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Chapter 6

Conclusion

In this dissertation we have attempted to partially fill the knowledge gap that exists in the literature
on the performance of science maps for information retrieval. In the current chapter, we will answer
the research questions that we presented in Chapter 1 and explore potential further research on this
topic.

6.1 Answers to research questions

Research question 1: How can science maps be designed to support information re-
trieval?

We answered this question in Chapter 2 by implementing the tool SciMacro (Scientific Macro-
scope), which allows a user to navigate a science map of academic documents in a way that is
conductive for information retrieval by using the principles of the Scatter-Gather method. From
this research, we learned that there are no significant hindrances for implementing information
retrieval in a science map, at least in the way we implement it. However, we found two minor chal-
lenges. The first is how to communicate relevant information using the bubble chart visualization of
the science map, which we addressed by placing the related clusters together and minimizing white
space. The second challenge is how to let the user control the granularity of the clusters, which we
addressed by letting the user decide on the number of clusters they desire. Then, in the back end,
we produced several clustering solutions with different resolutions until we found one that generated
a good distribution of cluster sizes for this number of clusters (this is the slowest step and it has
the greatest potential for improvement). After we had found this resolution, we merged the clusters
until we got the number of clusters that the user desired.

Research question 2: How effective are science maps for producing systematic re-
views?

We found in Chapter 3 that science maps are more effective than Boolean queries for about half of
the evaluated systematic reviews, which is a good performance given the stringent conditions of the
experiment (i.e., because the Boolean queries define the relevant documents, the baseline has perfect
recall). This, plus our finding that the intersection between the sets of documents retrieved by the
Boolean query and the ones retrieved by science maps is small, shows that one approach cannot
replace the other, and ideally both should be used together for greatest effectiveness. We also found
that science maps can correct for some shortcomings of the Boolean queries, like finding documents
that the original authors missed. An interesting observation is that there was no topical difference
between the set of systematic reviews where science maps performed better than the Boolean queries
and the set of systematic reviews where they performed worse. This observation motivated research
question 3.

Research question 3: Do science maps represent some topics better than others?

We found in Chapter 4 that some ontological categories of topics are systematically clustered
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better than others, in particular the ontological topic categories “Diseases” and “Organisms”, and
that this happens in both citation and text similarity networks. Therefore, the answer to this
research question is positive. For information retrieval tasks, this means that it is possible to know
beforehand if a science map approach is likely to be helpful, which makes science maps a more
reliable information retrieval tool. We were surprised that citation and text similarity networks
perform well for the same topic categories because this suggests that the clusters of both maps
would be about more or less the same topics. However, we also found differences between these
networks. For higher granularity and Coverage (i.e. higher Coverage means higher recall), citation
networks yield better results than text similarity networks, and vice versa. We believe this might be
due to the simplicity of the text similarity metric that we used (i.e. it only measures shared words
between documents and does not measure more subtle similarities like semantic similarity). It seems
that creating good clusters at higher granularity and Coverage is more difficult than at lower, and
so a more sophisticated text similarity metric might be needed.

Research question 4: How can the representation of specific topics be improved in
a science map?

We answered this question in Chapter 5 by using different types of academic documents networks,
based on data from different sources, to create science map clusters. This allowed us to influence
which topic categories were the best clustered in a science map. Given that both text and citation
networks yield similar results in terms of which topics are best clustered (as we found in response to
research question 3), we used a text similarity network as a baseline (instead of a citation network
or both networks). We compared the new networks with the baseline network to measure both
the changes regarding the cluster quality of the topics and changes regarding which topics are best
clustered in the new network. The biggest improvement in clustering effectiveness happened in
topics related to geographical entities in the document authors network. The other noteworthy
improvements were health topics in the Facebook users network, biotechnology topics in the patent
families network, government and social topics in the policy documents network, food topics in
the Twitter conversations network, and nursing topics in the Twitter users network. However,
most of the topics that achieved the highest clustering effectiveness in their networks still achieved
lower clustering effectiveness than in the text similarity networks, which defeats the purpose of
improving the clustering effectiveness of the topic. A notable exception was the network that mixed
text similarity with Twitter conversations. The topics obtained in this network had a clustering
effectiveness comparable with text similarity, and even better for topics about food. Apart from
this exception, we have not found a way to influence which topics are better represented in a science
map without decreasing the quality of the clustering.

Overarching research question: What is the effectiveness of science maps for infor-
mation retrieval, and how can we enhance it?

We studied science maps that are based on document clusters, using documents mostly from
the biomedical field of science. These science maps have been shown to be effective for finding the
relevant documents of systematic reviews, and to perform particularly well on topics that belong to
the ontological topic categories “Diseases” and “Organisms”. The effectiveness of a science map can
be enhanced by turning the map into an interactive visualization of the clusters, where the user can
create a new visualization based on the documents in selected clusters and control the granularity
of the map.

6.2 Further research

Follow ups to our findings

As discussed in the introduction, the research agenda set out in this dissertation is focused on
evaluating and improving science maps for information retrieval. With regard to evaluation, we lim-
ited ourselves to systematic reviews and academic topics, but further research can also explore other
information retrieval tasks, such as exploratory search tasks. With regard to improvement, we found
that using different networks from different sources has the potential for influencing which topics
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are best represented, but only the network that mixed text similarity with Twitter conversations
could achieve a performance that is as good as the performance of citation or text networks. We
believe that a performance similar to the latter networks might be achieved by further refinement,
for example by cleaning the data before creating the network (like removing bot users from Twitter),
by creating the network with a different methodology (like normalizing the weights of the edges),
or by mixing networks with a different criterion (like weighing one network more than the other).
The issue of which ontological categories of topics are best represented in a science map has received
only limited attention in the literature [76, 131], and future research in this area could provide new
insights.

Clustering

A relevant topic that we did not research in this dissertation is the clustering algorithm [74] . The
Leiden algorithm is the most popular one, but the MALBA algorithm [75] was created specifically to
outperform the Leiden algorithm in field delimitation, and future research could use the methodology
that we developed in Chapter 5 to compare them.

Large Language Models

Thanks to accelerating developments in large language models (LLMs), we believe that the text
representation of documents will take a more prominent role in the creation of science maps. We can
imagine that there could be a fine-tuned text embedding model for each of the ontological categories
of topics that we analyzed (for example, there are over 6,000 pre-trained Sentence Transformer
models available in the Hugging Face website [132]). Another area where these text processing
methods can be used is in the cluster labeling, as shown by van Eck and Waltman [159], who labeled
clusters by providing ChatGPT with their top 250 most cited documents. Additionally, entity
recognition, which allows us to extract data directly from the documents, could improve science
maps in unforeseen ways. Also, even though we did not compare it directly, our results in Chapter 5
strongly suggest that text similarity networks based on text embedding create better clusters than
networks based on less advanced text processing methods.

Beyond text representation, LLMs are also relevant to science maps due to developments in
retrieval-augmented generation (RAG), a method that retrieves documents to improve the quality
of question answering of LLMs. The use of RAG for academic information retrieval is still an
emerging field of study [22], but recent results show promise [9]. Also, Asai et al. [8] developed
OPENSCHOLAR, a RAG tool specific for academic search. We believe that RAG does not replace
science maps, but instead they complement each other, with science maps visualizing the RAG
results and putting them in context. This search approach is already implemented in platforms such
as Zeta Alpha [183].

Granularity

An important open issue in science mapping is the choice of granularity, understood as the level
of detail of the map, usually corresponding to the size of clusters. There is no agreed-upon answer
in the field, and accordingly, this dissertation addressed granularity in several different ways rather
than fixing it to a single definition. In Chapters 2 and 3 it was controlled by a hypothetical user
and by a user model, respectively. In Chapter 4 and 5 it was used to make fair comparisons, with
the former centered on map granularity (size of clusters) and the latter focused on topic granularity
(number of selected clusters). Other researchers have proposed different strategies: Sjogarde and
Ahlgren [142] searched a granularity that would group the references of a review article into a
single cluster, Held and Glaser [75] developed an algorithm to determine an adequate level based
on network properties, and Ficozzi et al. [61] explored maximum granularity by representing each
document individually, physicalized as a 100-square-meter floor mat. These diverse approaches show
that granularity remains an open question, but also that it is central to making science maps useful
for information retrieval.

Prototyping

We believe that the critical next step in research for science maps for information retrieval is the
further development of prototypes. This would allow evaluating the performance of science maps
with real users. This has the added benefit that, by showing concrete uses of science maps, it can
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bring additional interest to continue and support the research and sustainability of the software.
We find this important because most of the proposals for academic information retrieval tools that
we found in literature, even the ones we found promising, are currently unusable due to lack of
maintenance. This could be achieved by collaborating with already existing academic information
retrieval platforms, such as Web of Science, Scopus, Dimensions, Zeta Alpha, Semantic Scholar,
Google Scholar, or OpenAlex. However, it is worth pointing out that evaluating the performance of
science maps with real users is not a trivial task. Such evaluation of interactive information retrieval
requires careful experimental design and the participation of field experts [94].

Trends

In this dissertation we have provided evidence and advice on how to make information retrieval
with science maps a more viable option for academic users. Fortunately, since the start of our
research, we have seen that bibliometrics enhanced information retrieval has gained popularity among
researchers, and the open science movement is lobbying to make the metadata of academic documents
openly available, which will make science maps more viable. We hope that our research will further
strengthen these developments and will help support and popularize science maps for information
retrieval.
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