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Section I1

Nutrients shape
antibiotic sensitivity
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Nutrient conditions affect antimicrobial
pharmacodynamics in Pseudomonas aeruginosa
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Abstract

The infectious microenvironment in chronic respiratory tract infections is
characterized by substantial variability in nutrient conditions, which may impact
colonization and treatment response of pathogens. Metabolic adaptation of the
CF-associated pathogen Pseudomonas aeruginosa has been shown to lead to
changes in antibiotic sensitivity. The impact of specific nutrients on the response
to antibiotics is, however, poorly characterized. Here, we investigated how
different carbon sources impact the antimicrobial pharmacodynamic responses
in P. aeruginosa. We evaluated the effect of six antibiotics (aztreonam,
ceftazidime, ciprofloxacin, colistin, imipenem, tobramycin) on P. aeruginosa
cultured in a basal medium enriched for seven different carbon sources (alanine,
arginine, aspartate, glucose, glutamate, lactate, proline). Pharmacodynamic
responses were characterized by measuring time-kill profiles for a
bioluminescent P. aeruginosa PAO1 Xen41 strain. We show that single-nutrient
modifications minimally affected bacterial growth rate. For specific nutrient-
antibiotic combinations, we find relevant alterations in antibiotic sensitivity (i.e.,
ECso) and the maximum drug effect (Emax), in particular for ciprofloxacin, colistin,
imipenem and tobramycin. The most pronounced effect was observed for
tobramycin, where glucose was found to reduce the ECs, (0.5-fold) while lactate-
enriched conditions led to a 4.3-fold increase in ECs. Using pharmacokinetic-
pharmacodynamic simulations, we illustrate that the magnitude of the nutrient-
driven pharmacodynamic changes impact treatment for clinical dosing strategies
of tobramycin. In summary, this study underscores the impact of nutrient
composition on antimicrobial pharmacodynamics, which could potentially
contribute to observed variability of antimicrobial treatment responses in CF
patients.

Importance

Chronic respiratory tract infections in cystic fibrosis patients present significant
challenges for antibiotic treatment due to the complexity of the respiratory
environment. This study investigated how variations in nutrient levels, altered
during chronic infections, affect pathogen response to antibiotics in an
experimental setting. By simulating different nutrient conditions, we aimed to
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uncover interactions between nutrient availability and antibiotic sensitivity. Our
findings provide critical insights that could lead to more effective treatment
strategies for managing chronic respiratory tract infections in cystic fibrosis
patients, while also guiding future research in improving treatment
methodologies.

3.1. Introduction

Cystic fibrosis (CF) associated lung infections are facilitated by a complex
infectious microenvironment involving a dense mucus layer harboring a diverse
array of potential microbial nutrients'. Antibiotic treatment in patients with CF
often yields unpredictable outcomes and aligns poorly with routine antimicrobial
susceptibility testing®3. Profound variability in microbial nutrients is observed
within the chronic infectious environment, both across and within patients*s.
Unlike many other bacterial pathogens, Pseudomonas aeruginosa prioritizes the
utilization of a wide array of carbon sources over glucose, including alanine,
arginine, aspartate, glutamate, proline, and lactate®’. This metabolic versatility
may explain its pervasive presence in chronic CF-associated infections, and

provides a competitive advantage during antibiotic treatment®°.

Alterations in metabolic processes associated with differences in
available nutrients may impact response to antibiotic treatment in P. aeruginosa'*-
13, For example, nutrient deprivation prevents cell wall modifications due to its
high energy demand, enhancing the effect of cell wall targeting antibiotics (e.g.,
polymyxins and B-lactams)'*'¢. The supplementation of metabolites to activate
energy production through aerobic respiration in nutrient-deprived
environments can increase sensitivity towards fluoroquinolones and
aminoglycosides'’ . While these changes illustrate the modulatory role of
deprived nutrient conditions and microbial metabolism on the response to
antibiotics, insights into the contribution of nutrients relevant to CF lung

microenvironments remain limited.

To assess the effects of nutrient conditions on antimicrobial pharmacodynamics
(PD), conventional readouts such as minimum inhibitory concentrations (MIC)
have important limitations, as this is a static composite measure. More

comprehensive characterization of changes in the pharmacodynamic response
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to antibiotics can be achieved through time kill studies, which monitor bacterial
densities over time when exposed to antibiotics, allowing the evaluation of
bacterial growth, antibiotic-associated killing, and adaptation effects?®*.
Although time-kill studies provide these valuable insights, they remain limited in
their throughput and the number of time points at which data can be collected®.
The use of bacterial strains carrying luminescent reporters allows real-time
monitoring of bacterial growth and killing dynamics during antibiotic
exposure®?*. The resulting profiles can be analyzed using mathematical
pharmacodynamic models to obtain further quantitative insights into PD
relationships. As such, the use of luminescence-based time kill studies in
combination with quantitative pharmacodynamic models is well-suited for
comprehensively assessing the effects of nutrient conditions on antibiotic
response.

In the current study, we aimed to systematically evaluate the impact of a
wide range of CF sputum-relevant carbon sources on antimicrobial time-kill
responses in P. aeruginosa. The nutrients evaluated included alanine, arginine,
aspartate, glutamate, lactate, proline, and glucose. These nutrient-associated
effects were evaluated for six antibiotics commonly used for respiratory tract
infections in CF, including aztreonam, ceftazidime, ciprofloxacin, colistin,
imipenem, and tobramycin. We assessed the bacterial growth/kill time course
profiles using extensive time-kill studies with a modified P. aeruginosa PAO1 strain
carrying a constitutively active luminescent reporter. This strain was
subsequently used to infer PD parameters and perform pharmacokinetic-
pharmacodynamic (PK-PD) simulations to demonstrate the potential clinical

impact of nutrients on antimicrobial PD.

3.2. Materials and Methods

Culture media and bacterial strain

A basal medium was prepared consisting of physiologically relevant
concentrations of amino acids in synthetic CF sputum as described previously’,
calcium and magnesium adjusted 0.11 M phosphate buffer, ammonium chloride,
potassium nitrate, ferrous sulfate, Basal Medium Eagle 1x vitamins, and trace
metals. The pH of the basal medium was confirmed to be 7.4, and was verified

after addition of nutrients and filter sterilization. The specific concentrations of
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all medium components are listed in Table S1. We then prepared 7 unique
nutrient-specific media for each of the carbon sources used in this study,
including alanine, arginine, aspartate, glutamate, glucose, proline, and lactate.
Each of these nutrients was added separately to the basal medium in excess at a
concentration of 15 mM. The P. aeruginosa bioluminescent strain PAO1 Xen41
(Revvity Inc., Waltham, MA, USA) was used in all experiments. The promoterless
insertion of the luxCDABE cassette into the chromosomal genome resulted in a
linear relationship between luminescence in relative light units (RLU) and
CFU/mL (Figure S1)3%,

Antibiotics

Antibiotic stock solutions were freshly prepared on the day of the experiment and
diluted to desired concentrations using an Opentrons OT-2 (Opentrons Inc., New
York, NY, USA) liquid handling system. Aztreonam and ceftazidime pentahydrate
were purchased from Thermo Fisher Scientific (Breda, The Netherlands).
Ciprofloxacin, imipenem monohydrate, and tobramycin were purchased from
Chem-Impex International (Wood Dale, IL, USA). Colistin sulfate was purchased
from Cayman Chemical Company (Ann Arbor, MI, USA).

Experimental workflow

Time-kill assays were conducted by culturing P. aeruginosa in each of the nutrient-
specific media formulations and exposing the cultures to 6 different antibiotics.
We tested 9 different serially diluted concentrations in a microtiter plate format,
centered around their minimal inhibitory concentrations (Figure 1). All
experiments were conducted at 37 °C and with shaking at 150 rpm.

The PAO1 Xen41 strain was streaked on LB agar plates and incubated overnight.
One colony was transferred to a nutrient specific media formulation (4 mL) and
cultured overnight. The liquid cultures were diluted to an optical density at 600
nm (ODsg) of 0.05 before inoculation, corresponding to an approximate bacterial
concentration of 5*10° CFU/mL. The bacterial inoculum (50 uL) was added to
fresh medium with antibiotics (150 uL) in a white 96-well microtiter plate.
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Culture in media formulation

| /\ Basal control media
/ = *
)
i

in a 96-well plates

0 pgimL
4 pgimL.

5 - .
Antibiotic treatment Luminescence measurements Concentration-effect model
9 concentrations

Aztreonam

, Alanine  Glucose
, Arginine  Glutamate -

e o Ciprofloxacin
Aspartate Proline

Cell Density (RLU)

Imipenem

"
Lactate

T Ceftazidime
# A

P v
Response
2z

Tobramycin

[Antibiotic]

Figure 1. Experimental approach. The experiment started with by a liquid culture in the
media formulation containing 1 or none of the nutrients of interest. The population was
diluted to the starting density and treated with 9 concentrations of antibiotic while the
luminescence was determined every hour in relative light units (RLU). A four parameter
log-logistic function was fitted on the area under the curve or growth rate per antibiotic
concentration to determine the upper limit (Eo), lower limit (Ema), and half-maximal
effective concentration (ECso).

After inoculation, microtiter plates were transferred to a Liconic StoreX STX44
incubator (Mauren, Principality of Liechtenstein) for incubation (95% relative
humidity). A Peak Analysis and Automation KX-2 Laboratory Robot (Hampshire,
United Kingdom) transferred the microtiter plate every hour between the
incubator and the BMG Labtech Fluostar Omega microplate reader (Ortenberg,
Germany) for time-course data acquisition. The density of viable bacteria was
determined by measuring luminescence, quantified as relative light units (RLU).

Data processing and analysis

All data preprocessing and analyses are performed using R. To evaluate fitness
differences between growth media, the maximal population growth rates (Mmax)
and the maximal population density (Nma) under antibiotic free culture
conditions were calculated using the all splines function from the grofit
package®. Differences in growth parameters in the studied media formulations
compared to the basal media were assessed by the Dunnett’s Test from the
DescTools R package?®.

To quantify drug effects, the total bacterial burden was determined by calculating
the area under the curve (AUC) of the RLU between 1 and 15 hours of incubation
(Figure S2). The resulting AUC values were then used to quantify
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pharmacodynamic parameters. We fitted for each antibiotic-nutrient
combination the mean (n=3) AUC to the antibiotic concentration ([AB]) using a
four parameter log-logistic (LL.4) function from the drc R package (Equation 1)%.
This function includes parameters for the hill coefficient (nu), the lower limit
(Emax), the upper limit (Eo), and the relative half-maximal effective concentration
(ECso). The difference in relative ECso among culture conditions was quantified

using the 95% confidence interval.

AUC([AB]) = Eppgy + S0 Fmax @)

1+enH0g([AB])-10g(EC50))

Pharmacokinetic-pharmacodynamic (PK-PD) simulations

We used a previously published pharmacokinetic (PK) model for tobramycin to
perform PK-PD simulations®. We simulated the clinical concentration-time
profiles for a typical dose of 3.3 mg/kg of intravenous tobramycin, administered
every 8 hours (Table S2). Interpatient variability for the parameters was derived
from published interquartile ranges. Antibiotic PD was described by first
estimating growth/kill rates for each antibiotic concentration, which were
subsequently fitted to a pharmacodynamic sigmoidal function relation antibiotic
growth/kill rate to antibiotic concentration. The growth rates where determined
by determining the slope of the phase of the luminescence time kill curve where
the drug effect occurred (Figure S6), using the grofit package.

3.3. Results

Nutrient-dependent shift in antibiotic sensitivity.

We cultured P. aeruginosa under various nutrient conditions in the presence of
different antibiotics to investigate the effect of nutrients on the
pharmacodynamic (PD) response. To summarize the bacterial response kinetics-
encompassing growth enhancement, suppression, or killing during antibiotic
treatment-we calculated the AUC of the luminescence time course profiles. We
then regressed the AUC values against antibiotic concentrations using a sigmoidal
Emax model, allowing us to visualize differences in the pharmacodynamic
response across conditions (Figure 2). Overall, these analyses revealed

significant effects of nutrients on the antibiotic concentration required to achieve
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50% of the total antimicrobial effect (relative ECsy), and the steepness of the
concentration-response profiles (Figure S3).
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Figure 2. Pharmacodynamic exposure-response relationships for antibiotics cultured
under different nutrient conditions. The area under the curve (AUC) for bacterial
growth/kill based on relative light units (RLU) up to 15h in relation to antibiotic
concentrations (n=9) were fitted using sigmoidal Emax curves, for different nutrient-
enriched media formulations and the basal control media condition. The lines represent
the mean predictions derived from 3 biological replicates (n = 3). Abbreviations:
Aztreonam (AZT), ceftazidime (CAZ), ciprofloxacin (CIP), colistin (COL), imipenem (IMI),
and tobramycin (TOB).
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Figure 3. Changes in antibiotic sensitivity (ECso) of P. aeruginosa across different nutrients
and antibiotics. Observed area-under-the-curve for bacterial growth and kill for P.
aeruginosa PAO1-Xen4l were regressed against drug concentrations for different
antibiotics and nutrients, using a sigmoidal Emax function. The resulting ECso estimates
for different antibiotic-nutrient combinations are shown for (A) absolute EC50 values
(mean and 95% confidence intervals), with vertical dashed lines indicating the EC50
obtained from the base media control treatment, and the cross-nutrient median ECso, and
(B) median fold-change (FC) values in ECso, compared to the base media ECs. The
antibiotics and nutrients were clustered using Euclidean distance clustering to showcase
patterns of antibiotic sensitivity and nutrient effect. Abbreviations: aztreonam (AZT),
ceftazidime (CAZ), ciprofloxacin (CIP), colistin (COL), imipenem (IMI), and tobramycin
(TOB).
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The relative ECsy would be the primary metric of relevance to quantitatively
indicate subtle changes in drug potency, i.e., antibiotic sensitivity across
conditions. For several nutrient conditions, we observed clinically relevant
alterations in the ECs, values across different antibiotics (Figure 3A). We observed
both reductions in ECs, as compared to the basal media and increased ECs, values,
indicating increased resistance. Across all antibiotics, no clear trends in ECs
shifts were observed for specific nutrients.

When comparing the relative change in ECs to the basal medium (Figure
3B), both aztreonam and ceftazidime exhibited similarly enhanced sensitivity
across different nutrient conditions. The most notable changes were the
increased sensitivity observed in lactate-enriched media for both antibiotics. In
contrast, imipenem sensitivity was consistently reduced in all nutrient-enriched
conditions, with the most significant reductions observed in aspartate- and
glutamate-enriched media. For ciprofloxacin, colistin and tobramycin a wider
variation in effect was compared to the basal medium. Glucose- and proline-
enriched media resulted in a reduction of ECs,, while aspartate, glutamate- and
lactate-enriched media increased the ECs, for all three antibiotics. The largest
change in sensitivity was observed for tobramycin, where for lactate-rich media,
the ECs value increased profoundly (log2(FC_EC50) = 2.09, a 4.4-fold increase).

Fitness differences in different culture conditions affect PD
parameters.

We studied the effect of different nutrient-enriched media under antibiotic-free
conditions on fitness and growth yield using the growth curve profiles (Figure 4),
to understand their potential contributions to differences in antibiotic response.
Except for alanine, for all nutrients we found an increase of >1.5 fold in the upper
limit of the model (E,), i.e., the antibiotic baseline with no antimicrobial effect
used in our pharmacodynamic analyses (Figure S3). To further understand these
effects we calculated the maximum population growth rate (Uma) and the
maximum population density (Nma) of antibiotic-free conditions (Figure S4).
While the nutrient composition significantly affected umax, the magnitude of the
effect was modest (Figure 4B), with an increase of up to 1.2-fold compared to the
basal control media observed only for aspartate and glutamate. The observed
effects on E, are predominantly explained by differences in Nmax (Figure 4C), with
a >2-fold increase observed for aspartate and glutamate and a fold change
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Figure 4. Nutrient effects on fitness and growth yield under antibiotic-free conditions.
Growth curves for P. aeruginosa were analyzed for different media enriched for alanine,
arginine, aspartate, glucose, glutamate, lactate, and proline on the fold change compared
to basal media. (A) total growth yield described using the upper limit of the antibiotic
concentration-response curve (Eo), (B) the maximal growth rate (Umax) of the growth curve,
(C) maximal population density (Nmax) and the time (tmax) required to reach Nmax.
Significant changes compared to the basal control media are indicated using *’ for p <0.05
and ‘ns’ for p > 0.05.

between 1.2 and 2.0 for all other nutrient conditions. Distinct differences in
growth curves during the transition from the exponential growth phase to the
stationary phase was visible (Figure S4), in particular for the time required to
reach Nmax (tmax)-

The impact of differences in E, across different nutrient conditions on PD
parameters was further evaluated by analyzing the total antimicrobial response.
Comparing the relative ECs, with the absolute ECs, provides an indication of how
the limits of PD model influence the total antimicrobial effect. The relative ECs, is
defined as the midpoint between the two limits of concentration-response curve,
whereas the absolute ECs, denotes a 50% reduction in the AUC from the baseline
with no antimicrobial effect (Eo). A larger discrepancy between these ECs, values
suggests a stronger impact of the two limits on determining the antibiotic ECs, .
For treatments with ciprofloxacin, colistin, imipenem and tobramycin, the
difference between the average relative and absolute ECs, values was less than 5%
(Figure S5). In contrast, ceftazidime and aztreonam treatments showed
difference of respectively 14% and 22% indicating that differences in the PD
model limits between the nutrient conditions do influence the determination of
ECso.
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In vitro nutrient-driven PD differences impact treatment simulations
with a clinically relevant tobramycin PK profile

To assess whether the magnitude of nutrient-associated changes in the PD
response observed in vitro may have significance at clinically relevant antibiotic
concentrations, we performed pharmacokinetic-pharmacodynamic (PK-PD)
simulations. For proof of concept, we focused on tobramycin and the nutrients
glucose and lactate, since for this antibiotic and these nutrient conditions clearly
divergent PD effects were observed.

We re-fitted the PD model (Equation 1) with the in vitro obtained growth
and kill rates from our luminescence time course data per antibiotic
concentration. In the basal media enriched with glucose and lactate, maximum
bacterial growth rates were similar (0.25 h™ and 0.24 h}, respectively), as were the
maximum bacterial kill rates (-0.15 h' and -0.14 h, respectively) (Figure S6).
However, the PD model estimated a 6-fold difference in the ECs, for glucose-
enriched (1.4 ug/mL) and lactate-enriched (8.6 ug/mL) environments, indicating
that tobramycin is profoundly more effective at lower concentrations in glucose-
rich culture conditions.

We simulated clinical tobramycin concentration-time profiles using a
previously published PK model for an intravenous dose of 3.3 mg/kg
administered every 8 hours (Figure 5A). The tobramycin PK simulation shows
that the free drug concentrations fell below the ECs, within 1 hour for glucose-
rich conditions and within 5.5 hours for lactate-rich conditions after dose
administration. As a result, treatment failure was observed for tobramycin under
lactate-rich conditions, whereas growth suppression occurred in simulated
glucose-enriched conditions (Figure 5B).

3.4. Discussion

In this study we used a combination of in vitro time-Kkill studies and mathematical
modeling to investigate how specific nutrient conditions can distinctly affect
bacterial growth and pharmacodynamic response of P. aeruginosa to different
antibiotics.

We found that colistin, ciprofloxacin, imipenem and tobramycin
demonstrated >2-fold differences in nutrient-dependent changes in antibiotic
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Figure 5. Pharmacokinetic and pharmacodynamic simulation of tobramycin treatment in
glucose or lactate-rich environments. (A) Tobramycin concentrations are modelled using
a two-compartment model following a 3.3 mg/kg q8h dosing regimen. (B) Treatment
response is simulated using a pharmacodynamic model based on population growth rates
per drug concentration from in vitro growth/kill curves. The solid lines represent the
median (1000 simulations) with the interquartile range represented by the transparent-
hued areas.

sensitivity (ECsy), while these nutrients only had a limited effect on changes in
bacterial fitness. Our time-course analysis revealed that changes in growth
dynamics induced by these antibiotics occur within the initial hours of treatment,
even when nutrients are abundant and growth rates appear unchanged. This
observation challenges the suggestion that antibiotic sensitivity changes were
caused by nutrient depletion or diminished growth rates®. In contrast, the
response to aztreonam and ceftazidime under various nutrient conditions was

o0 65
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more complex, as both the baseline response (E;) and the maximum

antimicrobial effect (Emax) were differently affected by the various nutrients.

Our findings indicate that the adding glucose to nutrient-limited media
enhances colistin sensitivity. Variations in colistin sensitivity under different
nutrient conditions are thought to arise from nutrient-induced changes in cell
wall structure**®. Glucose-rich conditions have been previously suggested to
decrease colistin sensitivity by stabilizing intracellular osmotic pressure'*. Our
finding of enhanced colistin sensitivity thus challenges the hypothesis of osmotic
stabilization of glucose in nutrient-scarce conditions. This observation is
consistent with documented increases in colistin sensitivity in minimal media
supplemented with glucose®.

We found a diminished sensitivity of imipenem under nutrient conditions
involving arginine, aspartate, glutamate, or proline. This can be explained by
reduced imipenem uptake due to porin competition with these amino acids.
Indeed, imipenem susceptibility in P. aeruginosa relies on the presence of outer
membrane porins, particularly OprD and OprP, which facilitate the diffusion of
sugars and amino acids®*?*. Furthermore, nutrient starvation upregulates
OprD3¥%%  providing an explanation for the increased imipenem sensitivity
observed in both basal and glucose-rich media. The reduced growth rate and
short exponential growth phase in these conditions may prompt an earlier
starvation response, thereby enhancing OprD-mediated imipenem uptake.

We observed reduced ciprofloxacin susceptibility in glutamate media, which has
previously been associated with adaptations in nitrogen metabolism and stress
responses®*®. This metabolic adaptation mitigates ciprofloxacin’s antibacterial
effect of inducing oxidative stress by increasing the generation of reactive oxygen
species during oxidative phosphorylation®®*. The increased -ciprofloxacin
sensitivity observed in arginine-rich conditions may be attributed to the
induction of biofilm formation during treatment. Arginine-induced biofilm
formation imposes a high metabolic burden on the cells®, aligning with the
effective anti-biofilm activity of ciprofloxacin*. The difference in ciprofloxacin
susceptibility among nutrient conditions might be due to a pH-dependent effect,
although our medium was phosphate buffered to a pH of 7.4. Our observations in

ciprofloxacin susceptibility correspond to previous findings of ciprofloxacin

66 o0
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being more effective in alkaline conditions, e.g. arginine, compared to less
sensitivity in acidic conditions, e.g. glutamate and aspartate*. However, this pH-
mediated effect is not present in the observed reduced tobramycin susceptibility
in arginine-rich conditions. Unbuffered arginine increases media alkalinity,
resulting in increased tobramycin cellular uptake by increasing the

transmembrane potential®.

In our study, for tobramycin, we observed enhanced sensitivity for proline and
glucose, whereas for lactate and alanine, reduced sensitivity was found. So far
previous studies have only investigated the effect of glucose-enriched media on
P. aeruginosa tobramycin sensitivity, finding a similar potentiation effect**.
Cellular respiration is key for aminoglycoside uptake, thereby directly relating
tobramycin susceptibility to energy metabolism*. The nutrients alternated in our
media compositions are all closely linked to the TCA cycle, and intermediate
products have been consistently correlated with tobramycin potentiation'®**,
Interestingly, the sensitivity enhancement associated with TCA cycle activity can
be suppressed by reducing the production of electron carriers through the
activation of pleiotropic metabolic pathways. The redox imbalance induced by
these alternative pathways and anaerobic energy production can be mitigated
through the utilization of lactate*. This observation may provide an explanation
for the reduced susceptibility in lactate-rich media. Although proline and alanine
demonstrated a profound effect on tobramycin treatment in our study, and
previous research highlighted their role in alternative energy-producing
pathways such as denitrification*®*, their exact role in P. aeruginosa metabolism

during tobramycin treatment remains to be investigated.

Our PK-PD simulation illustrates how differences in PD response under
nutrient-enriched conditions may lead to clinically relevant changes in antibiotic
treatment response. This is demonstrated using a clinical tobramycin PK profile
and the PD parameters from glucose and lactate-enriched conditions. While
these in vitro conditions do not fully replicate in vivo growth environments,
which may also involve phenotypical adaptations such as biofilm formation or
interspecies interactions, they underscore the relevance of considering nutrient
conditions in the infectious microenvironment. This is especially relevant when
nutrient availability could be altered under specific disease conditions. For

instance, elevated lactate levels have been found in CF patients with declining
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lung function®, which could thus potentially contribute to the reduced
tobramycin efficacy in adult CF patients®. Diabetes is a common disease in CF
patients and for which increased glucose levels can be expected, which could
potentially affect TOB treatment response®.

The nutrient conditions employed in this study do not capture the full complexity
of potential CF lung environments but provide isolated insights into the effect of
specific nutrient conditions. Nutrients showed modest differential impact on
bacterial fitness (Umax) and profound changes in growth yield (Nm.x). The minimal
impact on Umax from substituting a single nutrient is consistent with prior studies
on glucose and lactate addition to minimal media®, and can be explained by a
compressed nutrient utilization hierarchy under nutrient-poor conditions %,
facilitating the simultaneous utilization of the basal medium nutrients and the
added nutrients. This efficient metabolic regulation of P. aeruginosa suggests that
our findings may not directly extrapolate to other conditions or nutrient
combinations. Future research, focusing specifically on nutrient utilization
during antibiotic exposure, will be crucial to deepen our understanding of
specific nutrients’ roles in more complex environments.

In conclusion, our study demonstrates a profound impact of specific nutrient
conditions on antibiotic sensitivity, with only modest effects on fitness. While
broader clinical applicability of our results remains to be further elucidated, our
work underscores the relevance of nutrients in the infectious microenvironment.
Ultimately, it could be envisioned that specific nutrient levels in either plasma or
sputum may be considered a clinically relevant predictor of antibiotic treatment
response. Similarly, the effect of nutrient conditions may be important for
consideration in antibiotic susceptibility testing.
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3.6. Supplementary figures and tables
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Supplemental Figure 1. Linear calibration between luminescence (relative light units,

RLU) and cell counts (CFU/mL) for multiple combinations of detector settings, varying

iteration time (iter, columns) and gain (rows). The iteration time stands for the total

measurement time per well and the gain is amplification in the conversion from light into

electric signal.
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Supplemental figure 2. Dynamic analysis of the population size over time during the

treatment of 6 antibiotics with 9 concentrations and a positive control in 8 media

formulations. The y-axis is the cell density measured by relative light units (RLU). All

conditions have 3 biological replicates. Abbreviations: aztreonam (AZT), ceftazidime
(CAZ), ciprofloxacin (CIP), colistin (COL), imipenem (IMI), and tobramycin (TOB).
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Supplemental Figure 3. Emax model fitting was performed on the area under the curve
(AUC) of growth curves across varying antibiotic concentrations. The model was fitted
using the average AUC values for each antibiotic concentration (n = 3). From this model,
the upper limit (E0), the half-maximal effective concentration (EC50), and the lower limit
(Emax) were determined.
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Supplemental figure 6. Phase selection for growth rate determination for growth rate
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Name Concentration Company information
(mM)

di-sodium hydrogen phosphate (Na,HPO.) 90.2 Thermo Fisher Scientific
5 Potassium di-hydrogen phosphate (KH,PO.) 22.0 VWR International
EE Sodium chloride (NaCl) 8.5 Merck KGaA (Avantor™)
'O‘f Ammonium chloride (NH4Cl) 18.6 Alfa Aesar
= Magnesium sulphate hepta-hydrate (MgSO.) 1.0 VWR International
Calcium chloride (CaCl) 0.1 Acros Organics
® Potassium nitrate (KNOs) 0.35 Acros Organics
@ Iron sulphate (FeSOa) 0.0036 Alfa Aesar
Suppl. | BME Vitamin solution 1x Thermo Fisher Scientific
aDCI;ZO((]i;B; ;Ethylene di-amine tetra-acetic 0.002 (mg/mL) JT. Baker (Avantor™)
) Zinc Sulphate hepta-hydrate (ZnSOs) 0.23 (mg/mL) Alfa Aesar
% Boric acid (H3BOs) 0.111 (mg/mL) Acros Organics
E Manganese chloride tetra-hydrate (MnCl,) 0.051 (mg/mL) Sigma Aldrich (Avantor™)
8 | Cobalt chloride (CoCl,) 0.017 (mg/mL) Alfa Aesar
= Copper Sulphate penta-hydrate (CuSO.) 0.015 (mg/mL) Sigma Aldrich (Avantor™)

Ammonium hepta-molybdate tetra
hydrate ((NH4)6II)\/IO702) Y 0.01 (mg/mlL) Alfa Aesar
Cysteine (Cys) 0.2 Chem-Impex International
Glycine (Gly) 1.2 Acros Organics
Histidine hydrochloride (His) 0.5 Chem-Impex International
Isoleucine (Ile) 1.1 Chem-Impex International
*g Leucine (Leu) 1.6 Chem-Impex International
-2 Lysine hydrochloride (Lys) 2.1 Thermo Fisher Scientific
§ Methionine (Met) 0.6 Chem-Impex International
2 Phenylalanine (Phe) 0.5 Chem-Impex International
3 Serine (Ser) 1.4 Chem-Impex International
Threonine (Thr) 1.0 Chem-Impex International
Tryptophan (Trp) 0.01 Chem-Impex International
Tyrosine (Tyr) 0.8 Chem-Impex International
Valine (Val) 1.1 Chem-Impex International
Alanine (Ala) 15 Chem-Impex International
» | Arginine (Arg) 15 Chem-Impex International
% .S Aspartate (Asp) 15 Chem-Impex International
E § | Glutamate (Glu) 15 Chem-Impex International
2 2 | Sodium lactate (LAC) 15 Biosynth International
® | Proline (Pro) 15 Thermo Fisher Scientific
Glucose (GLC) 15 Alfa Aesar
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Chapter 3

Supplemental table 2. Pharmacokinetic parameters

Explanation Name Value / Formula Unit
Patient bodyweight BW 55.3 kg
Patient age 29.0 years
Clearance rate per BW CL¢ 0.1212 L/h/kg
Volume comp. 1 per BW Ve 0.20 L/kg
Distribution rate per BW CL4 0.0702 L/h/kg
Volume comp. 2 per BW Vs 0.38 L/kg
NcL, 28.5 %
. o e 28.2 %
I 1 1 ¢
ndividual Variability (n) ey 66.6 %
Ny, 27.8 %
Population size 1000
Dosing interval 8 h
Dosing amount 3.3«BW mg
Dosing duration 0.30 h
Volume compartment 1 Veentral Ve - el«BW L
Elimination rate from Veentral Kelimination (CL¢* et « BW) / Veentral
Volume compartment 2 Va Vs » e« BW L
Rate constant 1-->2 K (CLa * € « BW) / Veentral
Rate constant 2-->1 Ko (CL4* €™« BW) / V.,
Meentral(t) _ N _ R
Amount in compartment 1 Meentral ac = Kerr 2~ (Ketimination + mg
klZ) * Mecentral
Amount in compartment 2 m> m;—it) = K12 * Meentrai(t) — K1 » mo(t) mg
Concentration compartment 1 Ceentral Mecentral / Veentral mg/L
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Nutrient condition affect antimicrobial pharmacodynamics in P. aeruginosa

Explanations Name Value / Formula Unit

Glucose Lactate
Max. drug effect Emax -0.144 -0.146 ‘h
Max. growth rate K(gE“;‘h 0.240 0.254 h

0

Half effective ECso 1.406 8.582 mg/L
concentration
Hill coefficicent nu 1.850 16.057
Starting population No 1+10° CFU/mL
Mazx. population Ninax 9+10° CFU/mL
Effective growth Kgrowth=Emax .
rate Kefect Kgrowth - (Emax + 1+enH(l"g(ccentral)—IOE(ECSO))) h
Infection dN(t) *
population N(t) T = (kgrowth * (l'N(t)/Nmax) - keffect) N(t) CFU/mL

Supplemental table 3. Pharmacodynamic parameters
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