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Abstract

The pathogen Pseudomonas aeruginosa can exploit its metabolic flexibility during
cystic fibrosis lung infections to reduce antibiotic sensitivity and offset antibiotic
resistance costs, two key traits influencing its evolutionary trajectory. Although
each trait has been associated with nutrient conditions, the link between nutrient
conditions and antibiotic evolution remains poorly characterized. We examined
how single-nutrient conditions influence antibiotic resistance evolution in P.
aeruginosa through phenotypic and genotypic adaptations. We used adaptive
laboratory evolution with different antibiotic classes in single nutrient media, we
then compared these results to those obtained in nutrient-rich synthetic cystic
fibrosis sputum medium (SCFM). Antibiotic susceptibility testing after evolution
showed limited differences in minimal inhibitory concentrations (MIC) between
single nutrient conditions for ceftazidime and imipenem, but more pronounced
impact for ciprofloxacin, colistin, and tobramycin. Ciprofloxacin evolution
resulted in the highest MIC increase, with at least a 4-fold increase observed in
glutamate-evolved lineages, whereas glucose-evolved lineages showed up to 4-
fold reduction in MICs for tobramycin, compared to lineages evolved under all
other nutrient conditions for the same antibiotic. Growth kinetics of the evolved
strains showed reduced growth rates specific to the antibiotic but not the nutrient
condition in itself. Whole-genome sequencing showed nutrient-specific
mutational profiles for tobramycin and ciprofloxacin. Tobramycin evolution
resulted in glucose specific mutation in wbpL and a SCFM-specific mutation in
rplA, alongside fusA and pmrB mutations in multiple conditions. Ciprofloxacin
resistance was not caused by a nfxB mutation in glucose and arginine evolved
lineages, which was present in all other lineages, with a specific mutation in yicC
in the glutamate evolved lineages. No distinct differences between nutrient
conditions for colistin were observed. Overall, these findings underscore the
significant role nutrient conditions play in shaping resistance and highlight the
importance of considering physiologically relevant media when studying
antibiotic resistance evolution.
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Nutrients drive the antibiotic-specific evolution of resistance in P. aeruginosa

6.1. Introduction

Pseudomonas aeruginosa is the most prevalent pathogen causing chronic
infections in the distinctive lung environment of adult cystic fibrosis (CF)
patients'. This dominance is attributed to the exceptional metabolic versatility of
P. aeruginosa and its rapid capacity to develop antimicrobial resistance®®.
Growing evidence highlights a strong interconnection between these traits, as
metabolism influences antibiotic sensitivity and antibiotic resistance
mechanisms impose a metabolic burden®®. To advance our understanding of
antibiotic resistance evolution, it is crucial to study how nutrients in the
environment shape this relationship, a process that remains poorly explored.

In the CF lung, P. aeruginosa can utilize a diverse array of nutrients,
including amino acids and short-chain fatty acids, whose composition varies
substantially among different microenvironments'"". P. aeruginosa adapts its
metabolism to these varying conditions, which results in class-specific effects on
antibiotic sensitivity'>'®. Altering a single nutrient in the culture condition has
been shown to significantly impact antibiotic sensitivity'®. Because antibiotic
sensitivity is a key determinant of selection strength during antibiotic resistance
evolution”, nutrient-induced changes in antibiotic sensitivity can drive the

emergence of diverse antibiotic-resistant lineages.

Nutrients also play a role in reducing the fitness cost of antibiotic
resistance mutations that alter vital cellular functions, by supporting efficient
metabolic rearrangement'®?. Consequently, resistance mechanisms with high
metabolic burden are less likely to prevail in nutrient-poor environments as this

imposes a metabolic constraint®'.

Overall, these studies demonstrate that nutrient environments
profoundly influence metabolic adaptations, antibiotic sensitivity, and fitness
compensation, all of which shape the evolution of antibiotic resistance. However,
the high variability within the CF lung environment, combined with pronounced
phenotypic variability, complicates direct comparisons between laboratory
conditions and clinical scenarios. Prior research has mainly addressed
comparisons between nutrient-rich and nutrient-poor environments concerning
fitness landscapes®'?%. The subsequent essential step is understanding how
specific nutrients individually impact resistance evolution. Given the well-

documented metabolic flexibility of P. aeruginosa®, accurately evaluating the
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influence of individual nutrients within complex media remains challenging.
Instead, examining central carbon metabolism responses to single-nutrient
conditions can reveal precisely how nutrient-specific adaptations cascade into
broader metabolic and biochemical changes®. Elucidating how these specific
nutrient induced changes influence antibiotic resistance evolution could be
essential for optimization or selection of more clinically relevant laboratory

conditions.

In this study, we challenged the P. aeruginosa metabolic flexibility in single
nutrient conditions during antibiotic resistance evolution and explored the
phenotypic and genotypic adaptation capabilities in these environments. We
conducted adaptive laboratory evolution (ALE) for a range of common antibiotics
used to treat P. aeruginosa (ceftazidime, ciprofloxacin, colistin, imipenem, and
tobramycin), utilizing single nutrient media. The selection of the nutrients
arginine, glutamate, glucose, and lactate was based on their physiological
relevance in CF mucus and their distinct roles in P. aeruginosa metabolism'?4,
These nutrients have also been shown to affect antibiotic sensitivity differently®.
Nutrient concentrations were set at 30 mM to prevent nutrient starvation, thereby
maintaining stable growth conditions throughout evolution experiments. We
assessed phenotypic changes of the nutrient-antibiotic combinations through
antibiotic susceptibility testing and growth rate analysis, and genomic changes
through whole genome sequencing. To contextualize these findings, we
compared the results from single-nutrient conditions to those from a nutrient-
rich synthetic CF medium (SCFM), providing insights into how P. aeruginosa

adapts and maintains metabolic flexibility in minimal environments.

6.2. Material & Methods

Strains and culture conditions

Synthetic CF sputum medium (SCFM) was prepared consisting of physiologically
relevant concentrations of nutrients in synthetic CF sputum as described
previously', 0.11M phosphate buffer, ammonium chloride, potassium nitrate,
ferrous sulfate, Basal Medium Eagle 1x vitamins, and trace metals (Table S1).
Single nutrient media were prepared with the salts, vitamins and trace metals as

basal medium, spiked with 4 unique nutrients including arginine, glucose,
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glutamate, or lactate, at a concentration of 30 mM. The P. aeruginosa PAO1
laboratory strain (DSM 1117; DSMZ, Leibniz Institute, Germany) was used as the

parental strain for all evolution experiments.

Antibiotics

Antibiotic stock solutions were freshly prepared on the day of the experiment and
diluted to desired concentrations using an Opentrons OT-2 (Opentrons Inc., New
York, NY, USA) liquid handling system. Ceftazidime pentahydrate was purchased
from Thermo Fisher Scientific (Breda, The Netherlands). Ciprofloxacin,
imipenem monohydrate, and tobramycin were purchased from Chem-Impex
International (Wood Dale, IL, USA). Colistin sulfate was purchased from Cayman
Chemical Company (Ann Arbor, MI, USA).

Laboratory evolution experiment

Three biological replicates of the P. aeruginosa starting cell line per media
condition were propagated for 10 days under antibiotic pressure to examine the

antibiotic resistance development between different culture conditions.

P. aeruginosa PAO1 was streaked out on LB agar plates, and 10 randomly
selected colonies were transferred to SCFM (2 mL) and cultured overnight. The
liquid cultures were diluted to an optical density at 600 nm (ODsoo) of 0.05 to reach
the starting inoculation solution, corresponding to an approximate bacterial
density of 5*10° CFU/mL. The bacterial inoculum (100 pL) was added to 7 wells
with fresh medium with increasing antibiotic concentrations (900 pL) in a 48-well
microtiter plate. After 48 hours of incubation, plates were transferred to a BMG
microplate reader (Ortenberg, Germany) for ODgy acquisition. Cultures at the
highest antibiotic concentration reaching the culture density threshold of an
ODggo of 0.5 were transferred (100 pL) to a new range of antibiotic concentrations
(900 pL) in a new 48-well microtiter plate. If the carrying capacity of any of the
cultures did not exceed the ODey threshold, the culture under the highest
antibiotic pressure reaching at least 80% of the ODgg, of the positive control was
transferred. Cultures under ceftazidime pressure were extensively mixed and the
threshold was increased to an ODeg of 0.65 due to the build-up of debris in the
microtiter plate. At the end of the evolution experiment, the cultures reaching the
ODgo threshold were transferred (100 pL) to an antibiotic free LB agar plate.
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Colonies were collected with a pre-wet swab and stored in 20% glycerol in LB at -
80 °C.

Antimicrobial susceptibility testing

Ceftazidime, ciprofloxacin, imipenem, and tobramycin minimal inhibitory
concentrations were determined for the parenteral P. aeruginosa PAO1 strain, the
antibiotic-free lineages, and the lineages evolved under the pressure of the
antibiotic in SCFM by a broth microdilution method. Prior to each susceptibility
test, fresh subcultures were prepared from the -80 °C stored colonies in 2 mL
fresh SCFM. Susceptibility testing was conducted after 24 hours incubation at 37
°C with orbital shaking at 150 rpm or 72 hours including two 20 pL passages into
2 mL fresh SCFM medium. The starting cell density in each condition was
approximately 10° CFU/mL in a serial twofold dilution of the antibiotics in 96-well
microtiter plates (Greiner Bio-one, transparent, flat bottom) with a total volume
of 200 pL. The minimal inhibitory concentration (MIC) was defined as the first
concentration of antibiotic with no visible growth after 24 hours of incubation at
37°C.

Growth rate analysis

Growth rate analysis was conducted by culturing the parental P. aeruginosa PAO1
strain and all lineages in the single nutrient media and SCFM. The cells were
subcultured in 2 mL SCFM and incubated for 24 hours at 37 °C shaking at 150 rpm
before dilution to an optical density at 600 nm (OD600) of 0.05 before inoculation.
The starting cell density was approximately 10° CFU/mL in a transparent 96-well
microtiter plate. After inoculation, microtiter plates were transferred to a Liconic
StoreX STX44 119 incubator (Mauren, Principality of Liechtenstein) for
incubation (95% relative humidity). A Peak Analysis and Automation KX-2
Laboratory Robot (Hampshire, United Kingdom) transferred the microtiter plate
every hour between the incubator and the BMG Labtech Fluostar Omega
microplate reader (Ortenberg, Germany) for time-course ODs acquisition.

Genome sequencing and bioinformatics

Cells were subcultured in 2 mL SCFM and incubated for 24 hours at 37 °C shaking
at 150 rpm. 500 pL of the subculture was pelleted by centrifugation for 10 minutes

at 5000 x g. Genomic DNA was extracted using the QIAcube Connect automated
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sample preparation system and DNeasy Blood & Tissue Kit extraction kit (Qiagen,
Hilden, Germany) following the manufacturer’s protocols. Extracted DNA was
sent to SeqCoast Genomics for short read whole genome sequencing and
bioinformatic analysis. Bioinformatic analysis was executed using Breseq
(version 0.37.0) for mutation prediction and analysis, Trimmomatic (version 0.39)
for read trimming and quality control, and CNOGpro (version
deprecated/restored) for copy number variation analysis towards the P.
aeruginosa PAO1 reference genome. All sequences are stored in the Sequence
Read Archive (SRA) database under the PRINA1217434 identifier®.

Data Analysis

All data analyses were performed using R. Minimal inhibitory concentrations
(MICs) for each evolutionary lineage were determined by calculating the median
value from antibiotic susceptibility tests performed in quadruplicate (n = 4
biological replicates). Fold changes in MIC were calculated relative to the median
MIC of the parental strain. Antibiotic-free evolution did not result in any
significant change in MIC compared to the parental strain (data not shown). To
assess differences in MIC between conditions, a Welch two-sample t-test was
conducted between the SCFM group and each single nutrient medium.

Maximal growth rates (umax) were determined using the splines
function from the grofit package %, fitted to growth curves (n = 3 biological
replicates) for each evolutionary lineage. Growth measurements were recorded
at regular intervals to ensure accurate curve fitting. Fold changes in umax for
antibiotic-evolved lineages were calculated relative to the corresponding
antibiotic-free lineages in the same evolution medium. A Welch two-sample t-
test, using the R base function, was used to compare the evolved lineages with the
antibiotic-free controls evolved under the same medium condition.

To determine how mutation profiles differed between nutrient
conditions, a partial least squares discriminant analysis (PLS-DA) was performed
separately for each antibiotic using the mixOmics package #. The first four
components were extracted to generate Variable Importance in Projection (VIP)
scores, which were used to evaluate the distinguishability of mutated genes
across nutrient conditions. VIP scores provided a measure of each gene's
contribution to differentiation between nutrient environments, aiding in the

identification of key mutations.
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6.3. Results

Single nutrients conditions differentially shape antibiotic resistance
evolution

We assessed the impact of specific single nutrient conditions on antibiotic
resistance acquisition in P. aeruginosa PAOL. To this end we performed serial
passaging under stepwise increasing antibiotic concentrations for five different
antibiotics for a period of 10 days. P. aeruginosa PAO1 evolved in nutrient-rich
SCFM medium was used as control. We evaluated changes in antibiotic
susceptibility for the lineages under differential medium and antibiotic
conditions through determination of the relative change in minimum inhibitory

concentration (MIC) of SCFM-lineages in comparison to the parental strain (Fig.

1).
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Figure 1. Change in minimum inhibitory concentrations (MICs) for five antibiotics in
lineages evolved under different medium conditions. P. aeruginosa PAO1 strain was evolved
in single nutrient media (arginine, glucose, glutamate, lactate) and synthetic cystic fibrosis
sputum media (SCFM) as control, under incrementally increasing antibiotic
concentrations. All MICs were determined in SCFM. Bold horizontal lines represent the
mean fold change in MIC of the evolution condition relative to the parental strain.
Different evolutionary lineages are indicated by shapes: (*) for replicate 1, (A ) for replicate
2, and (=) for replicate 3. A Welch two-sample t-test was performed between the SCFM

group and each single nutrient medium, with * indicating p < 0.05.
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When considering the differential effects of media on resistance acquisition, for
ceftazidime, the magnitude of MIC increase was consistently lower across all
single nutrient media compared to SCFM, with limited differences between
specific minimal media. For all four remaining antibiotics, substantial
differences in MIC were found across single nutrient media. For ciprofloxacin,
evolution in glutamate medium led to a substantially increased MIC, while the
arginine condition results in a comparatively smaller MIC. Imipenem MICs only
increased in arginine and glutamate medium, with no significant MIC change
after evolution in SCFM, glucose, or lactate. For tobramycin, evolution in glucose
medium resulted in substantially lower MICs compared to all other conditions.
For colistin, the largest MIC increases were observed after evolution in SCFM and
glutamate medium, while the smallest MIC decrease was noted in arginine.
Across all antibiotics, it can be concluded that evolution in single nutrient media
with arginine, glucose, and lactate often results in attenuated resistance
acquisition, while resistance acquisition in glutamate media showed higher
outcomes (Fig. S1).

Resistance evolution under single-nutrient conditions results in
limited fitness changes

To evaluate if differences after evolution across single nutrient media could be
explained by differences in fitness, we compared the maximal growth rate (Mmax)
of all evolution lineages under antibiotic-free conditions in the original evolution
media and SCFM. Overall, largest effects on pm.x Wwere found when the original
growth medium was used. Significant reductions in Um. Were observed for
ceftazidime and tobramycin lineages evolved in glucose, and for ciprofloxacin
lineages evolved in arginine and lactate (Fig. 2). These reductions were however
absent for pm.x estimated derived in SCFM. The magnitude of changes in pmax did
not correlate with the changes in MIC in the evolution lineages (Fig. S2).

To further evaluate whether observed um.x changes were antibiotic or
medium dependent, we performed growth rate analysis of all evolution lineages
across all conditions (Fig. S$3). The observed reduction in pm.x for colistin- and
imipenem-resistant lineages was consistent in glucose minimal media,
regardless of the evolution media. Ciprofloxacin-resistant lineages generally
exhibited reduced um.x in minimal arginine media, except for those evolved in

lactate. Notably, ciprofloxacin lineages evolved in lactate exhibited reduced
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growth in all other single nutrient media, suggesting a unique metabolic
adaptation or trade-off specific to lactate-driven resistance evolution.

Ceftazidime Ciprofloxacin Colistin Imipenem Tobramycin
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Figure 2. Changes in maximal growth rate of antibiotic evolved lineages upon re-culturing
in their evolution medium and SCFM. The maximal growth rates (umax) were determined
by applying a spline function to triplicate growth curves obtained under antibiotic-free
conditions. Fold changes are calculated relative to lineages without antibiotic in the
corresponding medium. A Welch two-sample t-test was used to determine the difference
between the evolved lineages and the antibiotic free controls evolved in the same medium

(* indicating p<0.05).

Medium-specific genetic variations differentiate between evolution
conditions.

Whole genome sequencing was performed for final evolution lineages for
ciprofloxacin, colistin, and tobramycin to evaluate genetic variants across
parallel evolved biological replicates (Fig. 3). Single nucleotide polymorphisms
(SNPs), insertions, and deletions observed with a frequency higher than 20% and
present within more than 1 lineage were included due to large heterogeneity
within evolutionary lineages.

To determine how mutations differ between the evolution media, a
partial least squares discriminant analysis (PLS-DA) was applied for each
antibiotic. This analysis indicates the discriminatory importance of mutations
that allow differentiation across specific medium conditions, quantified using a
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141



Chapter 6

variance importance in projection (VIP) score. Mutations in the top six genes
ranked by VIP score were selected and visualized as potential mutations
associated with media-specific adaptation for each antibiotic (Fig. 4). Among the
top distinguishing genes, only three loci mutations appeared in a single evolution
condition. Two were in tobramycin lineages: rplA for SCFM and wbpL for glucose
medium (Fig. 4A). Other genes specific for tobramycin were mutations in the
pmrB gene, which was mutated in all media except glucose, and the fusA gene,
which was specific to arginine and glutamate minimal media. For ciprofloxacin,
mutations in yicC were unique for the ciprofloxacin-glutamate condition, while
mutations in nfxB were present in lineages evolved glutamate, lactate, and SCFM
media (Fig. 4B). Finally, mutations in bisC, cobK, dgcP, PA3157, preA, pchH, and
sdaA had high VIP scores for distinguishing evolution conditions when stratified
by antibiotic, but were also present in various other media conditions across
different antibiotics, including antibiotic-free evolution. The top VIP scores after
colistin evolution consist only of these genes, indicating a limited presence of
condition-specific mutations in colistin resistance (Fig. 4C).

6.4. Discussion

We demonstrated that P. aeruginosa can rapidly develop antibiotic resistance in
single nutrient media, with the magnitude of MIC increase varying substantially
between evolution conditions as well as antibiotics. Despite the MIC variation,
changes in mutant growth rates (Umax) Were generally consistent among lineages

evolved under the same antibiotic.

Across the single nutrient conditions, we found the smallest increase in MIC in
lineages evolved for the beta-lactam antibiotics imipenem and ceftazidime. This
may be explained by resistance development against imipenem requiring
multiple mutation steps® and the limited duration of the evolution experiment.
Previous findings demonstrated similar limited MIC increases for ceftazidime
during evolution in minimal media conditions®*?®'. Lineages evolved during
exposure to ciprofloxacin, colistin, and tobramycin, larger differences between
MICs for different nutrient conditions were observed, which were further
genetically characterized.
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Figure 4. Key mutations distinguishing mutational profiles of culture conditions across
(A) tobramycin, (B) ciprofloxacin and (C) colistin. (Left) VIP (Variable Importance in
Projection) scores from a 4-dimensional partial least squares discriminant analysis (PLS-
DA) highlight key mutations distinguishing culture conditions. The three lowest VIP scores
for each mutation are colored grey, while the highest VIP score per drug is highlighted in
black, and in red if identified as a key distinguishing mutation. (Right) Heatmaps display
the six highest-scoring locus mutations, with colored tiles indicating mutation presence
(x-axis) across evolutionary lineages (y-axis). These visualizations provide a comparative
overview of mutation patterns across culture conditions and evolutionary lineages for the

different antibiotics.

For ciprofloxacin lineages, the lowest MIC increases were found in arginine-
lineages and the highest increases in glutamate-lineages. These differences may
be explained due to differences in accumulation of specific established
fluoroquinolone resistance mutations, particularly gyrA and nfxB*. The gyrA
gene encodes a subunit of DNA gyrase, which is the primary target of
fluoroquinolones, and mutations in this gene typically reduce the binding affinity
of the antibiotic. Mutations in nfxB lead to overexpression of the MexCD-Opr]
efflux pump, which exports various antibiotics. Whilst mutations in gyrA were
common across all media, the glutamate-lineages with the highest MIC increases
also carried nfxB mutations. We observed no changes in Um. for these mutants,

in line with previous reports for P. aeruginosa on compensatory effects

o0 143



Chapter 6

associated with gyrA mutations and nfxB-induced MexCD-Opr] efflux pump
upregulation’?2. The burden of these compensatory effects could however still
influence the evolutionary selection of these mutations. Ciprofloxacin-lineages
demonstrated reduced pma.x in arginine medium, the condition in which this
specific mutation combination was absent. The absence of gyrA and nfxB
mutations in arginine-lineages, along with the lower pma.x of ciprofloxacin-
lineages in arginine, suggests that metabolic constraints may hinder the
establishment of these mutations under such conditions. In the case of nfxB-
mediated upregulation of the MexCD-Opr] efflux pump, an active proton motive
force (PMF) is required for export®. Arginine metabolism may lead to a reduced
PMF, as energy can also be derived via the arginine deiminase pathway rather
than PMF-generating oxidative phosphorylation®. Glutamate, by contrast, serves
as a central metabolite in nitrogen metabolism and has been shown to reduce
ciprofloxacin sensitivity in P. aeruginosa®-2%. Glutamate has also been reported to
enhance antibiotic penetration and counters efflux, thereby increasing
intracellular ciprofloxacin concentration®**'. This combination raises the
evolutionary pressure of ciprofloxacin in glutamate medium, which can result in
faster and different acquisition of resistance'. We speculate that this pressure
contributes to the unique yicC mutation observed in glutamate medium.
Although less studied in P. aeruginosa, yicC in E. coli has been linked to DNA stress
responses and RNA degradation***] both processes linked to ciprofloxacin

exposure.

Colistin resistance development showed considerable variation in MICs between
lineages and across nutrient conditions. Similarly, no distinct patterns in
mutations emerged across different nutrient conditions. Colistin resistance in P.
aeruginosa primarily arises from lipid A modifications in the lipopolysaccharide
(LPS) layer*+*®, with no observed fitness cost**. This aligns with our findings of
increased MIC and unaffected umax in lineages carrying mutations in the lipid A
regulatory genes phoQ and pmrAB. Interestingly, we observed a reduced pmax
when re-growing colistin-evolved lineages in glucose medium, except for those
lineages originally evolved in glucose. Glucose is central to glycolysis and the
pentose phosphate pathway, both of which supply precursors essential for the
lipid A modifications regulated by phoQ and pmrAB?¥. P. aeruginosa possesses an

inherently less efficient glycolytic pathway®, and our findings suggest this
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efficiency is further compromised if glucose utilization is not actively selected
during colistin exposure. Under colistin exposure, P. aeruginosa has been
suggested to utilize glucose as an osmotic regulator*®*. The fact that glucose-
lineages exhibited a distinct phenotype, which could not be readily explained
from high diversity in mutational profiles across all lineages, underscores the
plasticity of colistin resistance in P. aeruginosa.

The evolution of tobramycin resistance exhibited significant variation in MIC
across nutrient conditions. Substantial differences in mutational patterns among
lineages were found, consistent with the extensive aminoglycoside resistome®’.
One key mutation observed was in fusA, a gene encoding elongation factor G,
which is involved in ribosomal translocation. Mutations in the fusA gene have
been identified in clinical isolates and are known to confer tobramycin resistance
by altering ribosome function, the primary target of aminoglycosides®. Although
these mutations are often associated with a fitness cost, they had not previously
been linked to specific nutrient conditions. In our study, fusA mutations were
observed exclusively in lineages evolved in arginine and glutamate media. One
possible explanation is the known enrichment of fusA mutations in biofilm-
grown populations®. This may be relevant given the reduced motility of P.
aeruginosa in arginine, a phenotype commonly associated with biofilm
formation®. Additionally, fusA mutations are known to influence quorum
sensing, particularly through interaction with lasR, a quorum sensing regulator
that increases aminoglycoside resistance®. Since glutamate nitrogen metabolism
plays a critical role in quorum sensing pathways in other species®®*’, this may
suggest a metabolic link between glutamate availability and selection for fusA
mutations during tobramycin exposure. The fusA mutations co-occurred twice
with pmrB mutations but did not lead to significant MIC changes to single
mutations. The pmrB gene encodes a sensor kinase involved in LPS modification,
a mechanism linked to both increased tobramycin resistance and increased
susceptibility in some contexts®®**°. The highest increase in tobramycin MIC was
observed when pmrB mutation was accompanied with an SCFM-specific rplA
mutation. The rplA gene is involved in ribosome assembly, and is known to
reduce aminoglycoside binding and induce efflux pump overexpression in other
species®®®'. The combination of pmrB-rplA mutation seemed to be specific to

nutrient rich conditions, yet there is no direct link between these mutations and
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nutrient conditions in the literature. The pmrB mutations were found in lineages
evolved in all nutrient conditions except glucose. Similar to the observed fitness
cost of LPS-modifying mutations under colistin pressure in glucose medium, the
absence of pmrB mutations in glucose-evolved lineages may be related to the
altered and less efficient glycolytic pathway of P. aeruginosa®. Instead, glucose-
evolved lineages harbored mutations in wbpL, another gene essential for LPS
biosynthesis. Alteration of wbpL likely reduces aminoglycoside uptake®2.
Consistent with this, we observed no changes in um. across all tobramycin
lineages. This demonstrates that, even in the absence of significant fitness costs,
nutrient-induced adaptations favor distinct mutational patterns, as the
importance of cellular processes related to tobramycin activity varies between
conditions. These findings align with previous observations showing that LPS-
modifying mutations are common in sessile biofilm populations, whereas
transcriptional regulator mutations dominate in planktonic populations®.
Together, our data support the conclusion that nutrient environments strongly
influence both the metabolic state and lifestyle of P. aeruginosa, thereby shaping

the adaptive pathways used to acquire tobramycin resistance.

To our knowledge, nutrient-specific differences in resistance evolution have not
been explored beyond this study, although several studies have examined the
impact of nutrient-rich versus nutrient-poor environments on antibiotic
resistance development'®2"2%%_ In this light, for ceftazidime and tobramycin, we
observed a significantly higher MIC increase in nutrient-rich SCFM compared to
the single nutrient conditions. For colistin, ciprofloxacin, and imipenem, such
differences were less evident, with only ciprofloxacin evolution in glutamate
minimal medium resulting in a significantly higher MIC compared to SCFM.
Overall, our findings highlight the importance of carefully considering medium
nutrient composition during in vitro experimental evolution studies.

In this study, all MIC testing of evolved lineages was conducted in SCFM.
This approach enabled direct comparisons of permanent phenotypic and
genotypic changes among evolved lineages, as confirmed through sequencing
data. Conducting MIC assays in SCFM rather than in the specific evolution media
resulted in the loss of a phenotypic dimension related to nutrient-specific
antibiotic sensitivity adaptations. Although addressing this additional complexity

was beyond the scope of the current study, changing nutrient conditions are
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known to significantly influence antibiotic sensitivity'>'®. Consequently, our
results may underestimate the full spectrum of phenotype variability, further
underscoring the importance of identifying the biochemical mechanisms driving
antibiotic sensitivity changes. The use of -omics approaches offers valuable
insights into how cells adapt to different environments during antibiotic
exposure. For instance, metabolomics studies would be relevant to further
evaluate changes in cellular energy metabolism or metabolic rewiring that
support membrane modifications®, whereas proteomics has been employed to
unravel a broad range of cellular adaptations®. By integrating these system-level
analysis with extensive genotypic data®, we can better understand the nutrient-
specific differences in phenotype-genotype relationships observed between
laboratory findings and clinical isolates. Multiple studies in other pathogens have
demonstrated that adjusting media composition to better mimic in vivo
conditions leads to in vitro antibiotic responses more closely mirroring clinical
observations®””"; underscoring the importance of environmental specific

conditions to enhance clinical relevance of ALE.

We employed a stepwise increase in antibiotic concentration to rapidly
drive resistance evolution over short timescale’, enabling us to investigate a
broad set of nutrient-antibiotic combinations. While this strategy provides
valuable insights, additional confirmatory experiments with increased replicates
and extended evolution periods would offer a more comprehensive view of how
nutrients influence evolutionary trajectories in the long run. In clinical settings,
antibiotic concentrations are highly dynamic, whereas nutrient profiles, though
variable across infection sites, tend to remain relatively stable within the larger
volumes of human tissues and fluids'”3. Building on our findings from stepwise
adaptation studies, future work could leverage continuous culture systems to
better control nutrient levels and mimic realistic antibiotic concentration

profiles’7®,
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Overall, our findings demonstrate that evolution in single nutrient conditions
results in significant variation in antibiotic resistance acquisition in P. aeruginosa.
By focusing on multiple antibiotics and nutrient environments, we showed that
the effects are specific to combinations of antibiotics and nutrients. These
findings lay the groundwork for broader incorporation of nutrient composition
as a key factor in antibiotic resistance evolution studies. Understanding the
mechanisms behind these nutrient-induced differences is an important step

toward unraveling the complex evolutionary trajectories seen in the CF lung.
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6.7. Supplementary Materials

Supplemental table 1. Detailed content list of synthetic cystic fibrosis sputum

media

Name Con‘;::;g‘tmn Company information
di-sodium hydrogen phosphate (Na,HPO.) 90.2 Thermo Fisher Scientific
5 Potassium di-hydrogen phosphate (KH,PO.) 22.0 VWR International
= Sodium chloride (NaCl) 8.5 Merck KGaA (Avantor™)
'O‘f Ammonium chloride (NH4Cl) 18.6 Alfa Aesar
= Magnesium sulphate hepta-hydrate (MgSO.) 1.0 VWR International
Calcium chloride (CaCl.) 0.1 Acros Organics
® Potassium nitrate (KNOs) 0.35 Acros Organics
@ Iron sulphate (FeSOa) 0.0036 Alfa Aesar
Suppl. | BME Vitamin solution 1x Thermo Fisher Scientific
Eé;zo((i;;; ;Ethylene di-amine tetra-acetic 0.002 (mg/mL) JT. Baker (Avantor™)
) Zinc Sulphate hepta-hydrate (ZnSO.) 0.23 (mg/mL) Alfa Aesar
% Boric acid (HsBOs) 0.111 (mg/mL) Acros Organics
E Manganese chloride tetra-hydrate (MnCl,) 0.051 (mg/mL) Sigma Aldrich (Avantor™)
Q Cobalt chloride (CoCl») 0.017 (mg/mL) Alfa Aesar
&= Copper Sulphate penta-hydrate (CuSO.) 0.015 (mg/mL) Sigma Aldrich (Avantor™)

Ammonium hepta-molybdate tetra
hydrate ((NH4)6II)\/IO702) Y 0.01 (mg/mlL) Alfa Aesar
Alanine (Ala) 1.8 Chem-Impex International
Arginine (Arg) 0.3 Chem-Impex International
Aspartate (Asp) 0.8 Chem-Impex International
Cysteine (Cys) 0.2 Chem-Impex International
Glucose (GLC) 3.2 Alfa Aeser
Glutamate (Glu) 1.5 Chem-Impex International
Glycine (Gly) 1.2 Acros Organics
Histidine hydrochloride (His) 0.5 Chem-Impex International
@ Isoleucine (Ile) 1.1 Chem-Impex International
'8 Lactate (LAC) 9.0 Biosynth International
‘g Leucine (Leu) 1.6 Chem-Impex International
= Lysine hydrochloride (Lys) 2.1 Thermo Fisher Scientific
Methionine (Met) 0.6 Chem-Impex International
Phenylalanine (Phe) 0.5 Chem-Impex International
Proline (Pro) 1.7 Thermo Fisher Scientific
Serine (Ser) 1.4 Chem-Impex International
Threonine (Thr) 1.0 Chem-Impex International
Tryptophan (Trp) 0.01 Chem-Impex International
Tyrosine (Tyr) 0.8 Chem-Impex Internationa
Valine (Val) 1.1 Chem-Impex International
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Supplemental figure 1. Comparison of minimum inhibitory concentrations (MIC)

between lineages evolved in single-nutrient media and nutrient-rich synthetic cystic
fibrosis sputum medium (SCFM). P. aeruginosa PAO1 was evolved in single-nutrient media
(arginine, glucose, glutamate, lactate) with incrementally increasing antibiotic
concentrations. The difference in evolution conditions is shown as the fold change in MIC
of lineages evolved in single-nutrient media relative to lineages evolved in SCFM. All MICs
were determined in SCFM. Bold horizontal lines indicate the mean fold change in MIC of

the SCFM lineages. Symbols represent distinct evolutionary replicates: (*) replicate 1, (A)

replicate 2, and (=) replicate 3.
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Supplemental Figure 2. Correlation between the maximal growth rate (umax) and
minimal inhibitory concentration (MIC) of evolved P. aeruginosa PAO1 lineages. Maximal
growth rates were determined by spline fitting of triplicate growth curves under antibiotic-
free conditions and expressed as fold changes relative to lineages evolved without
antibiotic in the same medium. MICs were measured for lineages evolved in single-
nutrient media under incrementally increased concentrations of ceftazidime (CEF),
ciprofloxacin (CIP), colistin (COL), imipenem (IMI), or tobramycin (TOB). MIC fold

changes are shown relative to the parental strain.
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Supplemental figure 3. Changes in the maximal growth rates of antibiotic-evolved
lineages after re-culturing in antibiotic-free media. Lineages were obtained by
incrementally increasing concentrations of five antibiotics (ceftazidime (CEF),
ciprofloxacin (CIP), colistin (COL), imipenem (IMI), and tobramycin (TOB)) under various
nutrient conditions. Maximal growth rates were determined by spline fitting of triplicate
growth curves in antibiotic-free synthetic cystic fibrosis sputum medium (SCFM) or in
single-nutrient media (arginine (ARG), glucose (GLC), glutamate (GLU), lactate (LAC)). Fold
changes are shown relative to lineages evolved under antibiotic-free conditions in each

respective medium.
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