
experts also expected to receive MRI scans, physician notes, and endoscopy videos. How-
ever, since we worked with an open dataset (Hecktor2022 [44]), we did not have access
to these resources. This could be a potential factor behind the aforementioned inter-tool
variability. The introduction of additional resources in future studies could reduce it.

The inter-observer variability (Table 5.7) indicated the Al pencil leads to slightly better
standardization of final tumor contours between experts. Thus, the Al pencil could offer
both speed and quality for contour refinement.
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5.4.3 Tooling

Ideally, auto-contour refinement tools like Al pencils should be embedded and tested in
high-end contouring platforms offered by commercial radiotherapy software. However,
none of the widely used commercial software’s provide capabilities to access their con-
touring tools via a programmatic interface. Thus, we chose to build upon open-source
libraries to create a web-hosted and open-source interaction platform for this contouring
study. The Al pencil can be also readily integrated in open-source platforms like 3DSlicer
[194] or Napari [195], however, the web-based framework was instrumental for conduct-
ing this study with experts from different institutes.

5.4.4 Future Work

Previous work has established proof on the viability of interactive contouring with 2D [84—
87], 2.5D [184] and 3D [88-92, 185-187] models. However, depending on the contouring
task, the imaging input could be either 2D (e.g., X-ray, ultrasound, histopathology, fundus
scans) or 3D (e.g., CT, MR, PET). As the field of interactive contouring matures, future
work should consider releasing models that are both 2D and 3D capable. Also, progress
in computer vision often occurs because of the presence of open benchmark datasets.
Previous 2D [87] and 3D [196, 197] datasets consist of unimodal scans (e.g. CT, MR, PET,
fundus, X-ray). However, medical image contouring, especially in radiotherapy, is usually
done in a multi-modal manner, like in our study. Future research will benefit from the
curation of such multi-modal datasets where interactive tools like the Al pencil can be
tested. Finally, many of state-of-the-art 3D models capable of iterative contour refinement
[88, 90, 92] are large models and could affect inference time. Hence, neural net parameter
count is an important factor and should be considered as a factor when running clinical

trials on these models.

5.5 Conclusion

With a projection for increased occurrence of cancer cases and a shortage of radiotherapy
clinicians [198, 199], there is an increasing need for automating the radiotherapy workflow
[200]. Since human supervision is still paramount [201], human-centric Al techniques like
the proposed Al pencil for contour quality refinement will be critical in achieving safety
and efficiency standards for high quality radiotherapy care.
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5.7 Appendix

5.7.1 Dataset

The clinics within the Hecktor dataset [44] are abbreviated by the challenge organizers
as: Canada (CHGJ, CHUS, CHMR, CHUM), Switzerland (CHUV), United States of America
(MDA) and France (CHUP). Our auto-contouring model was trained on Canadian (CHGJ,
CHMR, CHUM), Swiss (CHUM) and American (MDA) patients. We kept aside data from
one Canadian clinic (i.e., CHMR as in-distribution data) for validation and one French
clinic (i.e., CHUP as out-of-distribution data) for testing purposes. We use CHMR for also
training our users on our interface as well as the use of the Al pencil.

We resampled all scans to an isotropic voxel size of 1mm using B-spline interpolation,
and contours using nearest-neighbor interpolation. For the sake of simplicity, we cropped
an area of (144,144,144) around the primary head-and-neck tumor and used that during
training and testing of both the auto-contouring and contour-refinement (i.e., Al pencil)
models. All scans were normalized using Hounsfield Unit (HU) windowing ([-250,250])
for the CT scan and SUV windowing ([0,25]) for the PET scan. Finally, we performed z-
normalization of the scans as is the standard practice for Al models.

5.7.2 Auto-contouring and contour-refinement models

Both the auto-contour and contour-refinement models in this work were setup using the
MONAI framework [189]. While the auto-contouring model has only a two-channel input
(i.e. CT + PET), the contour-refinement model had a five-channel input (i.e., CT + PET +
Auto-Contour + Tumor Scribble + Non-Tumor Scribble). The four internal residual con-
volutional blocks contained 16, 32, 64 and 128 layers. The models were trained using a
standard cross-entropy loss and with the Adam optimizer (fixed learning rate of 0.001).
During training, we generate synthetic scribbles to simulate human scribbles. We
generated two types of scribbles: contour-based or morphology-based (via medial axis
or skeletonization) similar to previous work [87]. For training data augmentation, we
sampled a portion of the scribble pixels and performed deformations on it to simulate

human scribble randomness.
5.7.3 Web interface

For the user interface (Figure 5.1a), we used cornerstone3D [191], a medical imaging li-
brary written in the Javascript programming language. They provide software compo-
nents for rendering DICOM images and contours along with contouring tools like brushes
and pencils. For the database, we used the Orthanc DICOM server [193] that hosted
the DICOM files of CT and PET scans, reference contours and also the auto-contouring
predictions. The scribbles (of the Al pencil) provided by the user on the frontend were then
sent to a backend FastAPI server [192] that used the Python programming language. Here,
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we performed Al inference to refine the contour on the basis of the Al pencils’ scribbles
and then sent the refined contour back to the frontend.
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Figure 5.3: Histogram plots showing pixels drawn (x-axis) during auto-contour refinement

of a patient (P) tumor by non-experts (a-f) and experts (g-1).

90



Slice s Slice s-1 Slice s Slice s+1

(a) Axial

Slice s Slice s-1 Slice s Slice s+1

(c) Sagittal

Slice s Slice s-1 Slice s Slice s+1

(e) Coronal

Slice s Slice s-1 Slice s Slice s+1
-

(g) Successful

Slice s Slice s-1 Slice s Slice s+1

(i) (Partially) Successful

Slice s Slice s-1 Slice s Slice s+1

(b) Axial

Slice s Slice s-1 Slice s Slice s+1

(d) Sagittal

Slice s Slice s-1

Slice s Slice s+1

(f) Coronal

Slice s Slice s-1
-

Slice s Slice s+1
" .

(h) Successful

Slice s Slice s-1 Slice s Slice s+1

(j) (Partially) Successful

Figure 5.4: Visual results for Al pencil refinement sessions with PET and CT scans showing
previous reference contour (green), predicted contour (red) and refined contour (pink)
along with scribble (yellow=tumor, blue=non-tumor). Results are shown for axial (a,b),
sagittal (c,d) and coronal (e,f) views. While some scribbles successfully produce a refined
contour that matches the reference (g,h), others are only partially successful(i,j).
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5.7.4 Additional results on user effort

The total time taken during an auto-contour refinement session is a combination of the
total user interactions, total pixels drawn (Table 5.9, 5.10) and the total slices scrolled
(Table 5.11, 5.12, ). Users also spent time on analysing the output of their previous in-
teraction (either manual brush or Al-pencil), however, we do not capture these pauses in
interaction.

In the tables below we show the savings in pixels drawn and slices scrolled with the Al

pencil when compared to the manual brush.
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P1 P2 P3 P4 P5 P6
NE1 11035 (87%) 8925 (77%) 3801 (68%) 9308 (90%) 4885 (85%) 17987 (88%)
NE2 9465 (84%) 9057 (88%) 3566 (75%) 8102 (75%) 4770 (88%) 15753 (90%)
NE3 13501 (90%) 8832 (82%) 3326 (63%) 7568 (88%) 5787 (93%) 13993 (79%)
NE4 11039 (84%) | 7918 (77%) | 4756 (72%) 8294 (92%) | 5941 (91%) 15319 (84%)
NE5 9926 (84%) 7704 (84%) | 2803 (68%) 7207 (86%) | 4302 (88%) 12542 (81%)
NE6 10803 (88%) 8991 (78%) 3383 (63%) 7044 (89%) 5510 (90%) 15799 (88%)
NE7 8339 (77) 6802 (75%) | 3053 (68%) 6062 (79%) | 4199 (84%) 12739 (81%)
Range [8339,13501] | [6802,9057] | [2803,4756] | [6062,9308] | [4199,5941] | [12542,17987]
([84%,90%]) ([75%,88%]) ([63%,75%]) ([75%,92%]) ([84%,93%]) ([79%,90%])
Table 5.9: Pixels drawn savings in non-expert (E) sessions.
P1 P2 P3 P4 P5 P6
El 9017 (89%) 3230 (81%) | 2578 (81%) 9595 (94%) | 8252 (98%) 16293 (98%)
E2 16253 (97%) | 2981 (92%) 5539 (92%) 7203 (95%) | 4569 (95%) 18516 (97%)
E3 14691 (92%) | 2595 (89%) | 3518 (86%) 8759 (97%) | 5991 (97%) 12848 (98%)
E4 10417 (94%) 3406 (94%) 4328 (89%) 7139 (96%) 1103 (96%) 14310 (99%)
Range [9017,16253] [2595,3406] [2578,5539] [7203,9595] [1103,8252] [12848,18516]
([89%,97%]) | (181%,94%]) | ([81%,92%]) | (194%,97%]) | ((95%,98%]) | (197%,99%])
Table 5.10: Pixels drawn savings in expert (E) sessions.
P1 P2 P3 P4 P5 P6
NE1 55 (21%) -239 (-79%) -130 (-45%) -78 (-11%) -520 (-137%) 131 (13%)
NE2 -487 (-123%) -170 (-33%) -317 (-85%) 86 (16%) 45 (8%) -237 (-47%)
NE3 230 (20%) -127 (-45%) 87 (12%) -390 (-167%) 32 (7%) -687 (-470%)
NE4 12 (3%) -401 (-98%) -109 (-38%) -493 (-109%) -25 (-3%) -803 (-117%)
NE5 -135 (-23%) 207 (19%) 154 (48%) -237 (-100%) -107 (-23%) -95 (-18%)
NE6 -402 (-230%) 230 (36%) 10 3%) -367 (-67%) 52 (17%) 239 (56%)
NE7 -210 (-31%) -810 (-447%) 391 (37%) -326 (-51%) -261 (-46%) 211 (-26%)
Range [-487,230] [-810,230] [-317,391] [-493,86] [-520,52] [-803,239]
([-230%,21%]) | ([-447%,36%]) | ([-85%,37%]) | ([-167%,16%]) | ([-137%,52%]) | ([-470%,56%))
Table 5.11: Slices scrolled savings in non-expert (E) sessions.
P1 P2 P3 P4 P5 P6
El -452 (-178%) 234 (34%) -323 (-101%) 126 (32%) 266 (72%) 443 (62%)
E2 -37 (-9%) -91 (-26%) -56 (-12%) -328 (-100%) 141 (25%) 300 (39%)
E3 -112 (-20%) 340 (50%) -190 (-47%) 463 (61%) 95 (24%) 537 (48%)
E4 440 (50%) 251 (38%) 200 (24%) 954 (59%) 246 (64%) 292 (24%)
Range [-452,440] [-91,340] [-323,200] [-328,954] (95,266] [292,537]
([-178%,50%]) | ([-26%,50%]) | ([-101%,24%]) | ([-100%,61%]) | ([24%,72%]) | (124%,62%])

Table 5.12: Slices scrolled savings in expert (E) sessions.

Table 5.13: Savings in pixels drawn (a,b) and slices scrolled (c,d) when using Al pencil as
compared to manual brush. Savings in percentages are shown in brackets.
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6

Summary, discussion and future work

6.1 Thesis Summary

This thesis addresses the critical need for efficient and reliable quality assurance (QA)
tools for automated organ and tumor contouring in radiotherapy. While deep learning
models offer significant acceleration in contouring, the subsequent manual QA and re-
finement steps can be time-consuming and offset part of these gains, creating a bottleneck
in clinical workflows. Two core themes of QA are explored in this thesis: error detection
(identifying where contours are likely incorrect) and error correction (efficiently refining
those errors) in either pre- or post-commissioning phases.

Specifically, this thesis explores: a) the development of an automated and scalable
workflow for evaluating the pre-commissioning dosimetric impact of auto-contours (Chap-
ter 2), b) the potential of Bayesian models and training losses to detect inaccurate predic-
tions in the post-commissioning phase by leveraging their associated uncertainty (Chap-
ter 3 & Chapter 4), and c) the improvement of error correction efficiency through Al-

assisted refinement tools (Chapter 5). Thus, the overarching goal of this thesis is to explore
different QA methodologies both pre- and post-commissioning of auto-contouring tools
for head-and-neck radiotherapy.

6.2 Chapter Recapitulations

6.2.1 Chapter2

This chapter addressed the need of large-scale pre-commissioning dosimetric evaluations
of auto-contoured organs-at-risk (OARs). The main contribution was the development
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and assessment of an automated plan optimization workflow. This workflow was de-
signed to emulate the clinic’s treatment planning protocol by reusing existing clinical plan
parameters (e.g., beam settings, objective weights). This approach, termed robot process
automation (RPA), converts the complex manual planning process into a repeatable, step-
by-step script using the Treatment Planning System’s (TPS) scripting interface. This form
of automated planning process is much faster compared to manual planning and allows
one to scale pre-commissioning auto-contour error detection.

A study was conducted on a large cohort of 100 head-and-neck cancer patients (70
photon and 30 proton plans), allowing for robust statistical analysis. Results showed that
using auto-contours resulted in minimal differences for dose coverage (e.g. Dyean, D2%)
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and dose-related toxicities (i.e., NTCP) when compared to manual contours. Thus, this
process of pre-commissioning QA showed that geometric differences introduced by auto-
contouring had minimal clinical dosimetric consequences.

6.2.2 Chapter 3

Bayesian modeling choices can affect prediction uncertainty, which can potentially serve
as a proxy for error in post-commissioning QA. Here, two Bayesian models (DropOut and
FlipOut) were investigated and evaluated using expected calibration error (ECE) and a
novel metric called region-based accuracy-vs-uncertainty (R-AvU). While ECE takes a more
information theoretic approach to evaluate the models truthfulness, R-AvU takes a more
visual approach to evaluate uncertainty utility. Experiments revealed that training with
cross-entropy (CE) loss leads to better model calibration (i.e., ECE). Also, despite similar
ECE values, FlipOut-CE demonstrated better uncertainty coverage in inaccurate regions
than DropOut-CE when analyzed using R-AvU graphs. These results raise a question in
context of translating research outputs to clinics: what metrics should one explore when
evaluating for uncertainty as a proxy for contour error detection.

6.2.3 Chapter 4

While Bayesian models can produce uncertainty maps, their clinical utility depends on
these maps aligning with true errors. Insights from Chapter 3 revealed that while Bayesian
models produce uncertainty, its direct correspondence with prediction errors is often sub-
optimal. This chapter introduced a differentiable loss formulation of the Accuracy-vs-
Uncertainty (AvU) metric to explicitly encourage uncertainty where errors exist. Uncer-
tainty heatmaps were evaluated against voxel inaccuracies using Receiver Operating Char-
acteristic (ROC) curves (specifically, "uncertainty-ROC") and Precision-Recall (PR) curves.
A key aspect of the evaluation was the distinction between segmentation "failures" (larger
errors requiring intervention) and "errors" (smaller, acceptable inaccuracies akin to inter-
observer variation), with only "failures" contributing to the "true" inaccuracy map.

Results showed that the AvU loss significantly improved calibrative (ECE) and uncertainty-
error correspondence (ROC-AUC, PRC-AUC) metrics for both in-distribution (ID) and out-
of-distribution (OOD) datasets. Compared to ensemble models (which use more param-
eters), the AvU model showed comparable or superior performance in uncertainty-error
correspondence. Importantly, the study revealed that training for model calibration (e.g.,
using ECE-focused methods) does not necessarily translate to improved uncertainty out-
puts for error detection, emphasizing the unique advantage of the AvU loss. Thus, this
chapter explored a novel technical approach to improve the utility of deep learning mod-

els for error detection in post-commissioning QA.
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6.2.4 Chapter5

Here the focus is shifted from post-commissioning error detection to post-commissioning
error correction for auto-contour quality assurance. This chapter specifically aimed to
compare the time-efficiency and contour quality of traditional manual brush tools against
an Al-assisted "Al pencil" for auto-contour refinement. Many existing Al pencil methods
in literature often lacked comprehensive human user evaluations, being limited to 2D set-
tings or robotic users. A web-based interface was developed featuring an Al pencil capable
of interpreting sparse 2D visual cues (scribbles) from users to generate 3D refinements of
tumor contours on head-and-neck CT+PET scans.

The study enlisted the help of both non-clinical and clinical users to participate in
refinement sessions of a patients auto-contour. The Al pencil consistently demonstrated
superior time efficiency, being 5%-78% faster in non-expert sessions and 16%-97% faster
in expert sessions compared to the manual brush. This remarkable speed-up is primarily
attributed to the Al pencil’s ability to propagate sparse 2D scribble inputs into compre-
hensive 3D contour refinements, obviating the need for tedious slice-by-slice editing. And
despite the significant speed advantage, the final contour quality achieved with the Al
pencil was equivalent to that of the manual brush. The Al pencil typically achieved a sharp
increase in contour quality early in the refinement process before plateauing, contrasting
with the manual brush’s more gradual improvement. By demonstrating its effectiveness
with human users in a 3D context, this work significantly contributes to alleviating the QA

bottleneck and enhancing the overall efficiency of radiotherapy workflows.

6.3 Discussion and future work

The research presented in this thesis collectively addresses critical challenges in the safe,
efficient and trustworthy integration of QA tools for deep learning-based auto-contouring
models in clinical radiotherapy. By tackling both error detection and error correction
within the QA workflow in both pre- and post-commissioning scenarios, this thesis con-
tributes to advancing human-centric Al applications in medical image segmentation.

Building upon the foundations laid in the aforementioned chapters, several discussion
points and promising avenues for future research emerge:

¢ Clinical buy-in — Often technical research tries to optimize on certain prespecified
metrics and does not translate this into the clinic. This lack of bench-to-bedside
attitude is often caused due to the structure of research projects. A missing factor
is often sufficient clinical buy-in/involvement which leads to research being left on
dusty shelves. Researchers should consider structuring their teams and mentors
that involve multi-disciplinary skills to understand the full breadth and depth of the
problem at hand.
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¢ Renewing contouring guidelines — Chapter 2 showed both correlations and non-
correlations between DICE and dose differences. Larger studies could redefine con-
touring guidelines, potentially evolving fixed anatomical guidelines into those with

margins that could accommodate inter- and intra-observer variability.

¢ Understanding the utility of uncertainty in clinical settings — Uncertainty is a math-
ematical concept that has the potential to offer insights into the confidence of data-
driven techniques like deep learning. However, often the community uses pure
mathematical concepts like ECE (with its grouping mechanism) to evaluate the util-
ity of a models uncertainty. Such metrics dont capture uncertainty in a pixel-wise
(or granular manner). Thus, pushing the boundaries of existing metrics, although
important, is not sufficient to adapt research innovations to daily clinical practice.

¢ Pixel-vs-Slice-vs-Region Uncertainty — It is possible that there is a practical limit
to how much “uncertainty tuning” clinicians can benefit from before it becomes
cognitive overload. On the one hand, too much uncertainty-driven decision making
(e.g., pixel-wise) can be cognitively taxing. However, on the other hand, averaged
uncertainty (e.g., on the slice or organ/tumor level) may not effectively guide con-
tour refinement actions. Thus, researchers need to ponder on the granularity of

uncertainty that we need in medical image segmentation applications.

* Connecting loss functions to clinical usability — The DICE loss is a geometry-based
loss as it looks at the overall structure and shape of the ground truth and prediction.
However, surprisingly a pixel-based approach i.e., the cross-entropy loss performed
better at being truthful about its confidence in its predictions. Thus, makers of auto-
contouring tools need to think deeper on how their loss functions affect the end
users experiences.

* Analysing dataset requirements — One of the barriers to translating research into
clinical practise is the high amount of training data required. However, literature
shows similar performance with varying sizes of datasets. More work with tools like
learning curves can inform the community better on the minimal dataset require-

ments to achieve clinical standards for contouring of organs and targets.

¢ Frameworks for real world clinical validation — Tools for robust experimentation and
evaluation are what drive any field forward as it lowers the barriers for newcomers
to contribute to the field. This can be seen with programming languages like Python
and deep learning frameworks like Tensorflow and PyTorch. A similar example for
medical image segmentation is the grand-challenge . org platform. Thus, as deep
learning tools become more common in the field of medical imaging, the commu-
nity needs to focus on how to build similar frameworks for uncertainty as a proxy

for error detection and also for interactive segmentation.


grand-challenge.org

¢ Trust in AI-driven actions — For the case of interactive contour refinement, how do
we ensure clinicians trust Al-generated refinements enough to avoid reverting to
manual corrections? And can such tools adapt to the diverse ways different clini-
cians approach contour editing? Thus, there may be a need for metrics that track
how reliable is the model in local regions where the user makes their scribbles. And
does the model secretly make any spurious predictions in regions far away from the
users interaction.

* Role of regulatory bodies — Healthcare systems need to be regulated by governmen-
tal bodies due to the critical nature of the service they provide. However, research
innovations often outpace regulatory bodies and in the meantime there is a possibil-
ity that innovations not rigorously or accurately tested can be used by clinicians. For
e.g., in the case of deep learning-based auto-contouring there is very little discus-
sion on the need for country/demographic-based benchmark datasets. Thus, it is
very cumbersome for clinical innovators to determine how to evaluate commercial
solutions since they need to be the ones to curate their own internal dataset which
often tend to be messy due to the busy workload of clinicians. We implore the reader
of this thesis to ponder upon this point and fill the aforementioned gap.

6.4 General conclusions

In an era of growing cancer incidence and limited clinical resources, this thesis contributes
essential tools for ensuring safe, effective integration of deep learning auto-contouring
into radiotherapy workflow. By offering practical, human-centric methods for both pre-
cise error detection and efficient error correction, this work helps bridge the gap between
advanced deep learning models and their safe and effective quality assessment for in-
tegration into daily clinical radiotherapy practice. We hope to inspire others to pursue
work that bridges the gap between mathematical uncertainty metrics and practical clin-
ical trust. Likewise, interactive Al tools must evolve to reflect the diverse ways clinicians
work.

Ultimately, this research aims to safeguard high-quality patient care and enhance work-
flow efficiency, with the positive results intended to inform and advance human-centric

deep learning for medical imaging.
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7

Samenvatting, discussie en toekomstig werk

7.1 Samenvatting van de dissertatie

Deze dissertatie richt zich op de dringende behoefte aan efficiénte en betrouwbare kwaliteitscon-
trole (QA)-tools voor geautomatiseerde contourbepaling van organen en tumoren bij ra-
diotherapie. Hoewel deep learning modellen een aanzienlijke versnelling bieden, kun-

nen de daaropvolgende handmatige QA- en verfijningsstappen tijdrovend zijn en zo de

winst gedeeltelijk tenietdoen, wat leidt tot een knelpunt in klinische workflows. Twee
hoofdthema’s binnen QA worden onderzocht: foutdetectie (waar zijn contouren waarschi-

jnlijk fout) en foutcorrectie (hoe corrigeer je die efficiént), in zowel pre- als post-commissioning
fasen.

Dit proefschrift onderzoekt specifiek: a) de ontwikkeling van een geautomatiseerde en
schaalbare workflow voor het evalueren van de dosimetrische impact van autocontouren
voor ingebruikname (Chapter 2), b) het potentieel van Bayesiaanse modellen en train-
ingsverliezen om onnauwkeurige voorspellingen te detecteren in de post-ingebruiknamefase
door gebruik te maken van de bijbehorende onzekerheid (Chapter 3 & Chapter 4), en
¢) de verbetering van de efficiéntie van foutcorrectie met behulp van Al-ondersteunde
verfijningstools (Chapter 5). Het overkoepelende doel van dit proefschrift is dan ook om

verschillende QA-methodologieén te verkennen, zowel v66r als na ingebruikname van
autocontouringtools voor hoofd-halsradiotherapie.

7.2 Hoofdstuk Samenvattingen
7.2.1 Hoofdstuk 2

Dithoofdstuk richtte zich op de noodzaak van grootschalige pre-commissioning dosimetrische
evaluaties van automatisch gecontourde organen-at-risk (OARs). Het belangrijkste re-
sultaat was een geautomatiseerde workflow voor planningsoptimalisatie, gebaseerd op
bestaande klinische instellingen, bekend als robotic process automation (RPA). Via script-

ing in het Treatment Planning System (TPS) werd een handmatige planningsprocedure
geautomatiseerd.

Een studie werd uitgevoerd op 100 hoofd-hals patiénten (70 fotonen, 30 protonen).
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Resultaten toonden minimale dosimetrische verschillen tussen automatische en hand-

matige contouren. Dit wijst erop dat geometrische afwijkingen veroorzaakt door automa-
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tische contouren beperkte klinische impact hebben, en bevestigt de bruikbaarheid van de
voorgestelde QA-aanpak.

7.2.2 Hoofdstuk 3

Dit hoofdstuk onderzocht hoe modelkeuzes de onzekerheid beinvloeden, die als proxy
kan dienen voor fouten in post-commissioning QA. Twee Bayesiaanse modellen (DropOut
en FlipOut) werden geévalueerd met behulp van Expected Calibration Error (ECE) en een
nieuwe metriek, Region-based Accuracy-vs-Uncertainty (R-AvU). Waar ECE een informati-
etheoretische benadering is, biedt R-AvU een meer visuele evaluatie. Training met cross-
entropy verlies (CE) gaf betere calibratie (lagere ECE). FlipOut-CE toonde betere onzeker-
heidsdekking in foutieve regio’s dan DropOut-CE volgens de R-AvU grafieken. Deze resul-
taten roepen de vraag op: welke metriek moet men gebruiken bij onzekerheidsevaluatie
voor foutdetectie?

7.2.3 Hoofdstuk 4

Hoewel Bayesiaanse modellen onzekerheidskaarten kunnen produceren, is hun klinisch
nut afhankelijk van de mate waarin deze kaarten overeenkomen met echte fouten. Hoofd-
stuk 2 toonde aan dat deze overeenstemming vaak suboptimaal is. Dit hoofdstuk in-
troduceerde een differentieerbaar verlies op basis van de Accuracy-vs-Uncertainty (AvU)
metriek, die expliciet onzekerheid stimuleert waar fouten voorkomen. De kaarten werden
geévalueerd via ROC-curves ("uncertainty-ROC") en Precision-Recall-curves. Een belan-
grijk aspect was het onderscheid tussen "fouten" (klein, acceptabel) en "falen" (groter,
vereisen interventie).

De AvU-verliesfunctie verbeterde significante calibratie (ECE) en de overeenkomst tussen
onzekerheid en fouten (ROC-AUC, PRC-AUC), voor zowel in-distributie (ID) als out-of-
distributie (OOD) datasets. AvU presteerde zelfs beter dan ensemble-modellen. Dit toont
dat optimalisatie op ECE niet voldoende is om bruikbare onzekerheidskaarten te produc-

eren — AvU biedt een unieke meerwaarde.

7.2.4 Hoofdstuk 5

De focus ligt hier op foutcorrectie, post-commissioning. In dit hoofdstuk werd de ef-
ficiéntie en kwaliteit van handmatige borstels vergeleken met een Al-ondersteunde “Al
potlood”-tool. Bestaande Al-potloodtools missen vaak evaluatie met menselijke gebruik-
ers en werken enkel in 2D.

Een webinterface werd ontwikkeld waarin gebruikers 2D-aanduidingen (scribbles) kon-
den geven, waarna de Al potlood 3D-refinements uitvoerde op CT+PET scans van hoofd-
hals tumoren. Zowel klinische als niet-klinische gebruikers namen deel. De Al-potlood
was 5-78% sneller bij niet-experts en 16-97% sneller bij experts, terwijl de uiteindelijke
kwaliteit gelijkwaardig bleef. De AI potlood bereikte snel een hoge kwaliteit, in tegen-
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stelling tot de geleidelijke verbetering bij de handmatige tool. Dit toont de kracht van
Al-geassisteerde QA bij radiotherapie.

7.3 Discussie en toekomstig werk

Deze dissertatie adresseert belangrijke uitdagingen in veilige, efficiénte en betrouwbare
integratie van QA-tools voor deep learning-gebaseerde auto-contouring in de kliniek. Zowel
foutdetectie als foutcorrectie, in pre- en post-commissioning scenario’s, worden aangepakt,
met nadruk op menselijke bruikbaarheid.

Toekomstige onderzoekslijnen zijn:

¢ Klinische betrokkenheid - Technisch onderzoek probeert vaak te optimaliseren op
basis van bepaalde, vooraf gespecificeerde criteria, maar vertaalt dit niet naar de
klinische praktijk. Dit gebrek aan 'van tafel tot bed’-mentaliteit wordt vaak veroorza-
akt door de structuur van onderzoeksprojecten. Een ontbrekende factor is vaak
voldoende klinische betrokkenheid, waardoor onderzoek op een stoffige plank blijft
liggen. Onderzoekers zouden moeten overwegen hun teams en mentoren zo in te
richten dat ze multidisciplinaire vaardigheden inzetten om de volledige breedte en
diepte van het probleem te begrijpen.

¢ Vernieuwing van contourrichtlijnen — Chapter 2 toonde zowel correlaties als non-
correlaties tussen DICE en dosisverschillen. Grotere studies zouden de contour-
richtlijnen opnieuw kunnen definiéren, en mogelijk vaste anatomische richtlijnen
laten evolueren naar richtlijnen met marges die rekening houden met inter- en intra-

observatorvariabiliteit.

* Hetnutvan onzekerheid in klinische settings begrijpen — Onzekerheid is een wiskundig
concept dat de potentie heeft om inzicht te bieden in de betrouwbaarheid van datages-
tuurde technieken zoals deep learning. De community gebruikt echter vaak puur
wiskundige concepten zoals ECE (met zijn groeperingsmechanisme) om het nut van
de onzekerheid van een model te evalueren. Dergelijke statistieken leggen onzek-
erheid niet pixelgewijs (of op een gedetailleerde manier) vast. Het verleggen van de
grenzen van bestaande statistieken, hoe belangrijk ook, is dus niet voldoende om

onderzoeksinnovaties aan te passen aan de dagelijkse klinische praktijk.

* Pixel- vs. slice- vs. regio-onzekerheid: Het is mogelijk dat er een praktische limiet

is aan de mate waarin clinici kunnen profiteren van 'onzekerheidsafstemming’ vo-
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ordat het leidt tot cognitieve overbelasting. Enerzijds kan te veel op onzekerheid
gebaseerde besluitvorming (bijv. per pixel) cognitief veeleisend zijn. Anderzijds

AIIM

biedt gemiddelde onzekerheid (bijv. op het niveau van een plak of orgaan/tumor)

mogelijk niet effectief houvast voor het verfijnen van contouren. Daarom moeten
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onderzoekers nadenken over de granulariteit van onzekerheid die we nodig hebben
in medische beeldsegmentatietoepassingen.

¢ Verliesfuncties en klinische bruikbaarheid: De DICE-loss is een geometrie-gebaseerde
verliesfunctie, omdat het kijkt naar de algehele structuur en vorm van de 'ground
truth’ en de voorspelling. Verrassend genoeg presteerde een pixel-gebaseerde aan-
pak, namelijk de cross-entropy loss, echter beter in het weergeven van de werkelijke
vertrouwelijkheid van zijn voorspellingen. Daarom moeten makers van autocontouring-
tools dieper nadenken over de manier waarop hun verliesfuncties de ervaring van

de eindgebruiker beinvloeden.

¢ De eisen voor de dataset analyseren — Een van de belemmeringen voor het ver-
talen van onderzoek naar de klinische praktijk is de grote hoeveelheid benodigde
trainingsdata. De literatuur laat echter vergelijkbare prestaties zien met datasets
van verschillende groottes. Meer werk met hulpmiddelen zoals leercruves kan de
gemeenschap beter informeren over de minimale vereisten voor datasets om te vol-
doen aan klinische normen voor het contouren van organen en doelwitten.

* Frameworks voor klinische validatie in de praktijk — Frameworks voor klinische val-
idatie in de praktijk — Tools voor robuuste experimentatie en evaluatie zijn wat elk
vakgebied vooruithelpt, aangezien ze de drempels voor nieuwkomers verlagen om
bij te dragen. Dit is te zien bij programmeertalen zoals Python en deep learning
frameworks zoals Tensorflow en PyTorch. Een vergelijkbaar voorbeeld voor medis-
che beeldsegmentatie is het grand-challenge.org-platform. Nu deep learning tools
steeds gangbaarder worden in de medische beeldvorming, moet de gemeenschap
zich richten op de ontwikkeling van vergelijkbare frameworks voor onzekerheid als

een proxy voor foutdetectie en voor interactieve segmentatie.

¢ Vertrouwen in Al-gedreven acties — Voor de context van interactieve contourverfijn-
ing, hoe kunnen we ervoor zorgen dat clinici de door Al gegenereerde verfijningen
voldoende vertrouwen om niet terug te vallen op handmatige correcties? En kun-
nen dergelijke tools zich aanpassen aan de diverse manieren waarop verschillende
clinici contourbewerking benaderen? Het kan dus nodig zijn om statistieken te
gebruiken die bijhouden hoe betrouwbaar het model is in lokale gebieden waar de
gebruiker zijn krabbels maakt. En doet het model stiekem onterechte voorspellin-
gen in gebieden ver weg van de interactie van de gebruiker?.

* Rol van regelgevende instanties: Gezondheidszorgsystemen moeten worden gereg-
uleerd door overheidsinstanties vanwege de kritieke aard van de dienst die ze lev-
eren. Onderzoeks-innovaties overtreffen echter vaak de regulerende instanties en in
de tussentijd bestaat de mogelijkheid dat innovaties die niet rigoureus of nauwkeurig
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zijn getest, door artsen kunnen worden gebruikt. In het geval van op deep learning
gebaseerde auto-contouring is er bijvoorbeeld heel weinig discussie over de noodzaak
van land-/demografisch-gebaseerde benchmark datasets. Dit maakt het voor klin-
ische innovators zeer omslachtig om te bepalen hoe ze commerciéle oplossingen
moeten evalueren, aangezien zij degene moeten zijn die hun eigen interne dataset
samenstellen, die vaak rommelig is vanwege de drukke werkdruk van clinici. We
smeken de lezer van dit proefschrift om over dit punt na te denken en de bovenge-
noemde lacune op te vullen..

7.4 Algemene conclusies

In een tijdperk van toenemende incidentie van kanker en beperkte klinische middelen,
levert dit proefschrift essentiéle hulpmiddelen om de veilige, effectieve integratie van deep
learning auto-contouring in de radiotherapieworkflow te waarborgen. Door praktische,
mensgerichte methoden te bieden voor zowel precieze foutdetectie als efficiénte foutcor-
rectie, helpt dit werk de kloof te overbruggen tussen geavanceerde deep learning-modellen
en hun veilige en effectieve kwaliteitsbeoordeling voor integratie in de dagelijkse klinische
radiotherapiepraktijk. We hopen anderen te inspireren om werk na te streven dat de kloof
overbrugt tussen wiskundige onzekerheidsmetrieken en praktisch klinisch vertrouwen.
Evenzo moeten interactieve Al-hulpmiddelen evolueren om de diverse manieren waarop
clinici werken te weerspiegelen.

Uiteindelijk streeft dit onderzoek ernaar om patiéntenzorg van hoge kwaliteit te waar-
borgen en de workflowefficiéntie te verbeteren, waarbij de positieve resultaten bedoeld
zijn om mensgerichte deep learning voor medische beeldvorming te informeren en te
bevorderen.
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