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Abstract

Pseudomonas aeruginosa is a versatile pathogen that can adapt its metabolism to
diverse nutritional environments. It is a frequent cause of chronic respiratory
infections, particularly in people with cystic fibrosis (pwCF). In pwCF, the
infectious microenvironment is characterized by a unique and patient-specific
nutrient environment. The nutrient-rich yet hypoxic mucus suppresses aerobic
metabolism and promotes alternative metabolic pathways such as denitrification
and fermentation, as well as the establishment of a biofilm-associated lifestyle.
These adaptations promote sustained bacterial survival in the CF respiratory tract
and may impair the efficacy of antibiotic therapy. This review summarizes how
physiologically relevant nutrient environments drive metabolic changes in P.
aeruginosa and subsequently its responses to antibiotics. We also discuss how CF-
related pathophysiology may contribute to nutrient heterogeneity, potentially
altering antibiotic effects. In conclusion, the complex interplay between nutrient
availability, bacterial metabolism, and antibiotic response may provide both
explanations and opportunities for tailoring antibiotic therapies in patients with

chronic P. aeruginosa infections.
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2.1. Introduction

Cystic fibrosis (CF) is associated with the formation of a thick, dehydrated mucus
layer, hindering both oxygen (0,) diffusion and waste clearance (Figure 1A),
which often results in the establishment of chronic respiratory tract infections.
Pseudomonas aeruginosa, a versatile Gram-negative opportunistic pathogen, is
among the most predominant causes of chronic bacterial respiratory tract

infections in adult patients with CF (pwCF)"22.

Mucus in the respiratory tract of pwCF provides a complex environment
with energy substrates that can be efficiently utilized by P. aeruginosa* (Figure
1B). Mucus composition varies substantially between individual patients®® and is
spatially distributed across the compartmentalized lung’. P. aeruginosa is capable
of adapting to these varying local environments due to its versatile and well-
regulated metabolism®®. In pwCF, P. aeruginosa is typically present in a biofilm
lifestyle, wherein the biofilm extracellular matrix serves as a protective shield
against both host immunity and antibiotics'®. Mature biofilm structures impose
constraints on O, and nutrient penetration, leading to the segregation of aerobic
and anaerobic metabolic subpopulations which can impact antibiotic treatment
effects"" (Figure 1C-D).

Understanding the intricate relationship between diverse nutrient
microenvironments and antibiotic responses is key to improving antibiotic
treatment of chronic P. aeruginosa respiratory tract infections in pwCF. The
current review aims to provide an overview of: (i) P. aeruginosa metabolic
adaptation within clinically relevant CF lung microenvironments; (ii) the
influence of changing nutrient environments on biofilm formation and antibiotic
sensitivity; and (iii) the role of patient heterogeneity in nutrient diversity and

treatment response.
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A. Healthy lung B. Cystic fibrosis lung microenvironement

D. Anaerobic biofilm core

Figure 1. Overview of P. aeruginosa in the cystic fibrosis (CF) lung microenvironment. (A)
demonstrates the efficient clearance of the mucus in healthy lungs with functional
transmembrane proteins. (B) Accumulation of viscous dehydrated mucus and the
microenvironmental influences in biofilm formation. Metabolic processes of cells in the
(C) peripheral layer and (D) core of the biofilm.

2.2. Metabolic adaptation within the nutritional
microenvironment in cystic fibrosis
The CF lung microenvironments are characterized by a large diversity in

nutrients and O, levels. The following section describes P. aeruginosa metabolic
pathways that are utilized or affected under these nutritional conditions.
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Aerobic metabolism

Tricarboxylic acid (TCA) cycle

Amino acids and lactate are systematically increased in the CF lung and represent
important nutrients for P. aeruginosa energy production through the TCA
cycle'®'314, These nutrients have different entry points into the TCA cycle,
facilitating metabolic flux versatility (Figure 2). For instance, lactate is converted
to pyruvate by lactate dehydrogenases (LIdDE and L1dA) to fuel the TCA cycle'®,
while L-glutamate enters halfway in the cycle by glutamate dehydrogenases
(GdhA and GdhB)'8. The resulting electron carriers from the TCA cycle play a
crucial role in oxidative phosphorylation (OXPHOS), supporting energy-
demanding processes like extracellular matrix production during biofilm
maturation'”'®, Matrix-producing biofilm cells exhibit comparable TCA cycle
activity to planktonic cells'®, underlining the high metabolic activity in the
peripheral biofilm sub-population where nutrients and O, are still available.
Finally, P. aeruginosa can also operate anaplerotic pathways in the TCA cycle, such
as the pyruvate and glyoxylate shunt, if nutrients or O, become scarce. Shunting
the TCA cycle reduces electron carrier production to maintain the redox balance
during low energy demanding circumstances, such as the dormant biofilm
core'®20,

Glucose catabolism

Glucose levels are elevated in the CF respiratory fluid due to active stimulation of
glucose leakage from lung epithelial cells and the induction of hemoptysis by P.
aeruginosa®'-3. Unlike many organisms, P. aeruginosa typically does not prefer
glucose as primary carbon source in CF sputum due to the absence of glycolytic
enzymes®. However, glucose catabolism remains crucial for the bacterial survival
and pathogenicity, primarily through efficient production of pyruvate through
the Entner-Doudoroff (ED) pathway'®?4. P. aeruginosa employs a combination of
enzymes from both the ED and Embden-Meyerhof-Parnas (EMP) pathway for a
full carbohydrate degradation loop. The ED-EMP cycle is primarily used for
anabolic functions, but also yields precursors for biofilm matrix and cell
envelope production'. P. aeruginosa also actively secretes lipases and elastases to
cleave macromolecules into metabolites suitable for the ED-EMP cycle®?®. For
example, the peptidoglycan component N-acetylglucosamine present in CF
sputum is processed within the ED-EMP system to be utilized intracellularly as a
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carbon source®®*. The heightened levels of glycolytic substrates in CF sputum
may contribute to the biofilm-aggregate structure observed in the CF lung. P.
aeruginosa biofilms grown solely on glucose demonstrate reduced motility
aggregate populations?’, suggesting an intricate interplay of glycolytic
metabolism in shaping microbial community characteristics in the biofilm.

Amino acids and D-isoforms

Amino acids play a pivotal role in P. aeruginosa metabolism within the CF lung
environment, serving as carbon or nitrogen sources and building blocks for
proteins. Both P. aeruginosa and host immune cells contribute to the elevated
amino acid concentrations in CF sputum through the excretion of peptidases?®%.
The abundance of amino acids in CF sputum provides a favorable growth
environment, whereby long-term evolution of pathogens in the CF lung can lead
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Figure 2. Central carbon metabolism of P. aeruginosa and the relation with antibiotic
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P. aeruginosa biofilm formation, with branched chain amino acids leucine,
isoleucine and valine influencing P. aeruginosa growth rate and swarming
motility®'%2, Biofilm stimulation is isoform-dependent, as the D-isoform of
leucine inhibits biofilm formation®2-¢, In contrast, other studies reported D-
amino acid supplementation did not significantly improve survival outcomes
in mice®, and anti-biofilm effects of D-isoforms disappeared after several
days of incubation®. These conflicting results highlight the relevance for
further studies into the driving mechanisms of amino acids in P. aeruginosa
infection in the CF lung.

Anaerobic metabolism

The dehydrated and thick mucus layer in the CF lung reduces O, diffusion. Levels
of O, are further reduced by neighboring cells, such as lung epithelial cells and
polynuclear monocytes (PMNs)3$3. This O, restriction contributes to the
establishment of fully anaerobic microenvironments within the mature biofilm
structure. In response to these O, constraints, P. aeruginosa employs adaptive
strategies, utilizing two fermentation pathways and shifting from O, to nitrates as
electron acceptors.

Glucose and pyruvate fermentation

The fermentation of glucose comprises two steps: the initial conversion of
glucose to pyruvate, followed by the subsequent fermentation of pyruvate into
lactate, acetate and succinate®. Glucose fermentation to pyruvate is typically
influenced by redox constraints*’. To overcome redox imbalances during
anaerobic fermentation, P. aeruginosa actively produces radical-scavenging
phenazines*'#243, The NADH-dependent conversion of lactate to pyruvate
conversion also preserves the cellular redox balance by limiting electron
accumulation®*2. The emphasis on pyruvate metabolism in anaerobic
conditions becomes evident by the increase in total biofilm biomass upon
pyruvate supplementation and biofilm dispersion after pyruvate deficiency***®.
Efficient cross-feeding of pyruvate and lactate over the O, gradient demonstrates
the cooperative metabolic activity between the biofilm sub-populations'*¢, and
the role of carbon sources for maintaining matured biofilm structures.

Arginine deiminase

Arginine, an amino acid favored by P. aeruginosa as a carbon source, plays a

crucial role in anaerobic metabolism and biofilm development. Arginine serves
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as an energy source, undergoing fermentation through deiminase enzymes®.
The transcription of the arcCBAB operon encoding for arginine deiminase
enzymes is upregulated during biofilm formation, indicating its importance in
this process'. The utilization of arginine deiminase enzymes is a relatively
inefficient pathway for energy production, reducing motility and promoting the
transition towards a static biofilm phenotype?#®32, While fermentation
maintains energy levels for cellular maintenance in anaerobic environments, it
does not provide the efficiency to enable net growth*®4’  which might explain the
presence of a dormant sub-population within the biofilm core. The role of
arginine extends beyond serving as an energy source in anaerobic conditions. It
also acts as a precursor of gene-modulating polyamines that contribute to the
formation of the extracellular matrix of biofilms*°. The central role of arginine in
biofilm maturation is further supported by sensory domains, inducing
Pseudomonas Putida biofilm formation in the presence of exogenous arginine®.

Denitrification

P. aeruginosa capitalizes on denitrification for proliferation in anaerobic
conditions. This process substitutes O, with nitrate (NOs-) and nitrite (NO,-) as
electron acceptors (Figure 1D)>%% This shift facilitated by the ample availability
of these compounds in CF mucus, which also enables activation of the
denitrification pathway despite the presence of O,. The high abundance of these
nitrates does not limit the utilization of the denitrification pathway within
anaerobic environments>®. P. aeruginosa also employs denitrification enzymes to
neutralize nitric oxide (NO) produced by immune'*** and to mitigate ROS
production by distributing the electron flow across the respiratory and
denitrification pathways in O,rich conditions®*®. The functionality of
denitrification is iron-dependent™. Reduced transcription of denitrification
proteins hampers anaerobic metabolism under iron scarcity*, whereas sufficient
levels of iron stimulate anerobic metabolism and biofilm development®-%. This
underscores the critical role of denitrification in the maturation of biofilm and
adaptation of anaerobic sub-populations in the core, highlighting how metabolic
processes are intricately linked to multiple nutrients in the surrounding
microenvironment. This metabolic coordination is also regulated at the
transcriptional level. The Anr transcriptional regulator, which controls
denitrification enzymes, also has conserved regulatory effects in central carbon

metabolic pathways***®. For instance, under anaerobic yet nitrate-rich
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conditions, arginine is no longer a preferred carbon source>*. This metabolic
heterogeneity is reflected in biofilm structures, where different metabolic
pathways dominate at varying biofilm depths depending on nutrient
availability’>¢!. Consequently, the metabolic adaptation of P. aeruginosa at the
infection site is influenced by the overall nutritional composition, including O,
metals, salts, and carbon sources. This highlights both the flexibility and diversity
of P. aeruginosa metabolism within the CF lung, underscoring the importance of
understanding the complex interplay between bacterial metabolism and the
nutritional environment for effective therapeutic interventions.

2.3. Nutrient-driven effects of metabolic
adaptation on antibiotic sensitivity

In this section, we discuss the role of nutrients in the metabolic activity of P.
aeruginosa, and how this influences antibiotic sensitivity. Nutrient-limited
environments typically induce low metabolic activity, which is generally linked
to reduced activity of antimicrobials, since antibiotics often target energy-
demanding cellular processes during cell division®?. This includes processes such
as DNA replication (e.g., fluoroquinolones), protein synthesis (e.g.,
aminoglycosides) and cell wall synthesis (e.g., B-lactams). In contrast,
polymyxins are more effective in eradicating metabolically inactive cells®®. An
overview of specific nutrients present in the CF lung and their modulatory role
on antibiotic efficacy is summarized in Table 1.

Fluoroquinolones

Fluoroquinolones require oxidative stress for effective bacterial killing in
addition to their primary mode of action through inhibition of DNA gyrase and
topoisomerase IV8284, Oxidative stress primarily stems from aerobic metabolic
activity, i.e., TCA cycle and OXPHOS, which spearhead ROS production. These
processes can be suppressed in low oxygen environments, for example, in the O,-
and nutrient-deprived core of a biofilm, in addition to phenazine-mediated redox
balancing mechanisms in anaerobic environments to reduce oxidative damage®'.

To illustrate, in P. aeruginosa biofilms, enhanced ciprofloxacin tolerance has been
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Table 1. Nutrient supplements which change antibiotic sensitivity through metabolic

changes
Antibiotic Antimicrobial Nutrient Metabolic Ref
effect environment mechanism )
0, Electron transport 6
Potentiation chain
iati — —
. . Malic acid TCA cycle activity 65,66
Ciprofloxacin — s
Arginine n.r. ’
. n.r. Denitrification 69-71
Reduction - -
Starvation Dormancy
0, n.r. 7
Proton motive force
Fumarate v ’ 475
TCA cycle
Potentiation Glutamate and Proton motive force, %
Tobramvein succinate TCA cycle
Y bicarbonate Alkaline pH 77
Arginine Alkaline pH 67,7879
Proton motive force
. Glyoxylate ? 7
Reduction YOXy TCA cycle
n.r. Denitrification 53
Meropenem Reduction Starvation Oxygen radicals 80
Potentiation Nitrate Anaerobic metabolism 63
Colistin . Glucose “Osmotic homeostasis” 81
Reduction m
Formate n.r.

n.r. = not reported

To illustrate, in P. aeruginosa biofilms, enhanced ciprofloxacin tolerance has been
observed in metabolically inactive cells as compared to metabolically active
cells®®. Consequently, the supplementation of O,, i.e., to promote aerobic
respiration, improves ciprofloxacin efficacy against in vitro grown biofilms54.
Similar ciprofloxacin potentiation was observed when supplementing with
organic acids to increase TCA cycle activity®®®¢. By using metabolic shunts as a
safeguard against oxidative stress while preserving anabolic flexibility?®, P.
aeruginosa demonstrates a form of metabolic defense against fluoroquinolone
action. This adaptability becomes particularly evident in the nitrogen rich CF
lung environment, where P. aeruginosa shifts from OXPHOS to denitrification,
thereby reducing oxidative stress and increase tolerance to fluoroquinolones

while maintaining metabolic activity®®”'. The reduced fluoroquinolone
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susceptibility by the activation of anaerobic metabolism is not observed when
anaerobic nutrients such as NO; and arginine are supplemented. In fact, the
addition of arginine and NO; demonstrated enhanced ciprofloxacin activity in
mature biofilm cultures, while no enhancement was observed in young or

alginate-grown biofilms®7-¢8,

Aminoglycosides

Aminoglycosides penetrate bacterial cells through membrane pores and block
protein synthesis by attaching to ribosomal proteins. Their entry relies on the
electric potential across the cell membrane, driven by the proton motive force
(PMF) during OXPHOS®#”. Stimulating the PMF by elevating OXPHOS activity
through O, supplementation can enhance the effectiveness of tobramycin’.
Similarly, the supplementation of fumarate increases the electron transport
through the elevated TCA cycle, improving aminoglycoside action’7%. However,
supplementing with glyoxylate activates the glyoxylate shunt, which reroutes the
TCA cycle and shifts the balance between OXPHOS and denitrification. This
reduces the PMF and consequently decreases susceptibility to tobramycin?®85374,
This metabolic adaptation is also observed in biofilms exposed to tobramycin,
where cells in aerobic biofilm regions shift to denitrification upon exposure to
tobramycin®3.

The transmembrane pH gradient is another component of the PMF that
plays a crucial role in aminoglycoside activity. The acidic CF lung environment
lowers both the net positive charge of tobramycin and the PMF of P. aeruginosa,
thereby reducing aminoglycoside effectiveness®. This can be counteracted by
increasing the pH through bicarbonate supplementation, which has shown to
enhance tobramycin effect’’. Adjusting the pH showed limited benefits for
aminoglycoside treatment of biofilm, potentially due to the natural acidic pH-
gradient in biofilm structures from accumulated extracellular DNA77-7888.89 I
contrast, arginine supplementation has shown promise in enhancing
aminoglycoside efficiency in biofilms, due to metabolically induced pH
increase®”.7879_ Studies involving the use of 3D cultured lung cells have shown that
a combination of altered pH, transmembrane potential, and carbon metabolism
enhance aminoglycoside effect’®. Alkalinizing the intracellular environment and
increased TCA cycle activity through pyruvate metabolism increased the PMF-

mediated aminoglycoside uptake. Furthermore, enriching the 3D culture media

o0 33



Chapter2

with succinate and glutamate significantly improved aminoglycoside-mediated

eradication of biofilms.

B-Lactam antibiotics

B-Lactam antibiotics exert their bactericidal effect by depleting cell wall building
blocks through inhibition of cell envelope precursor synthesis. Primary
mechanisms modulating B-lactam resistance typically have a genetic basis,
including porin modifications, overexpression of efflux pumps, and inactivating
B-lactamase enzymes®. Whereas the primary mechanisms of action and
resistance to f-lactam antibiotics are generally stable across different
environmental and metabolic conditions, secondary effects such as the induction
of oxidative stress are closely linked to both®-4. The bactericidal activity of 3-
lactams can be potentiated by the interaction of ferrous ions with reactive oxygen
species (ROS), which are generated as a result of the elevated metabolic activity
associated with peptidoglycan recycling®. This oxidative mechanism aligns with
observations that meropenem is more effective against Pseudomonas aeruginosa
strains with compromised antioxidant defenses®. In contrast, activation of stress
responses such as the stringent response can enhance antioxidant capacity prior
to antibiotic exposure, thereby promoting antibiotic tolerance®®. The stringent
response also plays a key role during nutrient limitation in the biofilm core?,
contributing to biofilm physiology and potentially reducing susceptibility to -
lactams. Although the influence of the nutritional environment on the early
bacterial response to 3-lactams is not yet fully understood, it may be an important
factor in shaping P. aeruginosa sensitivity.

Polymyxins

Polymyxins are polypeptide antibiotics that disrupt the bacterial cell envelope.
Unlike many other antibiotics, polymyxins are particularly effective against
dormant cell types that lack the high metabolic activity required for cell envelope
remodeling®®. These metabolic demands for lipopolysaccharide modifications
are more readily supported in nutrient-rich environments, which can lead to a
reduction in binding sites for colistin due to alterations of the lipid A component
of lipopolysaccharide®®-%. While such lipid A remodeling typically imposes a
fitness cost in other Gram-negative bacteria, P. aeruginosa appears to tolerate

these modifications without significant fitness penalties®*-'°', Nonetheless,
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colistin susceptibility in P. aeruginosa can be influenced by the nutrient
environment. For example, the carbon sources glucose and formate modulate
antibiotic effects while not directly channeled into the central energy-generating
pathways®'. Glucose has been suggested to reduce susceptibility by alleviating
osmotic stress, while formate induces a sensitizing effect through an as-yet
undefined mechanism. These findings illustrate how P. aeruginosa leverages its
metabolism to adapt to antibiotic exposure in ways that are uncoupled from core
energy metabolism. However, such metabolic adaptations likely depend on
nutrient-rich conditions that maintain energy homeostasis via alternative

substrates.

2.4. Differences in the nutritional environments
between and within patients

Differences in nutrients may impact the response of P. aeruginosa to antibiotics
can occur at different biological scales, contributing to variability within and
between patients. In the previous sections, we highlighted how nutritional
diversity within the CF lung influences P. aeruginosa phenotype and antibiotic
sensitivity at the cellular level, explaining heterogeneity at the cellular level
(Figure 3A). Within the lung, accumulation of mucus and macronutrients can
further contribute to this nutrient diversity. Nutrient conditions vary
substantially across different lung regions due to varying host-pathogen
interactions and oxygen availability'®? (Figure 3B). Patient-specific differences
such as those related to disease severity, inflammation, comorbidities and
microbial colonization significantly impact the nutrient microenvironments'%4-
9 (Figure 3C). In this section, we explore how nutrient heterogeneity at the
tissue and patient level may further contribute to differences in antibiotic

treatment response.
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A. Cellular heterogeneity
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Figure 3. Multiscale heterogeneity contributing to variation in antibiotic treatment
response in (A) patients, (B) site of infection, and (C) bacterial biofilm structure.
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Pulmonary heterogeneity

The compartmentalization of the human lung creates a diverse
microenvironment that significantly influences pathogen-host interactions'®?.
One notable example is the respiratory zone, which is densely populated with
PMNs and, as a result, experiences a pronounced depletion of O, from the
typically aerobic zone'®. It has been suggested that biofilm aggregates encased
by PMNs no longer exhibit an oxygen gradient but instead experience uniform
hypoxia'®. Microbes originating from these hypoxic areas can adapt to become

intolerant to O,"""

, a shift that will directly affect their metabolic processes and
likely their response to antibiotics. For example, proposed strategies focusing on
increasing aerobic respiration may have limited or even counterproductive
effects on these strict anaerobic cells, especially when compared to P. aeruginosa
lineages that have evolved increased aerobic respiration during long-term

adaptation to the CF lung?®.
The O, depleted by PMNs is partly used for ROS production as a pathogen

eradication mechanism, but also inducing oxidative stress in nearby host and
microbial cells. This oxidative stress not only increases nutrient availability
through cell lysis and epithelial cell nutrient leakage'?, but also primes P.
aeruginosa by activating stress responses prior to antibiotic treatment. The pre-
activation of these stress responses can undermine the secondary effects of
antibiotics that depend on ROS production, such as fluoroquinolones and -
lactams, reducing antibiotic effectiveness'.

These observations underscore the critical need to consider the role of
the compartmentalized lung in nutrient availability, oxygen levels, and immune
cell activity in P. aeruginosa treatment response. Understanding the intricate
dynamics of the different CF lung microenvironments and microbial adaptation
offers a pathway to more effective treatment approaches, potentially including
the strategic manipulation of microbial metabolism to enhance antibiotic
efficacy.

Patient heterogeneity
There are nearly 2000 possible mutations of the CF transmembrane regulator
gene that cause CF, leading to a broad spectrum of disease severities'. These

mutations result in diverse manifestations in CF pathophysiology which
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eventually contribute to significant differences in lung function decline's"e.
Progressive lung function decline caused by inflammation results in higher levels
of free amino acids, nutrients that are preferred by P. aeruginosa'®. The more
severe lung damage in chronically infected pwCF is often accompanied by P.
aeruginosa adaptations that further enhance its metabolic dominance in the
inflamed environment'”'%17 These metabolic changes also include the shift

18 a transition that is associated

from aerobic respiration toward denitrification
with decreased antibiotic susceptibility. This suggests that changes in the nutrient
environment and associated metabolic adaptations may be important
considerations in treatment decision-making. Such factors may be particularly
relevant in the treatment strategy during the substantial changes in lung function

that occur at the transition from childhood to adulthood''®.

Diabetes mellitus is one example of an important and frequent
comorbidity in pwCF'"°, which further exacerbates the elevated glucose
concentrations typically observed in the CF lung'?*'2', Elevated glucose levels in
the CF lung have been repeatedly associated with an increased risk of developing
respiratory infections'?>"2%124, In vitro studies have demonstrated that glucose
induces metabolic shifts and increase biofilm formation in P. aeruginosa, which
in turn reduces levofloxacin susceptibility'?®. Glucose also plays a key role in
epithelial cells and PMNs, particularly in anaerobic conditions where it is
fermented into lactate. The subsequent rise in lactate levels has been suggested
as a biomarker for pulmonary exacerbations'®?*'?6, However, the lack of
significant decrease in lactate levels following antibiotic treatment raises
questions about its utility as a reliable biomarker'?”. Nonetheless, the sustained
lactate levels indicate that P. aeruginosa continues to access lactate and glucose
before, during, and after antibiotic treatment. This demonstrates that glucose
serves as an important substrate for P. aeruginosa, despite not being one of its
preferred carbon sources.

2.5. Considering nutrients in antimicrobial
susceptibility testing

Current clinical decisions regarding antibiotic therapy are based on
antimicrobial susceptibility testing, which typically uses standardized nutrient
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and oxygen-rich conditions that do not reflect the in vivo nutrient environment
shaped by CF-related pathophysiological factors. By integrating physiologically
relevant growth conditions that closely mimic the CF-specific environments, the
predictive accuracy of antibiotic effects may be improved'?. Combining these
nutrient-relevant conditions with recent advancements in the development 3D
biofilm* and host-microbe’ models promises a more accurate translation of

laboratory findings into clinical outcomes.

2.6 Opportunities for antimicrobial drug
development

The intricate relationship between metabolic activity and P. aeruginosa antibiotic
sensitivity presents a promising avenue for developing a new class of
antimicrobials that target bacterial metabolism'?°. These novel antimicrobials
could aim to inhibit the specific metabolic pathways that pathogens exploit to
evade or tolerate conventional antibiotics like aminoglycosides and
fluoroquinolones. We have described how the metabolic shift of P. aeruginosa
toward anaerobic energy-generating pathways reduces antibiotic uptake and
decreases ROS production, which are essential to the activity of these antibiotics.
By specifically targeting these anaerobic pathways in combination therapies,
metabolism-targeting antimicrobials could effectively block bacterial escape
routes from antibiotic treatments'®. Unlike nutrient supplementation that relies
on activation of aerobic metabolism, combination therapy with metabolism-
targeting antimicrobials will be a consistent strategy to combat antibiotic
resistance within the diverse oxygen gradients of the CF lung. The success of
these therapeutics hinges on a deep understanding of pathogen metabolism
within physiologically relevant microenvironments. Selecting metabolism-
targeting candidates from drug libraries can only facilitate the development of
successful candidates if the pathogens are studied in screening models that
accurately represent the infection site'®"'%2. The failure of many promising
compounds during the development process often stems from a lack of

133

consideration of physiological relevance of screening models'3, underscoring

the importance of this strategy in the fight against antibiotic-resistant infections.
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2.7. Conclusion

There is a complex interplay of nutrients in the CF lung environment, metabolic
adaptations of P. aeruginosa and resulting consequences for antibiotic treatment
efficacy. Various nutritional environments relevant to the CF lung influence
antibiotic efficacy. These insights highlight the importance of further considering
the CF lung microenvironment and its impact in order to refine susceptibility
testing and treatment strategies, although characterization of the nutrient

environment in patients remains challenging.
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