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Abstract  

Pseudomonas aeruginosa is a versatile pathogen that can adapt its metabolism to 

diverse nutritional environments. It is a frequent cause of chronic respiratory 
infections, particularly in people with cystic fibrosis (pwCF). In pwCF, the 
infectious microenvironment is characterized by a unique and patient-specific 

nutrient environment. The nutrient-rich yet hypoxic mucus suppresses aerobic 

metabolism and promotes alternative metabolic pathways such as denitrification 
and fermentation, as well as the establishment of a biofilm-associated lifestyle. 

These adaptations promote sustained bacterial survival in the CF respiratory tract 
and may impair the efficacy of antibiotic therapy. This review summarizes how 

physiologically relevant nutrient environments drive metabolic changes in P. 

aeruginosa and subsequently its responses to antibiotics. We also discuss how CF-

related pathophysiology may contribute to nutrient heterogeneity, potentially 

altering antibiotic effects. In conclusion, the complex interplay between nutrient 

availability, bacterial metabolism, and antibiotic response may provide both 

explanations and opportunities for tailoring antibiotic therapies in patients with 

chronic P. aeruginosa infections. 
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2.1. Introduction  

Cystic fibrosis (CF) is associated with the formation of a thick, dehydrated mucus 

layer, hindering both oxygen (O2) diffusion and waste clearance (Figure 1A), 

which oơen results in the establishment of chronic respiratory tract infections. 
Pseudomonas aeruginosa, a versatile Gram-negative opportunistic pathogen, is 

among the most predominant causes of chronic bacterial respiratory tract 

infections in adult patients with CF (pwCF)1,2,3.  

Mucus in the respiratory tract of pwCF provides a complex environment 

with energy substrates that can be efficiently utilized by P. aeruginosa4 (Figure 

1B). Mucus composition varies substantially between individual patients5,6 and is 

spatially distributed across the compartmentalized lung7. P. aeruginosa is capable 

of adapting to these varying local environments due to its versatile and well-

regulated metabolism8,9. In pwCF, P. aeruginosa is typically present in a biofilm 
lifestyle, wherein the biofilm extracellular matrix serves as a protective shield 

against both host immunity and antibiotics10. Mature biofilm structures impose 
constraints on O2 and nutrient penetration, leading to the segregation of aerobic 

and anaerobic metabolic subpopulations which can impact antibiotic treatment 

effects11 (Figure 1C-D).  

Understanding the intricate relationship between diverse nutrient 

microenvironments and antibiotic responses is key to improving antibiotic 

treatment of chronic P. aeruginosa respiratory tract infections in pwCF. The 
current review aims to provide an overview of: (i) P. aeruginosa metabolic 

adaptation within clinically relevant CF lung microenvironments; (ii) the 

influence of changing nutrient environments on biofilm formation and antibiotic 

sensitivity; and (iii) the role of patient heterogeneity in nutrient diversity and 

treatment response.  
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Figure 1. Overview of P. aeruginosa in the cystic fibrosis (CF) lung microenvironment. (A) 

demonstrates the efficient clearance of the mucus in healthy lungs with functional 
transmembrane proteins. (B) Accumulation of viscous dehydrated mucus and the 

microenvironmental influences in biofilm formation. Metabolic processes of cells in the 

(C) peripheral layer and (D) core of the biofilm. 

 

 

2.2. Metabolic adaptation within the nutritional 

microenvironment in cystic fibrosis 

The CF lung microenvironments are characterized by a large diversity in 

nutrients and O2 levels. The following section describes P. aeruginosa metabolic 

pathways that are utilized or affected under these nutritional conditions.  
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Aerobic metabolism 

Tricarboxylic acid (TCA) cycle  

Amino acids and lactate are systematically increased in the CF lung and represent 

important nutrients for P. aeruginosa energy production through the TCA 

cycle12,13,14. These nutrients have different entry points into the TCA cycle, 

facilitating metabolic flux versatility (Figure 2). For instance, lactate is converted 

to pyruvate by lactate dehydrogenases (LldDE and LldA) to fuel the TCA cycle15, 

while L-glutamate enters halfway in the cycle by glutamate dehydrogenases 

(GdhA and GdhB)16. The resulting electron carriers from the TCA cycle play a 

crucial role in oxidative phosphorylation (OXPHOS), supporting energy-

demanding processes like extracellular matrix production during biofilm 
maturation17,18. Matrix-producing biofilm cells exhibit comparable TCA cycle 
activity to planktonic cells19, underlining the high metabolic activity in the  

peripheral biofilm sub-population where nutrients and O2 are still available. 

Finally, P. aeruginosa can also operate anaplerotic pathways in the TCA cycle, such 

as the pyruvate and glyoxylate shunt, if nutrients or O2 become scarce. Shunting 

the TCA cycle reduces electron carrier production to maintain the redox balance 

during low energy demanding circumstances, such as the dormant biofilm 
core19,20.  

Glucose catabolism  

Glucose levels are elevated in the CF respiratory fluid due to active stimulation of 
glucose leakage from lung epithelial cells and the induction of hemoptysis by P. 

aeruginosa21–23. Unlike many organisms, P. aeruginosa typically does not prefer 

glucose as primary carbon source in CF sputum due to the absence of glycolytic 
enzymes5. However, glucose catabolism remains crucial for the bacterial survival 

and pathogenicity, primarily through efficient production of pyruvate through 

the Entner-Doudoroff (ED) pathway19,24. P. aeruginosa employs a combination of 

enzymes from both the ED and Embden-Meyerhof-Parnas (EMP) pathway for a 

full carbohydrate degradation loop. The ED-EMP cycle is primarily used for 

anabolic functions, but also yields precursors for biofilm matrix and cell 
envelope production19. P. aeruginosa also actively secretes lipases and elastases to 

cleave macromolecules into metabolites suitable for the ED-EMP cycle8,25. For 
example, the peptidoglycan component N-acetylglucosamine present in CF 
sputum is processed within the ED-EMP system to be utilized intracellularly as a 
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carbon source26,4. The heightened levels of glycolytic substrates in CF sputum 
may contribute to the biofilm-aggregate structure observed in the CF lung. P. 

aeruginosa biofilms grown solely on glucose demonstrate reduced motility 

aggregate populations27, suggesting an intricate interplay of glycolytic 

metabolism in shaping microbial community characteristics in the biofilm. 

Amino acids and D-isoforms 

Amino acids play a pivotal role in P. aeruginosa metabolism within the CF lung 
environment, serving as carbon or nitrogen sources and building blocks for 

proteins. Both P. aeruginosa and host immune cells contribute to the elevated 

amino acid concentrations in CF sputum through the excretion of peptidases28,29. 

The abundance of amino acids in CF sputum provides a favorable growth 
environment, whereby long-term evolution of pathogens in the CF lung can lead  

 

 

 

 

 

Figure 2. Central carbon metabolism of P. aeruginosa and the relation with antibiotic 

treatment. Metabolic map covering the EDEMP, TCA and urea cycle for electron carrier 

(orange) production for ATP (yellow) synthesis by oxidative phosphorylation (OXPHOS) 

and denitrification. Fermentation pathways are illustrated with colored arrows, glucose 
fermentation in blue, pyruvate fermentation in yellow and arginine fermentation in 

purple.  
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P. aeruginosa biofilm formation, with branched chain amino acids leucine, 
isoleucine and valine influencing P. aeruginosa growth rate and swarming 
motility31,32. Biofilm stimulation is isoform-dependent, as the D-isoform of 
leucine inhibits biofilm formation32–36. In contrast, other studies reported D-

amino acid supplementation did not significantly improve survival outcomes 
in mice35, and anti-biofilm eƯects of D-isoforms disappeared after several 
days of incubation37. These conflicting results highlight the relevance for 
further studies into the driving mechanisms of amino acids in P. aeruginosa 

infection in the CF lung.  

Anaerobic metabolism 

The dehydrated and thick mucus layer in the CF lung reduces O2 diffusion. Levels 

of O2 are further reduced by neighboring cells, such as lung epithelial cells and 

polynuclear monocytes (PMNs)38,39. This O2 restriction contributes to the 

establishment of fully anaerobic microenvironments within the mature biofilm 
structure. In response to these O2 constraints,  P. aeruginosa employs adaptive 

strategies, utilizing two fermentation pathways and shiơing from O2 to nitrates  as 

electron acceptors.  

Glucose and pyruvate fermentation  

The fermentation of glucose comprises two steps: the initial conversion of 

glucose to pyruvate, followed by the subsequent fermentation of pyruvate into 
lactate, acetate and succinate40. Glucose fermentation to pyruvate is typically 

influenced by redox constraints41. To overcome redox imbalances during 

anaerobic fermentation, P. aeruginosa actively produces radical-scavenging 

phenazines41,42,43. The NADH-dependent conversion of lactate to pyruvate 

conversion also preserves the cellular redox balance by limiting electron 

accumulation41,42. The emphasis on pyruvate metabolism in anaerobic 

conditions becomes evident by the increase in total biofilm biomass upon 
pyruvate supplementation and biofilm dispersion aơer pyruvate deficiency44,45. 

Efficient cross-feeding of pyruvate and lactate over the O2 gradient demonstrates 

the cooperative metabolic activity between the biofilm sub-populations15,46, and 

the role of carbon sources for maintaining matured biofilm structures. 

Arginine deiminase 

Arginine, an amino acid favored by P. aeruginosa as a carbon source, plays a 

crucial role in anaerobic metabolism and biofilm development. Arginine serves 
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as an energy source, undergoing fermentation through deiminase enzymes32. 

The transcription of the arcCBAB operon encoding for arginine deiminase 

enzymes is upregulated during biofilm formation, indicating its importance in 

this process17. The utilization of arginine deiminase enzymes is a relatively 

inefficient pathway for energy production, reducing motility and promoting the 
transition towards a static biofilm phenotype47,48,32. While fermentation 

maintains energy levels for cellular maintenance in anaerobic environments, it 

does not provide the efficiency to enable net growth40,47, which might explain the 

presence of a dormant sub-population within the biofilm core.  The role of 

arginine extends beyond serving as an energy source in anaerobic conditions. It 

also acts as a precursor of gene-modulating polyamines that contribute to the 

formation of the extracellular matrix of biofilms49. The central role of arginine in 

biofilm maturation is further supported by sensory domains, inducing 
Pseudomonas Putida biofilm formation in the presence of exogenous arginine50.   

Denitrification 

P. aeruginosa capitalizes on denitrification for proliferation in anaerobic 
conditions. This process substitutes O2 with nitrate (NO3-) and nitrite (NO2-) as 

electron acceptors (Figure 1D)51,52. This shiơ facilitated by the ample availability 
of these compounds in CF mucus, which also enables activation of the 
denitrification pathway despite the presence of O2. The high abundance of these 

nitrates does not limit the utilization of the denitrification pathway within 
anaerobic environments5,53. P. aeruginosa also employs denitrification enzymes to 
neutralize nitric oxide (NO) produced by immune14,54 and to mitigate ROS 

production by distributing the electron flow across the respiratory and 
denitrification pathways in O2-rich conditions8,40,55. The functionality of 

denitrification is iron-dependent51. Reduced transcription of denitrification 
proteins hampers anaerobic metabolism under iron scarcity56, whereas sufficient 
levels of iron stimulate anerobic metabolism and biofilm development57–60. This 

underscores the critical role of denitrification in the maturation of biofilm and 
adaptation of anaerobic sub-populations in the core, highlighting how metabolic 

processes are intricately linked to multiple nutrients in the surrounding 

microenvironment. This metabolic coordination is also regulated at the 

transcriptional level. The Anr transcriptional regulator, which controls 

denitrification enzymes, also has conserved regulatory effects in central carbon 
metabolic pathways40,55. For instance, under anaerobic yet nitrate-rich 
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conditions, arginine is no longer a preferred carbon source5,47. This metabolic 

heterogeneity is reflected in biofilm structures, where different metabolic 
pathways dominate at varying biofilm depths depending on nutrient 

availability15,61. Consequently, the metabolic adaptation of P. aeruginosa at the 

infection site is influenced by the overall nutritional composition, including O2, 

metals, salts, and carbon sources. This highlights both the flexibility and diversity 
of P. aeruginosa metabolism within the CF lung, underscoring the importance of 
understanding the complex interplay between bacterial metabolism and the 

nutritional environment for effective therapeutic interventions.  

2.3. Nutrient-driven effects of metabolic 

adaptation on antibiotic sensitivity  

In this section, we discuss the role of nutrients in the metabolic activity of P. 

aeruginosa, and how this influences antibiotic sensitivity. Nutrient-limited 

environments typically induce low metabolic activity, which is generally linked 

to reduced activity of antimicrobials, since antibiotics oơen target energy-

demanding cellular processes during cell division62. This includes processes such 

as DNA replication (e.g., fluoroquinolones), protein synthesis (e.g., 
aminoglycosides) and cell wall synthesis (e.g., β-lactams). In contrast, 

polymyxins are more effective in eradicating metabolically inactive cells63. An 

overview of specific nutrients present in the CF lung and their modulatory role 
on antibiotic efficacy is summarized in Table 1.  

Fluoroquinolones 

Fluoroquinolones require oxidative stress for effective bacterial killing in 

addition to their primary mode of action through inhibition of DNA gyrase and 

topoisomerase IV82–84. Oxidative stress primarily stems from aerobic metabolic 

activity, i.e., TCA cycle and OXPHOS, which spearhead ROS production. These 

processes can be suppressed in low oxygen environments, for example, in the O2- 

and nutrient-deprived core of a biofilm, in addition to phenazine-mediated redox 

balancing mechanisms in anaerobic environments to reduce oxidative damage61. 

To illustrate, in P. aeruginosa biofilms, enhanced ciprofloxacin tolerance has been  
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Table 1. Nutrient supplements which change antibiotic sensitivity through metabolic 

changes 

Antibiotic 

 

Antimicrobial 

effect 
Nutrient 

environment 

Metabolic 

mechanism 
Ref. 

Ciprofloxacin 

Potentiation 

O2 
Electron transport 

chain 
64 

Malic acid TCA cycle activity 65,66 

Arginine n.r. 67,68 

Reduction 
n.r. Denitrification 69–71 

Starvation Dormancy 72 

Tobramycin 

Potentiation 

O2 n.r. 73 

Fumarate 
Proton motive force, 

TCA cycle 
74,75 

Glutamate and 

succinate 

Proton motive force, 

TCA cycle 
76 

bicarbonate Alkaline pH 77 

Arginine Alkaline pH 67,78,79 

Reduction 
Glyoxylate 

Proton motive force, 

TCA cycle 
74 

n.r. Denitrification 53 

Meropenem Reduction Starvation Oxygen radicals 80 

Colistin 

Potentiation Nitrate Anaerobic metabolism 63 

Reduction 
Glucose “Osmotic homeostasis” 81 

Formate n.r. 81 

n.r. = not reported 

 

 

To illustrate, in P. aeruginosa biofilms, enhanced ciprofloxacin tolerance has been 
observed in metabolically inactive cells as compared to metabolically active 

cells85. Consequently, the supplementation of O2, i.e., to promote aerobic 

respiration, improves ciprofloxacin efficacy against in vitro grown biofilms64. 

Similar ciprofloxacin potentiation was observed when supplementing with 
organic acids to increase TCA cycle activity65,66. By using metabolic shunts as a 

safeguard against oxidative stress while preserving anabolic flexibility20, P. 

aeruginosa demonstrates a form of metabolic defense against fluoroquinolone 
action. This adaptability becomes particularly evident in the nitrogen rich CF 
lung environment, where P. aeruginosa shiơs from OXPHOS to denitrification, 
thereby reducing oxidative stress and increase tolerance to fluoroquinolones 

while maintaining metabolic activity69–71. The reduced fluoroquinolone 
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susceptibility by the activation of anaerobic metabolism is not observed when 

anaerobic nutrients such as NO3 and arginine are supplemented. In fact, the 

addition of arginine and NO3 demonstrated enhanced ciprofloxacin activity in 

mature biofilm cultures, while no enhancement was observed in young or 

alginate-grown biofilms67,68.  

Aminoglycosides 

Aminoglycosides penetrate bacterial cells through membrane pores and block 

protein synthesis by attaching to ribosomal proteins. Their entry relies on the 

electric potential across the cell membrane, driven by the proton motive force 

(PMF) during OXPHOS86,87. Stimulating the PMF by elevating OXPHOS activity 
through O2 supplementation can enhance the effectiveness of tobramycin73. 

Similarly, the supplementation of fumarate increases the electron transport 

through the elevated TCA cycle, improving aminoglycoside action74,75. However, 

supplementing with glyoxylate activates the glyoxylate shunt, which reroutes the 

TCA cycle and shiơs the balance between OXPHOS and denitrification. This 

reduces the PMF and consequently decreases susceptibility to tobramycin20,8,53,74. 

This metabolic adaptation is also observed in biofilms exposed to tobramycin, 
where cells in aerobic biofilm regions shiơ to denitrification upon exposure to 

tobramycin53.  

The transmembrane pH gradient is another component of the PMF that 

plays a crucial role in aminoglycoside activity. The acidic CF lung environment 
lowers both the net positive charge of tobramycin and the PMF of P. aeruginosa, 

thereby reducing aminoglycoside effectiveness88. This can be counteracted by 

increasing the pH through bicarbonate supplementation, which has shown to 

enhance tobramycin effect77. Adjusting the pH showed limited benefits for 
aminoglycoside treatment of biofilm, potentially due to the natural acidic pH-

gradient in biofilm structures from accumulated extracellular DNA77,78,88,89. In 

contrast, arginine supplementation has shown promise in enhancing 

aminoglycoside efficiency in biofilms, due to metabolically induced pH 

increase67,78,79. Studies involving the use of 3D cultured lung cells have shown that 

a combination of altered pH, transmembrane potential, and carbon metabolism 

enhance aminoglycoside effect76. Alkalinizing the intracellular environment and 

increased TCA cycle activity through pyruvate metabolism increased the PMF-

mediated aminoglycoside uptake. Furthermore, enriching the 3D culture media 
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with succinate and glutamate significantly improved aminoglycoside-mediated 

eradication of biofilms.  

β-Lactam antibiotics 

β-Lactam antibiotics exert their bactericidal effect by depleting cell wall building 

blocks through inhibition of cell envelope precursor synthesis. Primary 

mechanisms modulating β-lactam resistance typically have a genetic basis, 

including porin modifications, overexpression of efflux pumps, and inactivating 

β-lactamase enzymes90. Whereas the primary mechanisms of action and 

resistance to β-lactam antibiotics are generally stable across different 
environmental and metabolic conditions, secondary effects such as the induction 

of oxidative stress are closely linked to both91–94. The bactericidal activity of β-

lactams can be potentiated by the interaction of ferrous ions with reactive oxygen 

species (ROS), which are generated as a result of the elevated metabolic activity 

associated with peptidoglycan recycling95. This oxidative mechanism aligns with 

observations that meropenem is more effective against Pseudomonas aeruginosa 

strains with compromised antioxidant defenses80. In contrast, activation of stress 

responses such as the stringent response can enhance antioxidant capacity prior 

to antibiotic exposure, thereby promoting antibiotic tolerance80,96. The stringent 

response also plays a key role during nutrient limitation in the biofilm core97, 

contributing to biofilm physiology and potentially reducing susceptibility to β-

lactams. Although the influence of the nutritional environment on the early 
bacterial response to β-lactams is not yet fully understood, it may be an important 

factor in shaping P. aeruginosa sensitivity. 

Polymyxins 

Polymyxins are polypeptide antibiotics that disrupt the bacterial cell envelope. 

Unlike many other antibiotics, polymyxins are particularly effective against 
dormant cell types that lack the high metabolic activity required for cell envelope 
remodeling63. These metabolic demands for lipopolysaccharide modifications 

are more readily supported in nutrient-rich environments, which can lead to a 

reduction in binding sites for colistin due to alterations of the lipid A component 

of lipopolysaccharide85,98,99. While such lipid A remodeling typically imposes a 

fitness cost in other Gram-negative bacteria, P. aeruginosa appears to tolerate 

these modifications without significant fitness penalties99–101. Nonetheless, 
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colistin susceptibility in P. aeruginosa can be influenced by the nutrient 
environment. For example, the carbon sources glucose and formate modulate 

antibiotic effects while not directly channeled into the central energy-generating 

pathways81. Glucose has been suggested to reduce susceptibility by alleviating 

osmotic stress, while formate induces a sensitizing effect through an as-yet 

undefined mechanism. These findings illustrate how P. aeruginosa leverages its 

metabolism to adapt to antibiotic exposure in ways that are uncoupled from core 

energy metabolism. However, such metabolic adaptations likely depend on 

nutrient-rich conditions that maintain energy homeostasis via alternative 

substrates. 

2.4. Differences in the nutritional environments 
between and within patients  

Differences in nutrients may impact the response of P. aeruginosa to antibiotics 

can occur at different biological scales, contributing to variability within and 

between patients. In the previous sections, we highlighted how nutritional 

diversity within the CF lung influences P. aeruginosa phenotype and antibiotic 

sensitivity at the cellular level, explaining heterogeneity at the cellular level 

(Figure 3A). Within the lung, accumulation of mucus and macronutrients can 

further contribute to this nutrient diversity. Nutrient conditions vary 

substantially across different lung regions due to varying host-pathogen 

interactions and oxygen availability102 (Figure 3B). Patient-specific differences 

such as those related to disease severity, inflammation, comorbidities and 
microbial colonization significantly impact the nutrient microenvironments104–

109 (Figure 3C). In this section, we explore how nutrient heterogeneity at the 

tissue and patient level may further contribute to differences in antibiotic 
treatment response.  
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Figure 3. Multiscale heterogeneity contributing to variation in antibiotic treatment 

response in (A) patients, (B) site of infection, and (C) bacterial biofilm structure. 
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Pulmonary heterogeneity  

The compartmentalization of the human lung creates a diverse 

microenvironment that significantly influences pathogen-host interactions102. 

One notable example is the respiratory zone, which is densely populated with 

PMNs and, as a result, experiences a pronounced depletion of O2 from the 

typically aerobic zone109. It has been suggested that biofilm aggregates encased 
by PMNs no longer exhibit an oxygen gradient but instead experience uniform 

hypoxia110. Microbes originating from these hypoxic areas can adapt to become 

intolerant to O2
111, a shiơ that will directly affect their metabolic processes and 

likely their response to antibiotics. For example, proposed strategies focusing on 

increasing aerobic respiration may have limited or even counterproductive 

effects on these strict anaerobic cells, especially when compared to P. aeruginosa 

lineages that have evolved increased aerobic respiration during long-term 

adaptation to the CF lung25. 

The O2 depleted by PMNs is partly used for ROS production as a pathogen 

eradication mechanism, but also inducing oxidative stress in nearby host and 

microbial cells. This oxidative stress not only increases nutrient availability 

through cell lysis and epithelial cell nutrient leakage112, but also primes P. 

aeruginosa by activating stress responses prior to antibiotic treatment. The pre-

activation of these stress responses can undermine the secondary effects of 
antibiotics that depend on ROS production, such as fluoroquinolones and β-

lactams, reducing antibiotic effectiveness113.  

These observations underscore the critical need to consider the role of 

the compartmentalized lung in nutrient availability, oxygen levels, and immune 

cell activity in P. aeruginosa treatment response. Understanding the intricate 

dynamics of the different CF lung microenvironments and microbial adaptation 
offers a pathway to more effective treatment approaches, potentially including 
the strategic manipulation of microbial metabolism to enhance antibiotic 

efficacy. 

Patient heterogeneity 

There are nearly 2000 possible mutations of the CF transmembrane regulator 
gene that cause CF, leading to a broad spectrum of disease severities114. These 

mutations result in diverse manifestations in CF pathophysiology which 
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eventually contribute to significant differences in lung function decline115,116. 

Progressive lung function decline caused by inflammation results in higher levels 

of free amino acids, nutrients that are preferred by P. aeruginosa107. The more 

severe lung damage in chronically infected pwCF is oơen accompanied by P. 

aeruginosa adaptations that further enhance its metabolic dominance in the 

inflamed environment107,108,117. These metabolic changes also include the shiơ 
from aerobic respiration toward denitrification118, a transition that is associated 

with decreased antibiotic susceptibility. This suggests that changes in the nutrient 

environment and associated metabolic adaptations may be important 

considerations in treatment decision-making. Such factors may be particularly 

relevant in the treatment strategy during the substantial changes in lung function 

that occur at the transition from childhood to adulthood119.   

Diabetes mellitus is one example of an important and frequent 
comorbidity in pwCF119, which further exacerbates the elevated glucose 

concentrations typically observed in the CF lung120,121. Elevated glucose levels in 

the CF lung have been repeatedly associated with an increased risk of developing 

respiratory infections122,123,124.  In vitro studies have demonstrated that glucose 

induces metabolic shiơs and increase biofilm formation in P. aeruginosa, which 

in turn reduces levofloxacin susceptibility125. Glucose also plays a key role in 

epithelial cells and PMNs, particularly in anaerobic conditions where it is 

fermented into lactate. The subsequent rise in lactate levels has been suggested 
as a biomarker for pulmonary exacerbations13,23,126. However, the lack of 

significant decrease in lactate levels following antibiotic treatment raises 

questions about its utility as a reliable biomarker127. Nonetheless, the sustained 

lactate levels indicate that P. aeruginosa continues to access lactate and glucose 

before, during, and aơer antibiotic treatment. This demonstrates that glucose 

serves as an important substrate for P. aeruginosa, despite not being one of its 

preferred carbon sources. 

2.5. Considering nutrients in antimicrobial 

susceptibility testing 

Current clinical decisions regarding antibiotic therapy are based on 

antimicrobial susceptibility testing, which typically uses standardized nutrient 
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and oxygen-rich conditions that do not reflect the in vivo nutrient environment 

shaped by CF-related pathophysiological factors. By integrating physiologically 

relevant growth conditions that closely mimic the CF-specific environments, the 

predictive accuracy of antibiotic effects may be improved128. Combining these 

nutrient-relevant conditions with recent advancements in the development 3D 

biofilm25 and host-microbe157 models promises a more accurate translation of 

laboratory findings into clinical outcomes.   

2.6  Opportunities for antimicrobial drug 

development  

The intricate relationship between metabolic activity and P. aeruginosa antibiotic 

sensitivity presents a promising avenue for developing a new class of 

antimicrobials that target bacterial metabolism129. These novel antimicrobials 

could aim to inhibit the specific metabolic pathways that pathogens exploit to 
evade or tolerate conventional antibiotics like aminoglycosides and 

fluoroquinolones. We have described how the metabolic shiơ of P. aeruginosa 

toward anaerobic energy-generating pathways reduces antibiotic uptake and 

decreases ROS production, which are essential to the activity of these antibiotics. 

By specifically targeting these anaerobic pathways in combination therapies, 
metabolism-targeting antimicrobials could effectively block bacterial escape 

routes from antibiotic treatments130. Unlike nutrient supplementation that relies 

on activation of aerobic metabolism, combination therapy with metabolism-

targeting antimicrobials will be a consistent strategy to combat antibiotic 

resistance within the diverse oxygen gradients of the CF lung. The success of 
these therapeutics hinges on a deep understanding of pathogen metabolism 

within physiologically relevant microenvironments. Selecting metabolism-

targeting candidates from drug libraries can only facilitate the development of 

successful candidates if the pathogens are studied in screening models that 

accurately represent the infection site131,132. The failure of many promising 

compounds during the development process oơen stems from a lack of 
consideration of physiological relevance of screening models133, underscoring 

the importance of this strategy in the fight against antibiotic-resistant infections.   
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2.7. Conclusion 

There is a complex interplay of nutrients in the CF lung environment, metabolic 
adaptations of P. aeruginosa and resulting consequences for antibiotic treatment 
efficacy. Various nutritional environments relevant to the CF lung influence 
antibiotic efficacy. These insights highlight the importance of further considering 

the CF lung microenvironment and its impact in order to refine susceptibility 

testing and treatment strategies, although characterization of the nutrient 

environment in patients remains challenging. 
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