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Chapter 5

Use of diverse data sources to
control which topics emerge in a
science map

Abstract!

Traditional science maps visualize topics by clustering documents, but they are inherently biased
toward clustering certain topics over others. If these topics could be chosen, then the science maps
could be tailored for different needs. In this paper, we explore the use of document networks from
diverse data sources as a tool to control the topic clustering bias of a science map. We analyze this
by evaluating the clustering effectiveness of several topic categories over two traditional and six non-
traditional data sources. We found that the topics favored in each non-traditional data source are
about: Health for Facebook users, biotechnology for patent families, government and social issues
for policy documents, food for Twitter conversations, nursing for Twitter users, and geographical
entities for document authors (the favoring in this latter source was particularly strong). Our results
show that diverse data sources can be used to control topic bias, which opens up the possibility of
creating science maps tailored for different needs.

5.1 Introduction

Science maps are a form of visualization that provides a content overview of a collection of academic
documents. They are typically used for literature analysis [184], field delimitation, research policy,
and enhanced document browsing [17]. A typical practice to create science maps is first to create a
network of academic documents where the links are an aspect of the documents (e.g. bibliographic
metadata), then to cluster together the documents that are well connected, and finally to summarize
the contents of these clusters. In other words, the map is a set of clusters that emerge from document
connections, and what a cluster represents is inferred from its documents.

In our previous work [19] we evaluated the extent to which a science map can place the documents
of a topic inside clusters where most documents belong to that topic (i.e. to create clusters about
the topic), a concept we refer to as clustering effectiveness. There, we found that the clustering
effectiveness changes depending on the kind of topic, or in other words, that the maps have a bias
toward clustering certain kinds of topics more effectively than others. For example, we found that
in maps based on citation links or text similarity, topics related to diseases are well clustered while
topics related to geographical locations are not. This bias can prove inconvenient for science map

1This chapter is based on: Juan Pablo Bascur, Rodrigo Costas, Suzan Verberne. 2024. Use of diverse data sources
to control which topics emerge in a science map. arXiv. https://doi.org/10.48550/arXiv.2412.07550. [18]
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users if their topics of interest do not align with the topic bias of the map, because then their topics
would not be well represented by the map. For example, a science map user that wishes to find
research about a given country will find no or few clusters about this country, leading to the wrong
conclusion that there is little research about this country.

In the current paper, we explore whether the topic bias of a map can be adjusted by using different
data sources to connect documents in the networks. In particular, we aim to identify combinations of
sources and kinds of topics that show promise for achieving better clustering than traditional science
map sources. This means that, rather than trying to outperform traditional science map networks
across all topics, we focus on discovering cases where alternative sources provide complementary
information that improves clustering for specific kinds of topics. This approach acknowledges that
it is unrealistic to expect every topic to achieve high clustering effectiveness simultaneously, and
instead seeks to offer science map users more targeted options depending on their topic of interest.
In the example mentioned in the prior paragraph, a science map user interested in research about a
given country could benefit from selecting a data source better suited to generating clusters about
geographical locations.

The reason why we attempt to find effective combinations of sources and kinds of topics is that
different sources contain different information about scientific content. For example, science maps
that use patents as sources are likely to be more focused on technology than science maps that
use text similarity. In this example, even if the science map based on patents has lower clustering
effectiveness for all topics, its focus on technology could potentially be used in combination with a
science map from a traditional source to increase the clustering effectiveness of technological topics,
even if it diminishes the clustering quality for other kinds of topics.

The traditional data sources used to create science maps are citation links and text similarity,
where connections are derived directly from the documents themselves. In this paper, we use the term
data source to refer to any structured source of information used to connect academic documents.
To achieve our goal, we explore other, non-traditional data sources. Most of our non-traditional
data sources create networks where two or more academic documents are connected with an element
external to the document (e.g. a patent that cites two documents), and for this reason we refer to
these sources as external sources. Our topics are based on MeSH terms, and we group the topics
into topic categories to facilitate our analysis. We measure the topic bias of a network as how well
a topic is clustered (i.e. clustering effectiveness) over several clustering solutions, each of them with
different cluster sizes. Each of these clustering solutions is analogous to a very simple science map.
We use the topic bias of text similarity networks as our reference to compare how the topic bias
changes in other networks.

Our research question is: Which topic categories benefit from using each external source? We
operationalize this benefit in two ways: First, if the clustering effectiveness of the topic category in
the network of the external source is higher than the effectiveness of the same topic category in the
text similarity network. Second, if a topic category ranks among the higher-performing categories in
clustering effectiveness within the external source, but not within the text similarity network. We
will consider both operationalizations to address our research question, but give more importance
to the first one because it serves the needs of science map users more directly.

Our contributions are: (1) We present an expanded and improved analysis method for evaluating
the clustering effectiveness of a topic; (2) With this method, we provide a large-scale analysis of
eight different sources (two traditional and six external), twenty one networks of up to four million
documents, nearly three thousand clustering solutions, and seventeen topic categories, each one
usually composed of between fifty and three hundred topics (values vary between networks); (3) With
this analysis, we show that topic bias can be changed using external sources, and also which topics
categories are favored for each of the external source. This knowledge expands the customization
options of science maps.
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5.2 Background

In this section we explore several topics related to our paper, provide literature examples for each
of them, and explore how our paper relates to the most relevant ones.

5.2.1 Interaction of academic documents with non-academic elements

Traditionally, policy makers analyze scientific production to evaluate scientific impact, but they
also are interested in evaluating its societal, technological and policy-making impact. For societal
impact, the impact of publications on social media has been suggested as a proxy [172], and we
highlight the company Altmetric [5, 53, 59], which collects mentions to academic documents online,
including social media. For technological impact, patents are used [113]. Policy-making impact is
a more recent field of study, and we highlight the company Overton [60, 150], which collects ample
datasets of policy documents and their references [53]. We also highlight the company Dimensions
[84], which collects the connections of academic documents to citations, clinical trials, patents, policy
documents, grants and datasets.

5.2.2 Science maps based on diverse sources

Science maps of academic documents typically use networks of citation links or text similarity [165],
but both Janssens, Glanzel, and De Moor [91] and Ahlgren et al. [4] proposed networks that combine
both citation links and text similarity. Also, Costas, de Rijcke and Marres [45] proposed a conceptual
framework for analyzing the interaction between documents and social media by creating networks
of co-occurrence. Their framework is our source of inspiration for using external sources to improve
science maps and also for how we build the networks of external sources. The main difference between
their networks and our networks is that in their networks co-occurrence is explicitly included in the
weight of the edges, while in our networks it is implicit by building the network with both the
documents and the elements where the documents co-occur, an approach similarly to the work of
Yun, Ahn and Lee [182].

An alternative method to create science maps is to create a network where the clusters are not
made of academic documents, so to obtain a different perspective on the academic data. Keywords
can be used to identify the topics within a collection of documents, connecting the keywords by the
documents where they co-occur [103]. This has a slightly different functionality from identifying
topics using document clusters, like to study the evolution of topics over time [167]. Authors can be
used to identify scientific collaborations, connecting the authors either by their co-authorships [120]
or their citations [166]. Patents can be used to identify technological developments, connecting the
patents by their cited documents [102]. By their nature, networks of elements that co-occur with
academic documents can be turned into networks of documents that co-occur with these elements.
For example, Tang and Colavizza [179] created two networks using the same data, one of documents
cited by the same Wikipedia article, and one of Wikipedia articles citing the same document. In this
example, the co-occurrences where explicit, but Carusi and Bianchi [34] created a bipartite network
of authors and journals where the co-occurrences were implicit. This allowed them to create clusters
for both the authors and the journals using the same network with a method they called co-clustering.
In our paper the external source networks are also bipartite, but our methodology will only focus
on clustering the academic documents, not the external source elements.

5.2.3 Criticisms to maps of science

There are several criticisms of the capacity of science maps to represent topics. Gléaser [64] reported
that expert based evaluation of maps is usually inconclusive. Held, Laudel and Gléser [78] found
that the science maps were unable to have both at the same time one topic per cluster and one
cluster per topic. Held and Velden [76] found that clusters represent individual species instead of
a biological field. Hric, Darst and Fortunato [86] made a strong criticism of the capacity of any
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kind of clustering algorithm in any kind of network to create clusters where all the cluster nodes
belong to a given category. Because of the failure of science maps to properly cluster all topics,
topic wise evaluation of science maps aims to make a more granular evaluation of the clustering and
identify which topics get more effectively clustered, instead of making an overall statement about
the quality of the map. This kind of evaluation has been sparsely explored by the literature. As far
as we know, beyond our prior work [19], the only topical analyses that exist are the expert based
evaluations of science maps and, to a lesser extent, the exploration of the epistemic function of intra-
and inter-cluster citations performed by Seitz et al. [141].

5.2.4 Comparing clustering solutions of different networks

Different networks generate different science maps, and there have been several attempts to compare
the clustering solutions of different networks. Xu et al. [178] identified overlapping communities
between the clusters of two networks with the same nodes. Xie and Waltman [177] did something
similar, but using topic modeling instead of text similarity networks. Subelj, Van Eck and Waltman
[148] evaluated the quality of the clusters generated by different clustering algorithms from the same
network. Their method evaluated if the topics of the clusters correspond to the topics of the field
experts, and also evaluated attributes of the clustering, like clustering stability, computing time,
and cluster size. Waltman et al. [165] compared clustering solutions from different networks with
the same nodes using an additional network as reference to calculate the accuracy of the clusters.
For an example that does not use clustering, Ba and Liang [11] identified overlapping edges between
two networks with the same nodes. In our prior work [19], we compared the clustering effectiveness
per topic by evaluating the extent to which topic documents are in few clusters and the extent to
which these same clusters only contain topic documents. In the current paper we refine this method
so its results are easier to interpret.

5.3 Methods

In this section we describe how we obtained and cleaned the data, created the networks and clusters,
evaluated the clustering effectiveness, and compared the topic categories.

5.3.1 Core academic documents

This is the set of documents that we used in the evaluation of clustering effectiveness, and each
network has a different subset of these documents depending on the data available for each external
source. We selected all Web of Science documents from the CWTS local database published between
the years 2016 and 2019 that have a PubMed id (which is necessary to have MeSH terms) and that
have a noun phrase in the title or abstract sections. The latter condition was added to have high
quality text similarity networks, and the noun phrases were identified using the method developed
by Waltman and van Eck [164]. We chose this range of years so as to have enough connections
between the documents and the external source elements, especially with patents because they take
multiple years to accumulate, and also because in these years Twitter became popular for sharing
academic documents while not being the years of the Coronavirus pandemic. The external source
elements are not limited to this period and instead go up to the year 2023. For example, a patent
published in 2023 may cite a document from 2019. The time gap between social media posts and
the documents they link to tends to be shorter than for other sources. In total, our core set contains
4,142,511 documents.

5.3.2 External sources networks

The external source networks are built the following way: For each external source, we first define
what the nodes of this source mean (e.g. academic document authors, facebook users, etc. .. ), which
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we will refer to as the external source “elements”. Then we select core academic documents and
external elements that we will use in the network, such that all the documents are connected to at
least one external element and all the external elements are connected to at least two documents. We
use the “at least two documents” threshold so that we do not have documents without any indirect
connections with other documents (there are no direct connections between documents). Then we
create a network with these documents and external elements where the edges that connect them
are undirected and have weight value 1, the document nodes have weight value 1 and the external
element nodes have weight value 0. We give this weight value to the external element nodes so that
the clustering algorithm does not take these nodes into account when calculating the quality of a
cluster. We will refer to these networks as the “Pure” networks of an external source, to distinguish
them from the mixed and the text similarity networks of an external source (described in Section
5.3.3). It is worth mentioning that this network creation design creates a bipartite network (only
document to external element edges), while in science mapping literature it is more common to
represent these relations as a co-occurrence network (only document to document edges with no
external element nodes, and the weight value of the edge is the number of external elements in
common between the documents). We use bipartite networks because they represent these relations
with more computational efficiency than co-occurrence networks. This happens because, even as the
bipartite network has more nodes because it must also represent the external elements, the number
of edges is much lower because the co-occurrences are not represented explicitly with document-to-
document edges.

We used the following external sources. All databases are the local version from CWTS, version
year 2023:

Documents authors (AUTHOR): The external source elements are the authors of academic
documents, and the connections are to these documents. The data comes from the disambiguated
authors database of CWTS [54]. This network has 3,977,303 core academic documents, 2,710,012
external source elements and 19,820,564 edges.

Facebook users (FACEBOOK): The external source elements are the Facebook users (i.e.
accounts), and the connections are to the documents they have posted web links to. The data comes
from the Altmetric [5] Facebook database. This network has 596,783 core academic documents,
44 811 external source elements and 1,231,887 edges.

Twitter users (TWUSER): The external source elements are the Twitter users (i.e. accounts),
and the connections are to the documents that their tweets have web links to. The data comes from
the Altmetric [5] Twitter database. This network has 2,364,304 core academic documents, 1,495,275
external source elements and 27,981,494 edges.

Twitter conversations (TWCONYV): The external source elements are the Twitter conver-
sations, and the connections are to the documents that its tweets have web links to. A Twitter
conversation is an original (non-reply) tweet plus all the tweets that directly or indirectly reply to
it. The data comes from the Altmetric [5] Twitter database. This network has 227,212 core aca-
demic documents, 493,049 external source elements and 1,175,624 edges. Notice that this network
is substantially smaller than the TWUSER network, even though both are created from the same
database. This is because many documents are connected by the same Twitter user, but fewer are
connected by the same Twitter conversation.

Patents families (PATENT): The external source elements are patent families, and the con-
nections are to the documents cited by the patents of the patent family. A patent family is made
up of an initially submitted patent, plus derivative patents (like updates or new applications) and
versions of the patent submitted in different countries. The data comes from the PATSTAT database
[93] and we only use invention patents. This network has 98,278 core academic documents, 41,714
external source elements and 175,693 edges.

Policy documents (POLICY): The external source elements are policy documents, and the
connections are to the documents cited by the policy documents. A policy document is a document
written primarily for policy makers, and includes documents such as memos and guidelines from
governments and think tanks. The data comes from the Overton database [150]. This network has
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311,867 core academic documents, 64,951 external source elements and 651,099 edges.

5.3.3 Text similarity networks

We use the topic bias of text similarity networks in our experiments as a reference to compare how
the topic bias changes in other networks. We chose this source because it is traditionally used for the
creation of science maps and also because it is less computationally demanding to create and cluster
than the citation network, which is relevant because we created a reference network for each external
source. The method to measure text similarity was the cosine similarity between the embedding of
the text of two documents. The text of a document is its concatenated title and abstract, and the
embedding is extracted using the Python implementation of Sentence BERT [132] with the “allenai-
specter” model [43], which is a model specifically trained with scientific literature. These methods
have already been used for scientometric tasks. For example, OpenAlex trained their academic topic
classifier using Sentence BERT and the clusters of a science map [123], while Woo and Walsh [174]
used the same model as us to measure the text similarity between academic documents.

For each external source, we create a text similarity network that contains the same academic
core documents as the Pure network, which we will refer to as the “BERT” network, and we also
create a network that combines both networks, which we will refer to as “Mixed” network. To create
the BERT network of a source we first make the academic documents into nodes with weight value
1. Then, we calculate the text similarity between all pairs of documents and only keep the 20 highest
pairs per document. These values become the weights of the undirected edges between the nodes,
and if there are two edges between two nodes then we merge them and sum their weights. Finally,
we multiply all the edge weight values by a factor such that the sum of all edge weight values in a
network is the same for the BERT and the Pure networks. To create the Mixed network of a source
we use the Pure network and add to it the edges from the BERT network. The purpose of the step
where we multiply the edge weight values by a factor is to bring this network to the same magnitude
as the Pure network, which has two goals: To make the edges that came from the BERT and Pure
network have the same magnitude of influence in the edges of the Mixed network, and to use the
same clustering Resolution values for the BERT and Pure networks, which is just convenient.

5.3.4 Citation network

There are not many science maps studies published using Sentence BERT for text similarity because
it is a recently developed method, making our results difficult to compare to the literature. To solve
this, we also evaluated the topic bias of a network that is built based on a method well researched
in the literature and presented it next to the other external source networks. This well published
method is the extended direct citation [165], which is a citation network that includes connections to
academic documents that are not part of the core academic documents. The Pure citation network
includes all the core academic documents as nodes with weight value 1 and the citations between
each other as undirected edges with weight value 1. It also includes the non-core documents from
Web of Science that have citation links to at least two core academic documents as nodes with
weight value 0, and these links as undirected edges with weight value 1. These non-core documents
are documents from outside the time period or that do not have a PubMed id, which means they are
likely not about biomedical topics. This network has 4,142,511 core academic documents, 18,960,516
non-core academic documents and 217,907,980 edges. The Mixed and BERT citation networks were
created the same way as for the external sources (the BERT network uses only the core academic
documents).

We considered creating a citation network for the documents in each external source, just like we
did for the text similarity network, because both are typically used in science mapping. However, we
ultimately decided to only do this with the text similarity network for two reasons. First, due to the
external source documents being a subset of the full core set, some of them would lose many of their
citation links when restricted to this smaller subset. This would reduce the quality of the resulting
clusters. This issue does not affect text similarity because it can be calculated between any pair of
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documents. Second, citation networks are significantly larger than text similarity networks due to
the high number of additional nodes that come from the extended citation, making the clustering
process much slower. Additionally, even when using a smaller set of core documents in the external
source networks, the size of the citation network does not decrease proportionally. This happens
because many of the removed core documents still appear in the network as non-core document
nodes, as they tend to cite at least two documents from the smaller set due to the close publication
years.

5.3.5 Clustering

To cluster we used the Leiden algorithm [153], which is typically used in science maps. This algorithm
requires the user to set a parameter, the “Resolution”, which has an effect on the size of the clusters
(higher Resolution, smaller clusters). We clustered each network several times using a wide range of
Resolution values, using a different value each time. We decided on the Resolution values range on
a network wise basis, and our criteria for this range was for the highest value to create a clustering
solution where most clusters have only one node, and for the lowest value to create a clustering
solution where most of the nodes belong to a single cluster. We clustered a number of Resolution
values that allowed us to keep the running time manageable (between 70 and 140 Resolution values
per network), using the Python implementation of the library Igraph [47] and the Leiden algorithm.
All the clustering solutions are used during the evaluations and comparisons.

5.3.6 Topics and topic categories

Our topics are the tree nodes in the MeSH hierarchical tree of MeSH terms, and the topic documents
of a given topic are the documents labeled with the tree node of a topic. MeSH terms are a controlled
vocabulary thesaurus from the National Library of Medicine (NLM) used for indexing PubMed, and
are semi-automatically annotated to documents by the NLM [117]. We use MeSH terms instead of
other alternatives because of their extensive system of hierarchical topics, high number of annotated
documents, and high quality of annotations. The MeSH terms are organized in a hierarchical tree
where almost each MeSH term maps to one or more nodes in the tree, but each tree node maps to a
single MeSH term. The tree is composed of 16 branches, and the tree nodes in the lower levels are
subtopics of the tree nodes in the higher levels. We refer to a tree node using its MeSH term name
followed by their tree node identity (e.g. Head [A01.456]). The reason why we base our topics on
the tree nodes of the MeSH terms instead of just using the MeSH terms themselves is to facilitate
the expansion and filtering of topics in the next steps of the methodology (see below). We obtained
the MeSH terms annotated for each document, plus the metadata of the MeSH terms themselves,
including their tree nodes, from the in-house CWTS database of PubMed and MeSH (version from
2024).

Our topic categories are the MeSH tree branches, and all the tree nodes in the branch are
topics that belong to the topic category. We use branches as topic categories because they are
epistemic categories (e.g. organisms), which are the kind categories commonly used for topical
analysis of clusters [19, 141]. There are 3 branches that we decided to, instead of using them as
topic categories, use their highest level tree nodes as topic categories, because we think these tree
nodes work better than their branches as topic categories. The branches that we replaced with their
higher level tree nodes are Disciplines and Occupations [H], Anthropology, Education, Sociology, and
Social Phenomena [I] and Technology, Industry, and Agriculture [J]. We also removed the following
topic categories due to having too few topics: Humanities [K], Publication Characteristics [V],
Human Activities [103], and Non-Medical Public and Private Facilities [J03]. In the end, we used
the 17 topic categories in Table 5.1.

To have good topics, we would like each topic to be annotated on all the documents related to it,
but the NLM typically only annotates up to fifteen MeSH terms per document, which means that
the more generic MeSH terms are not annotated. To fix this, we expanded the topics annotated on
a document using the already annotated MeSH terms and the MeSH tree. We transformed each
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Table 5.1: List of topic categories used in the current paper.

Topic Categories
Anatomy [A]
Organisms [B]
Diseases [C]

Chemicals and Drugs [D]
Analytical, Diagnostic and Therapeutic Techniques, and Equipment [E]
Psychiatry and Psychology [F]
Phenomena and Processes [G]
Natural Science Disciplines [H01]
Health Occupations [H02]

Social Sciences [I01]

Education [I102]

Technology, Industry, and Agriculture [JO1]
Food and Beverages [J02]
Information Science [L]

Named Groups [M]

Health Care [N]
Geographicals [Z]

of the MeSH terms into all of their corresponding MeSH tree nodes, and then we added all the
MeSH tree nodes upstream in the MeSH tree from the current MeSH tree nodes. For example, if
a document had the MeSH term Scalp, we transformed this MeSH term into its tree node version
(Scalp [A01.456.810]), and added the upstream tree nodes (Head [A01.456], Body Regions [A01])
to the document. This MeSH term expansion is based on the "MeSH term explosion” feature of the
PubMed online search interface.

To improve the reliability of our evaluation we filter our topics. We do this filtering process for
each external source because they use different sets of core academic documents. Our first filter
criterion is by topic size (i.e. number of documents with the topic) because the size of a topic can
affect its clustering effectiveness. We group the topics by size into Size bins, which go from a value
(excluding it) to double that value (including it), starting at 40 (e.g. 41-80, 81-160, 161-320, ...
[X + 1]-[2X]). We use 40 for reasons explained in Section 5.3.7.1. We filter out the Size bins that
have less than half the number of topics than the Size bin with most topics, and also filter out the
topics that belonged to these filtered out Size bins. The Size bins that we keep per source are shown
in Table 5.2.

Table 5.2: Size bins per source after filtering.

Source Size Bins

Patents families 41-80; 81-160; 161-320

Policy documents 41-80; 81-160; 161-320

Facebook users 41-80; 81-160; 161-320; 321-640

Twitter conversations 41-80; 81-160; 161-320; 321-640

Twitter users 81-160; 161-320; 321-640; 641-1,280
Documents authors 161-320; 321-640; 641-1,280; 1,281-2,560
Citations 161-320; 321-640; 641-1,280; 1,281-2,560

Our second filter criterion is redundancy (i.e. two topics share a substantial number of docu-
ments) because it can distort our results. To filter by redundancy, we first identify the topics within
the same topic category that are redundant with each other. We define two topics as being redundant
if they have a Jaccard similarity of 0.5 or higher (calculated from their number of shared documents).
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We group the redundant topics using the agglomerative hierarchical clustering algorithm with the
Complete Linkage method [137] and Jaccard distance, with 0.5 as threshold. Then, we filter out each
but the smallest topic from each group, which in our experience tends to also be the topic that best
describes the group. For example, if there is a group of redundant topics made up of Canidae
[B01.050.150.900.649.313.750.250.216] and Dogs [B01.050.150.900.649.313.750.250.216.200], we
believe that this group is better described by the latter than the former. In cases where a group had
more than one smallest topic, we selected the one with the tree node at the lowest level in the tree.
If there is more than one at this level, we select one using a deterministic random process. After
filtering topics, we also filter the topic categories that contain too few topics in any Size bin. We
choose this threshold manually per external source, but it is always at least between 5 and 10 topics.
It is worth mentioning that in our prior work [19] we defined two topics as being redundant if they
had Jaccard similarity 0.9 or higher, so in the current paper we are being substantially stricter at
ensuring the quality of the data.

5.3.7 Evaluation
5.3.7.1 Clustering effectiveness

To find out which topics are better represented by the clustering of the networks, we use the concept
of clustering effectiveness that we introduced in our prior work [19]. The unit to measure the
clustering effectiveness is “Purity”, which is, for a set of selected clusters, which fraction of their
documents belong to a given topic. In mathematical terms, Purity is defined as:

S, [Ds N Dyl
N
> i1 | Dil

Here, N denotes the number of selected clusters, D; denotes the documents in selected cluster ¢ and
D), denotes the topic documents of the topic. The higher Purity, the more effective the clustering.
Purity is bounded between values 0 and 1, with Purity value 1 meaning that the selected clusters
only contain topic documents. We calculate Purity for each clustering solution and topic, but instead
of selecting all the clusters that contain topic documents to calculate Purity, we only select a subset
of these clusters. To do this, we sort all the clusters that contain topic documents from the highest
to the lowest number of topic documents, with ties won by the smallest cluster. Then, we choose the
threshold of the minimum number of topic documents that we want the set of selected clusters to
contain, and then select clusters in the sorted order until we reach this threshold. We call this value
Coverage, and it is a fraction of the total number of topic documents. In our paper we calculate
Purity for three Coverage values: 0.25, 0.50 and 0.75. We only compare Purity values calculated
using the same Coverage value. In reference to Section 5.3.6, the reason why Size bins start at 40
is because at Coverage 0.25 the value of the threshold is only 10 documents, which we set as the
minimum number to have a meaningful academic topic.

In our concept of clustering effectiveness, the number of selected clusters (NSC) also plays a
role. In a science map, finding clusters related to a topic requires effort, so the smaller the NSC, the
higher the cluster effectiveness. Also, a high NSC is correlated with smaller clusters, which itself is
correlated with higher Purity because smaller clusters allow a more fine selection of the clusters. For
example, if all clusters in a clustering solution are size 1, then the value of Purity is also 1 because
all the selected clusters contain only topic documents. To control for the effect of NSC over Purity,
we only compare Purity values when they have the same NSC.

Purity = (5.1)

5.3.7.2 Topic Purity profiles

In our research question, we operationalized the concept of "benefit” in two ways. The first oper-
ationalisation was if the clustering effectiveness of the topic category in the external source (either
the Pure or Mixed network) is higher than the same topic category in text similarity (the BERT
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Bacillus thuringiensis

Figure 5.1: Example of a Purity profile. This is a line plot of the Purity profile of the topic Bacillus
thuringiensis [B03.510.460.410.158.218.800] for the Policy documents BERT network calculated
using Coverage 0.50. This topic has 60 topic documents among the core documents used by the
Policy networks, which for this Coverage value means that the Purity is calculated after selecting
clusters that contain at least 30 topic documents. So for example, if we assume that the selected
clusters contain exactly 30 topic documents, from the figure we can say that at different Resolution
values the network can place 30 out the 60 topic documents in one cluster containing 150 documents
(30/0.2), two clusters containing 75 documents (30/0.4), and four clusters containing 50 documents
(30/0.6). Using lower Coverage values or topics with more topic documents tends to achieve higher
Purity at the highest NSC value.

network). We answer this question by comparing the clustering effectiveness of each topic between
these networks. We represent the clustering effectiveness of a topic for a given network as a series
of NSC—Purity value pairs that we will refer to as the "topic Purity profile”. The NSC values are a
consecutive sequence of integers that go from 1 to N, and N is:

S * Cov

N =[5

| (5.2)
Here, S is the size of the topic, Cov is the coverage value, and the function |z| means rounded down
to the nearest integer. Therefore, the number of NSC values in a Purity profile depends on the size
of the topic. The denominator 5 ensures that, at the highest NSC value, the average number of
topic documents per selected cluster is at least 5, so to limit the NSC to a value that is meaningful
in a science map context. The first value of NSC is 1 because it is the minimum number of selected
clusters.

For each NSC value, we assign the highest available Purity value among clustering solutions with
the same NSC. If there is no clustering solution with NSC value 1, we assign to it Purity value 0.
If there is no clustering solution with any of the other NSC values, we estimate its Purity value by
linear interpolation between the Purity values of the two nearest NSC values with known Purity.
If necessary, we interpolate using the Purity value of NSC values higher than N. An example of a
topic’s Purity profile is shown in Figure 5.1.

We say that a topic has higher clustering effectiveness in one network than in another if more
than half of its NSC values have higher Purity in one network than in the other. Figure 5.2A shows
an example diagram of how we calculate this. For each topic category, we calculate the fraction of
their topics that have higher clustering effectiveness in the Mixed or Pure network than in the BERT
network. We refer to this value as “absolute Purity difference” of this topic category, and it answers
the first operationalisation of our research question. For example, if the absolute Purity difference
of a topic category in the Pure network of an external source is 0.25, it means that a quarter of its
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A: Better than BERT

NSC
Netw.| 1 2 3
1 2 3
BERT | 0.10| 0.20( 0.30 - Mix. | 2/3 | Yes
- Mix. | No | No | Yes -
Mix. [ 0.0110.10]0.40 5 N " " Pure | 1/3 | No
Pure | 0.05] 0.30]0.50 SR L AL L
Purity Is higher than BERT? Is more than half?
B: Top third
NSC
Categ.| 1 2 3 1 2 3
i A |23
A 0.10]0.20)| 0.30 A Yes | Yes | No
B 0.05|0.15|0.50 B No | No | Yes B 1/3
c |0.01]/0.02|0.03 c | Nol Nol No c [0/3
Purity Is Top third? Top third count

Figure 5.2: Diagram on the representation of results. A: How to calculate from topic Purity profiles
if a topic has higher clustering effectiveness than BERT in the Pure or the Mixed network. In this
example, a topic has higher Purity than BERT for the Mixed network, but not so for the Pure
network. B: How to calculate from topic category Purity profiles the number of NSC that a topic
category is in the top third Purity of a network. In this example, the topic categories A, B and C
achieve a top third count of 0.7, 0.3 and 0, respectively.

topics have higher Purity in the Pure network than the BERT network.

5.3.7.3 Topic category Purity profiles

The second operationalization of ”"benefit” is if a topic category ranks among the higher-performing
categories in clustering effectiveness within the external source (either the Pure or Mixed network),
but not within the text similarity network (the BERT network). We answer this question by com-
paring the clustering effectiveness of all topic categories within each network.

The topic Purity profile defined in Section 5.3.7.2 represents the clustering effectiveness of indi-
vidual topics in a given network. However, in the current section we need to define a representation
at the level of topic categories. To achieve this, we introduce the concept of ”topic category Purity
profile”. We create a different Purity profile for each Size bin, because higher Size bins require higher
NSC values and achieve higher Purity. Without separating by Size bin, comparisons between topic
categories would be affected by which topic category has larger topics.

The Purity profile is a series of NSC-Purity value pairs, where the NSC values are a consecutive
sequence of integers that go from 1 to N. N is calculated the same as in Equation 5.2, but S is
not the size of the topic but the size of the Size bin, which we define as the average between the
lower and upper bound of the Size bin (e.g. for the Size bin 41-80, S = 60, and if Cov = 0.25, then
N =3).

To assign Purity values to the NSC values, we do the following: For each clustering solution, we
average the Purity values and the NSC values of all the topics that belong to the topic category
and Size bin. Then, for each NSC in the Purity profile, we assign a Purity value using the same
interpolation method described in Section 5.3.7.2, using the averaged NSC—Purity pairs obtained
from the clustering solutions. It is worth mentioning that we also considered using topic category
Purity profiles instead of topic Purity profiles for the first operationalization of benefit, but we
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found that the results from this approach provided us with less nuanced information than the one
we ultimately used.

To answer our operationalization of benefit, we first identify which topic categories are among
the higher-performing categories in each network. We take all the topic category Purity profiles for
a given network within the same Size bin, and for each NSC value, we identify the topic categories
that rank among the top third based on Purity. We then calculate, for each topic category, the
fraction of NSC values for which it is among the top third. Figure 5.2B shows an example diagram
of how we calculate this value. This fraction, averaged across all Size bins of the topic category, is
referred to as the ”"top third count”.

The top third count represents the tendency of a topic category to be among the higher-
performing topic categories of a network. For example, if the top third count of a topic category in
a network is 0.25, it means that, on average across the Size bins, it is among the top third highest
Purity topic categories for a quarter of the NSC. We define the top group of topic categories in rel-
ative terms (as a third) instead of absolute terms (e.g. top three) because different external sources
have a different number of topic categories due to the topic category filtering in Section 5.3.6.

Finally, we compare the top third count of each topic category between the Pure or Mixed
network and the BERT network by subtraction (e.g. Pure top third count minus BERT top third
count). We refer to this value as the "relative Purity difference”, which is used to answer the second
operationalization of our research question.

5.3.8 Summary of methods

The methodology consists of two parts: The measurement of clustering effectiveness, and the evalu-
ation of clustering effectiveness. We group the relevant variables in brackets at each step to improve
clarity and readability.

The steps of the measurement are:

1. For each [external source], we select a subset of the core documents.

1l.a. We map these documents to topics. The topics that are too small and the topic categories
with too few topics are discarded from the experiment.

1.b. We create a Pure, Mixed, and BERT network with these documents.

2. For each [external source and network], we generate multiple clustering solutions using different
Resolution values.

3. For each [external source, network, clustering solution and topic], we select the relevant clusters
using each of the different Coverage values.

4. For each [external source, network, clustering solution, topic and Coverage value|, we compute
two metrics for the selected clusters: NSC and Purity.

The evaluation consists of two tracks: One for absolute Purity difference, and one for relative
Purity difference.
The steps for calculating the absolute Purity difference are:

1. For each [external source, network, topic and Coverage value], we create a topic Purity profile
using the NSC and Purity values from all the clustering solutions. The topic Purity profiles
from the same [external source, topic and Coverage value] share the same NSC values, which
enables comparison.

2. For each [external source, topic and Coverage value|, and for the Pure and Mixed networks, we
compute the fraction of NSC values where the Purity is higher than in the BERT network. If
this occurs for more than half of the NSC values, we label the topic as having better clustering
effectiveness in that network than in the BERT network (Figure 5.2A).
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3. For each [external source, topic category and Coverage value], and for the Pure and Mixed
networks, we compute the fraction of topics in the topic category that had higher clustering
effectiveness. This final value is the absolute Purity difference.

The steps for calculating the relative Purity difference are:

1. For each [external source, network, Size bin, clustering solution, topic category and Coverage
value], we calculate the average NSC and Purity values across all the topics of the topic
category within the same Size bin.

2. For each [external source, network, Size bin, topic category and Coverage value], we create
a topic category Purity profile using the averaged NSC and Purity values from all clustering
solutions. The topic category Purity profiles from the same [Size bin and Coverage value] share
the same NSC values, which enables comparison.

3. For [external source, network, NSC, Size bin and Coverage value], we sort topic categories by
Purity (highest first) at that NSC, and record which topic categories are in the top third of
the ranking.

4. For each [external source, network, Size bin, topic category and Coverage value|, we compute
the fraction of NSC values where the topic category appears in the top third (Figure 5.2B).

5. For each [external source, network, topic category and Coverage value], we average these values
across all Size bins. This average is the top third count of the topic category.

6. For each [external source, topic category and Coverage value], and for the Pure and Mixed
networks, we report the difference between that network and the BERT network in the top
third count. This final value is the relative Purity difference.

5.4 Results

In this section, we present our results, discuss the performance of each external source, and explore
in depth the cases with the best performance. From this point on, we refer to specific networks of an
external source using the following prefixes: “b” for BERT, “m” for Mixed, and “p” for Pure. For
example, “mTwconv” refers to the Mixed network of the Twitter conversations. We avoid exploring
the following results in depth:

1. Topic category Organisms [B]: Most external sources, including citations, outperform BERT
on this category, suggesting that BERT performs particularly poorly here.

2. Citation networks: While included for comparison, our focus is on external sources. The
citation network serves mainly to connect our findings to prior work on citation-based science
maps.

3. Coverage values: The three tested values produced similar results, with only a few exceptions.

The results of our experiments are presented in detail in Table 5.3 and summarized in Table
5.4. The summary transforms the top third counts into relative Purity differences, reports only the
highest absolute and relative Purity differences among the three Coverage values, and uses signs and
colors instead of numerical values. In Table 5.5, we indicate which networks perform best per topic
category, and by how much. We analyze these topic categories Purity profiles (examples shown in
Figure 5.3) to assess whether they are “competitive”, meaning that their Purity values are close to
or exceed those of BERT, and therefore might generate science maps of comparable quality. Finally,
we include individual topic examples from some of these topic categories (Figure 5.4) to provide a
more concrete illustration of our results.
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Table 5.3: Detail of the results of each network. For each topic category, we show the top third
count and the absolute Purity difference at each Coverage value. Zero values are omitted. Dots
mean that the topic category was not included in the experiment due to having too few topics per
Size bin, as explained in the filtering process.

CITATION Top third count Absolute Purity Difference TWCONV Top third count Absolute Purity Difference
Network BERT Mixed Pure Mixed Pure Network BERT Mixed Pure Mixed Pure
Coverage .25 .50 .75|.25 .50 .75|.25 .50 .75|.25 .50 .75|.25 .50 .75 Coverage .25 .50 .75(.25 50 .75|.25 .50 .75|.25 .50 .75[.25 .50 .75
Anatomy. 10 10 1.0/{10 10 10(10 10 10|06 0.6 0.6/02 0.2 01 Anatomy. 10 10 09(09 0.9 0.9 0.1(03 0.2 0.2
Organisms. |0.3 0.1 0.3(0.7 0.3 0.4|1.0 1.0 1.0({09 0.8 0.8|0.7 0.7 0.6 Organisms. |05 05 08(06 05 08|05 05 05(03 03 0.3
Diseases. 10 10 10|10 1.0 1.0(10 10 1.0(/0.7 0.8 0.8|0.2 0.3 03 Diseases. 10 10 10(10 10 1.0/06 0.2 03|02 03 0.3
Chemicals . 03 0.3 0.8 0.8 0.6/06 0.6 0.5 Chemicals . 0.1 0.2 01 01|04 03 03
Analytical. 1.0 1.0 1.0|1.0 1.0 1.0|0.8 1.0 1.0(06 0.5 0.5]0.1 0.1 01 Analytical. |05 0.5 03|05 05 03|0.2 0.1(02 02 02
Psychiatry. |0.7 09 07|05 0.7 0.5 0.1 0.4|07 0.7 0.6/02 0.2 0.2 Psychiatry. |03 03 03|02 03 03|04 06 07|02 0.2 0.2
Phenomena . 02 04 0.1 03 0.1|06 0.6 0.5/0.2 0.2 0.1 Phenomena. 0.1 0.2 0.2 03 02 0.2
Natural Sc. 05 0.3 03|02 0.1 Natural Sc. 0.2 05|03 02 02
Health Occ. 0.5 0.5 0.5]0.2 0.1 01 Health Occ. . . - - - - - . . . . .
Social Sci. 0.1 0.2 0.7 0.7 0.6/03 03 0.2 Social Sci. 0.7 1.0 09|04 04 03
Education. . . . . . . . . . . . . . . Education. . . . . . . . . . E E E
Technology. |0.6 0.5 0.2/ 04 0.5 0.2|03 0.2 03|06 0.7 0.6/0.2 0.3 01 Technology. |0.7 0.7 06(0.7 0.7 0.6/0.4 04 02(03 03 0.3
FoodandB. [0.4 03 03|04 03 03|05 04 03|06 0.7 0.7|0.2 0.2 0.2 FoodandB. |10 10 1.0(1.0 1.0 1.0/1.0 1.0 09|04 03 05|01 0.1
Informatio. 05 0.4 03|01 0.1 Informatio. 0.1 02 02 0.2
Named Grou. 0.1 0.7 0.7 05|04 0.4 02 Named Grou. 0.8 05 05(04 04 02|01 01
Health Car. 06 0.6 0.4(02 02 01 Health Car. 0.1 01 03 03 03
Geographic. 0.7 0.5 04|06 0.3 0.2 Geographic. 0.1 02|05 03 0.2|0.1
AUTHOR Top third count Absolute Purity Difference FACEBOOK Top third count Absolute Purity Difference
Network BERT Mixed Pure Mixed Pure Network BERT Mixed Pure Mixed Pure
Coverage .25 .50 .75].25 .50 .75[.25 .50 .75|.25 .50 .75[.25 .50 .75 Coverage .25 .50 .75(.25 .50 .75|.25 .50 .75|.25 .50 .75|.25 .50 .75
Anatomy. 10 1.0 1.0|/09 1.0 1.0 Anatomy. |10 1.0 1.0(1.0 1.0 0.8]|0.2 0.6 0.7
Organisms. |03 0.1 0.3|0.8 0.7 09(10 10 10|01 01 01|02 0.1 Organisms. (0.2 0.2/0.89]|0.6 05 1.0(05 09 10|01 0.1 01|02 01 0.1
Diseases. 10 1.0 1.0|1.0 1.0 1.0(0.9 0.8 0.5 Diseases. 10 10 1.0(1.0 1.0 1.0|/1.0 1.0 09
Chemicals . Chemicals . 0.1
Analytical. |1.0 1.0 10|09 1.0 10(03 02 0.1 Analytical 08 07 0.7|/08 0.7 09(0.8 08 0.7
Psychiatry. | 0.7 0.8 0.4|0.6 04 0.4(0.1 03 0.7 Psychiatry. |03 03 0.1|0.1 0.1 0.1
Phenomena . 0.1 06 01 01 Phenomena. (0.1 0.3 0.2
Natural Sc. 01 01 Natural Sc. |0.1 0.2 0.2(0.2 0.2 0.4|0.2 0.1 02|0.1 01|01 01 0.1
Health Occ. | 0.1 0.2 09 1.0 0.9 Health Occ. 0.2 05 04 03|10 10 09/0.2 0.2 0.2(03 04 03
Social Sci. 0.1 0.2 Social Sci 0.1
Education. P S (e Education. . .
Technelogy. | 0.6 0.5 0.2(0.2 05 0.2 Technology. (04 06 0.1/04 04 0.1]0.1 0.1 0.1
Food and B. (0.4 0.3 03|03 0.3 03|01 FoodandB. |0.9 0.7 0.7(0.6 0.3 0.3 0.2 04
Informatio. Informatio.
Named Grou. 0.6 0.6 0.7)|0.1 01 01 01 Named Grou. 0.7 04 02|01 0.1 01(0.2 02 0.2
Health Car. 0.1 Health Car. 0.1 01 01 01
Geographic. 10 10 1.0|04 0.1 10 09 0.8 Geographic. 0.1 03 01
POLICY Top third count Absolute Purity Difference PATENTS Top third count Absolute Purity Difference
Network BERT Mixed Pure Mixed Pure Network BERT Mixed Pure Mixed Pure
Coverage .25 .50 .75].25 .50 .75[.25 .50 .75|.25 .50 .75].25 .50 .75 Coverage 25 .50 .75|.25 50 .75[.25 50 .75|.25 .50 .75|.25 .50 .75
Anatomy. 0.6 09 08|04 0.1 01 Anatomy. 08 0.7 06/04 04 03 0.1 01|01
Organisms. |09 0.7 1.0(10 10 10(10 10 09|01 01 01(02 0.1 0.1 Organisms. (05 0.2 0.1|/0.7 05 06|08 0.7 05|02 0.1 01|01
Diseases. 1.0 1.0 10|10 1.0 1.0{1.0 1.0 09 01|02 01 0.1 Diseases. 10 10 10(10 10 10|08 10 10/01 0.1 0.1
Chemicals. (0.3 0S5 0.8 0410 09 06(01 01 01|01 01 01 Chemicals . 0.6 06 07|03 0.2 0.1|0.1
Analytical. (1.0 0.9 0.8|1.0 0.9 0.8(0.8 0.8 0.6 01 Analytical 0.1 0.1 0.1
Psychiatry. 0.1 0.2 0.1 Psychiatry. |02 0.8 09|01 0.6 0.7|0.2 0.1 0.1
Phenomena . 01 Phenomena . 02 03 05|01
Natural Sc. 01 01 Natural Sc. 0.1 0.1
Health Occ. 01 Health Occ.
Social Sci. [0.1 0.1 0.1 0.1 03 01 01 Social Sci.
Education. |0.2 0.5 0.6 0.3 06(02 02 Education. - . . - . B .
Technology. |0.6 0.6 0.3|0.4 0.5 0.4(0.7 0.5 0.4 01 01 01 Technology. | 0.1 0.2(04 03 04 02 0.1
FoodandB. |0.3 0.3 0.4(03 03 05(04 03 05|01 0.1 01 Food and B. - .
Informatio. Informatio. (0.2 0.3 0.2(03 0.2 02 02 02
Named Grou. 03|01 01 01(02 0.1 01 Named Grou. . .
Health Car. 0.1 01 0.1 Health Car. 0.1
Geographic. 0.1]0.2 0.6 0.6 0.6 Geographic.
TWAUTHOR Top third count Absolute Purity Difference
Network BERT Mixed Pure Mixed Pure
Coverage .25 .50 .75]|.25 .50 .75|.25 .50 .75|.25 .50 .75|.25 .50 .75
Anatomy. 1.0 1.0 1.0|1.0 10 1.0(0.7 0.7 0.3
Organisms. | 0.2 0.1 0.4|0.2 04 0.7|0.2 03 05
Diseases. 10 10 10|10 10 1.0(05 06 0.1
Chemicals .
Analytical. |1.0 1.0 1.0|1.0 1.0 1.0|0.8 0.7
Psychiatry. | 0.8 0.7 0.6(0.6 0.7 01 0.2
Phenomena . 02 05(01 02 01 05
Natural Sc. 0.2 04
Health Occ. |0.1 0.1 0.2 0.2 0.2|1.0 0.9 05 0.1 01 01
Social $ci. 01 02 06
Education. - . . . . - -
Technology. (0.3 0.5 0.1(0.3 05 0.4|0.1
FoodandB. |0.6 0.3 0.3(06 0.4|0.2 0.1 0.6
Informatio. 01 02 04
Named Grou. 0.1|0.8 06 0.2
Health Car. 0.1 0.2 05
Geographic.
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Table 5.4: Summary of the results for each network. This table shows the absolute and relative
Purity difference, but only the highest of the three Coverage values. All values are derived from
Table 5.3. “M” and “P” indicate the Mixed and Pure networks, respectively. Light green and dark
green indicate an absolute Purity difference of at least 0.2 and 0.5, respectively. One and two plus
signs indicate a relative Purity difference of at least 0.2 and 0.5, respectively. The relative Purity
difference is calculated from the top third count in Table 5.3. Dots mean that the topic category
was not included in the experiment due to having too few topics per Size bin, as explained in the

filtering process from Section 5.3.6.

Source Citat. [TwconyAuthor| Face. | Policy | Pat. | Twau.
Network M PIMPIMP|MPIMP[MP|MP
Anatomy.
Organisms. ++ HH+H+ |+ [ A+ +
Diseases.
Chemicals . ++ +4+  ++
Analytical. +
Psychiatry. + +
Phenomena. 4+
Natural Sc. + +
Health Occ. +H + ++ + o+
Social Sci. + ++
Education.
Technology. + +
Food and B.
Informatio. +
Named Grou. ++ ++ + ++
Health Car. +
Geographic. . .
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Figure 5.3: Examples of Purity of several topic categories for different networks. All profiles are
for Size bin 161-320 and Coverage 0.50. To interpret these plots, it is important to keep in mind
that each profile represents the average Purity and NSC across all topics in the topic category and
Size bin, based on multiple clustering solutions.One way to interpret each curve is as if it were the
Purity profile of a single, imaginary topic that combines all the topics in the category, including
both the high- and low-performing ones. This topic would contain 240 documents (the average size
of the bin), with each NSC value in the curve including 120 topic documents (due to Coverage 0.50).
Purity values should not be compared across different sources, as some networks are substantially
smaller, reducing clustering quality due to lack of information and making such comparisons unfair.
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Figure 5.4: Examples of Purity profiles for individual topics across different networks. All Purity
profiles are calculated for Coverage 0.50. The title of each plot indicates the external source, topic

category, topic name and topic size.
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Table 5.5: Best (non-citation) networks per topic category from Table 5.4. We selected the net-
work(s) with the highest absolute difference, relative difference, or a combination of both, giving
more weight to the absolute difference (i.e. in Table 5.4, dark green is preferred over two plus signs).
The magnitude of the effect is shown as follows: Zero stars: Light green or one/two plus signs;
One star: Light green and one plus symbol; Two stars: Light green with two plus signs, or dark
green with zero/one plus signs; Three stars: Dark green with two plus signs.

Category Best Networks Magnitude
Anatomy mTwconv
Organisms mPatents, pFacebook, pAuthor Hx
Diseases pPolicy, mTwconv
Chemicals mPatents, pPatents, mPolicy, pPolicy, mTwconv
Analytical mFacebook, mTwconv
Psychiatry pPolicy, mTwconv, pTwconv, pAuthor
Phenomena pPatents, mTwconv
Natural Sc. mTwconv, pTwconv
Health Occ. pFacebook Hok
Social Sci. mTwconv, pTwconv, pTwauthor
Education -
Technology mPatents *
Food and B.  mTwconv ok
Informatio. mTwconv, pTwauthor
Named Grou. pFacebook ok
Health Car. mTwconv, pTwauthor

*¥ok

Geographic pAuthor

5.4.1 Citations

As Table 5.4 shows, mCitation outperformed BERT and was the best-performing network overall.
This aligns with prior findings in the literature, where networks that combine citations and text
similarity tend to outperform either source alone [27]. pCitation also performed better than the
other external sources, especially for Chemicals and Drugs [D]. However, in most topic categories it
did not surpass BERT (i.e. absolute Purity difference < 0.5), which supports the use of BERT as a
baseline in our analysis (with the exception of the topic category Organisms [B]).

The performance gap between BERT and pCitation is also interesting in light of our prior work
[19], where we compared citation networks (using the same construction method) with text similarity
networks based on the BM25 metric (a metric that matches and weights the words in common
between documents). In that work, we found similar clustering effectiveness between the two. This
suggests that BERT outperforms BM25, which is reasonable given that BERT is a more sophisticated
method, although we did not test this comparison directly.

The fact that most networks outperform BERT for Organisms [B] may be due to BERT being a
contextual embedding model, which means it represents words based on their surrounding context.
Given that the context around different organism names is often very similar, BERT may struggle
distinguishing between them. For this topic category, simpler term-frequency-based methods like
BM25 might actually be more effective than contextual embeddings.

5.4.2 Twitter conversations

The mTwconv network had the best overall performance after the citation networks, achieving an
absolute Purity difference of at least 0.2 in every topic category. We believe this is because Twitter
conversations are more topically focused than the elements of other external sources. mTwconv
performed best in the topic category Food and Beverages [J02], likely due to the prevalence of
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nutrition-related discussions on Twitter.

Given this high performance, it is interesting that on the other hand, pTwconv did not achieve
an absolute Purity difference of 0.2 or higher in any topic category. Also, the topic categories
with the strongest improvements in mTwconv (Food and Beverages [J02] and Geographicals [Z])
are not the same as in pTwconv (which are Natural Science Disciplines [HO1], Social Sciences
[101] and Named Groups [M]). These differences between mTwconv and pTwconv suggest that
mTwconv benefits significantly from the text similarity component. One likely reason is the sparse
connectivity in pTwconv: On average, each external source element connects to only about two
documents, compared to around twenty in pTwauthor. This low edge density may limit the quality
of the clusters in pTwconv. The addition of the text similarity links in mTwconv may increase
connectivity, allowing more coherent clusters.

The topic category profiles for Food and Beverages [J02] and Geographicals [Z] are slightly higher
in mTwconv than in bTwconv (Figure 5.3), indicating that mTwconv is a competitive network. In
contrast, the corresponding profiles in pTwconv are substantially lower.

5.4.3 Document authors

The pAuthor network performed best for the topic category Geographicals [Z], although it showed
poor results for most other categories. We believe this performance arises from the tendency of doc-
ument authors to maintain stable interests over time about given geographical regions. In contrast,
the mAuthor network did not produce interesting results. Figure 5.3 shows that Geographicals [Z]
achieve a substantially higher profile in pAuthor than in bAuthor or mAuthor, making it very com-
petitive. This is especially interesting given that, based on our prior work [19], the topic category
Geographicals [Z] is the worst topic category for text similarity and citation networks by a substantial
margin. While document authorship has been used in science mapping before, prior studies typically
cluster authors rather than documents, with network edges representing co-authorship counts [101].

5.4.4 Facebook users

The pFacebook network performed well in the topic category Named Groups [M], particularly for
topics related to medical personnel (e.g. hospitalists), and it was the best-performing network for
Health Occupations [H02], especially in subtopics like medical specialties and nursing (e.g. neonatal
nursing). This suggests that some Facebook users frequently share documents related to health
advice, which makes sense because Facebook has a lot of support groups for people who suffer
certain diseases where they share advice.

The profile of mFacebook for Health Occupations [H02] was about half that of bFacebook (Figure
5.3), so we believe mFacebook to be competitive for Health Occupations [H02].

Interestingly, although pFacebook had a higher absolute Purity difference for Named Groups
[M], the topic category Purity profile for this category was actually lower than that of mFacebook
(Figure 5.3). This suggests that a few specific topics (especially those related to medical personnel)
performed very well in pFacebook, while the overall category performed better in mFacebook. In
support of this, the highest performing topics within both Named Groups [M] and Health Occupations
[H02] achieve much higher Purity in pFacebook than in bFacebook or mFacebook (see example in
Figure 5.4).

These findings imply that if we had more finely defined topic categories focused exclusively on
medical personnel, specialties, or nursing, both pFacebook and mFacebook would likely outperform
bFacebook by a wider margin. This shows a limitation of the current topic category system and
highlight the importance of examining interesting results in more detail, instead of taking them at
face value.
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5.4.5 Policy documents

The pPolicy network performed well in the topic categories Named Groups [M] and Geographicals
[Z], and was one of the few networks that showed improvement in Psychiatry and Psychology [F],
although the improvement there was small. We observed that topics with high Purity profiles
within each category tended to share certain themes: In Psychiatry and Psychology [F], the topics
were often related to government (e.g. combat disorders) or societal issues (e.g. social phobia); in
Named Groups [M], they focused on medical professions and vulnerable groups (e.g. undocumented
immigrants, persons with mental disabilities, minors); and in Geographicals [Z], they were about
American states and Global South countries (e.g. Colorado, Lebanon). In contrast, the mAuthor
network did not produce interesting results.

These best performing topics in pPolicy seem to reflect the nature of policy documents. The
first two categories focus on governmental and social matters, while the results for Geographicals
[Z] likely reflect the American-centric coverage of the policy database, which overrepresents the
Anglo-Saxon world [128].

The profiles for Named Groups [M] and Psychiatry and Psychology [F] in pPolicy are substan-
tially lower than in bPolicy, while they are similar for Geographicals [Z] (Figure 5.3). This suggests
that pPolicy is not a competitive network for these topic categories. Additionally, the mPolicy
network shows lower Purity than both pPolicy and bPolicy, which is unusual among our results,
suggesting that in this case, the external source and text similarity do not complement each other
effectively.

5.4.6 Patent families

The mPatents network performed well in the topic categories Chemicals and Drugs [D], particu-
larly in topics related to biochemical elements (e.g. CD47 antigen), and Technology, Industry, and
Agriculture [J01], especially for topics about chemical components (e.g. dendrimers). This suggests
that mPatents is effective for topics related to biotechnology, likely because these are closely tied to
the types of inventions described in patents. In contrast, the pPatents network performed poorly
in terms of absolute Purity difference, although it achieved the highest relative Purity difference for
Phenomena and Processes [G], likely also related to biotechnology. The reason why patents perform
well for biotechnology might be due to the Biomedical focus of PubMed.

As shown in Figure 5.3, the profiles for Chemicals and Drugs [D] and Technology, Industry, and
Agriculture [J01] in mPatents reach about half the Purity level of bPatents. We believe this is
sufficient for mPatents to be considered competitive.

5.4.7 Twitter authors

The pTwauthor network was one of best for the topic categories Social Sciences [101] and Health
Care [N], for the latter particularly in topics related to nursing (e.g. emergency nursing). This
high clustering effectiveness is likely due to the fact that nursing is one of the most widely shared
scientific topics on social media [59], which could be supported by some Twitter users sharing
documents exclusively related to nursing. In contrast, the mTwauthor network did not produce
interesting results.

Neither pTwauthor or mTwauthor had topic categories with absolute Purity difference higher
than 0.2, and the pTwauthor profiles for Social Sciences [I01] and Health Care [N] were substantially
lower than those in bTwauthor (Figure 5.3), suggesting that pTwauthor is not competitive.

Given the strong performance of mTwconv and the bad performance of pTwauthor and mTwau-
thor, this suggests that Twitter-based networks are more useful for science maps when they are built
from conversations rather than users, despite the fact that user-based networks are more commonly
used in the literature [45]. This difference may be due to the fact that individual users often tweet
about multiple unrelated topics, while conversations tend to stay more focused on a specific theme.
pTwauthor also perform much worse than pFacebook, which is the other network where users are the
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nodes. One possible reason is that Twitter has a high proportion of bot accounts that automatically
share academic documents, at least compared to Facebook.

5.4.8 Twitter networks versus the other networks

We noticed that the Pure Twitter networks (pTwconv and pTwauthor) provide a very different
perspective from the other sources. Excluding the topic category Organisms [B], these are the
networks with the highest number of topic categories with a high relative Purity difference, indicating
that their best performing topic categories are very different from text similarity. Also, these are the
networks that achieved the highest improvement for topic category Natural Science Disciplines [HO1],
which is especially relevant because science map users often expect to see this category represented,
but citation and text similarity science maps are not good at representing it [19].

We believe this distinctiveness reflects a deeper dichotomy in how science is organized. On one
hand, Twitter (and to some extent Facebook) captures how laypeople perceive and talk about scien-
tific topics. On the other hand, traditional sources reflect the structure of science as it emerges from
practical use, such as through citations, patents, or authorship patterns. This contrast highlights the
potential value of social media—based networks in revealing how society engages with and mentally
organizes scientific knowledge.

5.4.9 Cases where Purity decreases at higher NSC

We noticed that for some topic Purity profiles, Purity decreased at higher NSC values, which is the
opposite of what we expected. As we explained in Section 5.3.7.1, Purity tends to increase with
higher NSC because smaller clusters allows a finer selection of clusters.

These decreasing trends were most common in pTwauthor and pFacebook. Upon inspection,
the likely cause is the following (explained here in a technically imprecise way for ease of reading):
In some topics, some selected clusters consist of documents that are only connected through one
or a few Twitter or Facebook users, and these are the documents’ only connections. When we run
the clustering with a higher Resolution parameter, the clustering algorithm can no longer recreate
these clusters because they become too large relative to the new Resolution constraints. Since the
documents are equally connected, it becomes arbitrary which document is excluded to satisfy the
new clustering conditions. If the excluded document belonged to the topic, the following happens:
The smaller cluster is still selected for the topic evaluation because it likely still contain several
topic documents, but now it provides less Purity due to the ratio of topic to non-topic documents.
Meanwhile, the excluded topic document has no other connections, so it cannot be part of other
clusters. These two effects decrease the overall Purity, even as NSC increases.

In summary, Purity may decrease at higher NSC in networks where many documents are linked
to the same external source element and have no other connections. The fact that this pattern
is observed in pTwauthor and pFacebook suggests that there are topics where several relevant
documents are shared exclusively by a single social media user.

5.5 Discussion

In this section we will discuss the high level ideas, strengths and weaknesses of our work. One of our
most important results is that the external sources tend to cluster some topic categories better than
others, and that these topic categories are different between sources. This suggests that external
sources provide complementary perspectives on how to group documents together, and that these
perspectives capture meaningful dimensions of how knowledge is organized or perceived. These
different perspectives are not only useful to create science maps, like in this paper, but they could
potentially be applied in other areas to reveal how society perceives and engages with science. For
example, the Twitter perspective is very different from the other networks, Facebook users share
health science content, and document authors show consistent focus on specific geographical regions.
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Also, even as the external sources tend to not outperform BERT in most topic categories, this was
not the goal of the paper, and it is possible that an alternative method for constructing science maps
could reach this goal.

A strength of our research is the clustering effectiveness evaluation method, which is a substantial
improvement over the clustering effectiveness evaluation method we used in our prior work [19]
because our new approach is much easier to interpret. In our previous work, we use two metrics
evaluate effectiveness, Purity and the inverse clustering count, while now we simplify the evaluation
by using only Purity. We also used to only be able to compare clustering effectiveness between
clustering solutions with the same documents and similar cluster sizes, while now we can compare
the clustering solutions of several Resolution values across networks with different documents. In
the prior work we also did not have Purity profiles, which provide a very intuitive description of the
quality of the topic clusters that a user would experience in a science map. However, the current
method does miss certain nuances captured in our previous study. For example, we did not evaluate
if some sources are better than others at different cluster sizes (our prior work and Xie and Waltman
[177] found that citations are better than text for smaller clusters).

A limitation of our work is that we performed our experiments on clustering solutions that are less
sophisticated than science maps used by researchers. For example, some science map methodologies
have a minimum size for clusters, and clusters smaller than this size are merged with other clusters
[164]. We did not do this, and as a consequence, when the nodes of a cluster are all equally connected
by a few hub nodes in the network, reducing the size of the cluster by increasing the Resolution
will turn random nodes of this cluster into singletons. This is a problem because, if this node is a
topic document, then Purity would decrease at higher NSC, creating very confusing results for some
topics that do not reflect the cluster effectiveness that would be observed in a science map. We
observed this situation mostly in the Twitter users source, where some documents were shared by
only one or two users. We did not attempt to prevent this situation because doing so would increase
the complexity of our experimental design.

Another limitation of our research is that our Mixed networks combine a non-bipartite network
(the BERT networks, which are non-bipartite because the links go from document to document) with
a bipartite network (the Pure networks, bipartite because the links go from document to external
source element). There are studies that use either of these types of networks for creating science
maps, but there are no studies about combining them, which could have unintended effects in the
map. The closest there is in the literature is the extended citation networks, where there are links
from document to document and from document to non-core document, but not from non-core
document to non-core document. Also, bipartite networks are not very common in science mapping,
and it is more common to, instead of having the unit of co-occurrence in the network (in our case, the
external source element), to represent the co-occurrence in the edge weight as a unipartite network
[145]. The most common way of mapping unipartite and bipartite networks to each other is to
project the bipartite network as unipartite [7], and the methods for projecting a bipartite network
as a unipartite network are an ongoing topic of study [40, 118].

The method we used to combine the networks into the Mixed network is also relatively straight-
forward, and the only modification that we make is that the sum of edges weights in both networks
must be the same. Chao and Tang [36] proposed a method to cluster networks with unipartite and
bipartite structures, like our Mixed networks, but we decided to instead use the Leiden algorithm
due to its preeminent position in the field of science mapping. We can imagine alternative mod-
ifications, for example trying mixing different proportions of the the external source and the text
similarity edges, or normalizing all the edges that came out from a node so that they add up to the
same value for all nodes. We did not normalize because normalization is used to control for differ-
ent practices in reference list length across different academic fields, and since our dataset mostly
contains biomedical fields we chose to avoid introducing additional complexity into our analyses.
However, future research could explore how to create better Mixed networks for a given external
source.

Another limitation is that we are comparing results created with different sets of documents, and
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using a subset of documents could hinder the formation of high quality clusters. We considered using
the same set of documents for all sources. The first approach was to only use the documents present
in all external sources, but this set of documents was very small. The second approach was to use all
core documents, and let the disconnected clusters in the pure networks to form singleton clusters,
but we saw that the quality of a topic was mostly influenced by how many of their documents had
edges, instead of the extent that these edges connect documents from the same topic. In the end,
we attempted to make the comparisons as fair as possible creating a text similarity network for each
external network that also uses the same core documents. However, this does not address the fact
that smaller networks have less information than bigger networks, which might decrease the quality
of the clusters for both the text similarity and external network. For this reason, we avoid making
strong statements based on the magnitude of Purity value (e.g. Purity 0.5 is good, Purity 0.005 is
bad).

Another limitation is that the data sources that we used might not be available for researchers
that use science maps. For instance, access to social media data such as Twitter has become
increasingly restricted, limiting reproducibility or adoption by other researchers. We believe our
results are still relevant because new sources of data can open up in the future, which can also be
evaluated sing the same framework.

5.6 Conclusions

The topical bias of science maps limits their usefulness for topical analyses. In the current paper
we have explored different data sources for creating academic documents networks that represent
different document relations, with the purpose of finding sources that can change the topical bias of
a science map. Our method of analysis was comparing the clustering effectiveness of different MeSH
topic categories within a network and between networks, using a methodology that we refined from
our prior work. We explored traditional science maps data sources (text similarity and citation links)
and non-traditional data sources based on the co-occurrence of academic documents on another
element (policy document, patent families, Facebook users, Twitter conversations, Twitter users,
and document authors), which we referred to as external sources. Our comparisons were between
networks that use either text similarity, external sources, or a mix of both.

We found that different external sources can be used to favor the emergence of different top-
ics, and the following combinations had a particularly strong effect: Health for Facebook users,
biotechnology for patent families, government and social issues for policy documents, food for Twit-
ter conversations, nursing for Twitter users, and most strongly geographical entities for document
authors. We also found that Twitter conversations work particularly well when combined with text
similarity and that our text similarity metric (Sentence BERT) seems to perform better than the
similarity metrics used in prior work (like BM25), except for topics related to organisms. Also, the
favored topic categories are not affected by changing the percentage of the topic documents used
in the evaluation, as shown by the similarity between the different Coverage values. Finally, the
best topic categories in the Twitter networks were very different from the other networks, which
means that Twitter (and potentially other similar social media platforms, like the new BlueSky
or Mastodon) might provide different perspectives for the study of the organization of scientific
knowledge, getting us closer to latent representations of how society perceives and interacts with
science.

Our results show that external sources of academic document networks can be used to control
topic bias, which opens up the possibility of creating science maps tailored for different needs.
The most direct way of applying our discoveries is to create science maps biased toward different
topics using these external sources. However, with the exception of document authors and their high
clustering effectiveness for geographical entities, most external sources need to be used in combination
with text similarity sources to achieve a high clustering effectiveness relative to traditional sources,
and it is still an open question which is the best method for combining them into a single network.
The clusters of external sources could also be used beyond science maps, for example to identify
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potential misuse of scientific publications (e.g. in misinformation strategies), or to identify societal
connections or sensitivities that are not reflected in the academic world (e.g. connecting papers of
diets and health concerns).
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