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The ongoing energy transition from fossil fuels to renewables is increasing the demand for materials,
particularly metals. As fossil fuel infrastructure, such as refineries, tankers, pipelines, and ships, is
phased out, this obsolete infrastructure could serve as an urban mine, supplying secondary materials
like steel, aluminium, and copper. However, the extent to which these materials can meet future needs
remains unclear and is often overlooked. Here we develop the global dynamic fossil fuel material
model to quantify material stocks embedded in fossil fuel infrastructure and project secondary material
availability through 2050 under the Shared Socioeconomic Pathway 2 (SSP2) baseline and 2-degree
Celsius (2D) scenarios. Our findings indicate that material demand for new infrastructure continues to
grow under the baseline scenario and exceeds recoverable volumes. Even under the 2D scenario, the
surplus of recovered metals remains insufficient to meet the growing material requirements of

renewable energy technologies.

To prevent further deterioration of the global climate system, the tran-
sition of the energy system is becoming increasingly urgent. This tran-
sition requires phasing out fossil fuels'” and expanding sustainable
energy sources such as solar and wind power””. However, this transition
has substantial material implications, as the demand for materials,
especially metals, is expected to increase dramatically'”"’. A growing
body of literature is dedicated to the material requirements of the
renewable energy system, indicating that the demand for materials,
especially major metals'**’ and critical materials'**'**'. Ensuring a stable
supply of these materials has become a growing priority for both gov-
ernments and industries” . Most previous studies have adequately
considered and evaluated the materials needed to decarbonize electricity
generation™'***”! and transportation’*~**, However, less attention has
been given to the fate of fossil fuel infrastructure under the energy
transition. The phase-out of fossil fuels will not occur immediately™;
given their current 80% share of the global energy system™, there will be a
gradual shift toward renewables with a declining dependence on fossil
fuels. This transition will not only affect fossil fuel demand but also
reshape the material use associated with fossil fuel infrastructure,
including extraction, processing, storage, and transport”~". In this study,
“fossil fuel infrastructure” refers to physical assets across the fossil fuel
supply chain, including coal mining infrastructure, oil and gas platforms,

refineries, gas processing plants, vehicles (e.g., trucks, trains, ships, and
tankers), pipelines, and other related structures and equipment ™. A
detailed classification of the infrastructure considered is provided in the
Methods section (Fig. 1). Fossil fuel power plants are excluded, as their
material composition and decommissioning have already been exten-
sively studied™".

Over the past century, a vast amount of fossil fuel infrastructure
—including platforms, refineries, pipelines, ships, and tankers—has
accumulated worldwide. As fossil fuels are phased out, these assets
will become obsolete, making their embedded materials, particularly
metals, available for reuse or recycling'. However, the quantity,
composition, and availability of these materials remain poorly
understood.

Currently, there is limited information on the total stock of materials
embedded in fossil fuel infrastructure, as well as the flows of new materials
entering the system and waste materials leaving it. Furthermore, the impact
of the energy transition on these material stocks and flows remains largely
unexamined. Despite these knowledge gaps, gaining a deeper understanding
of fossil fuel material dynamics could be highly valuable for policymakers
and industry stakeholders. Effective decommissioning planning can not
only facilitate material recycling and optimize resource allocation but also
contribute to the energy transition by mitigating material demand through
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Fig. 1 | Global material stocks in fossil fuel infrastructure from 1990 to 2050 under SSP2(BL) and SSP2(2D) scenarios. The material stocks of steel (a, b), copper (c, d),
and aluminium (e, f) are displayed under both the SSP2 (BL) and SSP2 (2D) scenarios.

the repurposing of materials from the existing fossil fuel system for diverse
applications. At the very least, such assessments provide critical insights for
enhancing global resource efficiency and advancing circular economy
policies. To fill this gap, we developed a global dynamic fossil fuel material
model (FUMA). It allows for incorporating material-energy feedback into
Integrated Assessment Models (IAM), such as the Integrated Model to
Assess the Global Environment (IMAGE). The implementation of this
model will allow us to assess the dynamics of material stocks and flows
within the fossil fuel infrastructure and examine its interaction effect with
changes in fossil energy demand. Our analysis aims (1) to quantify the global
stock of three major metals (steel, copper, and aluminium) embedded in the
fossil fuel infrastructure, (2) to understand the dynamics of material inflows
and outflows related to this stock, and (3) to assess the potential of these
materials to mitigate the energy transition’s material needs. We compare a
baseline scenario with a climate scenario, assuming an energy transition in
line with the 2-degree Celsius (2D) target as agreed on in the Paris
Agreement”, based on the IMAGE Shared Socioeconomic Pathway 2
(SSP2)*.

Results

Material stock patterns in the development of fossil fuel
infrastructure

The material stocks and their development until 2050 in the fossil fuel
infrastructure are presented in Fig. 1. Steel is a critical component of all fossil
fuel infrastructure. Specifically, the steel stock measured in megatons is

projected to grow. The steel stocks are three orders of magnitude larger than
aluminium and copper stocks (For the detailed composition of the indivi-
dual element stocks in the various infrastructures, please refer to Supple-
mentary Fig. 7).

Under the SSP2(BL) scenario, the steady growth in fossil fuel demand
drives a continuous increase in material stocks until 2050, reaching
approximately 1700 Mt for steel, 14 Mt for aluminium, and 1.1 Mt for
copper. Meanwhile, under the SSP2(2D) scenario, fossil fuel infrastructure
stocks were projected to peak around 2022 before gradually declining. This
decline is mainly due to a decrease in stocks associated with coal and oil
infrastructure. In the SSP2(2D) scenario, natural gas is assumed to serve as a
transitional energy source between coal and renewables. This leads to a
substantial increase in gas-related infrastructure stocks, particularly for
steel (Fig. 1b).

Corresponding to the total stocks, Fig. 2 details the relative share
of steel, copper, and aluminium in the global fossil fuel infra-
structure. The stock of steel in 2050 in the 2D scenario is slightly
above its 2019 value, while the total stock of copper and aluminium
shrinks by ~30% compared to 2019. Notably, in 2019, 60% of steel
stocks are gas-related, which will further rise to 65% (SSP2(BL)) and
73% (SSP2(2D)) in 2050. Gas pipelines account for most of the steel
stock (~70%) in gas-related infrastructure. Unlike steel, the stocks of
copper and aluminium are primarily linked to vehicles (trucks, rail
cargo and especially ships), with the share of coal stocks currently
surpassing those of gas and oil.
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Abbreviation list

Middle layer, PP: Preparation | PC: Processing | SR: Storage RF: Refinery | EX: Extraction TV: Transport Vehicle | PL: Pipeline

Outer lay C/S: Crude Oil UG: Underground | RC: Rail Cargo TM: Transmission

P/S: Product OC: Open Cast | IS: Inland Ship DB: Distribution
ON: Onshore OS: Ocean Ship C/P: Crude Oil
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Fig. 2 | Breakdown of material stocks in different fossil fuel infrastructure.

Breakdown of material stocks in different fossil fuel infrastructures in the base year
(a—c), the year 2050 under SSP2(BL) (d-f) and SSP2(2D) (g-i) scenarios. Circle areas
represent the size of the corresponding material stock. The base year stocks of steel
(a), copper (b), and aluminium (c) are set with the index to 1 (stock for 2019 =1).
The inner layer of each circle shows the distribution of material stocks for coal (gray),
oil (orange), and natural gas (blue). The middle layer represents the infrastructure

for different phases of each fossil fuel type (including extraction, industrial handling,
vehicles, and pipelines). The outer layer represents the subtypes for various infra-
structure elements (e.g., offshore/onshore extraction, transmission/distribution gas
pipelines, rails/trucks/inland/ocean ships, oil storage, refineries, etc.). Only the
major composition elements (> 1%) of the infrastructure stock as shown in the
figure. The full information is provided in Supplementary Table 12.

The future is expected to witness an upward trajectory of gas-related
transportation material stocks, driven by the growing trade volume of liquid
natural gas (LNG). The trade of LNG is already increasing, reaching a level
comparable to that of gaseous natural gas by 2022". This trend is expected to
continue in both SSP2(BL) and SSP2(2D)**. For steel, the share of gas in total
fossil fuel infrastructure will grow in both scenarios, but most in the
SSP2(2D) scenario.

The share of oil increases in both scenarios for copper as well as for
aluminjum. In absolute terms (Fig. 1), the amounts will grow in the
SSP2(BL) scenario but go down under SSP2(2D) assumptions. This indi-
cates that coal is expected to be rapidly phased out and switched to nat-
ural gas.

Material requirements, outflows, and surplus
Figure 3 depicts the material demand (inflows) and discarded materials
(outflows), which could be regarded as potential secondary material supply
under the two scenarios. Here, we present an in-depth examination of these
trends, highlighting noteworthy observations regarding the inflows and
outflows.
 In both scenarios, the material demand for fossil fuel infrastructure
remains substantial through 2050. Under the SSP2(BL) scenario, it
continues to grow, whereas in the SSP2(2D) scenario, it declines but
remains considerable. The reduction in CO, emissions in SSP2(2D)
assumes a large-scale deployment of Carbon Capture and Storage
(CCS), supporting the continued use of fossil fuel infrastructure.
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Fig. 3 | Global material flows and the material surplus in fossil fuel infrastructure
during 1980-2050 under SSP2(BL) and SSP2(2D) scenarios. The material flows of
steel (a, b), copper (d, e), and aluminium (g, h), along with their corresponding

surpluses (¢, f, i), are shown. Surplus is defined as the difference between outflows
and inflows within the same year, where positive values in the shaded areas indicate
that outflows exceed inflows.

Additionally, further adding capital and material stocks used for those
CCS installations, as covered by the analysis on material use for
electricity generation™.

 The SSP2(BL) scenario fossil fuel system requires more materials than
SSP2(2D). The outflows remain smaller than the inflows throughout
the whole assessment period. Even assuming all the waste materials will
be recycled and used in the same applications, an inflow of virgin
materials in the fossil fuel infrastructure is still needed.

* Under the SSP2(2D) scenario, demand for both copper and aluminium
peaked around 2022 and then gradually declined. At the same time,
these materials will generate annual surpluses until 2050. The cumu-
lative surplus of copper (2022-2050) is ~340 kilotons, which is com-
parable to the global copper demand for electric vehicles in 2022*.
Unlike copper and aluminium, steel is expected to experience only a
brief surplus before demand rises again after 2030.

¢ The gas industry will still require an increasing inflow of materials even
under SSP2(2D), particularly for the construction of new pipelines,
which rely heavily on steel. Over 90% of the cumulative gas-related steel
demand from 2020 to 2050 is seen in pipelines. The cumulative
demand for steel in natural gas pipelines between 2020 and 2050 is
greater than the cumulative steel demand of the coal and oil industries
combined over the same period.

Therefore, the availability of secondary materials from the end-of-life
fossil fuel infrastructure remains limited in both scenarios until 2050,
minimizing its potential contribution to future material demand.

Discussion
Our findings indicate that global stocks of coal-related materials will decline,
while stocks of natural gas-related materials will continue to increase until
2050. This shift in material stocks reflects the ongoing transition towards a
more sustainable energy landscape. While natural gas has been viewed as a
transition fuel due to its lower carbon emissions compared to coal®, its
continued expansion may slow the decarbonization of energy systems’'. In
addition to methane leaks from gas infrastructure” ™, dependence on
natural gas infrastructure may create a lock-in effect’” ™, where entrenched
investments and infrastructure hinder the transformation to renewable
energy systems. The phasing out of fossil infrastructure will not advance far
enough by 2050 to become a major source of secondary materials. Under
SSP2(BL) assumptions, material stock will continue to grow, requiring more
materials rather than supplying them. SSP2(2D) scenario, copper and alu-
minium stocks decline, making some materials available for recycling.
However, the projected surplus (outflow minus inflow) in 2050 is only 10 kt
of copper and 108kt for aluminium. When compared to the material
demands of renewable energy systems, this volume is marginal: it could
supply only 8% of the global aluminium demand and 0.8% of the global
copper demand required for wind and solar PV deployment under the
SSP2-2D scenario”. In comparison, under the International Energy
Agency’s (IEA) Net-Zero Emissions scenario, this surplus would meet only
0.2% of the projected 2050 copper demand for these technologies®.
Compared to the material demands of renewable energy technologies,
the recoverable materials from end-of-life fossil fuel infrastructure are
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limited, as demonstrated in our analysis. Additionally, technical constraints
further restrict the potential of decommissioned fossil fuel infrastructure in
supplying secondary materials. Material losses during collection and recy-
cling, along with technical recycling rates, influence overall material
availability” . Unlike copper and aluminium, which can be recycled
without substantial loss of quality, steel recycling is often constrained by
variations in alloy composition and the lack of detailed chemical data, which
hinder large-scale recycling efforts**. Most steel undergoes a downcycling
process, meaning it often fails to meet specifications for high-performance
applications due to alloying elements, corrosion, and strength
limitations®®. However, it remains a valuable secondary resource that can
be recycled and repurposed for various applications in the global market,
contributing to the broader circular economy.

The recyclability of fossil fuel infrastructure varies across dif-
ferent components. Above-ground infrastructure, such as ships and
trains, is generally easier to recycle than underground pipelines.
Decommissioned underground gas pipelines often remain as hiber-
nating stock without entering the recovery process”*. Similarly,
onshore infrastructure is typically easier to recycle than offshore
installations®”’. Offshore structures also require sacrificial anodes
made of zinc and/or magnesium, which corrode over time due to
seawater exposure and cannot be recycled. Even for the same metal,
recycling availability varies widely depending on its form, quality,
and location, factors that warrant further investigation.

Certain limitations must be acknowledged. The fossil fuel demand
projections used in this analysis are based on IMAGE model data accessed as
of January 2024* and subsequent updates are not reflected here. However,
the FUMA model framework allows for the integration of the latest data
inputs as needed.

Additionally, fossil fuel infrastructure in the real world is more complex
than the model assumptions. Some facilities might be co-used by multiple
sectors, making their material stocks difficult to attribute to the fossil fuel
sector fully. In this study, refineries, processing plants, storage facilities, and
pipelines are assumed to be used exclusively for fossil fuels. In reality, some
of these assets could be repurposed for biofuels”, hydrogen™, or other
industrial applications. For transport vehicles, material stocks are estimated
based on the relationship between fossil fuel transport demand and vehicle
material stock weight. Here, we assume that all transport materials are
exclusively used for fossil fuel transportation. Vehicles used for gas and oil
transport are specifically designed to withstand hazardous conditions,
including high pressure, flammability, and contamination risks, making
repurposing for other types of transportation significantly more
challenging”. Additionally, strict safety regulations, material compatibility
concerns, and the need for extensive decontamination further restrict their
potential for reuse outside the fossil fuel sector’*”*. However, some transport
vehicles, particularly those used for coal transport, may be repurposed for
other energy sectors or general freight.

Beyond recycling, repurposing fossil fuel infrastructure presents an
alternative pathway. One example is converting decommissioned gas
pipelines into hydrogen pipelines’”*”, which could extend the lifetime of
certain infrastructure while supporting the clean energy transition.

However, notable challenges remain due to the distinct properties of
hydrogen compared to natural gas, including issues like steel embrittlement
and leak detection, which are not investigated in this study™”. Further
research is needed to determine viable pipeline components for repurpos-
ing, along with appropriate technologies and costs. Moreover, repurposing
comes with trade-offs, as it may delay material recovery through recycling. A
careful evaluation of material efficiency and long-term sustainability is
essential to balance these approaches®.

Ultimately, a substantial amount of material will continue to be
required for fossil fuel infrastructure through 2050 under both the SSP2(BL)
and SSP2(2D) scenarios. This indicates that much of the material embedded
in fossil fuel infrastructure will remain in use and unavailable as a secondary
resource during this period. Therefore, accelerating the transition to
renewable energy and reducing fossil fuel dependence could not only

decrease the demand for new fossil infrastructure but also improve the
availability of secondary materials within the system.

Methods

System definition

FUMA is one of the dynamic MFA modules attached to the IMAGE model*
used to support climate policies*"*. Similar models have been developed for
buildings***, for the electricity system”, and vehicles®. These models are
summarized as IMAGE-MAT®, use socio-economic and technological
information from the IMAGE model and translate that in several steps to
material flows and stocks. FUMA does the same for the fossil fuel
infrastructure.

The main novelty of FUMA is the incorporation of the IAM, such as
IMAGE, into the dynamic MFA model. We use the material-specific data
for fossil fuel infrastructure and make the connection with the fossil fuel
demand projections from IMAGE. We employ FUMA to assess the use of
several major metals: steel, copper, and aluminium. This study covers the
main stages of the fossil fuel supply chain, from extraction and industrial
processing to distribution***'. Figure 4 provides a schematic overview of the
modelling approach and system boundaries, where the dashed box repre-
sents the excluded processes, and the solid boxes indicate the included
system components. Specific modelling steps and components are detailed
in the Supplementary Method.

Model description

The analysis presented is based on the FUMA model framework, which
starts with a base year (2019) of fossil fuel demand and proceeds to calculate
the required scale and functioning of operational infrastructure (including
extraction, industrial processing, and transport) to meet that demand.

A linear scaling approach is applied to project fossil fuel use in
two scenarios from the IMAGE model, deriving the required global
infrastructure stocks over time. Subsequently, by employing stock-
driven modelling routines®***, FUMA translates IMAGE’s projected
fossil fuel demand data® into a demand for in-use infrastructure
stock. This process enables the production of new infrastructure and
the demolition of obsolete infrastructure. Additionally, it involves
creating connections with materials intensity data and involving the
normally distributed lifetime functions, enabling the calculation of
materials stock and flow.

Scenario construction

The annual fossil fuel demand under different scenarios was derived from
the IMAGE model®'. We present a baseline scenario (BL) that is consistent
with the “Middle of the Road (Medium challenges to mitigation and
adaptation)” second shared socioeconomic pathway (SSP2) - SSP2(BL),
which describes a development consistent with intermediate challenges for
both adaptation and mitigation®***”. Besides, to examine the impacts on
fossil fuel material demand under different climate targets, we compared the
SSP2(BL) scenario with a programmed mitigation pathway that meets the
target of limiting global warming to below 2-degree above pre-industrial
levels, still in line with SSP2: the SSP2(2D) scenario. We divided the final
energy categories into eleven direct fossil fuel end-users. The related Sankey
diagrams and interpretations to elaborate on this allocation are included in
Supplementary Fig. 6.

Base year and future material stock and flow calculation

We access the material composition data and the lifetime data for the fossil
fuel infrastructure from the background reports of Ecoinvent3.8”". The base
year data of fossil fuel demand is sourced from IMAGE. These datasets are
used to calculate material intensity per unit of activity across different stages
of the fossil fuel supply chain, such as fuel extraction, gas processing, and
refining. Additionally, we derive the transport stock demand for fossil fuels
in the base year by combining the transport turnover demand (ton-kilo-
meter per unit of fossil fuel, tkm/kg or tkm/m®) with data on the weight of
different transport vehicle modes. This allows us to estimate the total
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the stock of materials in the vehicles based on the fraction of the weight of
materials in the different vehicles®. In addition, for oil and gas, we calculate
the pipeline stock in kilometers of pipeline length in the base year, 2019. This
includes categorized length calculations for natural gas transmission and
distribution pipelines and crude oil and petroleum product pipelines.
(Supplementary Tables 9 and 10). To eliminate the geographical mismatch
of energy production and consumption, the base year fossil fuel infra-
structure stocks have been redistributed based on the regional share of global
fossil fuel demand so that final fossil fuel consumption drives the require-
ment for fossil fuel infrastructure elements.

From the base year infrastructure stock and the projected energy
demand in IMAGE®, we then derived the fossil fuel infrastructure
stock yearly. The dynamics of fossil fuel infrastructure using a stock-
driven approach are based on references®**. We assess the demo-
lition from the existing fossil fuel infrastructure stock using a lifetime
model based on documented lifetime distributions’>. Then, the con-
struction can be calculated using the basic mass balance (inflow =
outflow + Astock). Using material intensity data for specific infra-
structure elements, we calculate the corresponding material flows and
stocks. A detailed description of the model, the data used, and
assumptions, as well as numerical results, is provided in the Supple-
mentary Methods.

The project energy demand data under different climate scenarios are
sourced from the IMAGE model: https://www.pbl.nl/en/image/data. The
processed data used to generate the figure are available at Zenodo via the
following link: https://zenodo.org/records/15072780.

Code availability
The scripts and data used to run the FUMA model are available on Zenodo:
https://zenodo.org/records/15072780.
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