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7.1. Summary and general discussion 

Pseudomonas aeruginosa is classified by the World Health Organization as a top-

priority pathogen, owing to its capacity for severe infections and its resistance to 

many antimicrobials. This threat is particularly acute for immunocompromised 

patients, such as those with cystic fibrosis (CF), who oơen acquire chronic P. 
aeruginosa infections early in life. Prolonged antimicrobial exposure in these 

infections drives the development of multidrug-resistant strains. To combat this 

rise in resistance, it is increasingly recognized that understanding how P. 

aeruginosa survives within the CF lung is crucial. In this context, a key element 
lies in the infectious microenvironment, which shapes bacterial physiology and 

influences antibiotic efficacy1. In an effort to capture the influence of the 
infectious microenvironment, recent studies have employed innovative in vitro 

culture media to better replicate the infectious phenotype. However, the diverse 

microenvironments in the CF lung, coupled with the biological versatility of P. 

aeruginosa, call for a more comprehensive approach to elucidate its triangular 

relationship with antibiotic pharmacodynamics (PD). This thesis hypothesized 

that nutrient conditions in the environment play a central role as 

pharmacodynamic drivers and key determinants in the evolution of antibiotic 

resistance, ultimately affecting therapeutic outcomes.  To address this, 
foundational work was conducted to elucidate how altered nutrient and oxygen 

conditions influenced the antibiotic pharmacodynamics of P. aeruginosa. 

 

In Section I, a comprehensive overview of the diverse microenvironments within 

the CF lung was provided and the ways in which P. aeruginosa adapts to the 

available nutrients were described (Chapter 2). This thesis highlights that these 

microenvironments can vary among patients and even within the same lung, 

potentially affecting P. aeruginosa adaptation in distinct ways. To explore this in 

more detail in Section II, the impact of specific nutrients (Chapter 3) and oxygen 

gradients (Chapter 4) relevant to the CF lung on antibiotic sensitivity was 

investigated. In Section III, the role of microenvironmental interactions in 

driving evolutionary processes by influencing the selection of mutants was 

examined. It was discussed how exploiting metabolic adaptations during 

resistance evolution may offer therapeutic advantages (Chapter 5), and P. 
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aeruginosa adaptation during antibiotic resistance development was reported 

under single-nutrient conditions (Chapter 6). 

Adaptation to heterogeneous cystic fibrosis lung  

In Chapter 2, the nutrient environments present in the CF lung were reviewed 

for its role in shaping the metabolic adaptation of P. aeruginosa, as these 

adaptations play a key role in the failure of antibiotic therapies. The bacterial 

metabolic state determines bacterial growth, redox balance, and energy levels, 

all factors that influence antibiotic susceptibility. In this context, the thick, 

dehydrated mucus in the CF lung creates diverse microenvironments 
characterized by nutrient-rich but oxygen-limited conditions. These gradients 

support the formation of biofilm aggregates by P. aeruginosa, which further 

compartmentalize nutrients and oxygen, shaping metabolic heterogeneity. The 

metabolic versatility of P. aeruginosa is central to its survival and adaptation 

within the CF lung environments. P. aeruginosa can utilize a wide range of 

substrates, including amino acids and short-chain fatty acids, and flexibly switch 
between aerobic respiration, fermentation, and denitrification to maintain 
energy production under varying conditions2. 

 

Metabolic adaptations strongly influence antibiotic sensitivity. Antibiotics such 
as aminoglycosides, fluoroquinolones, β-lactams, and polymyxins all depend on 

specific metabolic states for their effectiveness3. P. aeruginosa can rewire its 

metabolism by suppressing respiration, activating metabolic shunts, or 

producing protective extracellular matrix components, thereby reducing the 

impact of these drugs. 

Importantly, the CF lung microenvironment is not uniform. Intra- and 

inter-patient variability shaped by factors like lung compartmentalization4, CF 
genotype5, comorbidities6  leads to significant differences in nutrient availability 
and thus in antibiotic response. Understanding these metabolic responses in 

physiologically relevant contexts is a critical step toward more effective, 
personalized antibiotic interventions. Progress depends on integrating clinical 

insights with advanced in vitro models and multi-omics approaches to accurately 

reflect the complex CF lung environment7. Overall, this chapter outlined the 

current understanding on this topic and identified important gaps to guide future 

research. 
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Nutrients shape antibiotic treatment response 

Nutrients and oxygen are among the most evident drivers of metabolic processes, 

which have increasingly been linked to the mechanisms of action of multiple 

antibiotic classes8,9. As a result, reduced antibiotic sensitivity is oơen associated 
with nutrient-scarce or oxygen-deprived environments, and supplementation is 

sometimes used to sensitize pathogens10. Although these observations highlight 

the regulatory role of the nutrient environment in shaping microbial responses 

to antibiotics, the impact of specific conditions relevant to the CF lung remains 
poorly understood. 

 

In Chapter 3, the impact of specific nutrients antibiotic sensitivity was 

investigated. To this end, a basal culture medium was modified by alternately 

adding individual nutrients, and changes in antibiotic response were measured 

using time-kill assays with a bioluminescent P. aeruginosa strain, allowing real-

time monitoring of bacterial population dynamics.  

Using mathematical PD modeling, changes in antibiotic responses across 

different nutrient conditions were assessed. By focusing on quantification of 
changes in the half-maximal effective concentration (EC50), nutrient-induced, 

antibiotic class-specific changes in antibiotic PD were revealed, indicating 

distinct underlying biochemical mechanisms. This finding expands beyond the 
traditional view of reduced metabolic activity in nutrient-poor conditions 

typically correlated with antibiotic tolerance or persistence mechanisms3. The 

absence of significant fitness differences among bacterial populations in our 
media formulations further suggests that biochemical, rather than purely 

growth-rate dependent adaptations, underly the observed sensitivity shiơs. This 
aligns with a previous mathematical model, showing a stronger correlation 

between antibiotic lethality and metabolic states rather than growth rates alone11.  

Investigating the impact of single-nutrient alterations provides 

mechanistic clarity by establishing a direct relationship between specific 
metabolic pathways and antibiotic responses. These single-nutrient effects were 
shown to have clinical relevance, as illustrated by our in vitro pharmacokinetic-

pharmacodynamic (PK-PD) simulations showing nutrient-induced changes in 

treatment outcomes. Previous studies have similarly shown the potential for 

leveraging nutrient-based findings to identify adjuvant therapies, combining 
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antibiotics with nutrient modulation to enhance bacterial killing10. While it is 

important to acknowledge the inherent limitations of our in vitro models, since 

antibiotic responses in clinical environments involve a broader and more 

complex range of interactive factors, our results nonetheless represent 

meaningful progress. Specifically, these findings advance our understanding of 
the personalized nature of treating P. aeruginosa infections, which are heavily 

influenced by microenvironmental interactions.  

In addition to nutrient availability, oxygen levels represent another key 

environmental factor that is oơen overlooked in conventional in vitro 
antimicrobial activity assays. In Chapter 4, the specific impact of oxygen 
availability on antibiotic responses in P. aeruginosa was investigated. Instead of 

focusing solely on acute responses to anoxia, the study also assessed how 

prolonged anoxic exposure (<1% oxygen for 22 days) impacts antibiotic 

sensitivity. To this end, time-kill assays were performed, comparing a laboratory 

strain of P. aeruginosa to lineages adapted through prolonged growth under 

anoxic conditions. 

The results indicated that antibiotic effects under anoxic conditions are 
antibiotic-specific, consistent with known differences in oxygen dependency 
among antibiotic mechanisms of action reported previously12–14. The antibiotic 

sensitivity profiles changed profoundly following prolonged anoxic conditioning, 
suggesting sustained modifications in cellular processes related to antibiotic 
sensitivity. Importantly, these differences sustained when anoxically adapted 

strains were subsequently cultured under atmospheric conditions, underscoring 
stable physiological adaptations. 

The distinct antibiotic sensitivity profiles observed following anoxic 
adaptation highlight the potential limitations of standard in vitro antimicrobial 

activity assays, which do not accurately replicate conditions of anoxic infection 

sites. This emphasizes the urgent need to develop culture conditions that better 

mimic in vivo infection environments. Additionally, the  findings suggest that 
brief exposure to clinically relevant conditions is insufficient. Instead, a 

comprehensive characterization encompassing multiple, sustained 

environmental conditions is required to reflect the true complexity of clinical 
infections. Although this study initially focused on conditions relevant to cystic 

fibrosis (CF), similar considerations likely apply to other P. aeruginosa infection 
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sites, such as urinary tract infections15, mucus plugs in chronic obstructive 

pulmonary disease (COPD) or bronchiectasis16.  

 

Overall, the findings in Section II highlight the critical role of metabolic 

regulation in determining antibiotic sensitivity of P. aeruginosa under diverse 

nutrient and oxygen conditions. Nutrients and oxygen form the foundational 

components for cellular biosynthesis and energy metabolism. Thus, their 

influence on antibiotic effectiveness might logically follow, since antibiotics oơen 
target actively dividing cells. However, the results demonstrate that antibiotic 

sensitivity can be substantially altered by even single-nutrient changes, with 

specific outcomes dependent on the precise combination of nutrient conditions 
and antibiotic class. 

The observations across various antibiotic classes support the concept 

that increased nutrient availability does not necessarily translate into enhanced 

antibiotic efficacy. Research on the metabolic-targeting natural product 

promysalin, which can exhibit both synergistic and antagonistic effects when 
combined with standard antibiotics in P. aeruginosa17, underscores that nutrient 

metabolism can activate protective cellular pathways that counteract antibiotic 

actions. This indicates that nutrient metabolism can indeed trigger protective 

cellular pathways dependent on the antibiotic pressure18. It is also important to 

acknowledge that P. aeruginosa harbors an efficient hierarchical nutrient-

utilization regulatory systems in nutrient-rich conditions, which means that 

combining separate nutrient media formulations will likely not produce additive 

antibiotic sensitivity effects. For example, P. aeruginosa can produce redox-active 

metabolites that suppress respiration and induce a low-energy cellular state even 

in oxygen-rich conditions19. These nutrient-induced metabolic changes result in 

phenotypic adapted strains over long-term colonization of the CF lung20. The 

findings in this section demonstrated that these adaptation processes profoundly 

impact antibiotic sensitivity profiles. Such insights underscore the importance of 

elucidating the biochemical basis of nutrient-driven antibiotic sensitivity and 

highlight the need for integrative, phenotype-focused -omics approaches. 

Metabolomics and proteomics are powerful techniques that can capture subtle 
shiơs in intracellular metabolite concentrations, enzyme levels, and metabolic 

flux patterns, thereby providing a high-resolution view of the metabolic 

reconfigurations during antibiotic treatment21,22.  
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If we are to adopt a more biochemically informed approach, it is crucial that 

future studies be conducted in environments representative of both the 

antibiotic s̓ mechanism of action and the conditions of actual infections. In 
addition to the incremental approach of distinguishing the effects of individual 
nutrients, detailed investigation into the nutrient composition of the infectious 

environment is essential. The infectious microenvironment is dynamically 

shaped by interactions with host cells and microbial communities, generating 

metabolic byproducts and oxidative stress that modulate bacterial metabolism. 

Consequently, the use of co-culture systems that model host-pathogen23 or 

polymicrobial interactions24 is essential for fully capturing the intricate interplay 

between nutrient environments and antibiotic sensitivity. By building on this 

experimental data, future research can more accurately account for the complex 

nutritional and metabolic landscapes which P. aeruginosa exploits to influence 
antibiotic susceptibility.  

Nutrients shape antibiotic resistance evolution 

It is well established that phenotypic changes play a central role in the adaptive 

capacity of populations, driving natural selection. In this context, populations 

that adapt to environmental perturbations with higher fitness levels come to 

dominate. Under antibiotic pressure, heritable changes, such as chromosomal 

mutations that confer resistance through target modifications, reduced uptake, 
or increased active efflux, rapidly prevail. These changes are oơen integral to 
essential cellular mechanisms and, consequently, frequently incur a fitness cost. 
Beyond the fact that alterations in fitness and resistance mechanisms induce 
metabolic changes, it is increasingly recognized that mutations affecting 
metabolism represent a key category of antibiotic resistance mechanisms25.   

In Chapter 5, metabolic adaptations during antibiotic resistance 

evolution were reviewed, and it was discussed how metabolomics can be applied 

to understand and exploit these adaptations. Although metabolomics is the 

comprehensive study of all small molecules in a biological sample, there is no 

single analytical method that can measure them all due to their extensive 

physicochemical diversity. Therefore, effective metabolomics studies require 
thoughtful selection of analytical approaches and sample preparation methods 

that are tailored to the specific biological questions at hand. For example, the role 
of metabolic quenching was discussed to counter the high turnover rate of energy 
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metabolism; apolar extraction procedures were highlighted for retrieving 

membrane profiles for studying cell envelope changes; and spatially oriented 

ionization techniques were noted for their utility in examining cell-to-cell 

communication within biofilm structures. Although 23 metabolomics-focused 

papers were included in the review, these studies were distributed across various 

bacterial species and antibiotic classes. It can therefore be concluded that a more 

systematic application of metabolomics is needed to further elucidate the role of 

metabolism in antimicrobial resistance mechanisms. 

In Chapter 6, the role of metabolism in antibiotic resistance evolution 

was further explored by challenging the metabolic versatility of P. aeruginosa 

through antibiotic adaptive laboratory evolution experiments conducted under 

single-nutrient conditions. This work was built on the concept that the metabolic 

constraints imposed by antibiotic resistance mutations, together with the 

regulatory influence of nutrient supply, shape the evolutionary response26,27. 

Phenotypic and genotypic changes in P. aeruginosa were investigated following a 

10 day evolution period under antibiotic pressure, using high concentrations of 

arginine, glucose, glutamate, and lactate as single-nutrient conditions.   

The evolved lineages displayed significant differences in minimal 

inhibitory concentrations (MIC) across the single-nutrient evolution conditions. 

Earlier work also reported nutrient-dependent MIC shiơs in P. aeruginosa, but 

primarily when comparing nutrient-rich with nutrient-poor media28. Although 

that study found only modest MIC divergence, it still identified medium-specific 
resistance mutations. In our experiment, mutations unique to specific evolution 
conditions were also detected, but only six across the 15 distinct conditions that 

were sequenced. An additional partial least-squares discriminant analysis 
(PLS-DA) revealed a small set of mutational patterns that reliably distinguished 

our evolution conditions. The narrow range of mutational change parallels the 

almost identical post-evolution growth-rate shiơs observed within each antibiotic 
class. This limited fitness variation steers the populations toward a restricted set 

of genotypes29.  

These findings demonstrated that even in single-nutrient media 

P. aeruginosa can evolve along multiple trajectories. However, this diversity 

manifests primarily as shiơs in MIC rather than as distinct mutational signatures. 
Because P. aeruginosa can persist in the CF lung for years, the phenotypic changes 
observed may eventually solidify into stable genotypic differences. Continuous, 
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automated in vitro systems are well suited to study such long-term evolution30, 

but they are technically demanding, time-consuming, and resource intensive. A 

more practical first step would be to investigate in more detail how 

infection-relevant nutrient conditions shape antibiotic resistance development, 

bearing in mind that altering even a single nutrient can tip the evolutionary 

balance. 

 

In summary, Section III highlighted that metabolic processes play a crucial role 

in antibiotic resistance development and demonstrated that, despite its 

metabolic versatility, nutrients exert a regulatory influence on P. aeruginosa 

resistance development. Although our findings delve into how the nutrient 
environment contributes to the complex evolutionary trajectories observed in the 

CF lung, they represent only a small piece of the overall picture, and further 
research in this area remains essential. Nevertheless, the results indicate that the 

influence of the nutrient environment is antibiotic-dependent, underscoring the 

need for more in-depth investigation of the biochemical responses and 

specialization processes that occur during antibiotic exposure. 

7.2.  Future perspectives  

Antibiotics are indispensable for everyday healthcare, yet immunocompromised 

patients bear a disproportionate burden of infectious disease and also serve as a 

reservoir for antibiotic-resistant strains. Examining infections in these 

individuals provides an unique window into the various ways antibiotic therapies 
can fail. The CF lung represents such an unique environment, where a typically 
commensal bacterium like P. aeruginosa becomes one of the most challenging 

infections to treat. Understanding the mechanisms that make the combination of 

the CF lung and P. aeruginosa so burdensome may also offer critical insights into 
other bacterial infections. A key factor shaping P. aeruginosa infection in the CF 
lung is the unique nutrient environment, yet this aspect is oơen overlooked. The 
nutrient environment can profoundly influence bacterial behavior and can lead 
to misinterpretation of antibiotic susceptibility testing performed using standard 

culture media. Therefore, in the quest to better understand the P. aeruginosa 

pathophysiology, it is essential to focus on: I) mapping physiologically relevant 

infection sites, II) examining the influence of nutrients on antibiotic 
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susceptibility testing, III) working on capturing nutrient-induced antibiotic 

sensitivity changes, and IV) elucidating the underlying biological mechanisms 

responsible for the antibiotic effect changes.  

Mapping of physiologically relevant infection sites 

The respiratory tract is a spatially organized system comprising diverse 

microenvironments, each of which may support distinct infection dynamics31. 

The findings presented in this thesis, demonstrating the strong influence of 
nutrient availability on antibiotic pharmacodynamics, underscore the critical 

need to improve our understanding of the chemical composition of these distinct 

niches. Accurate mapping of these environments is therefore an essential next 

step in this line of research. 

It is crucial to recognize that not all samples taken from the CF lung are 
created equal and each sample carries inherent biases and limitations that 

influence interpretation. For instance, expectorated sputum is the most 
accessible and commonly used sample type, but it represents a heterogeneous 

blend of secretions from multiple regions of the lung. This pooling of distinct 

microenvironments reduces spatial resolution and contributes to a substantial 

disconnect between the chemical profiles observed in sputum and those derived 

from in vitro P. aeruginosa cultures32. Sampling epithelial lining fluid via 
microsamplers offers more region-specific insights but is limited by its 
invasiveness and the need for saline instillation, which dilutes the sample and 

complicates direct metabolite comparisons across patients or timepoints33,34. 

Another layer of complexity arises from the heterogeneous biofilms. Spatially 

resolved analytical techniques have revealed intricate metabolic structuring 
within biofilms, including mathematical models informed by -omics data that 

demonstrate their metabolic heterogeneity35.  

The field of oncology has pioneered efforts to address such complex 
biological heterogeneity through network-based frameworks. Over the past 

decade, researchers have begun constructing multiscale “tumor atlases” that 

integrate cellular phenotypes, bulk -omic alterations, and interactions with the 

tumor microenvironment36. These atlases are built by combining conventional 

pathology with spatial biology and multi-omic datasets, offering a comprehensive 
view of tumor evolution shaped by local conditions37. Beyond advancing 
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fundamental understanding, these tools now support stratification of patient 
populations and guide personalized treatment strategies. 

Inspired by these advances in oncology, future efforts to characterize the 
infectious microenvironment of the CF lung must similarly embrace integrative, 
spatially resolved frameworks. This means not only aligning molecular, 

microbial, and pathological data layers, but also actively distinguishing between 

different CF patient phenotypes. Stratifying infections based on 

microenvironmental features will be essential for translating nutrient-induced 

pharmacodynamic effects into meaningful, individualized treatment decisions. 

In vitro nutrient composition in antimicrobial activity assays 

While our understanding of the spatial and chemical complexity of the infectious 

environment advances, accurately measuring its clinical impact requires that in 

vitro antimicrobial activity assays be adapted accordingly. The physicochemical 

composition of the culture medium represents a critical and tractable factor for 

more accurately mimicking infectious conditions38. Prior studies have shown that 

medium composition can significantly alter antibiotic activity39, and findings 
presented in Chapter 3 demonstrate that even a single nutrient modification can 
markedly shiơ antibiotic sensitivity. Combined with the environmental 
heterogeneity outlined previously, these results underscore the need to adapt in 

vitro antimicrobial assays to infection-specific microenvironments to better 
predict clinical outcomes and guide therapy. 

Nutrient conditions are also likely to influence other in vitro 

antimicrobial activity assays, including combination antibiotic testing and 

biofilm susceptibility testing. For instance, the synergy of antibiotic 
combinations depends on drug-specific mechanisms of action40, which can be 

sensitive to medium composition41. In biofilm models, nutrients critically impact 
maturation. In the CF lung, P. aeruginosa grows in aggregates that can be 

mimicked using alginate beads, but mature biofilms represented by full bead 

coverage require supplementation with alternative electron acceptors42. The 

reduced antibiotic susceptibility of biofilm populations are closely linked to the 

metabolic adaptations associated with their heterogeneous structure43. 

Incorporating infection-relevant nutrient environments into these alternative in 

vitro assays may be essential to overcome the inconsistent clinical outcomes they 

currently produce44,45.  
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Completely changing the in vitro experimental methodologies for clinical 

antimicrobial susceptibility testing (AST) is challenging, as current standardized 

protocols ensure interlaboratory comparability and are far less time-consuming 

than alternative approaches. Another potential step in improving AST is refining 
isolate selection by extracting bacterial populations from different lung regions 
of the same patient, as regional adaptations may significantly influence antibiotic 
susceptibility46. For example, Chapter 4 shows that oxygen levels affect antibiotic 
sensitivity, highlighting how microenvironmental specialization drives distinct 

colony phenotypes. A well-known CF-relevant subpopulation, small colony 

variants (SCVs), can survive otherwise lethal antibiotic concentrations but are 

oơen underrepresented in conventional AST due to their difficult-to-culture 

nature47. Moreover, as demonstrated in Chapter 4, specialization to anoxic 

conditions can lead to different treatment outcomes during aerobic in vitro 

experiments. To accurately assess antibiotic susceptibility in such specialized 

populations, AST must replicate the infection conditions under which isolates 

evolved. In this context, incorporating anaerobic AST may be particularly 

valuable for chronic P. aeruginosa infections. 

In summary, accurately predicting antibiotic efficacy in the 
heterogeneous CF lung environment will require antimicrobial assays that 

incorporate relevant nutrient conditions, assay parameters, and isolate selection. 

Nutrient induced changes to antibiotic pharmacodynamics  

To map how nutrient availability modulates antibiotic PD, this thesis moved 

beyond static MIC testing and applied dynamic time-kill assays combined with 

mathematical modeling. Although MIC values remain the clinical standard, they 

cannot resolve the differences in growth and kill kinetics that emerge 
immediately aơer antibiotic addition. Recording full time-kill curves in different 
media conditions and fitting them with PD models revealed that identical MICs 
can mask substantial variation in growth and kill rates48. These lessons underline 

the need to complement standard AST with kinetic assays that explicitly 

incorporate nutrient context. 

Both the nutrient and oxygen environments exert a significant influence 
on these growth and killing dynamics, as they are oơen associated with slow 
growth, tolerance, and persistence effects. In Chapter 3, a sigmoidal 

concentration–effect model was employed to more accurately describe the 
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antibiotic PD changes under varying nutrient conditions. Although this approach 

enabled the study of a wide range of antibiotic–nutrient combinations, it also 

presents clear disadvantages when moving towards more antibiotic-specific 
responses. The response data used to design our one-compartment PD model 

were obtained from a static time-kill assay, which fails to accurately capture 

biphasic killing curves of heterogeneous populations, exhibits variability 

depending on bacterial population size, and fails to track bacterial adaptation 

during antibiotic exposure. These limitations highlight the need for dynamic in 

vitro culturing systems, which could provide deeper insight into time-dependent 

PD characteristics like shiơing growth and killing kinetics and resistance 
development49.  

Chapters 3 and 4 demonstrated that nutrient availability strongly 

influences antibiotic sensitivity, and in Chapter 6 genetic outcomes of resistance 

evolution under these varied conditions were observed. To bridge these findings, 
PD models capturing the full time course of antibiotic effects can reveal 
differences in antibiotic selection pressure. These PD differences can 

subsequently inform population genetic models, linking observed antibiotic 
sensitivity shiơs directly to genetic variation50. The complex interplay between 

nutrient conditions, bacterial growth rates, and antibiotic susceptibility 

highlights the difficulty of accurately replicating selective pressures in vitro. 

Although continuous culture systems (e.g., chemostats) are technically 

challenging to maintain, they offer more precise control. Chemostats allow 

microbial populations to be maintained in a constant environment over extended 

periods, while enabling deliberate manipulation of specific selective forces such 
as nutrient levels or antibiotic exposure51. 

Molecular drivers of nutrient induced antibiotic sensitivity changes 

An important aspect highlighted throughout this thesis is that changes in 

antibiotic effect are oơen unique to specific nutrient-antibiotic combinations. 

While significant progress has been made through the rapid development of 
genomic databases cataloging resistance-conferring mutations (ʻresistomesʼ)52, 
these approaches primarily correlate known mutations with antimicrobial 

resistance profiles. Less conventional mechanisms, such as metabolism-driven 

resistance, are oơen underrepresented in these databases, as they are embedded 

within more complex networks25. Resistance-associated mutations in such 



Chapter 7 

 

174  

 

networks typically arise aơer prolonged periods of selection pressure (Chapter 

6), whereas phenotypic adaptive responses can cause a transient reduction in 

antibiotic efficacy during earlier phases of exposure48, exemplified in Chapter 3. 

Although this thesis did not explicitly investigate molecular mechanisms, the 

observed nutrient-antibiotic-specific effects emphasize the need for future 
studies to dissect the specific biochemical responses involved.  

Transcriptomics, proteomics, and metabolomics probe molecular layers 

that lie much closer to the phenotype than genomic data, and thus provide the 

biochemical resolution needed to dissect antibiotic-response mechanisms. For 
example, whole-genome sequencing of two P. aeruginosa isolates accounted for 

only part of their divergent β-lactam phenotypes, whereas transcriptomics 

uncovered additional resistance-linked expression changes invisible at the DNA 

level53. Likewise, quantitative proteomics detected the early induction of heat-

shock chaperones, proteases, and metabolic enzymes when P. aeruginosa was 

exposed to sub-inhibitory tobramycin, highlighting rapid adaptive pathways54.  In 

Chapter 5, it was shown how metabolomics can track nutrient utilization, 

antibiotic-induced metabolite signatures21, and how those metabolic read-outs 

can be exploited by supplementing targeted nutrients to enhance antibiotic 

sensitivity9. Each technique carries its own analytical limitations and, most 
critically, captures only a snapshot of an inherently dynamic system.   

Fluxomics adds this missing temporal dimension by tracing how carbon 
and energy flow through metabolic networks under changing conditions. Such 

data reveal compensatory pathways that support survival during nutrient stress 

and antibiotic pressure55. Yet, building isolate-specific flux models for CF 
infections is data-intensive, and the necessary parameters for making robust 

extrapolations are seldom available.  

Recent genome-scale metabolic reconstructions, which integrate 

hundreds of reactions and multi-omics inputs, improve confidence in flux 
predictions. For example, a model combining transcriptomics, proteomics, and 
metabolomics successfully captured lipopolysaccharide remodeling during 

polymyxin resistance in P. aeruginosa56. These integrative models better capture 

time-dependent processes such as fluctuating drug concentrations or nutrient 
availability. 

Most -omics platforms are advancing toward single-cell resolution 

because that level of detail can reveal subtle phenotypic adaptations during 
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antibiotic exposure. Yet, despite their analytical power, single-cell studies have 

limited biological impact if they are not anchored to a broader mechanistic 

framework. The heterogeneity of bacterial populations is well established, as 

repeatedly illustrated by phenomena like antibiotic persistence57. Instead, 

research efforts should begin with established analytical techniques, integrate 
their datasets, and first map P. aeruginosa responses to each antibiotic. Once the 

antibiotic mode of action and the population-level biochemical responses have 

been well defined, single-cell approaches can then illuminate the fine-scale 

heterogeneity that underlies treatment failure. 

7.3. Overall conclusion 

In conclusion, this thesis demonstrates that shiơs in nutrient and oxygen 
availability can rewire P. aeruginosa physiology and alter antibiotic 

pharmacodynamics. These findings confirm that effective drug evaluation must 
consider antibiotic mechanism, pathogen physiology, and microenvironment as 

interdependent factors, especially for heterogeneous infection sites such as the 

CF lung. The work presented here lays the groundwork for explicitly 

incorporating nutrient and oxygen levels into antimicrobial sensitivity assay 

development and systems-level analyses of bacterial responses. Looking ahead, 

combining detailed infection-site mapping with environment-aware 

experimental assays represents a necessary first step toward patient-specific 
antibiotic therapy. 
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