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Chapter 4

Which topics are best represented
by science maps? An analysis of
clustering effectiveness for citation
and text similarity networks

Abstract!

A science map of topics is a visualization that shows topics identified algorithmically based on
the bibliographic metadata of scientific publications. In practice not all topics are well represented
in a science map. We analyzed how effectively different topics are represented in science maps
created by clustering biomedical publications. To achieve this, we investigated which topic cate-
gories, obtained from MeSH terms, are better represented in science maps based on citation or text
similarity networks. To evaluate the clustering effectiveness of topics, we determined the extent to
which documents belonging to the same topic are grouped together in the same cluster. We found
that the best and worst represented topic categories are the same for citation and text similarity
networks. The best represented topic categories are diseases, psychology, anatomy, organisms and
the techniques and equipment used for diagnostics and therapy, while the worst represented topic
categories are natural science fields, geographical entities, information sciences and health care and
occupations. Furthermore, for the diseases and organisms topic categories and for science maps with
smaller clusters, we found that topics tend to be better represented in citation similarity networks
than in text similarity networks.

4.1 Introduction

Science maps [38] are visualizations that provide an overview of the content of collections of scientific
publications. The goal of science mapping is to find meaningful structures in the bibliographic
metadata of publications (e.g, in the references, the titles and abstracts, or the authors). These
structures can then be used for literature analysis or information retrieval [42, 154]. Some of the
uses of science maps are field delimitation [184], research policy [149], and enhanced document
browsing [17]. A well established practice to create science maps is to cluster similar publications,
and then to summarize the content of the resulting clusters. Our focus in this paper is on science

IThis chapter is based on: Juan Pablo Bascur, Suzan Verberne, Nees Jan van Eck and Ludo Waltman. 2025.
Which topics are best represented by science maps? An analysis of clustering effectiveness for citation and text
similarity networks. Scientometrics 130, 1181-1199. https://doi.org/10.1007/s11192-024-05218-6. [19]
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maps created in this way.

When using science maps, it is important to be aware that scientific publications usually have
more than a single topic (e.g., a document about the topic lung cancer is, implicitly, also about both
lungs and cancer), but in a science map they typically can be assigned to only one cluster, where
the cluster is intended to represent a single cohesive topic. Because in reality, publications can have
more than one topic, losing information when creating science maps is unavoidable, but it does raise
the question of which of the topics addressed in a collection of publications a clustering will be based
on. This is not an idle question, as there can be significant disagreement between expert-identified
and cluster-identified topics [78], indicating that expert-identified topics are poorly represented by
the clusters in a science map. More specifically, an expert with an interest in a particular topic may
find that publications related to this topic are scattered over many different clusters, with most of
the publications in these clusters being unrelated to the expert’s topic of interest. By providing a
better understanding of the types of topics that are well or less well represented in science maps, we
hope our research will contribute to a more effective use of these maps.

In this paper, we use the Medical Subject Headings (MeSH) terms to investigate clustering for
biomedical topics. Our focus is on clustering solutions based on either citation or text similarity
networks, which are the most common document similarity metrics for creating science maps. We aim
to find out which MeSH terms are well represented by the clusters in a science map, a phenomenon
that we will refer to as clustering effectiveness. Our approach is to group topics, represented by
MeSH terms, into topic categories, represented by branches of the MeSH tree, and to then evaluate
clustering effectiveness at the level of these topic categories.

Our research questions are as follows:

e Which topic categories have the highest and lowest clustering effectiveness in citation and text
similarity networks?

e Which topic categories have higher clustering effectiveness in citation similarity networks than
in text similarity networks, and vice versa?

In the remainder of this paper, we will discuss background literature, describe our data, define
our metrics, report our analyses and discuss our results.

4.2 Background

This section has the following structure: In Section 4.2.1 we explain how science maps are usually
evaluated, in Section 4.2.2 we explore the criticism of science maps that originates from one particular
evaluation method, and in Section 4.2.3 we explain the challenges of understanding the meaning of
the clusters in a science map.

4.2.1 Evaluation of science maps

In the current paper we evaluate the quality of science map only from the perspective of its field
delimitation function. However, it is important to keep in mind that science maps are richer tools,
with various features that can be interpreted beyond the extend to which clusters correspond to
topics. For example, it can be evaluated on the extend to which the labels of the clusters and the
distance between clusters provide useful visual information, or on how cross-cluster topics inform
on the structure of the topics. The most common method to evaluate the quality of the field
delimitation function a science map is to ask experts if the science map reflects their knowledge of
the field of interest. The utility of this evaluation method has recently been called into question
because it usually gives an inconclusive result: The experts tend to agree with most of the science
map but identify caveats about certain details [64]. Additionally, there are several issues intrinsic to
the expert evaluation method: The evaluation criteria may differ between experts; seeing the map
may affect the expert’s understanding of a field; the expert may be biased towards the subfields of
their interest; and the expert may have limited competence in some subfields [64].
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An alternative method to evaluate the quality of a science map is to consider the intrinsic
properties of the clustering process used to create science maps. Commonly used intrinsic properties
are desirable characteristics such as homogeneous cluster sizes, few small clusters, stable clustering
solutions between different runs of the cluster algorithm, and a short computing time to create the
clusters [148]. An intrinsic properties evaluation method was developed by Waltman et al. [165].
Their method assumes that there exists an ideal map and then assesses how closely a clustering
solution matches this map. It evaluates the quality of a clustering solution based on one metric
using another unrelated baseline metric (e.g., a clustering solution based on citation similarity can
be evaluated using text similarity). Ahlgren et al. [4], who created the clustering solutions that we
use in our current work, used this method with MeSH terms similarity as their baseline metric.

A third approach to evaluate the quality of a science map is to define a ground truth made
of documents that correspond to a given topic, and evaluate the overlap between the clustering
solution and the ground truth: either the extent to which all documents of each field are contained
in a single cluster [77, 78], or the extent to which each cluster contains only documents of a single
field [69, 76, 78, 135]. Some studies obtained the ground truth from the references of review articles
[98, 142], but most studies obtained the ground truth using expert knowledge. To our knowledge,
MeSH terms have not been used as ground truths, although Sjogarde, Ahlgren and Waltman [144]
used MeSH terms to label clusters in science maps. It is worth mentioning that our work has a
different goal than evaluating a science map based on a ground truth. Instead of evaluating the
quality of a science map based on a set of topics, we evaluate which topic categories are most
accurately represented in a science map.

4.2.2 Criticism of science maps based on ground truth evaluations

Evaluations that use expert knowledge ground truths have recently questioned the quality of science
maps by challenging their ability to identify fields of science [69, 76-78]. For example, Held and
Velden [76] found that science maps provide clusters about organisms rather than clusters about the
field of invasive biology. One explanation for these negative results is that a document can belong
to several fields or topics but only to a single cluster [76, 78] (although some maps allow documents
to belong to multiple clusters [70, 178]). Another explanation is that the choice of a clustering
algorithm can have a significant influence on the quality of a science map, and it is impossible to
know beforehand which clustering algorithm will give the best result for a given map [74, 135].

Similar negative findings have also emerged in areas beyond science mapping. For example, the
field of complex systems has developed algorithms to clusters the elements that share a given property
(i.e., the cluster matches the ground truth), but these algorithms fail in practical applications.
On the other hand, this field has succeeded in practical applications of algorithms that infer the
properties of an element based on the properties of the other elements in a cluster (e.g., fraud in
telecommunications networks, function in biological networks) [62, 86, 125].

4.2.3 Meaning of the clusters

The negative findings discussed in the previous section suggest that science maps, and clustering
in general, offer poor representations of certain ground truths. However, this does not mean that
science maps are not useful. As mentioned in Section 4.2.1, experts tend to agree that science maps
reflect their knowledge of a field. Also, in the field of complex systems, Newman and Clauset [121]
argued that, even if clusters do not reflect the ground truth, they can still describe meaningful
structures in the data. Our work tries to find out what kinds of structures are described by the
clusters in a science map.

In this direction, Seitz et al. [141] found that the epistemic functions of citations (i.e., what
kind of knowledge is a citation contributing to in a document) within a cluster are different from
the epistemic functions of citations between clusters. This suggests that clusters tend to represent
certain epistemic functions more than others. Also, the type of similarity network might have an
effect on the meaning of clusters. For example, Ding [52] found significant differences between clusters
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emerging from co-authorship networks of documents and clusters emerging from topic modeling of
documents. On the other hand, Velden et al. [162] found that there is a substantial similarity
between the topics found in science maps built from citation and text similarity networks, although
science maps built from citation networks are better at distinguishing topics when words related to
the topics have multiple meanings.

4.3 Methods

This section has the following structure: In Section 4.3.1, we define how we selected our data. In
Section 4.3.2, we explain how we modified our data so to better fit our experimental design. In
Section 4.3.3, we explain how we evaluate the clustering effectiveness of topic categories.

4.3.1 Data selection

Documents The collection of documents that we use in our work comes from the work by Ahlgren
et al. [4]. This is a collection of 2,941,119 PubMed documents published between 2013 and 2017.

Clustering solutions The clustering solutions that we use are the ones generated by Ahlgren
et al. They created several clustering solutions for the above mentioned documents using different
similarity metrics and granularities. They used the Leiden algorithm [153] for clustering, where the
parameter Resolution controls the granularity of the clustering solution (a higher Resolution value
generates smaller clusters). We select two similarity metrics, one for citation and one for text, based
on which pair of metrics produce similar cluster sizes at the same Resolution. The citation metric
is Eztended direct citation, which is calculated using direct citations between documents plus the
citations to documents outside the document collection [165]. The text metric is BM25 [133], which
uses the noun phrases in the titles and abstracts of the documents, and weights them inversely to
their frequency in the document collection [165]. For each metric we selected the three clustering
solutions that use the Resolution values 21076, 210> or 21074, enabling us to evaluate different
cluster sizes. We selected these Resolution values because the first and second value yield cluster
sizes similar to those in the algorithmic mapping of science [164] used in the CWTS Leiden Ranking
[35], while the third value enables us to evaluate clusters of smaller size.

Topics Our topics are the MeSH terms, a controlled vocabulary thesaurus from the National Li-
brary of Medicine (NLM) used for indexing PubMed. MeSH terms are semi-automatically annotated
to documents by the NLM [117]. We obtained the MeSH terms annotated for each document in
our document collection, plus the metadata of the MeSH terms themselves, from the PubMed and
MeSH databases (version from 2023) available in the database system of the Centre for Science and
Technology Studies (CWTS) at Leiden University.

Topic categories Our topic categories are the 16 nodes at the first level of the MeSH hierarchical
tree of topics [117], also known as the branches of the MeSH tree. We use branches because they
group the MeSH terms in epistemological categories (e.g., organisms), which are the categories
sometimes used for topical analysis of clusters [78, 141]. A single MeSH term can have instances in
different branches of the MeSH tree. We will address this in Section 4.3.2.

4.3.2 Data prepossessing

Clustering solution cleaning We cleaned the clustering solutions by removing the clusters with
fewer than 10 documents because these clusters usually had documents that were disconnected from
the largest connected component of the similarity network. Removing these clusters removed only
a minor fraction of the total number of documents. The statistics of each clustering solution after
this process can be seen in Table 4.1. In this table, the variable S is the smallest set of clusters
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Table 4.1: Statistics of the clustering solutions. S is the smallest set of clusters that together cover
at least half of the documents in the dataset. The size of the cluster is the number of documents it
contains.

Citation Text

Metric Resolution . e
similariy | silmiarity
2*10° 297 277
Number of clusters 2%107 2,469 2,475
2%10™ 21,659 | 20,603
2*10° 59 65
Number of clusters 5
ins 2*10 496 514
2*10™ 4,017 3,554
o 2*#10° 7,615 9,373
Median size of 5
2*10 878 891
clusters
2*10™ 88 86
) 2%10° 16,936 | 15,358
Size of the smallest 5
. 2*10 1,954 1,885
clusterin S
2*10" 228 252

that together cover at least half of the documents in the dataset. This means that S contains the
biggest clusters in the clustering solution. We report statistics for S to provide some insight into
the distribution of cluster sizes.

MeSH term expansion We would like a MeSH term to be annotated on all documents related to
the topic of the MeSH term, but NLM typically only annotates up to 15 MeSH terms per document,
which means that more generic MeSH terms are not annotated. To fix this, we expanded the number
of MeSH terms annotated to a document by annotating, for each NLM MeSH term, all MeSH terms
that are upstream in the MeSH tree, or in other words, all ancestors of the NLM MeSH term in the
MeSH tree.

For example, if a document has the NLM MeSH term Abdominal Pain, we also annotated the
upstream MeSH term Pain. While the former MeSH term belongs to the branch Diseases [C], the
latter one belongs not only to the branch Diseases [C], but also to the branches Psychiatry and
Psychology [F] and Phenomena and Processes [G]. We annotated the MeSH term Pain paired with
the branch Diseases [C], and not with the other two branches. On the other hand, if a document
has the NLM MeSH term Pain, then we would annotate three versions of it, one for each branch.
For simplicity, in the rest of this paper we will refer to MeSH terms paired with a specific branch
simply as MeSH terms. Also, we will refer to the documents that have a given MeSH term as the
MeSH term documents and to the number of these documents as the MeSH term size.

MeSH term removal We removed some MeSH terms to improve the quality of our experiments.
Our first removal criterion is size. We removed MeSH terms with size greater than 300,000 (i.e., 10%
of the document set) because these MeSH term documents can saturate the clusters just by random
chance, distorting our analysis. We also removed the MeSH terms with size 500 or less, because
we want the smallest MeSH terms to be close but smaller than the median size of the clusters for
resolution 2 % 107°.

Our second removal criterion is redundancy. Due to the MeSH term expansion process, some
MeSH terms had almost the same documents as their ancestor in the MeSH tree, like Dogs and its
ancestor Canidae. This redundancy could distort our results. We therefore decided to remove the
redundant MeSH terms by grouping together MeSH terms that share many documents and retaining
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Table 4.2: Number of MeSH terms per branch and Size bin. A Size bin is a range of topic sizes. A
topic size is the number of documents in the topic.

Size bin
Branch 501 - 1,001 - 2,001 - 4,001 - 8,001 - Total
1,000 2,000 4,000 8,000 16,000
Anatomy [A] 209 201 161 102 76 749
Organisms [B] 247 168 98 75 44 632
Diseases [C] 472 391 272 194 114 1,443
Chemicals and Drugs [D] 1,033 785 568 357 264 3,007
Analytical, Diagnostic an.d Therapeutic Techniques, 394 508 953 189 150 1,214
and Equipment [E]
Psychiatry and Psychology [F] 109 113 95 65 38 420
Phenomena and Processes [G] 264 244 221 179 143 1,051
Disciplines and Occupations [H] 50 28 31 23 15 147
Anthropology, Education, Sociology, and Social 7 6 20 59 o 206
Phenomena [I]
Technology, Industry, and Agriculture [J] 76 70 68 24 26 264
Information Science [L] 31 35 28 20 18 132
Named Groups [M] 21 34 20 11 14 100
Health Care [N] 182 150 134 110 87 663
Geographicals [Z] 51 39 36 16 21 163
Total 3,126 2,612 2,025 1,394 1,034 10,191

only the smallest MeSH term from the group, which in our experience tends to be the term that
best represents the group. The extent to which MeSH terms share documents was measured using
Jaccard similarity, the grouping algorithm was agglomerate hierarchical clustering with the Complete
Linkage method [137], and the criterion for forming MeSH term groups was for MeSH terms to have
a Jaccard similarity of at least 0.9. In cases where a group had more than one smallest MeSH term,
we selected the one at the lowest level in the MeSH tree or the one with the largest number of
instances in the MeSH tree.

Branch removal To make our results more robust, we removed the branches with fewer than 100
MeSH terms. We ended up with the 14 branches shown in Table 4.2.

Size bins of MeSH terms The size of a MeSH term can be expected to have an effect on its
clustering effectiveness. We therefore grouped the MeSH terms according to their size. We refer
to these groups as Size bins. To ensure the robustness of our results, we only considered Size bins
that had at least 10 MeSH terms per branch. This resulted in five Size bins: 501-1,000, 1,001-2,000,
2,001-4,000, 4,001-8,000, and 8,001-16,000. The number of MeSH terms per Size bin can be seen in
Table 4.2.

56



4.3.3 Clustering effectiveness

Selection of clusters To find out which MeSH terms are well represented by the clusters in a sci-
ence map, we introduce the notion of clustering effectiveness. Measuring the clustering effectiveness
of a MeSH term starts by selecting a subset of clusters. Our cluster selection criterion is to select
the clusters with the largest number of MeSH term documents while making sure that the selected
clusters cover at least a given share of all MeSH term documents. We call this share Coverage. We
consider three Coverage values: 0.25, 0.50 and 0.75. Our cluster selection criterion minimizes the
number of selected clusters for a given Coverage value. It is inspired by cluster quality metrics of
Yuan, Zobel and Ling [181]. We expect our cluster selection criterion to reflect the clusters a user
of a science map is likely to select while exploring the map.

Clustering effectiveness metrics Once we have the selected clusters for a given MeSH term,
we measure clustering effectiveness using two metrics:

e Purity: Purity represents the extent to which the selected clusters are composed of MeSH
term documents. It is the fraction of documents in the selected clusters that are MeSH term
documents. In mathematical terms, Purity is defined as:

N
2iz1 [DiN Dyl
N
Ei:l |Di‘
Here, N denotes the number of selected clusters, D; denotes the documents in selected cluster

i and Dj; denotes the MeSH term documents. The higher Purity, the more effective the
clustering. Purity is bounded between zero and one.

Purity = (4.1)

e Inverse count of clusters (ICC): ICC represents the extent to which the MeSH term documents
are contained in a small number of clusters. ICC is defined as one divided by the number of
selected clusters. In mathematical terms, ICC is defined as:

1
I = — 4.2
cc N (4.2)
The higher ICC, the more effective the clustering. Like Purity, ICC is bounded between zero
and one.

We use two metrics instead of one to control for MeSH term size and cluster size: If there are
few MeSH term documents, or if they are in big clusters, then ICC will be high but Purity will be
low, and vice versa.

The Purity and ICC of a MeSH term are calculated for a given Coverage value, Resolution value
and similarity network. We use C-Purity and C-ICC to refer to Purity and ICC calculated for a
citation network, and T-Purity and T-ICC to refer to Purity and ICC calculated for a text network.

We also provide metrics for the difference in Purity and ICC between citation and text networks
for a given MeSH term. These metrics, referred to as rPurity (Ratio Purity) and rICC (Ratio ICC),
are calculated as the logarithm base 2 of C-Purity or C-ICC divided by T-Purity or T-ICC. The
purpose of the logarithm is to facilitate the interpretation of the results (e.g. for rPurity vale -1,
T-Purity is double C-Purity, and for 41 is the opposite). In mathematical terms, rPurity and rICC
are defined as:

) C-Purity
’I”P’U/I"Zty = 10g2 <W> (43)
c-icc

Positive values indicate that a citation network yields a higher clustering effectiveness than a text
network, and vice versa.
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4.4 Results

4.4.1 Which topic categories have the highest and lowest clustering ef-
fectiveness in citation and text similarity networks?

To answer our first research question, we consider the C-Purity and T-Purity rankings of the 14
branches for each of the 45 combinations of parameter values (i.e., three Resolution values combined
with three Coverage values combined with five Size bin values). Table 4.3 shows the number of
times each branch appears in each position in the C-Purity and T-Purity rankings. The order of the
branches in the table was determined manually so that the branches that frequently occupy higher
ranking positions are above of the ones that occupy lower ranking positions. We found that the ICC
rankings are strongly correlated with the Purity rankings, so we do not show them.
From Table 4.3 we make the following observations:

e Most of the branches occupy between one and four adjacent positions, which shows that the
position of the branches tends to be stable for different parameter values.

e For both C-Purity and T-Purity, the top five branches are almost always in positions 1 to 7,
and the bottom four branches are almost always in positions 8 to 14. We therefore consider the
top five and bottom four branches as the the ones with, respectively, the highest and lowest
clustering effectiveness.

e The top five and bottom four branches are the same for C-Purity and T-Purity, showing that
in this respect citation and text networks yield very similar outcomes.

e The top five branches are Diseases [C], Organisms [B], Anatomy [A], Analytical, Diagnostic
and Therapeutic Techniques, and Equipment [E] and Psychiatry and Psychology [F].

e The bottom four branches are Health Care [N], Disciplines and Occupations [H], Information
Science [L] and Geographicals [Z].

Figure 4.1 shows the distribution of the Purity and ICC values of each branch for the 45 com-
binations of parameter values. The box plots for the different branches heavily overlap with each
other due to the effect of the parameter values on Purity and ICC. From Figure 4.1 we observe that
C-Purity, T-Purity, C-ICC and T-ICC are substantially higher for the branch Diseases [C] than for
the other branches, while they are substantially lower for the branch Geographicals [Z]. This also
explains why in Table 4.3 these branches almost always appear in position 1 and 14, respectively.

4.4.2 Which topic categories have higher clustering effectiveness in cita-
tion similarity networks than in text similarity networks, and vice
versa?

To address our second research question, we first evaluate how the ratio metrics rPurity and rICC
correlate with the Size bin, Resolution and Coverage parameters. The box plots in Figure 4.2
show the distribution of the rPurity and rICC values for each value of the Size bin, Resolution and
Coverage parameters. Here we see that higher Resolution and Coverage are correlated with higher
rPurity and rICC. Also, higher Size bin is correlated with lower rPurity and rICC, but this is a weak
correlation.

The answer to our second research question depends on whether the rPurity and rICC values
of a branch are positive or negative. Positive values indicate that the clustering effectiveness is
higher in citation networks, while negative values indicate that the clustering effectiveness is higher
in text networks. The box plots in Figure 4.3 show the distribution of the rPurity and rICC values
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Table 4.3: .

Number of times each branch appears in each ranking position, using either C-Purity (top) or
T-Purity (bottom) as ranking criterion.

C-Purity position frequency
Branch\Position 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Diseases [C] 45 0 0 0 O 0O 0 0 0o 0O O o o
Organisms [B] 0 3 4 4 1 1 0 0 O 0 0 0 o0 o
Anatomy [A] 0O 6 13 12 6 6 1 1 0 0O O O O O
A,D.&T.T., &E. [E] 0o 2 12 9 9 5 7 0 1 0 0 0 0 O
Psy. & Psy. [F] 0 1 3 13 6 10 7 3 0O 0O 2 0 0 O
T, 1, &A. [J] 0O o0 8 1 4 10 4 11 5 2 0 0 O O
A,E,S.,&S.P.[l] 0o 1 3 2 5 4 10 7 5 5 3 0 0 o
Named Groups [M] o 0 2 1 8 4 10 4 4 3 1 7 1 0
Phen. & Pro. [G] o 0 0 0 1 2 2 16 10 12 2 0 0 O
Chemicals & Drugs[D] | 0O 0 O 3 5 2 2 2 12 7 7 5 0 O
Health Care [N] 0O 0 0o 0 0 0 0 O 3 10 18 12 2 O
Dis. & Occ. [H] o o o o o0 1 1 1 1 3 5 18 15 O
Information S. [L] 0O 0 0o 0 0 01 0 4 3 3 27 0
Geographicals [Z] 0O 0 0 0 O O O O O O O O 0 45
T-Purity position frequency
Branch\Position 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Diseases [C] 43 2 0 0O O O O O O O O O o o
Organisms [B] 0 21 5 8 4 3 1 2 1 0 0 0 O0 O
A,D.&T.T., &E. [E] 0O 11 12 4 11 7 0 O O O O O O O
Anatomy [A] 0O 3 151 5 5 1 0 0O O 0O 0 o0 o
Psy. & Psy. [F] 1 4 5 10 9 6 6 2 1 1 0 0 0 O
Phen. & Pro. [G] o o o o 1 8 16 5 7 5 3 0 0 O
T, 1., &A. [J] 1 4 4 0 2 5 7 12 9 1 0 0 0 O
A, E,S., &S.P.[l] o o 1 3 1 6 8 14 4 7 1 0 0 O
Named Groups [M] O 0 3 4 9 3 3 3 3 10 3 4 0 O
Chemicals & Drugs[D] | 0 0 O O 3 2 3 2 8 6 7 11 3 o0
Health Care [N] 0O o o o o O o 1 6 6 19 13 0 O
Information S. [L] 0O o0 o o O O O 3 5 4 6 10 17 O
Dis. & Occ. [H] o o o o o o o 1 1 5 6 7 25 0
Geographicals [Z] 0O 0 0 0O O OO OO O O O 0 45

of each branch for the 45 combinations of parameter values. For each branch, the rPurity and rICC
distributions include both positive and negative values. This reflects the dependence of the rPurity
and rICC values on the values of the Size bin, Resolution and Coverage parameters, as was shown
in Figure 4.2.

Because for each branch the rPurity and rICC distributions include both positive and negative
values, it is not possible to unequivocally conclude that a branch has a higher clustering effectiveness
in either citation networks or text networks. Nevertheless, it is clear that the branches Diseases
[C] and Organisms [B] tend to have a higher clustering effectiveness in citation networks than in
text networks. rPurity and rICC are almost always positive for these branches. In contrast, the
branches Geographicals [Z], Information Science [L], Named Groups [M], Analytical, Diagnostic and
Therapeutic Techniques, and Equipment [E] and Phenomena and Processes [G] tend to have a higher
clustering effectiveness in text networks than in citation networks. However, the results for these
branches are less stable, so we need to be cautious in drawing strong conclusions.

4.5 Discussion

This section has the following structure: We discuss what we have learned for our first research
question in Section 4.5.1, for our second research question in Section 4.5.2, and for the strengths
and weaknesses of our work in Section 4.5.3.
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C-Purity C-ICC

Diseases [C] —Im———— 0.165 Diseases [C]— 0. 250
Organisms [B] —II————— 0.082 Organisms [B]—IINIII—————————————————0.167
Anatomy [A]HEIE——— 0.062 Anatomy [A]—{IIIE 0.111
A, D.&T. T, & E. [E]HE—— 0.064 A, D.&T.T, &E. [E]—{IHE 0.111
Psy. & Psy. [F]HEE———— 0.055 Psy. & Psy. [F]-] T 0.143
T, L, & A DHEE—— 0.062 T, L, & A. [J]-{IE 0.091
‘F:J A, E, S, &S. P, [[HI——! 0.049 A, E. S, &S. P. [1]-IH 0091 =
£ Named Groups [M]HIE———— 0.040 Named Groups [M]+IHI 0.080 g,
Phen. & Pro. [G]HII—— 0.048 Phen. & Pro. [G]-II 0.083
Chemicals & Drugs [D]{IE————— 0.038  Chemicals & Drugs [D]HIIE 0.071
Health Care [N]{I——— 0.034 Health Care [N]-IE 0.071
Dis. & Occ. [H]{Il—— 0.032 Dis. & Occ. [H]IIImt 0.056
Information S. [L]{IlF——— 0.029 Information S. [L]{IIgl——————i 0.050
Geographicals [Z]l 0.009 Geographicals [Z]{l———— 0.019
0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1
T-Purity T-ICC
Diseases [C] HNITINITNGININNGNG et 0.108 Diseases [C]—{I}——————————0.200
Organisms [B]-Ig——— 0.061 Organisms [B]—I—————————————0.125
A, D.&T. T, &E [E]HEE——! 0.070 Anatomy [A]{IIIE 111
Anatomy [A]HEI———— 0.060 A, D.&T.T, &E. [E]—{IN .125
Psy. & Psy. [F1HEI}———— 0.060 Psy. & Psy. [F]- I ———————0.100
Phen. & Pro. [G]HIEEF—— 0.040 T, L, & A. [+ .091
é T, L, & A DHIE——— 0.051 A, E. S, &S.P. [I]HIHE .087 i
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Figure 4.1: Box plots showing the distribution of C-Purity, C-ICC, T-Purity and T-ICC over the 45
combinations of parameter values. The median values of each box plot are reported along the right
Y axis. The branches are sorted as in Table 4.3.

4.5.1 Which topic categories have the highest and lowest clustering ef-
fectiveness in citation and text similarity networks?

Our results show that the MeSH branches with the highest and lowest clustering effectiveness are
the same for citation and text similarity networks. Despite the different purposes of writing and
citing [104], the way scientists write and the way they cite yield similar rankings of MeSH branches
in terms of clustering effectiveness. It would be interesting to see if the top and bottom branches
are also the same in other similarity networks, like co-tweeting [45], co-authorship [120], and patent
co-citation [102].

The branch Disciplines and Occupations [H], which contains the MeSH terms for natural sci-
ence fields, is among the branches with the lowest clustering effectiveness. This suggests that how
scientists cite each other is only weakly related to how they define scientific fields, which suggest
the need for alternative approaches to defining scientific fields, for instance based on science map
clusters. However, it is unclear to which extent this branch is a good representative of the natural
science fields (e.g. the branch also includes MeSH terms about health occupations, and documents
with NLM MeSH terms about natural science fields tend to be about meta-science). Therefore, a
deeper analysis is required to support the suggestion, but this goes beyond the scope of the current
paper.

Held and Velden [76] reported that a given science map was poor at showing the field of invasive
biology, and instead placed documents related to the field in clusters about species. Our results
are in line with this, because invasive biology belongs to Disciplines and Occupations [H], one of
the bottom four branches in our results, while species belongs to Organisms [B], one of the top five
branches.

60



rPurity per Size bin rICC per Size bin

501-1000 ] 501-1000 e B |
1,001-2,000 1,001-2,000
c ’ , c ’ )
3 5
@ 2,001-4,000 @ 2,001-4,000 —]
) )
4,001-8,000 4,001-8,000 —_ ]
8,001-16,000 o 8,001-16,000 1
L1 1 111111l o00000005000 R 111111111l o0o00o0o0ooo00o00r
~ O 0O 00 OO0 o o o O T O O N ~ O 0O 00 OO0 o o o O T O VI
o Uains b o Uains b
rPurity ricc
rPurity per Resolution rICC per Resolution
c c
S 2*10-6 T S 2%10-6 —_—
g 2%10-5 I+ g 2%10-5
a 10 4 #10-
g 2v104 T g 2¢104 T
L 1 1L 1 1L 1111 o9o0o0o00o0000oo0 R . 1 1 1L 1L 1L 1 1 | | oo 99000000 R
- EEEEEE] PO VG T S ~m o 000000 o o PO VG T S
PV VI VN VI
rPurity rICC
rPurity per Coverage rICC per Coverage
& 025 S 025
@ @
?.)j 0.50 T ?.)j 0.50 — i
8 o7s —1T—% 8 o7 ——
L 1 1L 1 1 1 111 o505 00o0o0oo0o0o R 1 1 1L 1 1 1 1 1 | ©o0o o950 000O0O0 R
Ldbdbbdbddd s POV T S - - ) TV T S
o U din s woN o P CP S PN I VI
rPurity rICC

Figure 4.2: Box plots showing the distribution of rPurity and rICC for each value of Size bin,
Resolution and Coverage.

4.5.2 Which topic categories have higher clustering effectiveness in cita-
tion similarity networks than in text similarity networks, and vice
versa?

Our results show that which networks yield a higher clustering effectiveness depends strongly on
the Resolution and Coverage values, with higher Resolution and higher Coverage increasing the
clustering effectiveness for citation networks relative to text networks. Importantly, this does not
mean that higher Resolution and higher Coverage increase the clustering effectiveness for citation
networks in an absolute sense. It means that higher Resolution and higher Coverage increase the
ratio between the clustering effectiveness for citation networks and the clustering effectiveness for
text networks.

Ahlgren et al. [4] developed a method to measure the accuracy of the clusters in a science
map. Using their data and visualization method, we found that the accuracy of citation networks
relative to text networks increases as the Resolution value increases. This is in line with our results.
Unfortunately, we do not know the mechanism behind this dependency. Our findings for Resolution
could be useful for users of science maps: It tells them that, if they have two science maps, one
based on citations and another based on text, then decreasing the size of the clusters will make the
citation one more effective relative to the text one, and vice versa.

In the context of field delimitation tasks, where a user of a science map identifies the clusters that
contain the documents of a field, Coverage is analog to the completeness of the field delimitation.
Our findings for Coverage suggest that citation networks are better for exhaustive field delimitation,
while text networks are better for less exhaustive field delimitation.

Our results also indicate that, omitting the effect of Resolution and Coverage, the branches
Diseases [C] and Organisms [B] tend to have higher clustering effectiveness in citation networks
than in text networks. To exemplify what this means for users, we consider the use case of Held and
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Figure 4.3: Box plots showing the distribution of rPurity and rICC for each branch.

Velden [76] discussed above: They would like to have a clustering of the field of invasive biology, but
in their science map invasive biology documents are spread over clusters about organisms. If instead
of a citation network a text network is used, the organisms will probably be clustered less effectively,
which may give the opportunity for invasive biology documents to form their own clusters instead
of being part of clusters about organisms.

4.5.3 Strengths and weaknesses

We see the use of MeSH terms as an important strength of our work. An alternative approach could
be to ask experts to assign documents to topics, but this cannot be done at the scale at which MeSH
terms provide document-topic links. Also, MeSH terms link documents to topics at a scale that
no other classification scheme, like the Mathematics Subject Classification, the ACM Computing
Classification System, or the Physics Subject Headings, is able to provide.

We also improved the utility of the MeSH terms by using Coverage, MeSH term expansion,
MeSH term removal and MeSH branches in our experimental design. Coverage diminished the effect
of mislabeled documents (e.g., the document with DOI 10.1007/s12603-020-1457-6 is incorrectly
labeled with the MeSH term Alcohol Drinking) by ignoring a certain share of the documents with a
particular MeSH term. MeSH term expansion allowed us to have a collection of documents for each
MeSH term that represent the topic of the MeSH term more accurately. MeSH term removal allowed
us to ensure that our results are not affected by redundant MeSH terms. Using the MeSH branches
as topic categories allowed us to use a curated scheme of topic categories. However, some topic
categories may be absent from the MeSH tree (e.g., topics linking diseases with their medicines) and
some lower levels of the MeSH tree may be more informative as topic categories (e.g., the children of
the branch Disciplines and Occupations [H] are Natural Science Disciplines and Health Occupations,
which may be more informative as topic categories than the branch itself). It is worth mentioning
that MeSH terms have an attribute (MeSH Major Topic) that indicates if the MeSH term is one of
the major topics of the document. We did not use this attribute because only half of our documents
had any MeSH term with this attribute.

Another strength of our work is that we evaluated clustering effectiveness per MeSH term, while
other studies, like Waltman et al. [165], evaluated a clustering solution as a whole. Our method
is also insensitive to the effect of size differences between MeSH terms and clusters (e.g., if clusters
are much bigger than MeSH terms, it is impossible to have maximum Purity, and if they are much
smaller, it is impossible to have maximum ICC) because our focus is on comparing the clustering
effectiveness of different topic categories instead of achieving optimal clustering effectiveness.
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A weakness of our work is that we used only one clustering algorithm, the Leiden algorithm, an
algorithm that is commonly used by the science mapping community. Other studies used multiple
algorithms: Held, Laudel and Gléser [77, 78] analyzed clusters created by the Leiden algorithm
and the Infomap algorithm. Held [74] assessed the suitability of the Leiden, Louvian, OSLM and
Infomap algorithms for creating clusters. Beyond science maps, Rossetti, Pappalardo and Rinzivillo
[135] showed that different clustering algorithms (Louvain, Infohiermap, cFinder, Demon, iLCD and
Ego-Network) have differential performance for different types of networks (DBLP co-authorship
network, Amazon co-purchase network, YouTube users network, and LiveJournal users network).

Another weakness of our work is that we used only one citation similarity metric (extended direct
citation) and only one text similarity metric (BM25). Future work should ideally evaluate multiple
citation and text similarity metrics, because different citation metrics and different text metrics may
yield different results.

A final weakness of our research is that our findings might be valid only for the current docu-
ment set. Using document sets from other time periods or other fields (MeSH terms specialize in
Biomedical fields) could have different results due to changes in the writing style and the epistemic
functions of citations.

4.6 Conclusion

In this paper we explored science maps of mostly biomedical topics, analyzing the clustering effec-
tiveness for different topic categories. We hope our work will contribute to a more effective use of
science maps. We addressed the following research questions:

Which topic categories have the highest and lowest clustering effectiveness in citation
and text similarity networks? We found that the answer is the same for citation and text
similarity networks. Paraphrasing the topic category names, the topic categories with the high-
est clustering effectiveness are diseases, psychology, anatomy, organisms and the techniques and
equipment used for diagnostics and therapy, while the topic categories with the lowest clustering
effectiveness are natural science fields, geographical entities, information sciences and health care
and occupations. Also, the diseases category has a substantially higher clustering effectiveness than
all other categories, while the geographical entities category has a substantially lower clustering
effectiveness.

Which topic categories have higher clustering effectiveness in citation similarity net-
works than in text similarity networks, and vice versa? We found that there are two factors
that can make any topic category have higher clustering effectiveness in either network. The first
factor is the size of the clusters generated by the clustering process (i.e., the Resolution parame-
ter). The smaller the size, the higher the clustering effectiveness in citation networks relative to
text networks. The second factor, specific to our experimental setting, is the percentage of all topic
documents that must be covered by the selected clusters (i.e., the Coverage parameter). The higher
this percentage, the higher the clustering effectiveness in citation networks relative to text networks.
Regardless of these two factors, we found that the diseases and organisms topic categories tend to
have higher clustering effectiveness in citation networks than in text networks.

Our work has shown that there is a strong tendency for clusters in science maps to represent some
topics better than others. Further research could explore how to control which topics are clustered
better, so that users of science maps can adjust the maps to their needs.
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