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Abstract 

The pathogen Pseudomonas aeruginosa can exploit its metabolic flexibility during 
cystic fibrosis lung infections to reduce antibiotic sensitivity and offset antibiotic 
resistance costs, two key traits influencing its evolutionary trajectory. Although 
each trait has been associated with nutrient conditions, the link between nutrient 

conditions and antibiotic evolution remains poorly characterized. We examined 

how single-nutrient conditions influence antibiotic resistance evolution in P. 

aeruginosa through phenotypic and genotypic adaptations. We used adaptive 

laboratory evolution with different antibiotic classes in single nutrient media, we 
then compared these results to those obtained in nutrient-rich synthetic cystic 

fibrosis sputum medium (SCFM). Antibiotic susceptibility testing aơer evolution 

showed limited differences in minimal inhibitory concentrations (MIC) between 

single nutrient conditions for ceơazidime and imipenem, but more pronounced 
impact for ciprofloxacin, colistin, and tobramycin. Ciprofloxacin evolution 

resulted in the highest MIC increase, with at least a 4-fold increase observed in 

glutamate-evolved lineages, whereas glucose-evolved lineages showed up to 4-

fold reduction in MICs for tobramycin, compared to lineages evolved under all 

other nutrient conditions for the same antibiotic. Growth kinetics of the evolved 

strains showed reduced growth rates specific to the antibiotic but not the nutrient 
condition in itself. Whole-genome sequencing showed nutrient-specific 
mutational profiles for tobramycin and ciprofloxacin. Tobramycin evolution 
resulted in glucose specific mutation in wbpL and a SCFM-specific mutation in 

rplA, alongside fusA and pmrB mutations in multiple conditions. Ciprofloxacin 
resistance was not caused by a nfxB mutation in glucose and arginine evolved 

lineages, which was present in all other lineages, with a specific mutation in yicC 

in the glutamate evolved lineages. No distinct differences between nutrient 
conditions for colistin were observed. Overall, these findings underscore the 

significant role nutrient conditions play in shaping resistance and highlight the 
importance of considering physiologically relevant media when studying 

antibiotic resistance evolution. 
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6.1. Introduction 

Pseudomonas aeruginosa is the most prevalent pathogen causing chronic 

infections in the distinctive lung environment of adult cystic fibrosis (CF) 
patients1. This dominance is attributed to the exceptional metabolic versatility of 

P. aeruginosa and its rapid capacity to develop antimicrobial resistance2–5. 

Growing evidence highlights a strong interconnection between these traits, as 

metabolism influences antibiotic sensitivity and antibiotic resistance 
mechanisms impose a metabolic burden6–9. To advance our understanding of 

antibiotic resistance evolution, it is crucial to study how nutrients in the 

environment shape this relationship, a process that remains poorly explored.   

In the CF lung, P. aeruginosa can utilize a diverse array of nutrients, 

including amino acids and short-chain fatty acids, whose composition varies 

substantially among different microenvironments10,11. P. aeruginosa adapts its 

metabolism to these varying conditions, which results in class-specific effects on 
antibiotic sensitivity12–15. Altering a single nutrient in the culture condition has 

been shown to significantly impact antibiotic sensitivity16. Because antibiotic 

sensitivity is a key determinant of selection strength during antibiotic resistance 

evolution17, nutrient-induced changes in antibiotic sensitivity can drive the 

emergence of diverse antibiotic-resistant lineages.  

Nutrients also play a role in reducing the fitness cost of antibiotic 
resistance mutations that alter vital cellular functions, by supporting efficient 
metabolic rearrangement18–20. Consequently, resistance mechanisms with high 
metabolic burden are less likely to prevail in nutrient-poor environments as this 

imposes a metabolic constraint21.  

Overall, these studies demonstrate that nutrient environments 

profoundly influence metabolic adaptations, antibiotic sensitivity, and fitness 
compensation, all of which shape the evolution of antibiotic resistance. However, 

the high variability within the CF lung environment, combined with pronounced 
phenotypic variability, complicates direct comparisons between laboratory 

conditions and clinical scenarios. Prior research has mainly addressed 

comparisons between nutrient-rich and nutrient-poor environments concerning 

fitness landscapes21,22. The subsequent essential step is understanding how 
specific nutrients individually impact resistance evolution. Given the well-
documented metabolic flexibility of P. aeruginosa23, accurately evaluating the 
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influence of individual nutrients within complex media remains challenging. 
Instead, examining central carbon metabolism responses to single-nutrient 

conditions can reveal precisely how nutrient-specific adaptations cascade into 
broader metabolic and biochemical changes24. Elucidating how these specific 

nutrient induced changes influence antibiotic resistance evolution could be 
essential for optimization or selection of more clinically relevant laboratory 

conditions.  

 

In this study, we challenged the P. aeruginosa metabolic flexibility in single 
nutrient conditions during antibiotic resistance evolution and explored the 

phenotypic and genotypic adaptation capabilities in these environments. We 

conducted adaptive laboratory evolution (ALE) for a range of common antibiotics 

used to treat P. aeruginosa (ceơazidime, ciprofloxacin, colistin, imipenem, and 
tobramycin), utilizing single nutrient media. The selection of the nutrients 

arginine, glutamate, glucose, and lactate was based on their physiological 

relevance in CF mucus and their distinct roles in P. aeruginosa metabolism10,24. 

These nutrients have also been shown to affect antibiotic sensitivity differently16. 

Nutrient concentrations were set at 30 mM to prevent nutrient starvation, thereby 

maintaining stable growth conditions throughout evolution experiments. We 

assessed phenotypic changes of the nutrient-antibiotic combinations through 

antibiotic susceptibility testing and growth rate analysis, and genomic changes 

through whole genome sequencing. To contextualize these findings, we 
compared the results from single-nutrient conditions to those from a nutrient-

rich synthetic CF medium (SCFM), providing insights into how P. aeruginosa 

adapts and maintains metabolic flexibility in minimal environments.  

6.2. Material & Methods 

Strains and culture conditions 

Synthetic CF sputum medium (SCFM) was prepared consisting of physiologically 
relevant concentrations of nutrients in synthetic CF sputum as described 
previously10, 0.11M phosphate buffer, ammonium chloride, potassium nitrate, 
ferrous sulfate, Basal Medium Eagle 1x vitamins, and trace metals (Table S1). 

Single nutrient media were prepared with the salts, vitamins and trace metals as 

basal medium, spiked with 4 unique nutrients including arginine, glucose, 
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glutamate, or lactate, at a concentration of 30 mM. The P. aeruginosa PAO1 

laboratory strain (DSM 1117; DSMZ, Leibniz Institute, Germany) was used as the 

parental strain for all evolution experiments.  

Antibiotics 

Antibiotic stock solutions were freshly prepared on the day of the experiment and 

diluted to desired concentrations using an Opentrons OT-2 (Opentrons Inc., New 

York, NY, USA) liquid handling system. Ceơazidime pentahydrate was purchased 
from Thermo Fisher Scientific (Breda, The Netherlands). Ciprofloxacin, 
imipenem monohydrate, and tobramycin were purchased from Chem-Impex 

International (Wood Dale, IL, USA). Colistin sulfate was purchased from Cayman 

Chemical Company (Ann Arbor, MI, USA). 

Laboratory evolution experiment 

Three biological replicates of the P. aeruginosa starting cell line per media 

condition were propagated for 10 days under antibiotic pressure to examine the 

antibiotic resistance development between different culture conditions.  

P. aeruginosa PAO1 was streaked out on LB agar plates, and 10 randomly 

selected colonies were transferred to SCFM (2 mL) and cultured overnight. The 
liquid cultures were diluted to an optical density at 600 nm (OD600) of 0.05 to reach 

the starting inoculation solution, corresponding to an approximate bacterial 

density of 5*106 CFU/mL. The bacterial inoculum (100 µL) was added to 7 wells 

with fresh medium with increasing antibiotic concentrations (900 µL) in a 48-well 

microtiter plate. Aơer 48 hours of incubation, plates were transferred to a BMG 

microplate reader (Ortenberg, Germany) for OD600 acquisition. Cultures at the 
highest antibiotic concentration reaching the culture density threshold of an 

OD600 of 0.5 were transferred (100 µL) to a new range of antibiotic concentrations 

(900 µL) in a new 48-well microtiter plate. If the carrying capacity of any of the 

cultures did not exceed the OD600 threshold, the culture under the highest 

antibiotic pressure reaching at least 80% of the OD600 of the positive control was 

transferred. Cultures under ceơazidime pressure were extensively mixed and the 
threshold was increased to an OD600 of 0.65 due to the build-up of debris in the 

microtiter plate. At the end of the evolution experiment, the cultures reaching the 

OD600 threshold were transferred (100 µL) to an antibiotic free LB agar plate. 
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Colonies were collected with a pre-wet swab and stored in 20% glycerol in LB at -

80 °C. 

Antimicrobial susceptibility testing 

Ceơazidime, ciprofloxacin, imipenem, and tobramycin minimal inhibitory 
concentrations were determined for the parenteral P. aeruginosa PAO1 strain, the 

antibiotic-free lineages, and the lineages evolved under the pressure of the 

antibiotic in SCFM by a broth microdilution method.  Prior to each susceptibility 
test, fresh subcultures were prepared from the -80 °C stored colonies in 2 mL 

fresh SCFM. Susceptibility testing was conducted aơer 24 hours incubation at 37 
°C with orbital shaking at 150 rpm or 72 hours including two 20 µL passages into 

2 mL fresh SCFM medium. The starting cell density in each condition was 
approximately 106

 CFU/mL in a serial twofold dilution of the antibiotics in 96-well 

microtiter plates (Greiner Bio-one, transparent, flat bottom) with a total volume 
of 200 µL. The minimal inhibitory concentration (MIC) was defined as the first 
concentration of antibiotic with no visible growth aơer 24 hours of incubation at 
37 °C. 

Growth rate analysis 

Growth rate analysis was conducted by culturing the parental P. aeruginosa PAO1 

strain and all lineages in the single nutrient media and SCFM. The cells were 
subcultured in 2 mL SCFM and incubated for 24 hours at 37 °C shaking at 150 rpm 
before dilution to an optical density at 600 nm (OD600) of 0.05 before inoculation. 

The starting cell density was approximately 106
 CFU/mL in a transparent 96-well 

microtiter plate. Aơer inoculation, microtiter plates were transferred to a Liconic 
StoreX STX44 119 incubator (Mauren, Principality of Liechtenstein) for 

incubation (95% relative humidity). A Peak Analysis and Automation KX-2 

Laboratory Robot (Hampshire, United Kingdom) transferred the microtiter plate 

every hour between the incubator and the BMG Labtech Fluostar Omega 

microplate reader (Ortenberg, Germany) for time-course OD600 acquisition.  

Genome sequencing and bioinformatics  

Cells were subcultured in 2 mL SCFM and incubated for 24 hours at 37 °C shaking 
at 150 rpm. 500 µL of the subculture was pelleted by centrifugation for 10 minutes 

at 5000 x g. Genomic DNA was extracted using the QIAcube Connect automated 
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sample preparation system and DNeasy Blood & Tissue Kit extraction kit (Qiagen, 
Hilden, Germany) following the manufacturer s̓ protocols. Extracted DNA was 
sent to SeqCoast Genomics for short read whole genome sequencing and 
bioinformatic analysis. Bioinformatic analysis was executed using Breseq 
(version 0.37.0) for mutation prediction and analysis, Trimmomatic (version 0.39) 

for read trimming and quality control, and CNOGpro (version 
deprecated/restored) for copy number variation analysis towards the P. 

aeruginosa PAO1 reference genome. All sequences are stored in the Sequence 
Read Archive (SRA) database under the PRJNA1217434 identifier25.  

Data Analysis 

All data analyses were performed using R. Minimal inhibitory concentrations 

(MICs) for each evolutionary lineage were determined by calculating the median 

value from antibiotic susceptibility tests performed in quadruplicate (n = 4 
biological replicates). Fold changes in MIC were calculated relative to the median 
MIC of the parental strain. Antibiotic-free evolution did not result in any 

significant change in MIC compared to the parental strain (data not shown). To 
assess differences in MIC between conditions, a Welch two-sample t-test was 

conducted between the SCFM group and each single nutrient medium. 

Maximal growth rates (µmax) were determined using the splines 

function from the grofit package 26, fitted to growth curves (n = 3 biological 
replicates) for each evolutionary lineage. Growth measurements were recorded 

at regular intervals to ensure accurate curve fitting. Fold changes in µmax for 
antibiotic-evolved lineages were calculated relative to the corresponding 

antibiotic-free lineages in the same evolution medium. A Welch two-sample t-

test, using the R base function, was used to compare the evolved lineages with the 

antibiotic-free controls evolved under the same medium condition. 

To determine how mutation profiles differed between nutrient 
conditions, a partial least squares discriminant analysis (PLS-DA) was performed 

separately for each antibiotic using the mixOmics package 27. The first four 
components were extracted to generate Variable Importance in Projection (VIP) 

scores, which were used to evaluate the distinguishability of mutated genes 

across nutrient conditions. VIP scores provided a measure of each gene's 

contribution to differentiation between nutrient environments, aiding in the 

identification of key mutations. 



Chapter 6 

 

138  

 

6.3. Results 

Single nutrients conditions differentially shape antibiotic resistance 
evolution 

We assessed the impact of specific single nutrient conditions on antibiotic 
resistance acquisition in P. aeruginosa PAO1. To this end we performed serial 

passaging under stepwise increasing antibiotic concentrations for five different 
antibiotics for a period of 10 days. P. aeruginosa PAO1 evolved in nutrient-rich 

SCFM medium was used as control. We evaluated changes in antibiotic 
susceptibility for the lineages under differential medium and antibiotic 
conditions through determination of the relative change in minimum inhibitory 

concentration (MIC) of SCFM-lineages in comparison to the parental strain (Fig. 

1).  

 

 

 

  

Figure 1. Change in minimum inhibitory concentrations (MICs) for five antibiotics in 
lineages evolved under different medium conditions. P. aeruginosa PAO1 strain was evolved 

in single nutrient media (arginine, glucose, glutamate, lactate) and synthetic cystic fibrosis 
sputum media (SCFM) as control, under incrementally increasing antibiotic 
concentrations. All MICs were determined in SCFM. Bold horizontal lines represent the 

mean fold change in MIC of the evolution condition relative to the parental strain. 

Different evolutionary lineages are indicated by shapes: (•) for replicate 1, (▲) for replicate 

2, and (▪) for replicate 3. A Welch two-sample t-test was performed between the SCFM 
group and each single nutrient medium, with * indicating p < 0.05. 
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When considering the differential effects of media on resistance acquisition, for 
ceơazidime, the magnitude of MIC increase was consistently lower across all 
single nutrient media compared to SCFM, with limited differences between 
specific minimal media. For all four remaining antibiotics, substantial 
differences in MIC were found across single nutrient media. For ciprofloxacin, 
evolution in glutamate medium led to a substantially increased MIC, while the 

arginine condition results in a comparatively smaller MIC. Imipenem MICs only 

increased in arginine and glutamate medium, with no significant MIC change 
aơer evolution in SCFM, glucose, or lactate. For tobramycin, evolution in glucose 
medium resulted in substantially lower MICs compared to all other conditions. 

For colistin, the largest MIC increases were observed aơer evolution in SCFM and 
glutamate medium, while the smallest MIC decrease was noted in arginine. 

Across all antibiotics, it can be concluded that evolution in single nutrient media 

with arginine, glucose, and lactate oơen results in attenuated resistance 
acquisition, while resistance acquisition in glutamate media showed higher 
outcomes (Fig. S1).  

Resistance evolution under single-nutrient conditions results in 

limited fitness changes 

To evaluate if differences aơer evolution across single nutrient media could be 
explained by differences in fitness, we compared the maximal growth rate (µmax) 

of all evolution lineages under antibiotic-free conditions in the original evolution 

media and SCFM. Overall, largest effects on µmax were found when the original 

growth medium was used. Significant reductions in µmax were observed for 

ceơazidime and tobramycin lineages evolved in glucose, and for ciprofloxacin 
lineages evolved in arginine and lactate (Fig. 2). These reductions were however 

absent for µmax estimated derived in SCFM. The magnitude of changes in µmax did 

not correlate with the changes in MIC in the evolution lineages (Fig. S2).  

To further evaluate whether observed µmax changes were antibiotic or 

medium dependent, we performed growth rate analysis of all evolution lineages 

across all conditions (Fig. S3). The observed reduction in µmax for colistin- and 

imipenem-resistant lineages was consistent in glucose minimal media, 

regardless of the evolution media. Ciprofloxacin-resistant lineages generally 

exhibited reduced µmax in minimal arginine media, except for those evolved in 

lactate. Notably, ciprofloxacin lineages evolved in lactate exhibited reduced 
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growth in all other single nutrient media, suggesting a unique metabolic 
adaptation or trade-off specific to lactate-driven resistance evolution. 

 

 

Figure 2. Changes in maximal growth rate of antibiotic evolved lineages upon re-culturing 

in their evolution medium and SCFM. The maximal growth rates (µmax) were determined 
by applying a spline function to triplicate growth curves obtained under antibiotic-free 

conditions. Fold changes are calculated relative to lineages without antibiotic in the 
corresponding medium. A Welch two-sample t-test was used to determine the difference 
between the evolved lineages and the antibiotic free controls evolved in the same medium 

(* indicating p<0.05). 

 
 

Medium-specific genetic variations differentiate between evolution 
conditions.  
Whole genome sequencing was performed for final evolution lineages for 
ciprofloxacin, colistin, and tobramycin to evaluate genetic variants across 
parallel evolved biological replicates (Fig. 3). Single nucleotide polymorphisms 

(SNPs), insertions, and deletions observed with a frequency higher than 20% and 
present within more than 1 lineage were included due to large heterogeneity 

within evolutionary lineages.   

To determine how mutations differ between the evolution media, a 
partial least squares discriminant analysis (PLS-DA) was applied for each 

antibiotic. This analysis indicates the discriminatory importance of mutations 

that allow differentiation across specific medium conditions, quantified using a  
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Figure 3. Whole-genome sequencing-derived mutations in evolution lineages from 

different antibiotic and nutrient conditions. The occurrence of single nucleotide 
polymorphisms (SNPs), deletions, and insertions associated with annotated genes are 

indicated. The color scale represents the number of evolutionary lineages under the same 

condition where a mutation was observed. All mutations detected only once are excluded 

from the figure.   
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variance importance in projection (VIP) score. Mutations in the top six genes 

ranked by VIP score were selected and visualized as potential mutations 

associated with media-specific adaptation for each antibiotic (Fig. 4).  Among the 

top distinguishing genes, only three loci mutations appeared in a single evolution 

condition. Two were in tobramycin lineages: rplA for SCFM and wbpL for glucose 

medium (Fig. 4A). Other genes specific for tobramycin were mutations in the 
pmrB gene, which was mutated in all media except glucose, and the fusA gene, 

which was specific to arginine and glutamate minimal media. For ciprofloxacin, 
mutations in yicC were unique for the ciprofloxacin-glutamate condition, while 

mutations in nfxB were present in lineages evolved glutamate, lactate, and SCFM 
media (Fig. 4B). Finally, mutations in bisC, cobK, dgcP, PA3157, preA, pchH, and 

sdaA had high VIP scores for distinguishing evolution conditions when stratified 
by antibiotic, but were also present in various other media conditions across 

different antibiotics, including antibiotic-free evolution. The top VIP scores aơer 
colistin evolution consist only of these genes, indicating a limited presence of 

condition-specific mutations in colistin resistance (Fig. 4C).  

 

6.4. Discussion 

We demonstrated that P. aeruginosa can rapidly develop antibiotic resistance in 

single nutrient media, with the magnitude of MIC increase varying substantially 

between evolution conditions as well as antibiotics. Despite the MIC variation, 

changes in mutant growth rates (µmax) were generally consistent among lineages 

evolved under the same antibiotic. 

Across the single nutrient conditions, we found the smallest increase in MIC in 

lineages evolved for the beta-lactam antibiotics imipenem and ceơazidime. This 
may be explained by  resistance development against imipenem requiring 
multiple mutation steps28 and the limited duration of the evolution experiment. 

Previous findings demonstrated similar limited MIC increases for ceơazidime 
during evolution in minimal media conditions29–31. Lineages evolved during 

exposure to ciprofloxacin, colistin, and tobramycin, larger differences between 
MICs for different nutrient conditions were observed, which were further 
genetically characterized.  
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For ciprofloxacin lineages, the lowest MIC increases were found in arginine-

lineages and the highest increases in glutamate-lineages. These differences may 
be explained due to differences in accumulation of specific established 
fluoroquinolone resistance mutations, particularly gyrA and nfxB32. The gyrA 

gene encodes a subunit of DNA gyrase, which is the primary target of 

fluoroquinolones, and mutations in this gene typically reduce the binding affinity 
of the antibiotic. Mutations in nfxB lead to overexpression of the MexCD-OprJ 

efflux pump, which exports various antibiotics. Whilst mutations in gyrA were 

common across all media, the glutamate-lineages with the highest MIC increases 

also carried nfxB mutations. We observed no changes in µmax for these mutants, 

in line with previous reports for P. aeruginosa on compensatory effects 

Figure 4. Key mutations distinguishing mutational profiles of culture conditions across 
(A) tobramycin, (B) ciprofloxacin and (C) colistin. (Leơ) VIP (Variable Importance in 
Projection) scores from a 4-dimensional partial least squares discriminant analysis (PLS-

DA) highlight key mutations distinguishing culture conditions. The three lowest VIP scores 

for each mutation are colored grey, while the highest VIP score per drug is highlighted in 

black, and in red if identified as a key distinguishing mutation. (Right) Heatmaps display 
the six highest-scoring locus mutations, with colored tiles indicating mutation presence 

(x-axis) across evolutionary lineages (y-axis). These visualizations provide a comparative 

overview of mutation patterns across culture conditions and evolutionary lineages for the 

different antibiotics. 
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associated with gyrA mutations and nfxB-induced MexCD-OprJ efflux pump 
upregulation19,33. The burden of these compensatory effects could however still 
influence the evolutionary selection of these mutations. Ciprofloxacin-lineages 

demonstrated reduced µmax in arginine medium, the condition in which this 

specific mutation combination was absent. The absence of gyrA and nfxB 

mutations in arginine-lineages, along with the lower µmax of ciprofloxacin-

lineages in arginine, suggests that metabolic constraints may hinder the 

establishment of these mutations under such conditions. In the case of nfxB-

mediated upregulation of the MexCD-OprJ efflux pump, an active proton motive 
force (PMF) is required for export34. Arginine metabolism may lead to a reduced 

PMF, as energy can also be derived via the arginine deiminase pathway rather 
than PMF-generating oxidative phosphorylation35. Glutamate, by contrast, serves 

as a central metabolite in nitrogen metabolism and has been shown to reduce 

ciprofloxacin sensitivity in P. aeruginosa36–38. Glutamate has also been reported to 

enhance antibiotic penetration and counters efflux, thereby increasing 
intracellular ciprofloxacin concentration39–41. This combination raises the 

evolutionary pressure of ciprofloxacin in glutamate medium, which can result in 
faster and different acquisition of resistance17. We speculate that this pressure 

contributes to the unique yicC mutation observed in glutamate medium. 

Although less studied in P. aeruginosa, yicC in E. coli has been linked to DNA stress 

responses and RNA degradation42,43, both processes linked to ciprofloxacin 
exposure. 

 

Colistin resistance development showed considerable variation in MICs between 

lineages and across nutrient conditions. Similarly, no distinct patterns in 

mutations emerged across different nutrient conditions. Colistin resistance in P. 

aeruginosa primarily arises from lipid A modifications in the lipopolysaccharide 
(LPS) layer44,45, with no observed fitness cost45,46. This aligns with our findings of 
increased MIC and unaffected µmax in lineages carrying mutations in the lipid A 

regulatory genes phoQ and pmrAB. Interestingly, we observed a reduced µmax 

when re-growing colistin-evolved lineages in glucose medium, except for those 

lineages originally evolved in glucose. Glucose is central to glycolysis and the 

pentose phosphate pathway, both of which supply precursors essential for the 

lipid A modifications regulated by phoQ and pmrAB47. P. aeruginosa possesses an 

inherently less efficient glycolytic pathway24, and our findings suggest this 
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efficiency is further compromised if glucose utilization is not actively selected 
during colistin exposure. Under colistin exposure, P. aeruginosa has been 

suggested to utilize glucose as an osmotic regulator48–50. The fact that glucose-

lineages exhibited a distinct phenotype, which could not be readily explained 

from high diversity in mutational profiles across all lineages, underscores the 
plasticity of colistin resistance in P. aeruginosa. 

 

The evolution of tobramycin resistance exhibited significant variation in MIC 
across nutrient conditions. Substantial differences in mutational patterns among 
lineages were found, consistent with the extensive aminoglycoside resistome51. 

One key mutation observed was in fusA, a gene encoding elongation factor G, 

which is involved in ribosomal translocation. Mutations in the fusA gene have 

been identified in clinical isolates and are known to confer tobramycin resistance 
by altering ribosome function, the primary target of aminoglycosides52. Although 

these mutations are oơen associated with a fitness cost, they had not previously 
been linked to specific nutrient conditions. In our study, fusA mutations were 

observed exclusively in lineages evolved in arginine and glutamate media. One 

possible explanation is the known enrichment of fusA mutations in biofilm-

grown populations53. This may be relevant given the reduced motility of P. 

aeruginosa in arginine, a phenotype commonly associated with biofilm 
formation54. Additionally, fusA mutations are known to influence quorum 
sensing, particularly through interaction with lasR, a quorum sensing regulator 
that increases aminoglycoside resistance55. Since glutamate nitrogen metabolism 

plays a critical role in quorum sensing pathways in other species56,57, this may 

suggest a metabolic link between glutamate availability and selection for fusA 

mutations during tobramycin exposure. The fusA mutations co-occurred twice 

with pmrB mutations but did not lead to significant MIC changes to single 

mutations. The pmrB gene encodes a sensor kinase involved in LPS modification, 
a mechanism linked to both increased tobramycin resistance and increased 

susceptibility in some contexts58,59. The highest increase in tobramycin MIC was 

observed when pmrB mutation was accompanied with an SCFM-specific rplA 

mutation. The rplA gene is involved in ribosome assembly, and is known to 

reduce aminoglycoside binding and induce efflux pump overexpression in other 
species60,61. The combination of pmrB-rplA mutation seemed to be specific to 
nutrient rich conditions, yet there is no direct link between these mutations and 
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nutrient conditions in the literature. The pmrB mutations were found in lineages 

evolved in all nutrient conditions except glucose. Similar to the observed fitness 
cost of LPS-modifying mutations under colistin pressure in glucose medium, the 

absence of pmrB mutations in glucose-evolved lineages may be related to the 

altered and less efficient glycolytic pathway of P. aeruginosa24. Instead, glucose-

evolved lineages harbored mutations in wbpL, another gene essential for LPS 

biosynthesis. Alteration of wbpL likely reduces aminoglycoside uptake51,62. 

Consistent with this, we observed no changes in µmax across all tobramycin 

lineages. This demonstrates that, even in the absence of significant fitness costs, 
nutrient-induced adaptations favor distinct mutational patterns, as the 

importance of cellular processes related to tobramycin activity varies between 

conditions. These findings align with previous observations showing that LPS-

modifying mutations are common in sessile biofilm populations, whereas 

transcriptional regulator mutations dominate in planktonic populations53. 

Together, our data support the conclusion that nutrient environments strongly 

influence both the metabolic state and lifestyle of P. aeruginosa, thereby shaping 

the adaptive pathways used to acquire tobramycin resistance. 

 

To our knowledge, nutrient-specific differences in resistance evolution have not 
been explored beyond this study, although several studies have examined the 

impact of nutrient-rich versus nutrient-poor environments on antibiotic 

resistance development18–21,29,63. In this light, for ceơazidime and tobramycin, we 
observed a significantly higher MIC increase in nutrient-rich SCFM compared to 
the single nutrient conditions. For colistin, ciprofloxacin, and imipenem, such 
differences were less evident, with only ciprofloxacin evolution in glutamate 
minimal medium resulting in a significantly higher MIC compared to SCFM. 
Overall, our findings highlight the importance of carefully considering medium 
nutrient composition during in vitro experimental evolution studies. 

In this study, all MIC testing of evolved lineages was conducted in SCFM. 
This approach enabled direct comparisons of permanent phenotypic and 

genotypic changes among evolved lineages, as confirmed through sequencing 
data. Conducting MIC assays in SCFM rather than in the specific evolution media 
resulted in the loss of a phenotypic dimension related to nutrient-specific 
antibiotic sensitivity adaptations. Although addressing this additional complexity 

was beyond the scope of the current study, changing nutrient conditions are 
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known to significantly influence antibiotic sensitivity13,16. Consequently, our 
results may underestimate the full spectrum of phenotype variability, further 

underscoring the importance of identifying the biochemical mechanisms driving 

antibiotic sensitivity changes. The use of -omics approaches offers valuable 
insights into how cells adapt to different environments during antibiotic 
exposure. For instance, metabolomics studies would be relevant to further 
evaluate changes in cellular energy metabolism or metabolic rewiring that 

support membrane modifications64, whereas proteomics has been employed to 

unravel a broad range of cellular adaptations65. By integrating these system-level 

analysis with extensive genotypic data66, we can better understand the nutrient-

specific differences in phenotype-genotype relationships observed between 

laboratory findings and clinical isolates. Multiple studies in other pathogens have 
demonstrated that adjusting media composition to better mimic in vivo 

conditions leads to in vitro antibiotic responses more closely mirroring clinical 

observations67–71, underscoring the importance of environmental specific 
conditions to enhance clinical relevance of ALE.  

We employed a stepwise increase in antibiotic concentration to rapidly 

drive resistance evolution over short timescale72, enabling us to investigate a 

broad set of nutrient-antibiotic combinations. While this strategy provides 

valuable insights, additional confirmatory experiments with increased replicates 
and extended evolution periods would offer a more comprehensive view of how 

nutrients influence evolutionary trajectories in the long run. In clinical settings, 
antibiotic concentrations are highly dynamic, whereas nutrient profiles, though 

variable across infection sites, tend to remain relatively stable within the larger 

volumes of human tissues and fluids11,73. Building on our findings from stepwise 
adaptation studies, future work could leverage continuous culture systems to 

better control nutrient levels and mimic realistic antibiotic concentration 

profiles74,75. 
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Overall, our findings demonstrate that evolution in single nutrient conditions 
results in significant variation in antibiotic resistance acquisition in P. aeruginosa. 

By focusing on multiple antibiotics and nutrient environments, we showed that 

the effects are specific to combinations of antibiotics and nutrients. These 
findings lay the groundwork for broader incorporation of nutrient composition 
as a key factor in antibiotic resistance evolution studies. Understanding the 

mechanisms behind these nutrient-induced differences is an important step 
toward unraveling the complex evolutionary trajectories seen in the CF lung.  
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6.7. Supplementary Materials 

Supplemental table 1. Detailed content list of synthetic cystic fibrosis sputum 

media 

 

 Name 
Concentration 

(mM) 
Company information 

M
9 

bu
ffe

r 

di-sodium hydrogen phosphate (Na2HPO4) 90.2 Thermo Fisher Scientific 

Potassium di-hydrogen phosphate (KH2PO4) 22.0 VWR International 

Sodium chloride (NaCl) 8.5 Merck KGaA (Avantor™) 

Ammonium chloride (NH4Cl) 18.6 Alfa Aesar  

Magnesium sulphate hepta-hydrate (MgSO4) 1.0 VWR International 

Calcium chloride (CaCl2) 0.1 Acros Organics  

S
a

lts 

Potassium nitrate (KNO3) 0.35 Acros Organics 

Iron sulphate (FeSO4) 0.0036 Alfa Aesar  

Suppl. BME Vitamin solution 1x Thermo Fisher Scientific 

T
ra

ce
 m

et
a

ls
 

Di-sodium Ethylene di-amine tetra-acetic 

acid (EDTA) 
0.002 (mg/mL) J.T. Baker (Avantor™) 

Zinc Sulphate hepta-hydrate (ZnSO4) 0.23 (mg/mL) Alfa Aesar  

Boric acid (H3BO3) 0.111 (mg/mL) Acros Organics  

Manganese chloride tetra-hydrate (MnCl2) 0.051 (mg/mL) Sigma Aldrich (Avantor™)  

Cobalt chloride (CoCl2) 0.017 (mg/mL) Alfa Aesar  

Copper Sulphate penta-hydrate (CuSO4) 0.015 (mg/mL) Sigma Aldrich (Avantor™) 

Ammonium hepta-molybdate tetra 

hydrate ((NH4)6 Mo7O2) 
0.01 (mg/mL) Alfa Aesar 

N
u

tr
ie

n
ts

 

Alanine (Ala) 1.8 Chem-Impex International 

Arginine (Arg) 0.3 Chem-Impex International 

Aspartate (Asp) 0.8 Chem-Impex International 

Cysteine (Cys) 0.2 Chem-Impex International 

Glucose (GLC) 3.2 Alfa Aeser 

Glutamate (Glu) 1.5 Chem-Impex International 

Glycine (Gly) 1.2 Acros Organics  

Histidine hydrochloride (His) 0.5 Chem-Impex International 

Isoleucine (Ile) 1.1 Chem-Impex International 

Lactate (LAC) 9.0 Biosynth International 

Leucine (Leu) 1.6 Chem-Impex International 

Lysine hydrochloride (Lys) 2.1 Thermo Fisher Scientific 

Methionine (Met) 0.6 Chem-Impex International 

Phenylalanine (Phe) 0.5 Chem-Impex International 

Proline (Pro) 1.7 Thermo Fisher Scientific 

Serine (Ser) 1.4 Chem-Impex International 

Threonine (Thr) 1.0 Chem-Impex International 

Tryptophan (Trp) 0.01 Chem-Impex International 

Tyrosine (Tyr) 0.8 Chem-Impex Internationa 

Valine (Val) 1.1 Chem-Impex International 
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Supplemental figure 1. Comparison of minimum inhibitory concentrations (MIC) 

between lineages evolved in single-nutrient media and nutrient-rich synthetic cystic 

fibrosis sputum medium (SCFM). P. aeruginosa PAO1 was evolved in single-nutrient media 

(arginine, glucose, glutamate, lactate) with incrementally increasing antibiotic 

concentrations. The difference in evolution conditions is shown as the fold change in MIC 
of lineages evolved in single-nutrient media relative to lineages evolved in SCFM. All MICs 
were determined in SCFM. Bold horizontal lines indicate the mean fold change in MIC of 
the SCFM lineages. Symbols represent distinct evolutionary replicates: (•) replicate 1, (▲) 

replicate 2, and (▪) replicate 3. 

 

 

Supplemental Figure 2. Correlation between the maximal growth rate (µmax) and 

minimal inhibitory concentration (MIC) of evolved P. aeruginosa PAO1 lineages. Maximal 

growth rates were determined by spline fitting of triplicate growth curves under antibiotic-

free conditions and expressed as fold changes relative to lineages evolved without 

antibiotic in the same medium. MICs were measured for lineages evolved in single-

nutrient media under incrementally increased concentrations of ceơazidime (CEF), 
ciprofloxacin (CIP), colistin (COL), imipenem (IMI), or tobramycin (TOB). MIC fold 

changes are shown relative to the parental strain. 
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Supplemental figure 3. Changes in the maximal growth rates of antibiotic-evolved 

lineages aơer re-culturing in antibiotic-free media. Lineages were obtained by 

incrementally increasing concentrations of five antibiotics (ceơazidime (CEF), 
ciprofloxacin (CIP), colistin (COL), imipenem (IMI), and tobramycin (TOB)) under various 

nutrient conditions. Maximal growth rates were determined by spline fitting of triplicate 
growth curves in antibiotic-free synthetic cystic fibrosis sputum medium (SCFM) or in 
single-nutrient media (arginine (ARG), glucose (GLC), glutamate (GLU), lactate (LAC)). Fold 
changes are shown relative to lineages evolved under antibiotic-free conditions in each 

respective medium. 
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