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1.1. Introduction 

Pseudomonas aeruginosa: a high-risk pathogen 

Pseudomonas aeruginosa is a versatile, opportunistic environmental pathogen 

responsible for a wide range of severe infections1. In 2017, the World Health 

Organization classified P. aeruginosa as a top-priority pathogen due to its severe 

threat to vulnerable patient populations2. Infections caused by P. aeruginosa are 

typically associated with the respiratory tract, wounds, and bloodstream, as well 

as catheters and medical implants3. Effective treatment of P. aeruginosa infections 

can be challenging due to high rates of multidrug resistance that reduces the 

effectiveness of many commonly used antibiotics, thereby limiting therapeutic 

options4. 

Eradicating P. aeruginosa is particularly challenging in respiratory tract 

infections among cystic fibrosis (CF) patients, where the pathogen frequently 
establishes chronic infections despite extensive antibiotic therapy5,6. The CF 
respiratory tract is characterized by thick mucus that impairs pathogen 

clearance, making control of bacterial load and infection-induced lung damage 

reliant on long-term suppressive therapy with multiple antibiotics7. This 

prolonged exposure to antibiotics promotes the development of antibiotic 

resistance8,9, oơen leaving lung transplantation the only viable option for 
effectively clearing the infection10. Enhancing our understanding of P. aeruginosa 

pathogenesis and response to antibiotics in CF patients has the potential not only 
to improve clinical outcomes, but also to address the growing challenge of 

treating infections caused by multidrug-resistant P. aeruginosa strains. 

Bacterial resilience is more than antibiotic resistance 

Antibiotic resistance is a major global health threat, contributing to millions of 

deaths annually and representing the leading cause of antibiotic treatment 

failure11. Antibiotic resistance refers to the ability of bacteria to grow in the 

presence of antibiotic concentrations that would normally lead to growth 

inhibition or kill12. Commonly observed resistance mechanisms include 

mechanisms that lead to reduced antibiotic uptake, the modification of antibiotic 
targets, enzymatic inactivation of antibiotics, and the activation of efflux pumps 
which remove antibiotics from the cell13. Stable antibiotic resistance can arise 
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through spontaneous mutations in the bacterial genome or by acquiring mobile 
genetic elements through horizontal gene transfer. In addition to these genetic, 

stable resistance mechanisms, pathogens can also employ diverse transient 

mechanisms that allow bacteria to temporarily tolerate exposure to antibiotics12. 

These transient mechanisms vary by bacterial species and antibiotic class, 

involving phenotypic adaptations such as entering a dormant state14, or genetic 

changes such as unstable gene amplifications15. The ability to transiently 

withstand antibiotic exposure is believed to facilitate the development of 

antibiotic resistance by providing additional opportunities for stable genetic 

traits to evolve and become fixed within bacterial populations15–17. This is 

particularly evident during the prolonged antibiotic treatments required to 
manage P. aeruginosa infections in the respiratory tract of CF patients. 
Consequently, there is a need to better understand how the distinct CF lung 
environment contributes to altered antibiotic sensitivity and the emergence of 

antibiotic resistance.    

P. aeruginosa adaptation to the cystic fibrosis environment  

The CF lung environment is characterized by thick, dehydrated mucus resulting 
from dysregulated electrolyte transport. This leads to limited oxygen penetration, 

impaired mucus clearance, and relatively high nutrient availability18. P. 

aeruginosa thrives in this challenging environment due to its versatile 

metabolism, efficiently utilizing nutrients that are less preferred by surrounding 
cells and adapting to anaerobic conditions through fermentation pathways and 

denitrification19,20.  

The metabolic plasticity of P. aeruginosa critically influences the 
antibiotic sensitivity21. For instance, aminoglycosides rely on the proton motive 
force generated during cellular respiration to enter bacterial cells22, while 

fluoroquinolones depend on elevated oxidative phosphorylation and reactive 
oxygen species production for their bactericidal activity23. Conversely, other 

antibiotics such as polymyxins specifically target cells with low metabolic 
activity, as bacterial resistance mechanisms require active metabolic remodeling 

of the lipopolysaccharide layer in the cell envelope24.  

Respiratory tract infections caused by P. aeruginosa in patients with CF 
are oơen associated with the formation of biofilms25. Biofilms are characterized 
by structured communities of bacteria embedded in a self-produced extracellular 
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matrix, which provides protection from antibiotics and the host immune system. 

Moreover, they are characterized by a heterogeneous cell populations which 

includes both actively dividing as well as dormant cells, which can lead to 

differential drug effects depending on the mode of action of antibiotics26. For 
example, the polymyxin antibiotic colistin predominantly targets the 

metabolically dormant biofilm core, whereas fluoroquinolones or 
aminoglycosides primarily target the metabolically active peripheral biofilm 
population27,28. Recent in vitro studies demonstrated that nutrient 

supplementation enhanced aminoglycoside or fluoroquinolone efficacy by 
universally activating energy metabolism21,29. These findings illustrate the 
important role of considering nutrients and cellular metabolism. However, the 

clinical relevance of these potentiation strategies remains uncertain, as P. 

aeruginosa is known to reconfigure its metabolic processes even in the absence 
of environmental pressures30. 

The interplay between transient antibiotic resistance responses and the 

remarkable metabolic versatility of P. aeruginosa creates a particularly complex 

challenge for antibiotic treatment in the unique environment of the CF 
respiratory tract. This complexity is further amplified by the diverse 

microenvironments within CF lungs, which arises from differences in underlying 

CF pathology, rates of lung function decline, comorbidities, polymicrobial 

infections, and the compartmentalized structure of the lung31. The influence of 
adaptation to these varied conditions is reflected in the wide range of resistance 

mechanisms and metabolic specializations observed in clinical P. aeruginosa 

isolates32–34. Gaining a deeper understanding of how P. aeruginosa adapts to these 

distinct CF lung environments impacts antibiotic treatment and is a crucial step 

toward addressing recurring treatment failures and preventing chronic 

infections. 

Studying bacterial growth and pharmacodynamic responses in vitro 

In current clinical practice, antibiotic treatment selection is guided by 

standardized antimicrobial susceptibility testing through determination of the 

minimum inhibitory concentration (MIC). The MIC aims to quantify the lowest 
concentration of an antibiotic that inhibits visible bacterial growth under 

standardized conditions. Limitations of the MIC include the static nature of the  
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assay, i.e., aơer approximately 20 hours of incubation, the inability to 
characterize the pharmacodynamic response because bacterial kill cannot be 

measured, and the use of standard culture media which do not reflect the CF lung 
environment12.  

To overcome the limitations posed by the static endpoint measurements 

of MIC assays, time-kill assays can be employed. Time-kill assays monitor 

bacterial density over time and capture dynamic patterns of growth and killing35. 

Unlike MIC testing, these time-kill assays can reveal subtle shiơs in bacterial 
population growth dynamics, offering valuable insights into transient responses 

to antibiotics (Figure 1), and regrowth patterns due to the development of 

antibiotic resistance. Typically in time kill assays, bacterial densities are 

quantified by counting the number of colony forming units (CFU), although 
surrogate readouts, such as constitutive bioluminescent bacteria36 as used in this 

PhD thesis, can also be employed. Subsequently, mathematical 
pharmacodynamic modeling can be applied to these dynamic time kill profiles to 
infer concentration-effect relationships and uncover drivers of 
pharmacodynamic responses across different antibiotics and growth 

environments37.  

Figure 1. Difference between read-outs to evaluate the effect of antibiotics on bacterial 
growth and/or kill using minimal inhibitory concentration (MIC) and time-kill assays. MIC 

assays evaluate antibiotic drug effects at a fixed time point and can only assess growth 

inhibition. Time kill assays can characterize the dynamic effect of antimicrobial and can 
distinguish between growth inhibition and bacterial kill effects. 
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To better incorporate physiologically relevant conditions during in vitro assays, a 

synthetic CF sputum medium (SCFM) has been proposed in 2007 to mimic 

nutrient composition of CF sputum38. Culturing P. aeruginosa in SCFM more 
accurately reflects the physiological phenotypes of P. aeruginosa compared to 

standardized laboratory media39,40, which consequently impacts P. aeruginosa 

responses to antibiotics41–43. Despite the improved physiological relevance of 

SCFM, performing MIC tests with a single medium composition falls short of 

capturing the extensive nutrient heterogeneity encountered in the CF lung. 
Additionally, nutrient-driven phenotypic factors influencing the antibiotic 
response of P. aeruginosa can be more accurately characterized using 

pharmacodynamic modeling (Figure 2). These changes in antibiotic response are 

oơen broadly categorized. For example, continued growth during antibiotic 

exposure is typically labeled as mutation-induced antibiotic resistance, while 

altered killing dynamics are frequently attributed to transient mechanisms12. 

However, the link between nutrient environment, bacterial phenotype and 

antibiotic effects points toward an intersection of underlying biochemical 
pathways that shape pharmacodynamic outcomes.  

 

 

 

Figure 2. Examples illustrating the effect of media/nutrient conditions on phenotypic 

responses to antibiotic exposure. Although the dynamic responses differ, these conditions 

would yield similar outcomes in minimal inhibitory concentration (MIC) assays. 
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Studying the underlying genetic and biochemical pathways associated with 

altered antimicrobial drug effects is essential to further improve the translation 

of experimental pharmacodynamic findings into successful clinical treatment 
outcomes. This includes both the use of genetic characterization to identify driver 

mutations as well as the use of transcriptomic, proteomic and metabolomic 

techniques to identify downstream biochemical changes, in particular in relation 
to transient mechanisms that promote antibiotic tolerance in relation to the 

nutrient environment. Integrating data from these omics approaches can bridge 

this gap by providing a systems-level understanding of how environmental 

conditions and resulting phenotypic adaptations influence antibiotic 
effectiveness and the underlying molecular mechanisms44, thereby facilitating 

the selection or optimization of experimental models that better reflect the 
clinical context. Accounting for the phenotypic context of antibiotic sensitivity 

testing will not only be critical for guiding treatment strategies, but also for 

improving preclinical testing of new antimicrobials45. To translate these insights 

into practical advances in P. aeruginosa respiratory tract infections, a structured 

and incremental approach is needed, beginning with the systematic evaluation 

of individual environmental components. This is the groundwork to elucidate the 

dynamic interplay between the CF lung microenvironment, P. aeruginosa 

metabolism, and antibiotic effects. 
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1.2. Thesis outline and scope 

The impact of the phenotypic plasticity of P. aeruginosa and the distinct CF lung 

microenvironments on antibiotic drug effects and resistance remains poorly 

understood. To improve antibiotic treatment strategies for chronic respiratory 

infections caused by P. aeruginosa in CF patients, it is essential to gain deeper 
insights into how the infectious microenvironment shapes bacterial metabolism 

and antibiotic responses. In this thesis, we hypothesize that nutrient conditions 

play a central role as pharmacodynamic drivers and key determinants in the 

evolution of antibiotic resistance, ultimately affecting therapeutic outcomes. To 

summarize our current understanding regarding this hypothesis, Chapter 2 

(Section I) provides a comprehensive overview of the metabolic adaptations of P. 

aeruginosa to the diverse nutrient niches within the CF lung. These metabolic 

adaptations are further discussed in relation to their influence on antibiotic 

efficacy and their potential to explain the variability in treatment outcomes 

observed among patients. Building on this foundation, the thesis is structured 

into two key sections: examining nutrient-driven changes in antibiotic sensitivity 

(Section II), and investigating the influence of nutrients on antibiotic resistance 

evolution (Section III). 

Section II: Nutrients shape antibiotic sensitivity  

Section II investigates the role of physicochemical components of physiologically 

relevant habitats in the CF respiratory tract on antibiotic sensitivity. In Chapter 

3, a study is described that systematically examines how specific in vitro nutrient 

conditions modulate the antibiotic pharmacodynamics of P. aeruginosa. To this 

end, single nutrients relevant to both P. aeruginosa metabolism and CF sputum 
are altered, and the resulting changes in pharmacodynamics are assessed across 

multiple antibiotic classes. Chapter 4 explores how long-term adaptation of P. 

aeruginosa to anoxic conditions impacts antibiotic effects. An anoxic-adapted 

strain is generated through experimental evolution and its antibiotic response is 

compared to that of the parental strain. 

Section III: Nutrients shape antibiotic resistance evolution 

Section III aims to fill the current knowledge gap regarding how nutrient 
conditions are involved in the biochemical adaptation during development of 
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antibiotic resistance. In Chapter 5, the contribution of bacterial metabolism to 

antimicrobial resistance mechanisms is examined, along with how state-of-the-

art metabolomics approaches can be used to map metabolic pathways that may 

be targeted to counteract resistance. Chapter 6 investigates how nutrient 

conditions influence the evolution of antibiotic resistance in P. aeruginosa. Using 

adaptive laboratory evolution in single-nutrient media, specific nutrient-
antibiotic combinations are examined to understand how they shape phenotypic 

resistance, fitness trade-offs, and mutational profiles across multiple antibiotic 
classes. 

Section IV: General discussion and summary 

In Chapter 7, the main findings of this thesis are discussed and summarized. The 

implications of these findings are considered, and next steps are outlined, 
particularly regarding characterizing nutrient niches in infection sites to better 

understand antibiotic responses and resistance emergence.  
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Abstract  

Pseudomonas aeruginosa is a versatile pathogen that can adapt its metabolism to 

diverse nutritional environments. It is a frequent cause of chronic respiratory 
infections, particularly in people with cystic fibrosis (pwCF). In pwCF, the 
infectious microenvironment is characterized by a unique and patient-specific 

nutrient environment. The nutrient-rich yet hypoxic mucus suppresses aerobic 

metabolism and promotes alternative metabolic pathways such as denitrification 
and fermentation, as well as the establishment of a biofilm-associated lifestyle. 

These adaptations promote sustained bacterial survival in the CF respiratory tract 
and may impair the efficacy of antibiotic therapy. This review summarizes how 

physiologically relevant nutrient environments drive metabolic changes in P. 

aeruginosa and subsequently its responses to antibiotics. We also discuss how CF-

related pathophysiology may contribute to nutrient heterogeneity, potentially 

altering antibiotic effects. In conclusion, the complex interplay between nutrient 

availability, bacterial metabolism, and antibiotic response may provide both 

explanations and opportunities for tailoring antibiotic therapies in patients with 

chronic P. aeruginosa infections. 
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2.1. Introduction  

Cystic fibrosis (CF) is associated with the formation of a thick, dehydrated mucus 

layer, hindering both oxygen (O2) diffusion and waste clearance (Figure 1A), 

which oơen results in the establishment of chronic respiratory tract infections. 
Pseudomonas aeruginosa, a versatile Gram-negative opportunistic pathogen, is 

among the most predominant causes of chronic bacterial respiratory tract 

infections in adult patients with CF (pwCF)1,2,3.  

Mucus in the respiratory tract of pwCF provides a complex environment 

with energy substrates that can be efficiently utilized by P. aeruginosa4 (Figure 

1B). Mucus composition varies substantially between individual patients5,6 and is 

spatially distributed across the compartmentalized lung7. P. aeruginosa is capable 

of adapting to these varying local environments due to its versatile and well-

regulated metabolism8,9. In pwCF, P. aeruginosa is typically present in a biofilm 
lifestyle, wherein the biofilm extracellular matrix serves as a protective shield 

against both host immunity and antibiotics10. Mature biofilm structures impose 
constraints on O2 and nutrient penetration, leading to the segregation of aerobic 

and anaerobic metabolic subpopulations which can impact antibiotic treatment 

effects11 (Figure 1C-D).  

Understanding the intricate relationship between diverse nutrient 

microenvironments and antibiotic responses is key to improving antibiotic 

treatment of chronic P. aeruginosa respiratory tract infections in pwCF. The 
current review aims to provide an overview of: (i) P. aeruginosa metabolic 

adaptation within clinically relevant CF lung microenvironments; (ii) the 

influence of changing nutrient environments on biofilm formation and antibiotic 

sensitivity; and (iii) the role of patient heterogeneity in nutrient diversity and 

treatment response.  
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Figure 1. Overview of P. aeruginosa in the cystic fibrosis (CF) lung microenvironment. (A) 

demonstrates the efficient clearance of the mucus in healthy lungs with functional 
transmembrane proteins. (B) Accumulation of viscous dehydrated mucus and the 

microenvironmental influences in biofilm formation. Metabolic processes of cells in the 

(C) peripheral layer and (D) core of the biofilm. 

 

 

2.2. Metabolic adaptation within the nutritional 

microenvironment in cystic fibrosis 

The CF lung microenvironments are characterized by a large diversity in 

nutrients and O2 levels. The following section describes P. aeruginosa metabolic 

pathways that are utilized or affected under these nutritional conditions.  



Nutrient-driven modulation of antibiotic efficacy in P. aeruginosa 

27 

 

Aerobic metabolism 

Tricarboxylic acid (TCA) cycle  

Amino acids and lactate are systematically increased in the CF lung and represent 

important nutrients for P. aeruginosa energy production through the TCA 

cycle12,13,14. These nutrients have different entry points into the TCA cycle, 

facilitating metabolic flux versatility (Figure 2). For instance, lactate is converted 

to pyruvate by lactate dehydrogenases (LldDE and LldA) to fuel the TCA cycle15, 

while L-glutamate enters halfway in the cycle by glutamate dehydrogenases 

(GdhA and GdhB)16. The resulting electron carriers from the TCA cycle play a 

crucial role in oxidative phosphorylation (OXPHOS), supporting energy-

demanding processes like extracellular matrix production during biofilm 
maturation17,18. Matrix-producing biofilm cells exhibit comparable TCA cycle 
activity to planktonic cells19, underlining the high metabolic activity in the  

peripheral biofilm sub-population where nutrients and O2 are still available. 

Finally, P. aeruginosa can also operate anaplerotic pathways in the TCA cycle, such 

as the pyruvate and glyoxylate shunt, if nutrients or O2 become scarce. Shunting 

the TCA cycle reduces electron carrier production to maintain the redox balance 

during low energy demanding circumstances, such as the dormant biofilm 
core19,20.  

Glucose catabolism  

Glucose levels are elevated in the CF respiratory fluid due to active stimulation of 
glucose leakage from lung epithelial cells and the induction of hemoptysis by P. 

aeruginosa21–23. Unlike many organisms, P. aeruginosa typically does not prefer 

glucose as primary carbon source in CF sputum due to the absence of glycolytic 
enzymes5. However, glucose catabolism remains crucial for the bacterial survival 

and pathogenicity, primarily through efficient production of pyruvate through 

the Entner-Doudoroff (ED) pathway19,24. P. aeruginosa employs a combination of 

enzymes from both the ED and Embden-Meyerhof-Parnas (EMP) pathway for a 

full carbohydrate degradation loop. The ED-EMP cycle is primarily used for 

anabolic functions, but also yields precursors for biofilm matrix and cell 
envelope production19. P. aeruginosa also actively secretes lipases and elastases to 

cleave macromolecules into metabolites suitable for the ED-EMP cycle8,25. For 
example, the peptidoglycan component N-acetylglucosamine present in CF 
sputum is processed within the ED-EMP system to be utilized intracellularly as a 
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carbon source26,4. The heightened levels of glycolytic substrates in CF sputum 
may contribute to the biofilm-aggregate structure observed in the CF lung. P. 

aeruginosa biofilms grown solely on glucose demonstrate reduced motility 

aggregate populations27, suggesting an intricate interplay of glycolytic 

metabolism in shaping microbial community characteristics in the biofilm. 

Amino acids and D-isoforms 

Amino acids play a pivotal role in P. aeruginosa metabolism within the CF lung 
environment, serving as carbon or nitrogen sources and building blocks for 

proteins. Both P. aeruginosa and host immune cells contribute to the elevated 

amino acid concentrations in CF sputum through the excretion of peptidases28,29. 

The abundance of amino acids in CF sputum provides a favorable growth 
environment, whereby long-term evolution of pathogens in the CF lung can lead  

 

 

 

 

 

Figure 2. Central carbon metabolism of P. aeruginosa and the relation with antibiotic 

treatment. Metabolic map covering the EDEMP, TCA and urea cycle for electron carrier 

(orange) production for ATP (yellow) synthesis by oxidative phosphorylation (OXPHOS) 

and denitrification. Fermentation pathways are illustrated with colored arrows, glucose 
fermentation in blue, pyruvate fermentation in yellow and arginine fermentation in 

purple.  
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P. aeruginosa biofilm formation, with branched chain amino acids leucine, 
isoleucine and valine influencing P. aeruginosa growth rate and swarming 
motility31,32. Biofilm stimulation is isoform-dependent, as the D-isoform of 
leucine inhibits biofilm formation32–36. In contrast, other studies reported D-

amino acid supplementation did not significantly improve survival outcomes 
in mice35, and anti-biofilm eƯects of D-isoforms disappeared after several 
days of incubation37. These conflicting results highlight the relevance for 
further studies into the driving mechanisms of amino acids in P. aeruginosa 

infection in the CF lung.  

Anaerobic metabolism 

The dehydrated and thick mucus layer in the CF lung reduces O2 diffusion. Levels 

of O2 are further reduced by neighboring cells, such as lung epithelial cells and 

polynuclear monocytes (PMNs)38,39. This O2 restriction contributes to the 

establishment of fully anaerobic microenvironments within the mature biofilm 
structure. In response to these O2 constraints,  P. aeruginosa employs adaptive 

strategies, utilizing two fermentation pathways and shiơing from O2 to nitrates  as 

electron acceptors.  

Glucose and pyruvate fermentation  

The fermentation of glucose comprises two steps: the initial conversion of 

glucose to pyruvate, followed by the subsequent fermentation of pyruvate into 
lactate, acetate and succinate40. Glucose fermentation to pyruvate is typically 

influenced by redox constraints41. To overcome redox imbalances during 

anaerobic fermentation, P. aeruginosa actively produces radical-scavenging 

phenazines41,42,43. The NADH-dependent conversion of lactate to pyruvate 

conversion also preserves the cellular redox balance by limiting electron 

accumulation41,42. The emphasis on pyruvate metabolism in anaerobic 

conditions becomes evident by the increase in total biofilm biomass upon 
pyruvate supplementation and biofilm dispersion aơer pyruvate deficiency44,45. 

Efficient cross-feeding of pyruvate and lactate over the O2 gradient demonstrates 

the cooperative metabolic activity between the biofilm sub-populations15,46, and 

the role of carbon sources for maintaining matured biofilm structures. 

Arginine deiminase 

Arginine, an amino acid favored by P. aeruginosa as a carbon source, plays a 

crucial role in anaerobic metabolism and biofilm development. Arginine serves 
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as an energy source, undergoing fermentation through deiminase enzymes32. 

The transcription of the arcCBAB operon encoding for arginine deiminase 

enzymes is upregulated during biofilm formation, indicating its importance in 

this process17. The utilization of arginine deiminase enzymes is a relatively 

inefficient pathway for energy production, reducing motility and promoting the 
transition towards a static biofilm phenotype47,48,32. While fermentation 

maintains energy levels for cellular maintenance in anaerobic environments, it 

does not provide the efficiency to enable net growth40,47, which might explain the 

presence of a dormant sub-population within the biofilm core.  The role of 

arginine extends beyond serving as an energy source in anaerobic conditions. It 

also acts as a precursor of gene-modulating polyamines that contribute to the 

formation of the extracellular matrix of biofilms49. The central role of arginine in 

biofilm maturation is further supported by sensory domains, inducing 
Pseudomonas Putida biofilm formation in the presence of exogenous arginine50.   

Denitrification 

P. aeruginosa capitalizes on denitrification for proliferation in anaerobic 
conditions. This process substitutes O2 with nitrate (NO3-) and nitrite (NO2-) as 

electron acceptors (Figure 1D)51,52. This shiơ facilitated by the ample availability 
of these compounds in CF mucus, which also enables activation of the 
denitrification pathway despite the presence of O2. The high abundance of these 

nitrates does not limit the utilization of the denitrification pathway within 
anaerobic environments5,53. P. aeruginosa also employs denitrification enzymes to 
neutralize nitric oxide (NO) produced by immune14,54 and to mitigate ROS 

production by distributing the electron flow across the respiratory and 
denitrification pathways in O2-rich conditions8,40,55. The functionality of 

denitrification is iron-dependent51. Reduced transcription of denitrification 
proteins hampers anaerobic metabolism under iron scarcity56, whereas sufficient 
levels of iron stimulate anerobic metabolism and biofilm development57–60. This 

underscores the critical role of denitrification in the maturation of biofilm and 
adaptation of anaerobic sub-populations in the core, highlighting how metabolic 

processes are intricately linked to multiple nutrients in the surrounding 

microenvironment. This metabolic coordination is also regulated at the 

transcriptional level. The Anr transcriptional regulator, which controls 

denitrification enzymes, also has conserved regulatory effects in central carbon 
metabolic pathways40,55. For instance, under anaerobic yet nitrate-rich 
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conditions, arginine is no longer a preferred carbon source5,47. This metabolic 

heterogeneity is reflected in biofilm structures, where different metabolic 
pathways dominate at varying biofilm depths depending on nutrient 

availability15,61. Consequently, the metabolic adaptation of P. aeruginosa at the 

infection site is influenced by the overall nutritional composition, including O2, 

metals, salts, and carbon sources. This highlights both the flexibility and diversity 
of P. aeruginosa metabolism within the CF lung, underscoring the importance of 
understanding the complex interplay between bacterial metabolism and the 

nutritional environment for effective therapeutic interventions.  

2.3. Nutrient-driven effects of metabolic 

adaptation on antibiotic sensitivity  

In this section, we discuss the role of nutrients in the metabolic activity of P. 

aeruginosa, and how this influences antibiotic sensitivity. Nutrient-limited 

environments typically induce low metabolic activity, which is generally linked 

to reduced activity of antimicrobials, since antibiotics oơen target energy-

demanding cellular processes during cell division62. This includes processes such 

as DNA replication (e.g., fluoroquinolones), protein synthesis (e.g., 
aminoglycosides) and cell wall synthesis (e.g., β-lactams). In contrast, 

polymyxins are more effective in eradicating metabolically inactive cells63. An 

overview of specific nutrients present in the CF lung and their modulatory role 
on antibiotic efficacy is summarized in Table 1.  

Fluoroquinolones 

Fluoroquinolones require oxidative stress for effective bacterial killing in 

addition to their primary mode of action through inhibition of DNA gyrase and 

topoisomerase IV82–84. Oxidative stress primarily stems from aerobic metabolic 

activity, i.e., TCA cycle and OXPHOS, which spearhead ROS production. These 

processes can be suppressed in low oxygen environments, for example, in the O2- 

and nutrient-deprived core of a biofilm, in addition to phenazine-mediated redox 

balancing mechanisms in anaerobic environments to reduce oxidative damage61. 

To illustrate, in P. aeruginosa biofilms, enhanced ciprofloxacin tolerance has been  
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Table 1. Nutrient supplements which change antibiotic sensitivity through metabolic 

changes 

Antibiotic 

 

Antimicrobial 

effect 
Nutrient 

environment 

Metabolic 

mechanism 
Ref. 

Ciprofloxacin 

Potentiation 

O2 
Electron transport 

chain 
64 

Malic acid TCA cycle activity 65,66 

Arginine n.r. 67,68 

Reduction 
n.r. Denitrification 69–71 

Starvation Dormancy 72 

Tobramycin 

Potentiation 

O2 n.r. 73 

Fumarate 
Proton motive force, 

TCA cycle 
74,75 

Glutamate and 

succinate 

Proton motive force, 

TCA cycle 
76 

bicarbonate Alkaline pH 77 

Arginine Alkaline pH 67,78,79 

Reduction 
Glyoxylate 

Proton motive force, 

TCA cycle 
74 

n.r. Denitrification 53 

Meropenem Reduction Starvation Oxygen radicals 80 

Colistin 

Potentiation Nitrate Anaerobic metabolism 63 

Reduction 
Glucose “Osmotic homeostasis” 81 

Formate n.r. 81 

n.r. = not reported 

 

 

To illustrate, in P. aeruginosa biofilms, enhanced ciprofloxacin tolerance has been 
observed in metabolically inactive cells as compared to metabolically active 

cells85. Consequently, the supplementation of O2, i.e., to promote aerobic 

respiration, improves ciprofloxacin efficacy against in vitro grown biofilms64. 

Similar ciprofloxacin potentiation was observed when supplementing with 
organic acids to increase TCA cycle activity65,66. By using metabolic shunts as a 

safeguard against oxidative stress while preserving anabolic flexibility20, P. 

aeruginosa demonstrates a form of metabolic defense against fluoroquinolone 
action. This adaptability becomes particularly evident in the nitrogen rich CF 
lung environment, where P. aeruginosa shiơs from OXPHOS to denitrification, 
thereby reducing oxidative stress and increase tolerance to fluoroquinolones 

while maintaining metabolic activity69–71. The reduced fluoroquinolone 
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susceptibility by the activation of anaerobic metabolism is not observed when 

anaerobic nutrients such as NO3 and arginine are supplemented. In fact, the 

addition of arginine and NO3 demonstrated enhanced ciprofloxacin activity in 

mature biofilm cultures, while no enhancement was observed in young or 

alginate-grown biofilms67,68.  

Aminoglycosides 

Aminoglycosides penetrate bacterial cells through membrane pores and block 

protein synthesis by attaching to ribosomal proteins. Their entry relies on the 

electric potential across the cell membrane, driven by the proton motive force 

(PMF) during OXPHOS86,87. Stimulating the PMF by elevating OXPHOS activity 
through O2 supplementation can enhance the effectiveness of tobramycin73. 

Similarly, the supplementation of fumarate increases the electron transport 

through the elevated TCA cycle, improving aminoglycoside action74,75. However, 

supplementing with glyoxylate activates the glyoxylate shunt, which reroutes the 

TCA cycle and shiơs the balance between OXPHOS and denitrification. This 

reduces the PMF and consequently decreases susceptibility to tobramycin20,8,53,74. 

This metabolic adaptation is also observed in biofilms exposed to tobramycin, 
where cells in aerobic biofilm regions shiơ to denitrification upon exposure to 

tobramycin53.  

The transmembrane pH gradient is another component of the PMF that 

plays a crucial role in aminoglycoside activity. The acidic CF lung environment 
lowers both the net positive charge of tobramycin and the PMF of P. aeruginosa, 

thereby reducing aminoglycoside effectiveness88. This can be counteracted by 

increasing the pH through bicarbonate supplementation, which has shown to 

enhance tobramycin effect77. Adjusting the pH showed limited benefits for 
aminoglycoside treatment of biofilm, potentially due to the natural acidic pH-

gradient in biofilm structures from accumulated extracellular DNA77,78,88,89. In 

contrast, arginine supplementation has shown promise in enhancing 

aminoglycoside efficiency in biofilms, due to metabolically induced pH 

increase67,78,79. Studies involving the use of 3D cultured lung cells have shown that 

a combination of altered pH, transmembrane potential, and carbon metabolism 

enhance aminoglycoside effect76. Alkalinizing the intracellular environment and 

increased TCA cycle activity through pyruvate metabolism increased the PMF-

mediated aminoglycoside uptake. Furthermore, enriching the 3D culture media 
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with succinate and glutamate significantly improved aminoglycoside-mediated 

eradication of biofilms.  

β-Lactam antibiotics 

β-Lactam antibiotics exert their bactericidal effect by depleting cell wall building 

blocks through inhibition of cell envelope precursor synthesis. Primary 

mechanisms modulating β-lactam resistance typically have a genetic basis, 

including porin modifications, overexpression of efflux pumps, and inactivating 

β-lactamase enzymes90. Whereas the primary mechanisms of action and 

resistance to β-lactam antibiotics are generally stable across different 
environmental and metabolic conditions, secondary effects such as the induction 

of oxidative stress are closely linked to both91–94. The bactericidal activity of β-

lactams can be potentiated by the interaction of ferrous ions with reactive oxygen 

species (ROS), which are generated as a result of the elevated metabolic activity 

associated with peptidoglycan recycling95. This oxidative mechanism aligns with 

observations that meropenem is more effective against Pseudomonas aeruginosa 

strains with compromised antioxidant defenses80. In contrast, activation of stress 

responses such as the stringent response can enhance antioxidant capacity prior 

to antibiotic exposure, thereby promoting antibiotic tolerance80,96. The stringent 

response also plays a key role during nutrient limitation in the biofilm core97, 

contributing to biofilm physiology and potentially reducing susceptibility to β-

lactams. Although the influence of the nutritional environment on the early 
bacterial response to β-lactams is not yet fully understood, it may be an important 

factor in shaping P. aeruginosa sensitivity. 

Polymyxins 

Polymyxins are polypeptide antibiotics that disrupt the bacterial cell envelope. 

Unlike many other antibiotics, polymyxins are particularly effective against 
dormant cell types that lack the high metabolic activity required for cell envelope 
remodeling63. These metabolic demands for lipopolysaccharide modifications 

are more readily supported in nutrient-rich environments, which can lead to a 

reduction in binding sites for colistin due to alterations of the lipid A component 

of lipopolysaccharide85,98,99. While such lipid A remodeling typically imposes a 

fitness cost in other Gram-negative bacteria, P. aeruginosa appears to tolerate 

these modifications without significant fitness penalties99–101. Nonetheless, 
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colistin susceptibility in P. aeruginosa can be influenced by the nutrient 
environment. For example, the carbon sources glucose and formate modulate 

antibiotic effects while not directly channeled into the central energy-generating 

pathways81. Glucose has been suggested to reduce susceptibility by alleviating 

osmotic stress, while formate induces a sensitizing effect through an as-yet 

undefined mechanism. These findings illustrate how P. aeruginosa leverages its 

metabolism to adapt to antibiotic exposure in ways that are uncoupled from core 

energy metabolism. However, such metabolic adaptations likely depend on 

nutrient-rich conditions that maintain energy homeostasis via alternative 

substrates. 

2.4. Differences in the nutritional environments 
between and within patients  

Differences in nutrients may impact the response of P. aeruginosa to antibiotics 

can occur at different biological scales, contributing to variability within and 

between patients. In the previous sections, we highlighted how nutritional 

diversity within the CF lung influences P. aeruginosa phenotype and antibiotic 

sensitivity at the cellular level, explaining heterogeneity at the cellular level 

(Figure 3A). Within the lung, accumulation of mucus and macronutrients can 

further contribute to this nutrient diversity. Nutrient conditions vary 

substantially across different lung regions due to varying host-pathogen 

interactions and oxygen availability102 (Figure 3B). Patient-specific differences 

such as those related to disease severity, inflammation, comorbidities and 
microbial colonization significantly impact the nutrient microenvironments104–

109 (Figure 3C). In this section, we explore how nutrient heterogeneity at the 

tissue and patient level may further contribute to differences in antibiotic 
treatment response.  
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Figure 3. Multiscale heterogeneity contributing to variation in antibiotic treatment 

response in (A) patients, (B) site of infection, and (C) bacterial biofilm structure. 
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Pulmonary heterogeneity  

The compartmentalization of the human lung creates a diverse 

microenvironment that significantly influences pathogen-host interactions102. 

One notable example is the respiratory zone, which is densely populated with 

PMNs and, as a result, experiences a pronounced depletion of O2 from the 

typically aerobic zone109. It has been suggested that biofilm aggregates encased 
by PMNs no longer exhibit an oxygen gradient but instead experience uniform 

hypoxia110. Microbes originating from these hypoxic areas can adapt to become 

intolerant to O2
111, a shiơ that will directly affect their metabolic processes and 

likely their response to antibiotics. For example, proposed strategies focusing on 

increasing aerobic respiration may have limited or even counterproductive 

effects on these strict anaerobic cells, especially when compared to P. aeruginosa 

lineages that have evolved increased aerobic respiration during long-term 

adaptation to the CF lung25. 

The O2 depleted by PMNs is partly used for ROS production as a pathogen 

eradication mechanism, but also inducing oxidative stress in nearby host and 

microbial cells. This oxidative stress not only increases nutrient availability 

through cell lysis and epithelial cell nutrient leakage112, but also primes P. 

aeruginosa by activating stress responses prior to antibiotic treatment. The pre-

activation of these stress responses can undermine the secondary effects of 
antibiotics that depend on ROS production, such as fluoroquinolones and β-

lactams, reducing antibiotic effectiveness113.  

These observations underscore the critical need to consider the role of 

the compartmentalized lung in nutrient availability, oxygen levels, and immune 

cell activity in P. aeruginosa treatment response. Understanding the intricate 

dynamics of the different CF lung microenvironments and microbial adaptation 
offers a pathway to more effective treatment approaches, potentially including 
the strategic manipulation of microbial metabolism to enhance antibiotic 

efficacy. 

Patient heterogeneity 

There are nearly 2000 possible mutations of the CF transmembrane regulator 
gene that cause CF, leading to a broad spectrum of disease severities114. These 

mutations result in diverse manifestations in CF pathophysiology which 
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eventually contribute to significant differences in lung function decline115,116. 

Progressive lung function decline caused by inflammation results in higher levels 

of free amino acids, nutrients that are preferred by P. aeruginosa107. The more 

severe lung damage in chronically infected pwCF is oơen accompanied by P. 

aeruginosa adaptations that further enhance its metabolic dominance in the 

inflamed environment107,108,117. These metabolic changes also include the shiơ 
from aerobic respiration toward denitrification118, a transition that is associated 

with decreased antibiotic susceptibility. This suggests that changes in the nutrient 

environment and associated metabolic adaptations may be important 

considerations in treatment decision-making. Such factors may be particularly 

relevant in the treatment strategy during the substantial changes in lung function 

that occur at the transition from childhood to adulthood119.   

Diabetes mellitus is one example of an important and frequent 
comorbidity in pwCF119, which further exacerbates the elevated glucose 

concentrations typically observed in the CF lung120,121. Elevated glucose levels in 

the CF lung have been repeatedly associated with an increased risk of developing 

respiratory infections122,123,124.  In vitro studies have demonstrated that glucose 

induces metabolic shiơs and increase biofilm formation in P. aeruginosa, which 

in turn reduces levofloxacin susceptibility125. Glucose also plays a key role in 

epithelial cells and PMNs, particularly in anaerobic conditions where it is 

fermented into lactate. The subsequent rise in lactate levels has been suggested 
as a biomarker for pulmonary exacerbations13,23,126. However, the lack of 

significant decrease in lactate levels following antibiotic treatment raises 

questions about its utility as a reliable biomarker127. Nonetheless, the sustained 

lactate levels indicate that P. aeruginosa continues to access lactate and glucose 

before, during, and aơer antibiotic treatment. This demonstrates that glucose 

serves as an important substrate for P. aeruginosa, despite not being one of its 

preferred carbon sources. 

2.5. Considering nutrients in antimicrobial 

susceptibility testing 

Current clinical decisions regarding antibiotic therapy are based on 

antimicrobial susceptibility testing, which typically uses standardized nutrient 
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and oxygen-rich conditions that do not reflect the in vivo nutrient environment 

shaped by CF-related pathophysiological factors. By integrating physiologically 

relevant growth conditions that closely mimic the CF-specific environments, the 

predictive accuracy of antibiotic effects may be improved128. Combining these 

nutrient-relevant conditions with recent advancements in the development 3D 

biofilm25 and host-microbe157 models promises a more accurate translation of 

laboratory findings into clinical outcomes.   

2.6  Opportunities for antimicrobial drug 

development  

The intricate relationship between metabolic activity and P. aeruginosa antibiotic 

sensitivity presents a promising avenue for developing a new class of 

antimicrobials that target bacterial metabolism129. These novel antimicrobials 

could aim to inhibit the specific metabolic pathways that pathogens exploit to 
evade or tolerate conventional antibiotics like aminoglycosides and 

fluoroquinolones. We have described how the metabolic shiơ of P. aeruginosa 

toward anaerobic energy-generating pathways reduces antibiotic uptake and 

decreases ROS production, which are essential to the activity of these antibiotics. 

By specifically targeting these anaerobic pathways in combination therapies, 
metabolism-targeting antimicrobials could effectively block bacterial escape 

routes from antibiotic treatments130. Unlike nutrient supplementation that relies 

on activation of aerobic metabolism, combination therapy with metabolism-

targeting antimicrobials will be a consistent strategy to combat antibiotic 

resistance within the diverse oxygen gradients of the CF lung. The success of 
these therapeutics hinges on a deep understanding of pathogen metabolism 

within physiologically relevant microenvironments. Selecting metabolism-

targeting candidates from drug libraries can only facilitate the development of 

successful candidates if the pathogens are studied in screening models that 

accurately represent the infection site131,132. The failure of many promising 

compounds during the development process oơen stems from a lack of 
consideration of physiological relevance of screening models133, underscoring 

the importance of this strategy in the fight against antibiotic-resistant infections.   
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2.7. Conclusion 

There is a complex interplay of nutrients in the CF lung environment, metabolic 
adaptations of P. aeruginosa and resulting consequences for antibiotic treatment 
efficacy. Various nutritional environments relevant to the CF lung influence 
antibiotic efficacy. These insights highlight the importance of further considering 

the CF lung microenvironment and its impact in order to refine susceptibility 

testing and treatment strategies, although characterization of the nutrient 

environment in patients remains challenging. 
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Abstract 

The infectious microenvironment in chronic respiratory tract infections is 

characterized by substantial variability in nutrient conditions, which may impact 

colonization and treatment response of pathogens. Metabolic adaptation of the 

CF-associated pathogen Pseudomonas aeruginosa has been shown to lead to 

changes in antibiotic sensitivity. The impact of specific nutrients on the response 
to antibiotics is, however, poorly characterized. Here, we investigated how 

different carbon sources impact the antimicrobial pharmacodynamic responses 

in P. aeruginosa. We evaluated the effect of six antibiotics (aztreonam, 
ceơazidime, ciprofloxacin, colistin, imipenem, tobramycin) on P. aeruginosa 

cultured in a basal medium enriched for seven different carbon sources (alanine, 
arginine, aspartate, glucose, glutamate, lactate, proline). Pharmacodynamic 

responses were characterized by measuring time-kill profiles for a 
bioluminescent P. aeruginosa PAO1 Xen41 strain. We show that single-nutrient 

modifications minimally affected bacterial growth rate. For specific nutrient-
antibiotic combinations, we find relevant alterations in antibiotic sensitivity (i.e., 
EC50) and the maximum drug effect (Emax), in particular for ciprofloxacin, colistin, 
imipenem and tobramycin. The most pronounced effect was observed for 
tobramycin, where glucose was found to reduce the EC50 (0.5-fold) while lactate-

enriched conditions led to a 4.3-fold increase in EC50. Using pharmacokinetic-

pharmacodynamic simulations, we illustrate that the magnitude of the nutrient-

driven pharmacodynamic changes impact treatment for clinical dosing strategies 

of tobramycin. In summary, this study underscores the impact of nutrient 

composition on antimicrobial pharmacodynamics, which could potentially 

contribute to observed variability of antimicrobial treatment responses in CF 
patients.   

Importance 

Chronic respiratory tract infections in cystic fibrosis patients present significant 
challenges for antibiotic treatment due to the complexity of the respiratory 

environment. This study investigated how variations in nutrient levels, altered 

during chronic infections, affect pathogen response to antibiotics in an 
experimental setting. By simulating different nutrient conditions, we aimed to 
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uncover interactions between nutrient availability and antibiotic sensitivity. Our 

findings provide critical insights that could lead to more effective treatment 
strategies for managing chronic respiratory tract infections in cystic fibrosis 
patients, while also guiding future research in improving treatment 

methodologies. 

3.1. Introduction 

Cystic fibrosis (CF) associated lung infections are facilitated by a complex 
infectious microenvironment involving a dense mucus layer harboring a diverse 

array of potential microbial nutrients1. Antibiotic treatment in patients with CF 
oơen yields unpredictable outcomes and aligns poorly with routine antimicrobial 
susceptibility testing2,3. Profound variability in microbial nutrients is observed 

within the chronic infectious environment, both across and within patients4,5. 

Unlike many other bacterial pathogens, Pseudomonas aeruginosa prioritizes the 

utilization of a wide array of carbon sources over glucose, including alanine, 

arginine, aspartate, glutamate, proline, and lactate6,7. This metabolic versatility 

may explain its pervasive presence in chronic CF-associated infections, and 

provides a competitive advantage during antibiotic treatment8–10.  

Alterations in metabolic processes associated with differences in 
available nutrients may impact response to antibiotic treatment in P. aeruginosa11–

13. For example, nutrient deprivation prevents cell wall modifications due to its 
high energy demand, enhancing the effect of cell wall targeting antibiotics (e.g., 
polymyxins and β-lactams)14–16. The supplementation of metabolites to activate 

energy production through aerobic respiration in nutrient-deprived 

environments can increase sensitivity towards fluoroquinolones and 
aminoglycosides17–19. While these changes illustrate the modulatory role of 

deprived nutrient conditions and microbial metabolism on the response to 

antibiotics, insights into the contribution of nutrients relevant to CF lung 
microenvironments remain limited.  

 

To assess the effects of nutrient conditions on antimicrobial pharmacodynamics 
(PD), conventional readouts such as minimum inhibitory concentrations (MIC) 

have important limitations, as this is a static composite measure. More 

comprehensive characterization of changes in the pharmacodynamic response 
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to antibiotics can be achieved through time kill studies, which monitor bacterial 

densities over time when exposed to antibiotics, allowing the evaluation of 

bacterial growth, antibiotic-associated killing, and adaptation effects20,21. 

Although time-kill studies provide these valuable insights, they remain limited in 

their throughput and the number of time points at which data can be collected22. 

The use of bacterial strains carrying luminescent reporters allows real-time 

monitoring of bacterial growth and killing dynamics during antibiotic 

exposure23,24. The resulting profiles can be analyzed using mathematical 
pharmacodynamic models to obtain further quantitative insights into PD 
relationships. As such, the use of luminescence-based time kill studies in 

combination with quantitative pharmacodynamic models is well-suited for 

comprehensively assessing the effects of nutrient conditions on antibiotic 
response. 

In the current study, we aimed to systematically evaluate the impact of a 

wide range of CF sputum-relevant carbon sources on antimicrobial time-kill 

responses in P. aeruginosa. The nutrients evaluated included alanine, arginine, 

aspartate, glutamate, lactate, proline, and glucose. These nutrient-associated 

effects were evaluated for six antibiotics commonly used for respiratory tract 
infections in CF, including aztreonam, ceơazidime, ciprofloxacin, colistin, 
imipenem, and tobramycin. We assessed the bacterial growth/kill time course 

profiles using extensive time-kill studies with a modified P. aeruginosa PAO1 strain 

carrying a constitutively active luminescent reporter. This strain was 

subsequently used to infer PD parameters and perform pharmacokinetic-

pharmacodynamic (PK-PD) simulations to demonstrate the potential clinical 

impact of nutrients on antimicrobial PD.  

3.2. Materials and Methods 

Culture media and bacterial strain 

A basal medium was prepared consisting of physiologically relevant 

concentrations of amino acids in synthetic CF sputum as described previously7, 

calcium and magnesium adjusted 0.11 M phosphate buffer, ammonium chloride, 
potassium nitrate, ferrous sulfate, Basal Medium Eagle 1x vitamins, and trace 

metals. The pH of the basal medium was confirmed to be 7.4, and was verified 
aơer addition of nutrients and filter sterilization. The specific concentrations of 
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all medium components are listed in Table S1. We then prepared 7 unique 
nutrient-specific media for each of the carbon sources used in this study, 
including alanine, arginine, aspartate, glutamate, glucose, proline, and lactate. 

Each of these nutrients was added separately to the basal medium in excess at a 

concentration of 15 mM.  The P. aeruginosa bioluminescent strain PAO1 Xen41 

(Revvity Inc., Waltham, MA, USA) was used in all experiments. The promoterless 

insertion of the luxCDABE cassette into the chromosomal genome resulted in a 

linear relationship between luminescence in relative light units (RLU) and 

CFU/mL (Figure S1)23,24.  

Antibiotics 

Antibiotic stock solutions were freshly prepared on the day of the experiment and 

diluted to desired concentrations using an Opentrons OT-2 (Opentrons Inc., New 

York, NY, USA) liquid handling system. Aztreonam and ceơazidime pentahydrate 
were purchased from Thermo Fisher Scientific (Breda, The Netherlands). 
Ciprofloxacin, imipenem monohydrate, and tobramycin were purchased from 
Chem-Impex International (Wood Dale, IL, USA). Colistin sulfate was purchased 

from Cayman Chemical Company (Ann Arbor, MI, USA). 

Experimental workflow 

Time-kill assays were conducted by culturing P. aeruginosa in each of the nutrient-

specific media formulations and exposing the cultures to 6 different antibiotics.  
We tested 9 different serially diluted concentrations in a microtiter plate format, 
centered around their minimal inhibitory concentrations (Figure 1).  All 

experiments were conducted at 37 °C and with shaking at 150 rpm. 

The PAO1 Xen41 strain was streaked on LB agar plates and incubated overnight. 

One colony was transferred to a nutrient specific media formulation (4 mL) and 
cultured overnight. The liquid cultures were diluted to an optical density at 600 
nm (OD600) of 0.05 before inoculation, corresponding to an approximate bacterial 

concentration of 5*106 CFU/mL. The bacterial inoculum (50 µL) was added to 

fresh medium with antibiotics (150 µL) in a white 96-well microtiter plate. 
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Aơer inoculation, microtiter plates were transferred to a Liconic StoreX STX44 
incubator (Mauren, Principality of Liechtenstein) for incubation (95% relative 

humidity). A Peak Analysis and Automation KX-2 Laboratory Robot (Hampshire, 

United Kingdom) transferred the microtiter plate every hour between the 

incubator and the BMG Labtech Fluostar Omega microplate reader (Ortenberg, 
Germany) for time-course data acquisition. The density of viable bacteria was 
determined by measuring luminescence, quantified as relative light units (RLU). 

Data processing and analysis 

All data preprocessing and analyses are performed using R. To evaluate fitness 
differences between growth media, the maximal population growth rates (µmax) 

and the maximal population density (Nmax)  under antibiotic free culture 

conditions were calculated using the all splines function from the grofit 
package25. Differences in growth parameters in the studied media formulations 
compared to the basal media were assessed by the Dunnett s̓ Test from the 
DescTools R package26.   

 

To quantify drug effects, the total bacterial burden was determined by calculating 
the area under the curve (AUC) of the RLU between 1 and 15 hours of incubation 

(Figure S2). The resulting AUC values were then used to quantify 

Figure 1. Experimental approach. The experiment started with by a liquid culture in the 
media formulation containing 1 or none of the nutrients of interest. The population was 

diluted to the starting density and treated with 9 concentrations of antibiotic while the 

luminescence was determined every hour in relative light units (RLU). A four parameter 

log-logistic function was fitted on the area under the curve or growth rate per antibiotic 
concentration to determine the upper limit (E0), lower limit (Emax), and half-maximal 

effective concentration (EC50). 
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pharmacodynamic parameters. We fitted for each antibiotic-nutrient 

combination the mean (n=3) AUC to the antibiotic concentration ([AB]) using a 

four parameter log-logistic (LL.4) function from the drc R package (Equation 1)27. 

This function includes parameters for the hill coefficient (nH), the lower limit 

(Emax),  the upper limit (E0), and the relative half-maximal effective concentration 
(EC50). The difference in relative EC50 among culture conditions was quantified 
using the 95% confidence interval.  
 끫롨ܷܥ([끫롨ܤ]) = ௠௔௫ܧ +  

ா0−ா೘ೌೣ1+௘೙ಹ(log([ಲಳ])−log(ಶ಴50))  (1)  

 

Pharmacokinetic-pharmacodynamic (PK-PD) simulations 

We used a previously published pharmacokinetic (PK) model for tobramycin to 

perform PK-PD simulations28. We simulated the clinical concentration-time 

profiles for a typical dose of 3.3 mg/kg of intravenous tobramycin, administered 
every 8 hours (Table S2). Interpatient variability for the parameters was derived 

from published interquartile ranges. Antibiotic PD was described by first 
estimating growth/kill rates for each antibiotic concentration, which were 

subsequently fitted to a pharmacodynamic sigmoidal function relation antibiotic 

growth/kill rate to antibiotic concentration. The growth rates where determined 

by determining the slope of the phase of the luminescence time kill curve where 

the drug effect occurred (Figure S6), using the grofit package. 

3.3. Results 

Nutrient-dependent shiȅ in antibiotic sensitivity. 
We cultured P. aeruginosa under various nutrient conditions in the presence of 

different antibiotics to investigate the effect of nutrients on the 
pharmacodynamic (PD) response. To summarize the bacterial response kinetics–

encompassing growth enhancement, suppression, or killing during antibiotic 

treatment–we calculated the AUC of the luminescence time course profiles. We 
then regressed the AUC values against antibiotic concentrations using a sigmoidal 

Emax model, allowing us to visualize differences in the pharmacodynamic 

response across conditions (Figure 2). Overall, these analyses revealed 

significant effects of nutrients on the antibiotic concentration required to achieve 
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50% of the total antimicrobial effect (relative EC50), and the steepness of the 

concentration-response profiles (Figure S3).  
 

 

 
 

 

Figure 2. Pharmacodynamic exposure-response relationships for antibiotics cultured 

under different nutrient conditions. The area under the curve (AUC) for bacterial 

growth/kill based on relative light units (RLU) up to 15h in relation to antibiotic 

concentrations (n=9) were fitted using sigmoidal Emax curves, for different nutrient-
enriched media formulations and the basal control media condition. The lines represent 

the mean predictions derived from 3 biological replicates (n = 3). Abbreviations: 

Aztreonam (AZT), ceơazidime (CAZ), ciprofloxacin (CIP), colistin (COL), imipenem (IMI), 
and tobramycin (TOB).  
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Figure 3. Changes in antibiotic sensitivity (EC50) of P. aeruginosa across different nutrients 
and antibiotics. Observed area-under-the-curve for bacterial growth and kill for P. 

aeruginosa PAO1-Xen41 were regressed against drug concentrations for different 
antibiotics and nutrients, using a sigmoidal Emax function. The resulting EC50 estimates 

for different antibiotic-nutrient combinations are shown for (A) absolute EC50 values 

(mean and 95% confidence intervals), with vertical dashed lines indicating the EC50 

obtained from the base media control treatment, and the cross-nutrient median EC50, and 

(B) median fold-change (FC)  values in EC50, compared to the base media EC50. The 

antibiotics and nutrients were clustered using Euclidean distance clustering to showcase 

patterns of antibiotic sensitivity and nutrient effect.  Abbreviations: aztreonam (AZT), 
ceơazidime (CAZ), ciprofloxacin (CIP), colistin (COL), imipenem (IMI), and tobramycin 

(TOB).  
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The relative EC50 would be the primary metric of relevance to quantitatively 
indicate subtle changes in drug potency, i.e., antibiotic sensitivity across 

conditions. For several nutrient conditions, we observed clinically relevant 
alterations in the EC50 values across different antibiotics (Figure 3A). We observed 

both reductions in EC50 as compared to the basal media and increased EC50 values, 

indicating increased resistance. Across all antibiotics, no clear trends in EC50 

shiơs were observed for specific nutrients.  

When comparing the relative change in EC50 to the basal medium (Figure 

3B), both aztreonam and ceơazidime exhibited similarly enhanced sensitivity 
across different nutrient conditions. The most notable changes were the 
increased sensitivity observed in lactate-enriched media for both antibiotics. In 

contrast, imipenem sensitivity was consistently reduced in all nutrient-enriched 

conditions, with the most significant reductions observed in aspartate- and 

glutamate-enriched media. For ciprofloxacin, colistin and tobramycin a wider 

variation in effect was compared to the basal medium. Glucose- and proline-

enriched media resulted in a reduction of EC50, while aspartate, glutamate- and 

lactate-enriched media increased the EC50 for all three antibiotics. The largest 

change in sensitivity was observed for tobramycin, where for lactate-rich media, 

the EC50 value increased profoundly (log2(FC_EC50) = 2.09, a 4.4-fold increase).  

Fitness differences in different culture conditions affect PD 
parameters. 
We studied the effect of different nutrient-enriched media under antibiotic-free 

conditions on fitness and growth yield using the growth curve profiles (Figure 4), 

to understand their potential contributions to differences in antibiotic response. 
Except for alanine, for all nutrients we found an increase of >1.5 fold in the upper 

limit of the model (E0), i.e., the antibiotic baseline with no antimicrobial effect 
used in our pharmacodynamic analyses (Figure S3). To further understand these 

effects we calculated the maximum population growth rate (µmax) and the 

maximum population density (Nmax) of antibiotic-free conditions (Figure S4). 

While the nutrient composition significantly affected µmax, the magnitude of the 
effect was modest (Figure 4B), with an increase of up to 1.2-fold compared to the 

basal control media observed only for aspartate and glutamate. The observed 

effects on E0 are predominantly explained by differences in Nmax (Figure 4C), with 

a >2-fold increase observed for aspartate and glutamate and a fold change 
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Figure 4. Nutrient effects on fitness and growth yield under antibiotic-free conditions.  

Growth curves for P. aeruginosa were analyzed for different media enriched for alanine, 
arginine, aspartate, glucose, glutamate, lactate, and proline on the fold change compared 

to basal media. (A) total growth yield described using the upper limit of the antibiotic 

concentration-response curve (E0), (B) the maximal growth rate (µmax) of the growth curve, 

(C) maximal population density (Nmax) and the time (tmax) required to reach Nmax. 

Significant changes compared to the basal control media are indicated using ʻ*ʼ for p < 0.05 
and ʻnsʼ for p > 0.05. 

 

 

between 1.2 and 2.0 for all other nutrient conditions. Distinct differences in 
growth curves during the transition from the exponential growth phase to the 

stationary phase was visible (Figure S4), in particular for the time required to 
reach Nmax (tmax).  

The impact of differences in E0 across different nutrient conditions on PD 
parameters was further evaluated by analyzing the total antimicrobial response. 

Comparing the relative EC50 with the absolute EC50 provides an indication of how 

the limits of PD model influence the total antimicrobial effect. The relative EC50 is 

defined as the midpoint between the two limits of concentration-response curve, 

whereas the absolute EC50 denotes a 50% reduction in the AUC from the baseline 

with no antimicrobial effect (E0). A larger discrepancy between these EC50 values 

suggests a stronger impact of the two limits on determining the antibiotic EC50 
29. 

For treatments with ciprofloxacin, colistin, imipenem and tobramycin, the 
difference between the average relative and absolute EC50 values was less than 5% 

(Figure S5). In contrast, ceơazidime and aztreonam treatments showed 
difference of respectively 14% and 22% indicating that differences in the PD 
model limits between the nutrient conditions do influence the determination of 
EC50. 
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In vitro nutrient-driven PD differences impact treatment simulations 
with a clinically relevant tobramycin PK profile 

To assess whether the magnitude of nutrient-associated changes in the PD 

response observed in vitro may have significance at clinically relevant antibiotic 
concentrations, we performed pharmacokinetic-pharmacodynamic (PK-PD) 

simulations. For proof of concept, we focused on tobramycin and the nutrients 
glucose and lactate, since for this antibiotic and these nutrient conditions clearly 

divergent PD effects were observed.  

We re-fitted the PD model (Equation 1) with the in vitro obtained growth 

and kill rates from our luminescence time course data per antibiotic 

concentration. In the basal media enriched with glucose and lactate, maximum 

bacterial growth rates were similar (0.25 h-1 and 0.24 h-1, respectively), as were the 

maximum bacterial kill rates (-0.15 h-1 and -0.14 h-1, respectively) (Figure S6). 

However, the PD model estimated a 6-fold difference in the EC50 for glucose-

enriched (1.4 µg/mL) and lactate-enriched (8.6 µg/mL) environments, indicating 

that tobramycin is profoundly more effective at lower concentrations in glucose-

rich culture conditions.  

We simulated clinical tobramycin concentration-time profiles using a 
previously published PK model for an intravenous dose of 3.3 mg/kg 

administered every 8 hours (Figure 5A). The tobramycin PK simulation shows 

that the free drug concentrations fell below the EC50  within 1 hour for glucose-

rich conditions and within 5.5 hours for lactate-rich conditions aơer dose 
administration. As a result, treatment failure was observed for tobramycin under 

lactate-rich conditions, whereas growth suppression occurred in simulated 

glucose-enriched conditions (Figure 5B).  

3.4. Discussion  

In this study we used a combination of in vitro time-kill studies and mathematical 

modeling to investigate how specific nutrient conditions can distinctly affect 
bacterial growth and pharmacodynamic response of P. aeruginosa to different 
antibiotics. 

We found that colistin, ciprofloxacin, imipenem and tobramycin 
demonstrated >2-fold differences in nutrient-dependent changes in antibiotic 
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Figure 5. Pharmacokinetic and pharmacodynamic simulation of tobramycin treatment in 

glucose or lactate-rich environments. (A) Tobramycin concentrations are modelled using 

a two-compartment model following a 3.3 mg/kg q8h dosing regimen. (B) Treatment 

response is simulated using a pharmacodynamic model based on population growth rates 

per drug concentration from in vitro growth/kill curves. The solid lines represent the 

median (1000 simulations) with the interquartile range represented by the transparent-
hued areas.   

 

 

sensitivity (EC50), while these nutrients only had a limited effect on changes in 
bacterial fitness. Our time-course analysis revealed that changes in growth 

dynamics induced by these antibiotics occur within the initial hours of treatment, 

even when nutrients are abundant and growth rates appear unchanged. This 

observation challenges the suggestion that antibiotic sensitivity changes were 

caused by nutrient depletion or diminished growth rates30. In contrast, the 

response to aztreonam and ceơazidime under various nutrient conditions was 
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more complex, as both the baseline response (E0) and the maximum 

antimicrobial effect (Emax) were differently affected by the various nutrients.  

Our findings indicate that the adding glucose to nutrient-limited media 

enhances colistin sensitivity. Variations in colistin sensitivity under different 
nutrient conditions are thought to arise from nutrient-induced changes in cell 

wall structure14,15. Glucose-rich conditions have been previously suggested to 

decrease colistin sensitivity by stabilizing intracellular osmotic pressure14.  Our 

finding of enhanced colistin sensitivity thus challenges the hypothesis of osmotic 
stabilization of glucose in nutrient-scarce conditions. This observation is 

consistent with documented increases in colistin sensitivity in minimal media 

supplemented with glucose31.  

 

We found a diminished sensitivity of imipenem under nutrient conditions 

involving arginine, aspartate, glutamate, or proline. This can be explained by 

reduced imipenem uptake due to porin competition with these amino acids. 

Indeed, imipenem susceptibility in P. aeruginosa relies on the presence of outer 

membrane porins, particularly OprD and OprP, which facilitate the diffusion of 
sugars and amino acids32–34. Furthermore, nutrient starvation upregulates 
OprD32,33,35, providing an explanation for the increased imipenem sensitivity 

observed in both basal and glucose-rich media. The reduced growth rate and 

short exponential growth phase in these conditions may prompt an earlier 

starvation response, thereby enhancing OprD-mediated imipenem uptake.  

 

We observed reduced ciprofloxacin susceptibility in glutamate media, which has 
previously been associated with adaptations in nitrogen metabolism and stress 

responses36,37. This metabolic adaptation mitigates  ciprofloxacins̓ antibacterial 
effect of inducing oxidative stress by increasing the generation of reactive oxygen 
species during oxidative phosphorylation38,39. The increased ciprofloxacin 
sensitivity observed in arginine-rich conditions may be attributed to the 

induction of biofilm formation during treatment. Arginine-induced biofilm 
formation imposes a high metabolic burden on the cells40, aligning with the 

effective anti-biofilm activity of ciprofloxacin41. The difference in ciprofloxacin 
susceptibility among nutrient conditions might be due to a pH-dependent effect, 
although our medium was phosphate buffered to a pH of 7.4. Our observations in 
ciprofloxacin susceptibility correspond to previous findings of ciprofloxacin 
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being more effective in alkaline conditions, e.g. arginine, compared to less 
sensitivity in acidic conditions, e.g. glutamate and aspartate42. However, this pH-

mediated effect is not present in the observed reduced tobramycin susceptibility 
in arginine-rich conditions. Unbuffered arginine increases media alkalinity, 
resulting in increased tobramycin cellular uptake by increasing the 

transmembrane potential43.   

 

In our study, for tobramycin, we observed enhanced sensitivity for proline and 

glucose, whereas for  lactate and alanine, reduced sensitivity was found. So far 

previous studies have only investigated the effect of glucose-enriched media on 

P. aeruginosa tobramycin sensitivity, finding a similar potentiation effect44,45. 

Cellular respiration is key for aminoglycoside uptake, thereby directly relating 

tobramycin susceptibility to energy metabolism44. The nutrients alternated in our 

media compositions are all closely linked to the TCA cycle, and intermediate 

products have been consistently correlated with tobramycin potentiation18,44-46. 

Interestingly, the sensitivity enhancement associated with TCA cycle activity can 

be suppressed by reducing the production of electron carriers through the 

activation of pleiotropic metabolic pathways. The redox imbalance induced by 

these alternative pathways and anaerobic energy production can be mitigated 

through the utilization of lactate47. This observation may provide an explanation 

for the reduced susceptibility in lactate-rich media. Although proline and alanine 

demonstrated a profound effect on tobramycin treatment in our study, and 
previous research highlighted their role in alternative energy-producing 

pathways such as denitrification48,49, their exact role in P. aeruginosa metabolism 

during tobramycin treatment remains to be investigated. 

Our PK-PD simulation illustrates how differences in PD response under 
nutrient-enriched conditions may lead to clinically relevant changes in antibiotic 

treatment response. This is demonstrated using a clinical tobramycin PK profile 
and the PD parameters from glucose and lactate-enriched conditions. While 

these in vitro conditions do not fully replicate in vivo growth environments, 

which may also involve phenotypical adaptations such as biofilm formation or 
interspecies interactions, they underscore the relevance of considering nutrient 

conditions in the infectious microenvironment. This is especially relevant when 

nutrient availability could be altered under specific disease conditions. For 
instance, elevated lactate levels have been found in CF patients with declining 
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lung function50, which could thus potentially contribute to the reduced 

tobramycin efficacy in adult CF patients51.  Diabetes is a common disease in CF 
patients and for which increased glucose levels can be expected, which could 

potentially affect TOB treatment response52.  

 

The nutrient conditions employed in this study do not capture the full complexity 

of potential CF lung environments but provide isolated insights into the effect of 
specific nutrient conditions. Nutrients showed modest differential impact on 
bacterial fitness (µmax) and profound changes in growth yield (Nmax). The minimal 

impact on µmax from substituting a single nutrient is consistent with prior studies 

on glucose and lactate addition to minimal media53, and can be explained by a  

compressed nutrient utilization hierarchy under nutrient-poor conditions 54,55, 

facilitating the simultaneous utilization of the basal medium nutrients and the 

added nutrients. This efficient metabolic regulation of P. aeruginosa suggests that 

our findings may not directly extrapolate to other conditions or nutrient 
combinations.  Future research, focusing specifically on nutrient utilization 
during antibiotic exposure, will be crucial to deepen our understanding of 

specific nutrientsʼ roles in more complex environments.  

 

In conclusion, our study demonstrates a profound impact of specific nutrient 
conditions on antibiotic sensitivity, with only modest effects on fitness. While 
broader clinical applicability of our results remains to be further elucidated, our 

work underscores the relevance of nutrients in the infectious microenvironment. 

Ultimately, it could be envisioned that specific nutrient levels in either plasma or 
sputum may be considered a clinically relevant predictor of antibiotic treatment 

response. Similarly, the effect of nutrient conditions may be important for 
consideration in antibiotic susceptibility testing.  
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  3.6. Supplementary figures and tables 

 

 

 

Supplemental Figure 1. Linear calibration between luminescence (relative light units, 

RLU) and cell counts (CFU/mL) for multiple combinations of detector settings, varying 
iteration time (iter, columns) and gain (rows). The iteration time stands for the total 

measurement time per well and the gain is amplification in the conversion from light into 
electric signal.  

  

 

 

 

 



Chapter 3 

 

74  

 

 

Supplemental figure 2. Dynamic analysis of the population size over time during the 

treatment of 6 antibiotics with 9 concentrations and a positive control in 8 media 

formulations. The y-axis is the cell density measured by relative light units (RLU). All 

conditions have 3 biological replicates. Abbreviations: aztreonam (AZT), ceơazidime 
(CAZ), ciprofloxacin (CIP), colistin (COL), imipenem (IMI), and tobramycin (TOB). 
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Supplemental Figure 3. Emax model fitting was performed on the area under the curve 
(AUC) of growth curves across varying antibiotic concentrations. The model was fitted 
using the average AUC values for each antibiotic concentration (n = 3). From this model, 
the upper limit (E0), the half-maximal effective concentration (EC50), and the lower limit 
(Emax) were determined. 
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Supplemental figure 4. The dynamic effect of the addition of nutrients (navy blue lines) to 
the basal (orange) media composition on the population size over 15-hours of incubation 

in antibiotic free conditions.  
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Supplemental figure 5. The difference between the relative half-maximal effective 
concentration (EC50) and the absolute EC50. The relative EC50 is extracted as the halve 

maximal response of the dose-response curve between the population fitness (E0) and the 
maximal drug effect (Emax). The absolute EC50 is extracted as the concentration at 50% 
reduction of E0. The difference between the two antibiotic sensitivity determinations is 

obtained by dividing the relative EC50 by the absolute EC50 concentrations per culture 

condition. Abbreviations: aztreonam (AZT), ceơazidime (CAZ), ciprofloxacin (CIP), colistin 
(COL), imipenem (IMI), and tobramycin (TOB). 
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Supplemental figure 6. Phase selection for growth rate determination for growth rate 

based dose-response modeling of tobramycin (TOB). (A) The time-points included (blue 

dots) for the determination of the growth or kill rate of the tobramycin concentration using 

a linear regression. (B) The sigmoid Emax dose-response curve for glucose and lactate using 

the growth rate as response. (C) The pharmacodynamic parameters extracted from the 

dose-response model. 
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Supplemental table 1. Detailed content list of synthetic media 

 Name 
Concentration 

(mM) 
Company information 

M
9 

bu
ffe

r 

di-sodium hydrogen phosphate (Na2HPO4) 90.2 Thermo Fisher Scientific 

Potassium di-hydrogen phosphate (KH2PO4) 22.0 VWR International 

Sodium chloride (NaCl) 8.5 Merck KGaA (Avantor™) 

Ammonium chloride (NH4Cl) 18.6 Alfa Aesar  

Magnesium sulphate hepta-hydrate (MgSO4) 1.0 VWR International 

Calcium chloride (CaCl2) 0.1 Acros Organics  

S
a

lts 

Potassium nitrate (KNO3) 0.35 Acros Organics 

Iron sulphate (FeSO4) 0.0036 Alfa Aesar  

Suppl. BME Vitamin solution 1x Thermo Fisher Scientific 

T
ra

ce
 m

et
a

ls
 

Di-sodium Ethylene di-amine tetra-acetic 

acid (EDTA) 
0.002 (mg/mL) J.T. Baker (Avantor™) 

Zinc Sulphate hepta-hydrate (ZnSO4) 0.23 (mg/mL) Alfa Aesar  

Boric acid (H3BO3) 0.111 (mg/mL) Acros Organics  

Manganese chloride tetra-hydrate (MnCl2) 0.051 (mg/mL) Sigma Aldrich (Avantor™)  

Cobalt chloride (CoCl2) 0.017 (mg/mL) Alfa Aesar  

Copper Sulphate penta-hydrate (CuSO4) 0.015 (mg/mL) Sigma Aldrich (Avantor™) 

Ammonium hepta-molybdate tetra 

hydrate ((NH4)6 Mo7O2) 
0.01 (mg/mL) Alfa Aesar 

B
a

si
s 

n
u

tr
ie

n
ts

 

Cysteine (Cys) 0.2 Chem-Impex International 

Glycine (Gly) 1.2 Acros Organics  

Histidine hydrochloride (His) 0.5 Chem-Impex International 

Isoleucine (Ile) 1.1 Chem-Impex International 

Leucine (Leu) 1.6 Chem-Impex International 

Lysine hydrochloride (Lys) 2.1 Thermo Fisher Scientific 

Methionine (Met) 0.6 Chem-Impex International 

Phenylalanine (Phe) 0.5 Chem-Impex International 

Serine (Ser) 1.4 Chem-Impex International 

Threonine (Thr) 1.0 Chem-Impex International 

Tryptophan (Trp) 0.01 Chem-Impex International 

Tyrosine (Tyr) 0.8 Chem-Impex International 

Valine (Val) 1.1 Chem-Impex International 

N
u

tr
ie

n
t 

a
lt

e
ra

ti
o

n
s 

Alanine (Ala) 15 Chem-Impex International 

Arginine (Arg) 15 Chem-Impex International  

Aspartate (Asp) 15 Chem-Impex International 

Glutamate (Glu) 15 Chem-Impex International 

Sodium lactate (LAC) 15 Biosynth International 

Proline (Pro) 15 Thermo Fisher Scientific 

Glucose (GLC) 15 Alfa Aesar 
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Supplemental table 2. Pharmacokinetic parameters  

Explanation Name Value / Formula Unit 

Patient bodyweight BW 55.3 kg 

Patient age  29.0 years 

    

Clearance rate per BW CLt 0.1212 L/h/kg 

Volume comp. 1 per BW VC 0.20 L/kg 

Distribution rate per BW CLd 0.0702 L/h/kg 

Volume comp. 2 per BW Vss 0.38 L/kg 

    

Individual Variability (η) 

η஼௅೟  η௏𝐶𝐶   η஼௅೏  η௏ೞೞ  
28.5 
28.2 
66.6 
27.8 

% 
% 
% 
% 

    

Population size  1000  

    

Dosing interval  8 h 

Dosing amount  3.3 * BW mg 

Dosing duration  0.30 h 

    

Volume compartment 1 Vcentral VC * e{iv} 
* BW L 

Elimination rate from Vcentral kelimination (CLt * e{iv} * BW) / Vcentral  

Volume compartment 2 V2 Vss * e{iv} 
* BW L 

Rate constant 1-->2 K12 (CLd * e{iv} * BW) / Vcentral  

Rate constant 2-->1 K21 (CLd * e{iv} * BW) / V2  

    

Amount in compartment 1 mcentral  
௠೎೐𝑐𝑐𝑐𝑐ೝ𝑐𝑐೗(௧)ௗ𝑑𝑑 = k21 * m2 – (kelimination + 

k12) * mcentral 
mg 

Amount in compartment 2 m2 
௠2(௧)ௗ𝑑𝑑 = K12 * mcentral(t) – k21 * m2(t) mg 

Concentration compartment 1 Ccentral mcentral / Vcentral mg/L 
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Supplemental table 3. Pharmacodynamic parameters 

Explanations Name                       Value / Formula Unit 

  Glucose Lactate  

Max. drug effect Emax -0.144 -0.146 -h 

Max. growth rate 
Kgrowth 

(E0) 
0.240 0.254 -h 

Half effective 
concentration 

EC50 1.406 8.582 mg/L 

Hill coefficicent nH 1.850 16.057  

Starting population N0                    1 * 106 CFU/mL 

Max. population Nmax                    9 * 109 CFU/mL 

    

Effective growth 
rate 

keffect Kgrowth – (끫롰௠௔௫ + 
௄೒𝑔𝑔೚ೢ𝑔𝑔ℎ−ா೘ೌೣ1+௘೙ಹ(log�𝐶𝐶೎೐𝑐𝑐𝑐𝑐ೝ𝑐𝑐೗�−log(ಶ಴50))

) -h 

Infection 

population  
N(t) 

ௗே(௧)ௗ𝑑𝑑 = (kgrowth * (1-N(t)/Nmax) – keffect) * N(t) CFU/mL 
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Abstract 

Chronic respiratory tract infections with Pseudomonas aeruginosa frequently 
occur in patients with cystic fibrosis, chronic obstructive pulmonary disease, and 
bronchiectasis. A hallmark of these conditions is the accumulation of mucus 

plugs, creating oxygen-limited niches. Within these microenvironments, P. 

aeruginosa undergoes cellular modifications that may alter its antibiotic 

sensitivity. Although the acute effects of anoxia are well studied, the impact of 
prolonged anoxic exposure on antibiotic sensitivity remains unclear. In this 

study, we developed anoxic-conditioned P. aeruginosa strains by passaging a 

laboratory strain for 22 days in an anoxic environment. We performed time-kill 

assays with both parental and anoxic-conditioned strains in anoxic and aerobic 

environments, using ceơazidime, ciprofloxacin, colistin, and tobramycin. The 
anoxic-conditioned strains exhibited increased susceptibility to tobramycin and 

reduced sensitivity to colistin and ceơazidime. These differences were attributed 

to altered killing rates (as with tobramycin) or reduced regrowth under anoxic 

conditions (as with colistin). For ciprofloxacin, a steeper killing rate was observed 
against the anoxic-conditioned strains, but 24-hour outcomes were similar to the 

parental strain. Overall, our findings demonstrate that long-term anoxia alters 

antibiotic sensitivity in P. aeruginosa differently than acute anoxia, with important 

implications for treating chronic infections in oxygen-limited environments. 

Graphical abstract 
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4.1. Introduction 

Lung diseases such as chronic lung conditions such as cystic fibrosis (CF), chronic 
obstructive pulmonary disease (COPD), and non-CF bronchiectasis1,2 are 

characterized by anoxic environments. These anoxic environments are caused by 

airway narrowing and the buildup of thick, dehydrated mucus limit oxygen 

penetration, and high oxygen consumption of the host immune response further 

exacerbates anoxia3. In these anoxic niches, the respiratory pathogen 

Pseudomonas aeruginosa uses fermentation and alternative electron acceptors to 

sustain cellular functions and proliferation4,5. These metabolic adaptations that 

support survival of P. aeruginosa in anoxic niches can also influence its sensitivity 
to antibiotics. Antibiotics commonly used against P. aeruginosa, including 

tobramycin, ciprofloxacin, and ceơazidime, rely on oxygen-dependent processes, 

such as oxidative phosphorylation, reactive oxygen species production, and 

active bacterial proliferation to exert their antimicrobial effects6. In contrast, 

colistin remains effective in anoxic environments because energy-starved cells 

are unable to modify their membranes to reduce colistin binding7.  

 

While the differential impact of acute responses to anoxic conditions on 
antibiotic sensitivity have been previously studied, the consequences of 
prolonged anoxia-induced adaptations remain largely unknown. Longer-term 

genetic or transient changes in cellular metabolism, stress responses, biofilm 
formation, and membrane remodeling have yet to be characterized in detail8–10. 

Alterations in membrane composition and transport proteins may affect the 
uptake and effect of membrane-targeting antibiotics such as ceơazidime and 
colistin. Additionally, metabolic specialization to anoxia introduces cellular 

redox imbalances that can alter antibiotic activity11. In parallel, the development 

of oxygen intolerance due to anoxic specialization can lead to higher levels of 

reactive oxygen species (ROS) upon re-exposure to oxygen12. These prolonged 

metabolic adaptations can influence the sensitivity of ROS-dependent antibiotics 

such as ciprofloxacin and metabolism-dependent antibiotics such as tobramycin. 

Thus, long-term anoxic adaptation affects key mechanisms relevant to antibiotic 
activity, but the potential impact on antibiotic sensitivity remains unclear.  
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In this study, we investigated how prolonged anoxic exposure affects the 
sensitivity of P. aeruginosa to ceơazidime, ciprofloxacin, colistin and tobramycin. 
An anoxic-conditioned strain was obtained by passaging a P. aeruginosa 

laboratory strain in an anoxic environment (<1% oxygen) for 22 days. The effects 
of the antibiotic-classes were then compared between the conditioned and 

parental strains under both anoxic and atmospheric oxygen conditions using 

time-kill assays, providing a comprehensive view of how anoxic specialization 

influences antibiotic sensitivity.  

4.2. Materials and Methods 

Strains, culture media, agar plates, and antibiotics 

Pseudomonas aeruginosa PAO1 (DSM1117) was used as the parental strain in this 

study. Synthetic cystic fibrosis sputum medium (SCFM) served as the liquid 
medium for anoxic conditioning and time-kill experiments (Table S1)13. Samples 

for colony-forming unit (CFU) enumeration were diluted using a 1:4 dilution of 
SCFM with 0.11 M phosphate buffer  before plating. Agar plates were prepared 
with Mueller-Hinton broth (MHB) agar supplemented with 10 mM KNO₃ (Acros 

Organics, Geel, Belgium) to prevent the loss of oxygen-intolerant populations 

during aerobic plating. 

Antibiotic solutions were prepared and diluted with SCFM to the desired 
concentrations in microtiter plates using an Opentrons OT-2 liquid handling 
system (Opentrons Inc., New York, NY, USA)  one day before the time-kill assay. 

Ceơazidime pentahydrate was purchased from Thermo Fisher Scientific (Breda, 
The Netherlands), ciprofloxacin and tobramycin from Chem-Impex International 

(Wood Dale, IL, USA), and colistin sulfate from Cayman Chemical Company (Ann 

Arbor, MI, USA).  

Anoxic culture environment and anoxic conditioning 

Anoxic cultures were performed in a Baker Ruskin anoxic workstation (Sanford, 

Maine, United States). All liquid media used for anoxic experiments were pre-

conditioned to the anoxic environment (<1% oxygen) for two days, and antibiotic 
microtiter plates were placed in the anoxic chamber one day before the time-kill 

assay.  
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Anoxic-conditioned strains were generated in triplicate, each from randomly 

selecting colonies of the parental strain grown overnight on an aerobic agar plate 

culture. Conditioning was conducted in triplicate using 2 mL pre-acclimated 

SCFM medium in sealed 12 mL culture tubes at 37 °C in the anoxic chamber. Every 
two days, 20 µL of the cultures was transferred into fresh SCFM, continuing for 
22 days to achieve anoxic conditioning. 

Time-kill assay 

Time-kill assays in SCFM were performed in triplicate for the parental and 
anoxic-conditioned P. aeruginosa strains in aerobic and anoxic environments to 

examine antibiotic sensitivity (Figure S1). The parental strain replicates were 

subcultured for 20 hours under aerobic conditions, while the anoxic conditioned 

strains were used directly following the 22-day incubation period. Liquid cultures 
from the parental and anoxic-conditioned strain were diluted to reach a starting 

density of approximately 1 × 10⁷ CFU/mL, based on optical density measurements 
at 600 nm. Cultures were exposed to five antibiotic concentrations in 2-fold serial 

dilutions, along with an antibiotic-free control. Antibiotic concentrations for the 

assays were guided by visual MIC testing of the parental strain performed 

aerobically (Table S2). MIC determination under anoxic conditions was not 

feasible due to low final culture densities. 

Anoxic time-kill assays were incubated within the anoxic chamber, while 

aerobic assays were incubated at 37 °C with shaking (250 rpm) to ensure 

oxygenation. At 2 and 24 hours, 100 µL samples were taken, subjected to 10-fold 

serial dilutions, and plated on agar. All agar plates were incubated under aerobic 

conditions at 37 °C for one day, followed by an additional day at room 

temperature, before colony counting to determine bacterial population size. 

Growth rate assay 

Growth curves were obtained in quadruplicate in both aerobic and anoxic culture 
environments for the anoxic-conditioned and parental P. aeruginosa strains to 

compare antibiotic-free growth kinetics. Growth curves in the aerobic 

environment were obtained by transferring microtiter plates every 30 minutes 

between a Liconic StoreX STX44 incubator (Mauren, Liechtenstein) shaking at 

150 rpm and a BMG Labtech Fluostar Omega microplate reader (Ortenberg, 
Germany), using a Peak Analysis and Automation KX-2 laboratory robot 
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(Hampshire, United Kingdom). Growth in the anoxic environment was measured 

every 30 minutes using a wireless Cerillo Alto plate reader (Charlottesville, VA, 

United States).  

Data processing 

Drug effects were quantified by calculating the change in bacterial population 
size over 24 hours of antibiotic exposure. To evaluate the initial bacterial 

response, the antibiotic net killing rate during the first 2 hours was determined 

by calculating the slope using the logarithmically transformed population sizes 

(N) and the elapsed time (∆t) (Equation 1). Maximal growth rates in antibiotic-

free media were calculated using the splines function from the growthrates 

package in R, based on the growth curves from four technical replicates. All data 

analysis was performed in R (version 4.3.0) 끫롼݈݈݅݅݊݃ ݁ݐܽݎ =  
௟௢௚10(𝑁𝑁2)− ௟௢௚10(𝑁𝑁1)∆௧        (1) 

4.3. Results 

Acute and prolonged anoxic exposures modulate antibiotic effect 
over 24 hours  

We investigated how anoxic conditions affect antibiotic activity by comparing 
time-kill curves obtained in aerobic and anoxic environments, both for the 

parental and the anoxic-conditioned strains. Time-kill experiments with the 

parental strain were performed to evaluate the acute effects of anoxic 
environments, whereas experiments with the anoxic-conditioned strain reflected 
prolonged adaptation to anoxia. We compared the change in bacterial population 

size between the inoculum and the 24-hour timepoint as a measure of antibiotic 

effect (Figure 1).  

For ciprofloxacin, population size reduction of the parental strain was 
observed at 0.031 mg L-1 in anoxic environments, while 0.125 mg L-1 was required 
in aerobic environments. The anoxic-conditioned strain showed a similar 

oxygen-dependent response to ciprofloxacin but at one serial-dilution step lower 

(0.016 mg L-1 in anoxic and 0.062 mg L-1 in aerobic environments).  

With tobramycin, population sizes of the parental strain started to 

decline aơer 24 hours at concentrations above 1 mg L-1, with a notably more 
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pronounced reduction at 4 mg L⁻¹ under aerobic compared to anoxic conditions. 

At these concentrations, the anoxic-conditioned strain mirrored the aerobic 

response of the parental strain in both oxygen environments. 

For both strains, all evaluated colistin concentrations failed to induce net 
reductions in population size in aerobic environments. However, reductions were 

observed in anoxic environments, with a smaller reduction for the anoxic-

conditioned strain. 

For ceơazidime, a flat concentration–effect relationship was observed in 
anoxic environments for both strains. In the aerobic environment, on the other 

hand, a clear concentration–effect relationship was observed for the parental 
strain, with population size reductions above 1 mg L-1. In contrast, the highest 

tested ceơazidime concentration failed to reduce the population size of the 
conditioned strain in the aerobic environment.  

Figure 1. Change in cell density of the parental and anoxic-conditioned P. aeruginosa 

strains aơer 24 hours of antibiotic exposure in aerobic and anoxic environments. Orange 

lines and points represent the anoxic-conditioned P. aeruginosa strain, evolved over 22 days 

in an anoxic environment prior to antibiotic exposure, while navy lines and points 

represent the parental PAO1 strain. Solid lines and points denote the mean log10 change in 

cell density, calculated from the three biological replicates, which are represented as 

translucent points. 
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Anoxic conditioning impacts antibiotic net killing rates  

To assess the effect of anoxic conditioning on the immediate bacterial response 
to antibiotics, we analyzed net killing rates during the first 2 hours of antibiotic 
exposure (Figure 2). The net killing rate was defined as the slope of the log10-

transformed bacterial population size over time (log10[∆N]/t), with steeper 

negative slopes indicating faster killing. For ciprofloxacin, faster killing rates 
were observed at concentrations of 0.031 mg L-1 and above for the anoxic-

conditioned strain compared to the parental strain, in both aerobic and anoxic 

culture environments. Tobramycin demonstrated consistent effects across most 
conditions, except for the anoxic-conditioned strain in aerobic environments, for 

which the fastest killing rate of -1.68 (corresponding to a 50-fold reduction per 

hour) was observed at 4 mg L-1, compared to -0.45 for the parental strain (2.8-fold 

reduction). For colistin, similar killing rates between strains and oxygen 
environments were observed, with rates becoming more negative at higher 

concentrations. The largest magnitude of killing (-2.42, corresponding to a 263-

Figure 2. Net antibiotic killing rates in parental and anoxic-conditioned P. aeruginosa under 
aerobic and anoxic environments. Net killing rates during the initial 2 hours of antibiotic 
exposure for each biological replicate (shown as translucent points) were calculated by 
determining the slope of the change in log10-transformed cell density. Solid orange lines and 
points represent the mean response rate of the conditioned P. aeruginosa strain, which was 
evolved in an anoxic environment for 22 days prior to treatment, while navy represents the 
mean response rate of the parental PAO1 strain. 
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fold reduction per hour) was observed at 4 mg L-1 in the parental strain under 

anoxic conditions. By contrast, ceơazidime had minimal killing across all strains 
and environments, with a fastest killing rate of -0.36 (a 2.3-fold reduction per 

hour).  

Prolonged anoxic exposure reduces bacterial growth rates  

To assess fitness differences between the parental strain and anoxic-conditioned 

strains, we derived the maximal growth rates under antibiotic-free conditions. 

Here, the growth rate reflects  the time a strain requires for doubling its 
population size. The growth rate of the parental strain was on average 4.9-fold 

increase in aerobic than in anoxic environments, and for the anoxic-conditioned 

strain it was  8.1-fold increased (Figure 3). A moderate increase in growth rate 

was observed for the parental strain than for the anoxic-conditioned strain in 

both aerobic (0.63 h-1 vs. 0.57 h-1) and anoxic (0.13 h-1 vs. 0.07 h-1) environments. 

 

 

 

 

Figure 3. Growth rates of the parental and anoxic-conditioned P. aeruginosa strains in 

aerobic and anoxic environments. Maximal growth rates were calculated from smoothed 

spline growth curves of four technical replicates per strain and condition. The growth 

curve is based on optical density at 600 nm (OD600) measurements taken every 30 minutes. 

Data points represent µmax values per biological replicate, and the solid line indicates the 

mean µmax of the three biological replicates. 
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4.4. Discussion and conclusions 

In this study, we demonstrated how prolonged adaptation of a P. aeruginosa 

laboratory strain to anoxic environments reduces bacterial growth rates and 

alters antibiotic susceptibility in a class-dependent manner. Anoxic 

specialization resulted in increased effect of tobramycin, reduced effects of 
colistin and ceơazidime, and a higher initial killing rate for ciprofloxacin. In the 
aerobic environment, ciprofloxacin and tobramycin exhibited increased initial 
killing rates against the anoxic-conditioned strain whereas ceơazidime effects 
aơer 24 hours of exposure were decreased. 

 

The limited difference in ciprofloxacin effects over 24 hours exposure between 
anoxic and aerobic environments aligns with previous findings that oxygen-

deprived environments primarily induce fluoroquinolone tolerance rather than 
altering antibiotic susceptibility14,15. The steeper killing rate observed in the 

anoxic-conditioned strain under aerobic conditions is consistent with the 

dependence of fluoroquinolones on reactive oxygen species for activity16. Oxygen 

radicals are formed in greater quantities when oxygen is introduced to cells that 

have undergone anoxic specialization12. The increased ciprofloxacin effect 
observed in the anoxic-conditioned strain in the anoxic environment suggests 

that additional biological adaptations to anoxia may influence fluoroquinolone 
effects. 

Anoxic conditioning increased tobramycin sensitivity in both aerobic and 

anoxic environments, contrasting with the established reliance of 

aminoglycosides on the proton motive force for intracellular entry17. Although 

oxygen-deprived environments typically exhibit lower membrane potentials, 

active transport systems can still facilitate aminoglycoside uptake18. Once inside, 

aminoglycosides trigger secondary stress responses, such as envelope and 

oxidative stress, potentially explaining the enhanced 24-hour tobramycin effect 
on the anoxic-conditioned strain. Despite similar 24-hour outcomes between the 

strains in the aerobic environment, a substantially higher killing rate was 

observed in the anoxic-conditioned strain compared to the parental strain, 

highlighting the impact of prolonged anoxic adaptation on aminoglycoside 

activity. These observations align with reports of pronounced differences in 
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aminoglycoside sensitivity in clinical CF respiratory tract isolates across oxygen 
gradients, likely due to prior exposure to anoxic environments14,15,19. 

The drug effect of colistin aơer 24 hours of exposure was stronger in the 
anoxic environment for both strains, consistent with previous findings that 
oxygen deprivation enhances colistin activity 20,21. The increased net effect in 
anoxic conditions may be due to lower bacterial growth rates in this 

environment, which can result in higher net effect or reduced regrowth. Notably, 
the killing rates did not substantially differ between oxygen conditions, and the 

anoxically conditioned strain showed a reduced colistin effect. This suggest a 
more complex interplay between colistins̓ mechanism of action and P. aeruginosa 

responses under varying oxygen levels. P. aeruginosa is known to modify the 

lipopolysaccharide composition of its membrane22, the primary target of colistin 
23, as a resistance mechanism when energy supplies are sufficient7. This may 

explain the regrowth observed in an aerobic culture environment. Currently, 

nebulized colistin is extensively evaluated as an adjunctive therapy to prevent 

ventilator-associated pneumonia (VAP) in mechanically ventilated patients24. Our 

results suggest that increased lung oxygenation through ventilation might 

negatively affect colistin efficacy, potentially contributing to the limited 
effectiveness of prophylactic colistin treatment in reducing VAP incidence25. 

Colistin exhibits greater clinical efficacy in CF respiratory infections, where 
anoxic microenvironments are common26. However,  the role of anoxia in 

lipopolysaccharide modification remains poorly understood, such modifications 
may also explain the reduced colistin effects against the anoxic-conditioned 

strain. Investigating these modifications further represents an important 
direction for future research.  

Ceơazidime displayed a distinct pharmacodynamic profile compared to 
the other antibiotics tested. No differences in killing rates were observed during 
the initial hours of exposure, which is consistent with the time-dependent activity 

of ceơazidime27. However, over the full 24-hour period, ceơazidime sensitivity 
was markedly reduced following anoxic conditioning, both under aerobic and 

anoxic assay environments. Although ceơazidime is typically bactericidal for P. 

aeruginosa28, this effect was only evident in the parental strain, albeit to a lesser 

degree in anoxic conditions. For the anoxic-conditioned strains, the effect of 
ceơazidime was limited to bacteriostasis in both aerobic and anoxic 
environments. This reduction in activity may be explained by previous work 
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showing that oxygen deprivation enhances efflux pump activity29. Reduced 

ceơazidime sensitivity in anaerobic biofilms has been reported30, and our results 

demonstrate that this effect persists even aơer re-culturing under aerobic 

conditions. 

 

We adopted a 22-day adaptation period to induce anoxic specialization. We 

compared the anoxically conditioned strain directly to the unpassaged parental 

strain, rather than to a 22-day aerobically subcultured strain. This choice was 

deliberate, as prolonged aerobic propagation would introduce substantially 

different genetic driơ due to markedly higher growth rates and cell densities 
compared to the anoxic culture environment. While we acknowledge the 

limitations of this control setup, it allowed us to more accurately attribute 

observed differences to direct anoxic adaptation resulting from prolonged 
conditioning. Additionally, we recognize that the 22-day anoxic incubation used 

here is considerably shorter than typically experienced by P. aeruginosa strains 

persistently present in the CF lung, where prolonged evolutionary pressures may 
drive further specialization31. The current study utilized P. aeruginosa PAO1 

laboratory strain to specifically study the effects of anoxic specialization on 
antibiotic response. Clinical isolates exhibit diverse adaptations due to prolonged 

in-host evolution, potentially affecting responses to anoxic environments. Using 

a defined laboratory strain ensures consistent genetic and phenotypic 

backgrounds, facilitating clearer interpretations of the observed antibiotic 

responses. Although beyond the scope of this study, future research involving 

clinical isolates represents a logical and necessary next step. We anticipate that 

such studies will require larger sample sizes to address the inherent 

heterogeneity among isolates, and they will greatly benefit from the experimental 
framework and treatment conditions established here. Finally, investigations into 
membrane modifications and redox imbalances could yield deeper mechanistic 
insights to inform the optimization of treatment strategies. 

 

In conclusion, our findings show that anoxic adaptation of a P. aeruginosa 

laboratory strain modifies the effects of ceơazidime, ciprofloxacin, colistin, and 
tobramycin differently compared to acute anoxic exposure of the parental strain. 
Ciprofloxacin and tobramycin became more effective, whereas colistin and 
ceơazidime exhibited reduced effects against the anoxic-conditioned strain. 
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These altered antibiotic effects were also observed under aerobic conditions, 
suggesting sustained anoxia-induced cellular adaptations that alter antibiotic 

sensitivity. These findings highlight the importance of considering oxygen 
gradients in research aimed at optimizing antibiotic treatment for chronic P. 

aeruginosa infections in the CF lung. 
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4.6. Supplementary materials 

Supplemental table 1. Detailed content list of synthetic cystic fibrosis sputum media 

 Name 
Concentration 

(mM) 
Company information 

M
9 

bu
ffe

r 

di-sodium hydrogen phosphate (Na2HPO4) 90.2 Thermo Fisher Scientific 

Potassium di-hydrogen phosphate (KH2PO4) 22.0 VWR International 

Sodium chloride (NaCl) 8.5 Merck KGaA (Avantor™) 

Ammonium chloride (NH4Cl) 18.6 Alfa Aesar  

Magnesium sulphate hepta-hydrate (MgSO4) 1.0 VWR International 

Calcium chloride (CaCl2) 0.1 Acros Organics  

S
a

lts 

Potassium nitrate (KNO3) 0.35 Acros Organics 

Iron sulphate (FeSO4) 0.0036 Alfa Aesar  

Suppl. BME Vitamin solution 1x Thermo Fisher Scientific 

T
ra

ce
 m

et
a

ls
 

Di-sodium Ethylene di-amine tetra-acetic 

acid (EDTA) 
0.002 (mg/mL) J.T. Baker (Avantor™) 

Zinc Sulphate hepta-hydrate (ZnSO4) 0.23 (mg/mL) Alfa Aesar  

Boric acid (H3BO3) 0.111 (mg/mL) Acros Organics  

Manganese chloride tetra-hydrate (MnCl2) 0.051 (mg/mL) Sigma Aldrich (Avantor™)  

Cobalt chloride (CoCl2) 0.017 (mg/mL) Alfa Aesar  

Copper Sulphate penta-hydrate (CuSO4) 0.015 (mg/mL) Sigma Aldrich (Avantor™) 

Ammonium hepta-molybdate tetra 
hydrate ((NH4)6 Mo7O2) 

0.01 (mg/mL) Alfa Aesar 

N
u

tr
ie

n
ts

 

Alanine (Ala) 1.8 Chem-Impex International 

Arginine (Arg) 0.3 Chem-Impex International 

Aspartate (Asp) 0.8 Chem-Impex International 

Cysteine (Cys) 0.2 Chem-Impex International 

Glucose (GLC) 3.2 Alfa Aeser 

Glutamate (Glu) 1.5 Chem-Impex International 

Glycine (Gly) 1.2 Acros Organics  

Histidine hydrochloride (His) 0.5 Chem-Impex International 

Isoleucine (Ile) 1.1 Chem-Impex International 

Lactate (LAC) 9.0 Biosynth International 

Leucine (Leu) 1.6 Chem-Impex International 

Lysine hydrochloride (Lys) 2.1 Thermo Fisher Scientific 

Methionine (Met) 0.6 Chem-Impex International 

Phenylalanine (Phe) 0.5 Chem-Impex International 

Proline (Pro) 1.7 Thermo Fisher Scientific 

Serine (Ser) 1.4 Chem-Impex International 

Threonine (Thr) 1.0 Chem-Impex International 

Tryptophan (Trp) 0.01 Chem-Impex International 

Tyrosine (Tyr) 0.8 Chem-Impex Internationa 

Valine (Val) 1.1 Chem-Impex International 
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Supplemental table 2. Median minimal inhibitory concentrations (MIC) of antibiotics for 

the parental P. aeruginosa strain (n=3 biological replicates). MICs were determined aơer 20 
hours of aerobic incubation at 37 °C with shaking (250 rpm). 

Strain Ceơazidime Colistin Ciprofloxacin Tobramycin 

PAO1 
(DSM1117) 

0.5 mg L⁻¹ 4 mg L⁻¹ 0.125 mg L⁻¹ 1 mg L⁻¹ 
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Supplemental figure 1. Antibiotic time-kill assays comparing parental and anoxic 

conditioned P. aeruginosa under anoxic and aerobic conditions. Mean cell densities over 

time are shown with solid navy blue points and lines for the parental  PAO1 strain, and 

orange points and lines for the anoxic conditioned strain. The means were calculated from 

the log-transformed cell densities of three biological replicates, represented by 

translucent points. Background shading indicates treatment conditions, with blue for 

aerobic and orange for anoxic environments. 
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Teaser 

Novel treatment strategies are needed to address the emerging threat of 

antimicrobial resistance (AMR) in bacterial pathogens. Metabolomics 

approaches may help to unravel biochemical underpinnings of AMR, to facilitate 

the discovery of metabolism-associated drug targets and treatment strategies. 

Abstract 

The emergence of antimicrobial resistance (AMR) in bacterial pathogens 

represents a global health threat. The metabolic state of bacteria is associated 

with a range of genetic and phenotypic resistance mechanisms. This review 

provides an overview of the role of metabolic processes associated with AMR 

mechanisms including energy production, cell wall synthesis, cell-cell 

communication, and bacterial growth rate. These metabolic processes can be 

targeted to re-sensitizing resistant pathogens for antibiotic treatments. We 

discuss how state-of-the-art metabolomics approaches can be used for 

comprehensive analysis of microbial metabolism concerning AMR, which may 

facilitate the discovery of novel drug targets and treatment strategies. 
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5.1. Introduction 

Antimicrobial resistance (AMR) in bacterial pathogens represents an urgent 

global health threat associated with significant morbidity and mortality1. To this 

end, there exists a need to improve our understanding of underlying molecular 

mechanisms of AMR to develop innovative treatment strategies for AMR-

associated bacterial infections2. 

Bacterial pathogens can survive antibiotic exposure through a range of 

genetic and phenotypic AMR mechanisms. Genetic mechanisms are associated 

with a permanent change in antimicrobial sensitivity, for example due to the 

acquisition of mobile genetic elements and mutations in chromosomal genes 
conferring antibiotic resistance3. Phenotypic mechanisms are typically linked to 

transiently decreased antibiotic sensitivity in either a homogeneous (e.g., 

tolerance) or heterogeneous fashion(e.g., heteroresistance, persistence)4–6. 

Another phenotypic mechanism which decreases antibiotic sensitivity is the 

formation of microbial biofilms, which are aggregates of bacteria protected by a 
polymeric matrix.7Importantly, the prolonged antibiotic survival of bacteria 

through phenotypic AMR mechanisms may act as a stepping-stone for genetic 

AMR development.8Bacterial metabolic processes have a fundamental role in 

cellular function and are therefore commonly associated with various AMR 

mechanisms (Figure 1). The metabolic state of bacterial cells during antibiotic 

treatment can either as a contributor to or as a consequence of AMR. Decreased 

metabolic activity contributes to AMR by reducing antibiotic uptake or secondary 

effects of antibiotics9–12. In contrast, increased metabolic activity is required to 
support energy-demanding AMR mechanisms such as cell-wall modifications 

and efflux pumps overexpression13–18. Understanding these underlying metabolic 

processes of AMR mechanisms may be used to strategically alter metabolic 

activity during antibiotic therapy to re-sensitize pathogens19. Metabolomics 

approaches represent a key enabling technology to help identify relationships 

between AMR mechanisms and microbial metabolism. Metabolomics represents 

the systemic study of the metabolome, all small molecules in a biological sample, 

providing a snapshot of the utilized biochemical processes20,21. The metabolome 

is a close link to organismal phenotype, unveiling initial responses to antibiotic 

pressure and the adaptations required to sustain AMR mechanisms.   
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In this review we discuss the role of bacterial metabolism in AMR mechanisms 

and microbial biofilms for clinically relevant bacterial pathogens, using state-of-

the-art metabolomics approaches. Secondly, we discuss how metabolomics may 

be applied as a key enabling technology to facilitate the discovery of innovative 

metabolism-associated drug targets and treatment strategies.  

 

 

 

Figure 1. Schematic overview of the role of bacterial metabolism concerning 

antimicrobial drug action and resistance mechanisms. 

 

 

5.2. Metabolism and antimicrobial resistance 

Key cellular changes associated with AMR where metabolism plays an important 

role include (i) cellular energy production, (ii) cell envelope modifications, and 

(iii) cell-to-cell interactions in biofilms. Here, we provide an overview of 

metabolomics studies that have identified such AMR-associated metabolic effects 
(Table 1). 
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Table 1. Overview of studies researching the role of metabolism in AMR using 

metabolomics techniques 

 

AMR 

mechanism 
Main Finding 

Metabolic 

pathways 

Analytical 

approach 
Antibiotics Species Ref. 

Metabolic adaptation in energy production 

Energy 

metabolism 

influences 
antibiotic 

efficacy 

Energy production is a better predictor for 

antibiotic efficacy compared to the growth 
rate 

Nucleotides Colorimetric* 

Ampicillin+ 

Carbenicillin+ 

Gentamicin± 

Kanamycin± 

Streptomycin± 

Ciprofloxacin< 

Levofloxacin< 

Norfloxacin< 

Cefsulodin> 

E. coli 37 

Bacteriostatic antibiotics inhibit the 

efficacy of bactericidal antibiotics due to 
the reduced energy demand of treated cells 

Amino acids 

Nucleotides 

Untargeted LC 

and GC-MS 

Ampicillin+ 

Gentamicin± 

Levofloxacin< 

Norfloxacin< 

Daptomicin> 

Rifampin> 

E. coli 

S. aureus 
30 

Nutrient 

supplemen-

tation 

Antibiotic resistant cells reduce activity in 

central carbon metabolism, which can be 

activated by nutrient supplementations 

Glycolysis 

TCA cycle 

Untargeted 

GC-MS 
Kanamycin± E. tarda 31,32 

Supplementation of TCA cycle stimulating 

nutrients  increase  aminoglycoside 

tobramycin proton motive force induced 

cellular intake 

TCA cycle 
Untargeted LC 

and GC-MS 

Tobramycin± 

Chloram-

phenicol> 

Linezolid> 

Rafampin> 

E. coli 25 

Respiration 

and secondary 

antibiotic 

effects 

Resistant cells demonstrate lower levels of 

TCA cycle intermediates, reducing ROS 

production 

Amino acids 

Glycolysis 

Lipids 

TCA cycle 

Untargeted 

LC-MS 

Chloram-

phenicol> 
E. tarda 42 

Decreased central carbon metabolites in 

antibiotic resistant cells reduce ROS 

production 

Amino acids 

Glutathione 

Glycolysis 

Pentose phosphate 

TCA cycle 

Untargeted 

GC-MS 
Gentamicin± 

V. algino-

lyticus 
43 

Energy metabolism as a defense 

mechanism to reduce oxidative stress 

during antibiotic treatment 

Glycolysis 

TCA cycle 

(Un-) targeted 

LC-MS 

Streptomycin± 

Isoniazid> 

Rifampicin> 

M. tuber-

culosis 
45 

Biofilm 
heterogeneity 

QS can slow down cell growth by 
coordinating nucleotide production and 

glucose utilization 

Nucleotides 

Pentose phosphate 

Targeted NMR 

and CE-MS 
N.A. B. glumae 67 

Cells in the biofilm core switch to 
anaerobic fermentation for energy 

production 

Lactate 

TCA cycle 
Targeted NMR N.A. 

S. onei-

densis 
76 
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AMR 

mechanism 
Main Finding 

Metabolic 

pathways 

Analytical 

approach 
Antibiotics Species Ref. 

Metabolic adaptation in energy production 

Metabolic 

adaptation in 

energy production 

 
Nutrient 

consumption 

Targeted LC-

UV and LC-

MS 

N.A. 
P. aeru-

ginosa 
40 

High nutrient levels promote 

antibiotic resistance development of 

resistance 

Lipids 

Glycolysis 

TCA cycle 

Untargeted 

MS 

Ampicillin+ 

Norfloxacin< 

Chloram-

phenicol> 

E. coli 
38 

Antibiotic treatment from different 
classes results in distinctive metabolic 

perturbations and adaptation 

Amino acids 

Glycolysis 

Nucleotides 

TCA cycle 

Untargeted 

MS 

Kanamycin± 

Nalidixic acid< 

Norfloxacin< 

Ofloxacin< 

Chloram-

phenicol> 

E. coli 63 

Resistant and sensitive bacteria have 

distinctive metabolic fingerprints 

Glycolysis 

Lipids 

Nucleotides 

Pentose phosphate 

TCA cycle 

Untargeted 

and targeted 

LC-MS 

Methicillin+ S. aureus 44 

Antibiotic 

induced 

metabolic 

adaptation 

Metabolic fingerprints identify 

antibiotics (secondary) mode of 

action for different antibiotic classes 

Amino acids 

Nucleotides 

TCA cycle 

 

Untargeted 

NMR 

Ampicillin+ 

Carbenicillin+ 

Ciprofloxacin< 

Ofloxacin< 

Streptomycin± 

Cefalexin> 

Doxycycline> 

Tetracycline> 

E. coli 61 

Antibiotics and their corresponding 

mode of action can be identified 
based on the targeted metabolic 

pathways of these antibiotics 

Amino acids 

Glycolysis 

Lipids 

Nucleotides 

TCA cycle 

Untargeted 

LC-MS 

Ceơazidime> 

Fosmido- 

mycin> 

Triclosan> 

 

E. coli 62 

Antibiotic surviving cells actively 

produce ATP during antibiotic 

treatment, dependent on the 

nutritional environment 

Nucleotides 
Colori-

metric* 

Ciprofloxacin< 

Streptomycin± 

Bedaquilline> 

Isoniazid> 

Rifampicin> 

M. smeg-

matis 
100 

Methicillin resistant and sensitive 

strains demonstrate different 
metabolic responses to treatment 

with other antibiotics 

Amino acids 

Nucleotides 

TCA cycle 

Targeted LC-

MS 

Ampicillin+ 

Ciprofloxacin< 

Kanamycin± 

S. aureus 81 

Antibiotics induce microbiome-

independent changes in the host 

metabolome which alter antibiotic 

efficacy 

Amino acids 

Glycolysis 

Nucleotides 

Pentose phosphate 

Untargeted 

LC-MS 
Ciprofloxacin< E. coli 41 
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*Fluorescent staining of targeted metabolites 

+β-Lactam antibiotics 

<Fluoroquinolone antibiotics 

±Aminoglycoside antibiotics  

∆Polymixin antibiotics 

>Other antibiotic classes 

Cellular energy production 

The activity of energy producing metabolic pathways translate the activation of 

cellular functional responses or dormancy to evade antibiotic killing. The most 

energy efficient producing metabolic pathway is aerobic cellular respiration22. 

AMR 

mechanism 
Main Finding 

Metabolic 

pathways 

Analytical 

approach 
Antibiotics Species Ref. 

Metabolic adaptation in energy production 

Biofilm 
formation 

There is a heterogeneous distribution of 

quorum sensing molecules over the biofilm 
population 

Quorum sensing 
Targeted 

MALDI-SIMS 
N.A. 

P. aeru-

ginosa 

S. aureus 

72 

The production of antimicrobials and 

signaling molecules is influenced by the 
nutritional environment 

Quorum sensing 
Targeted 

MALDI-SIMS 
N.A.  

P. aeru-

ginosa 

S. aureus 

79 

Cell envelope modifications 

Cell wall 

disruption 

and synthesis 

The loss of envelope and membrane 

biogenesis processes results in complete 

lipid reconstruction, including changes in 

lipid A moiety, resulting in the energy 

metabolic switch to glycolysis 

Amino acids 

Lipids 

Pentose phosphate 

TCA cycle 

Untargeted 

(LC-)MS 
Colistin∆ 

K. pneu-

moniae 
55 

Lipid A reconstruction results to increase 

pentose phosphate activity and reduced 

TCA cycle activity in colistin resistant cells 

Lipids 

Pentose phosphate 

TCA cycle 

Untargeted 

LC-MS 
Colistin∆ 

A. bau-

mannii 

 

56 

Colistin treatment induces metabolic flux 
towards cell wall repair, forcing the energy 

production flux to glucose utilization and 
shuttled TCA cycle 

Glycolysis 

Lipids 

TCA cycle 

Untargeted 

GC-MS 
Colistin∆ 

M. tuber-

culosis 
57 

Combination therapy with colistin and 

doripenem antibiotics affect metabolic 
pathways in cell wall synthesis and energy 

production differently in a time-dependent 

manner 

Amino acids 

Glutathione 

Lipids 

Nucleotides  

Pentose phosphate 

Untargeted 

LC-MS 

Colistin∆ 

Doripenem+ 

 

A. bau-

mannii 

 

64 

The addition of phosphoethanolamine to 

lipid A for colistin resistance has a high 

fitness cost 
Lipids  

Targeted 

MALDI-MS 
Colistin∆ E. coli  59 

MDR over-

expression 

The overexpression of MDR efflux pumps 
initiates metabolic rewiring to anaerobic 

respiration 

Oxygen and 

nitrates 

C

olorimetric* 

Oximeter 

N.A. 
P. aeru-

ginosa 
17 
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Cellular respiration includes glycolysis and the tricarboxylic acid (TCA) cycle for 

the production of electron carriers, which are used in the electron transport 

chain (ETC) for the production of adenosine triphosphate (ATP). In case of fast 

energy demand or carbon source depletion, several bacterial pathogens may 

switch towards less efficient anaerobic fermentative energy production22. Several 

pathogens such as Pseudomonas aeruginosa can utilize anaerobic metabolic 

respiration such as the nitrate respiratory chain to maintain cellular homeostasis 

in oxygen-depleted environments.23 A switch towards anaerobic energy 

metabolism is commonly used for evasion of host defense mechanisms but also 

plays an important role to increase aminoglycoside tolerance24,25. For example, 
increasing oxygen levels using hyperbaric oxygen treatment (HBOT) to induce 

aerobic respiration re-sensitizes P. aeruginosa to aminoglycoside treatment26,27. 

However, this approach is only of interest in specific clinical indications, e.g. 
anaerobic microenvironments in cystic fibrosis-associated lung infections.  

Stimulation of aerobic energy production as a therapeutic target to 

enhance antibiotic sensitivity is an important potential therapeutic strategy. 

Specifically, supplementation of essential carbon sources to increase aerobic 

respiration19, is a promising novel approach to improve antibiotic efficacy, in 
particular for aminoglycoside antibiotics. Comprehensive in vitro screens in 

bacteria using different carbon source supplements have demonstrated 

pathogen-dependent changes in aminoglycoside susceptibility with nutrient 

supplementation28. Metabolomics studies demonstrated such carbon source 

supplementation changes the TCA cycle activity for the synthesis of electron 

carriers to support the ETC29–32. Aminoglycoside efficacy can be increased by 

increasing the passive influx of charged molecules. Stimulating the ETC results 
in a higher electric transmembrane potential which enhances the proton-motive 

force (PMF) mediated influx of the positively charged aminoglycosides29,33. 

Increasing the antibiotic uptake by nutrient-induced PMF demonstrated 
decreased cell survival in several multi-drug resistant strains.31Other antibiotic 

classes, like β-lactams and fluoroquinolones, also partly depend on cellular 

respiration for their antimicrobial effects by inducing a redox disbalance as a 
secondary antibiotic effect. Fluoroquinolones exert better bactericidal effects in 
metabolic active cells by the production of reactive oxygen species (ROS) during 

oxidative phosphorylation11,12,34. β-Lactams induce systemic ROS-associated 

cellular toxicity by creating an energy-demanding futile cycle of peptidoglycan 
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synthesis and degradation by obstructing cell wall synthesis35,36. The close kinship 

between energy production and antibiotic lethality is further demonstrated by 

the increased bactericidal killing in cells with accelerated respiratory activity30. 

In accordance, metabolic activity has experimentally shown to better forecast 

antibiotic effect than growth rate37. 

It needs to be taken into account that nutrient supplementation to 

increase antibiotic uptake and induce secondary antibiotic effects rely on the 
metabolic specialization of the targeted bacterial cell. Clinically relevant strains 

potentially lose the ability to utilize certain pathways during the acquisition of 
antibiotic resistant conferring mutations and adaptation to specific 
microenvironments at infection sites38–41. Antibiotic resistant strains demonstrate 

distinctive metabolic footprints42–44.  The observed decline in energy metabolism 

reduces ROS production thereby further enhancing AMR45. Subsequently, 
limiting mutations in core metabolic genes directly results in the development of 

antibiotic resistance46. However, metabolism affecting mutations, such as PMF-

limiting mutations, can only be sustained in nutrient-rich environments due to 

the high fitness burden47. To further unravel such metabolic effects and 
adaptations associated with antibiotic efficacy, the use of mathematical flux 
analysis of central metabolic pathways could help to scrutinize the effect of 
nutritional supplements on metabolic processes during antibiotic treatment31,48. 

Although these approaches targeting cellular energy metabolism are of interest, 

there remains a significant knowledge gap concerning the broad spectrum of 
bacterial species and clinically occurring strains. 

Cell envelope modifications 

Cell wall permeability is essential for effective antibiotic treatment since most 

antibiotics rely on passive transport across the outer membrane49. In particular 

for Gram-negative pathogens, the cell wall can be challenging to penetrate by 

antibiotics, in part due to the outer layer of negatively charged 

lipopolysaccharides (LPS), preventing passive transport over the cell wall for 

large and hydrophobic antibiotics. The uptake of antibiotics in gram-negative 

pathogens to exert their effect is mainly dependent on transport through 

membrane porins. Here, porin permeability is higher for positively charged 

small molecule antibiotics, possibly because of the role of the discussed PMF50.  
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The LPS layer in gram-negative pathogens is moreover an important drug target 

to disrupt cell envelope integrity, where modifications in LPS lead to AMR. 
Polymyxin antibiotics, currently used as last resort antibiotics, bind lipid A in the 

LPS layer of gram-negative bacteria to initiate lethal disruption of both outer and 

cytoplasmic membranes, and increase intracellular levels of combination 

therapeutics51,52. Modifications to lipid A structure through changes in the 
biosynthetic pathway of LPS can lead to resistance to polymyxins. Polymyxin 

resistance mechanisms include active membrane modifications to reduce the 
lipid A binding sites in the LPS layer, through intrinsic adaptation, acquired 
chromosomally encoded, and plasmid-mediated53–55. The process of cell 

modifications is supported by a wide range of fatty acid biosynthetic pathways13. 

Rewiring of fatty acid synthesis, however, comes with a high energy demand, 

which is demonstrated by the increased killing efficiency in metabolic inactive 
cells56. Metabolomics studies of polymyxin resistant strains demonstrated that 

modifications in lipid biosynthesis result in metabolic rewiring in energy 
metabolism57,58. Metabolic flux analysis in another strain supports this finding, as 
the upper carbon flux in the glycolysis pathways was elevated while the TCA cycle 

was shunted59. This suggests the switch to glucose-fermenting metabolism for 

energy production polymyxin resistant cells, supported by the use of pH-

mediated detection of lactic acid producing polymyxin resistant 

Enterobacteriaceae60. Although fermentative metabolism can sustain cell 

homeostasis, the high metabolic burden of fatty acid synthesis during resistance 

acquisition results in a fitness cost14,15,61. To this end, enhancing our 

understanding of the biosynthetic routes of LPS and fitness cost during 
polymyxin resistance can potentially improve the development of drug 

candidates targeting the cell envelope. 

The overexpression of multidrug resistance (MDR) efflux pumps in the 

cell envelope is another mechanism to regulate intracellular concentrations of 

antibiotics leading to AMR and a fitness cost. MDR efflux pump-associated AMR 

occurs for a range of broad antibiotic classes across pathogenic species62. 

Metabolic rewiring is an important enabling mechanism to overcome metabolic 

burden accompanied by MDR efflux pump overexpression16–18. For instance, the 
switch towards the nitrate respiratory chain and anaerobic fermentative 

metabolism compensates for the use of oxygen as an alkaline agent, which 

enables the acquisition of MDR efflux pump promoting mutations in the absence 
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of selective pressure.17 The reliance on metabolic adaptation to maintain cellular 

homeostasis during AMR mechanisms could potentially be utilized 

therapeutically. For instance, metabolic adaptation upon antibiotic exposure63–65 

can be used to design combination treatments with antibiotic agents. Antibiotics 

affect different key metabolic pathways, disrupting cell homeostasis, expected to 
be one of the driving forces between the synergistic effect of the combination 
therapy of colistin and doripenem66. In conclusion, targeting metabolic changes 

due to efflux pump upregulation are of interest to target therapeutically. 

Cell-cell interactions in biofilms 

The formation of microbial biofilms forms an important mechanism to decrease 
antibiotic sensitivity, through the production of extracellular polymeric 

substances (EPS). Production of EPS is however a metabolically expensive 

activity, which requires efficient cellular communication and metabolic 
adaptation67. Bacteria utilize quorum sensing (QS) systems to coordinate cell-cell 

interactions in all biofilm stages. QS occurs through the production of various 

hormone-like small molecules excreted in the biofilm microenvironment and is 

essential in biofilm formation and maintenance by synchronizing metabolism 

for the production of macromolecules to establish the protective layer of 

extracellular polymeric substances (EPS) layer68,69. Targeting QS-associated 

metabolic processing may thus represent an important target for biofilm-

associated infections. 

A promising approach to improve the treatment of biofilms exploits the 
role of QS molecules in biofilm physiology. Disruptive microbial communication 
treatments can interfere with biofilm integrity over multiple biofilm stages70, 

enabling treatment approaches for different stages of infection. The link between 
metabolic activity in biofilms and QS is can also be utilized to disrupt biofilm 
integrity. The use of QS-controlled circuits for dynamic control of cellular fluxes71 

demonstrates that cell-to-cell communication is a key regulator of bacterial 

metabolism, which indirectly affects antibiotic susceptibility. Therefore, QS 
systems create an opportunity to be used as a treatment target72,73 to get a 

universal control over metabolic-associated antibiotic potentiation and biofilm 
physiology. However, the high variety of QS systems and differences between 
species require further identification and characterization of QS molecules which 
partake in biofilm biology. Spatial-oriented mass spectrometry techniques can 
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identify utilized QS molecules and characterize population dynamics in 

biofilms74.  

Chronic bacterial infections are commonly associated with well-

developed mature biofilms and are associated with reduced antibiotic efficacy. In 
particular well-developed mature biofilms are associated with steep nutrient 

gradients induced by the biofilm structure75. The biofilm maturation process is 

oơen dependent on the ability of pathogens to metabolically switch to alternative 
nutrient sources76,77. Real-time analysis of the metabolites from the central 

carbon metabolism demonstrated metabolic adaptations to anaerobic 

fermentation pathways over time and biofilm depth78. Redirecting metabolism in 

P. aeruginosa biofilms by TCA cycle carbon source supplementation has resulted 

in increased aminoglycoside eradication29,33, which highlights the potential of 

nutrient supplementation to reduce metabolic induced tolerance in biofilms7. 

5.3. Metabolomics technologies and approaches 

Metabolomics approaches enable organism-wide metabolite identification and 
quantification of biochemical networks. Metabolomics approaches can be 

broadly differentiated into untargeted metabolite profiling and targeted methods. 

Untargeted methods aim for broad metabolite coverage, but may not allow full 

identification of molecular structures. Targeted metabolomics approaches aim 

for quantitative analysis for a set of metabolites, with enhanced possibilities for 

structural resolution of identified metabolites.  

Mass spectrometry (MS) and nuclear magnetic resonance (NMR) 

spectroscopy are the most commonly used detectors in the metabolomics field. 
MS systems generally have superior selectivity, sensitivity, and can detect a larger 

range of analytes. The detection is based on the manipulation of ionized analytes 

by an electric or magnetic field to obtain the mass-to-charge (m/z) ratio. The 

charge-dependent detection requires the ionization of metabolites in the ion 

source before entering the MS system. NMR detectors provide, complementary 

to MS, quantitative and structural information in a non-destructive manner.  

Even though metabolomics technologies advanced extensively over the 

years, the analysis of the full organismal metabolome in a single analytical 

method is still not possible due to the high diversity in physicochemical 

characteristics and broad range of concentrations of the metabolites. Here, we 
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discuss practical considerations considering the utility of different metabolomics 
approaches in particular in the context of microbial metabolism and AMR (Table 

1).  

Untargeted metabolomics 

Untargeted non-selective screening enables the broad characterization of 

(changes in) metabolism. The analysis of multiple metabolite classes, with high 

contrast in polarity, requires long separation methods to maintain accurate 

metabolite identification. The use of high-resolution mass spectrometers (HRMS) 

enables high throughput metabolite profiling without the need for combining 

multiple or time-consuming analytical platforms. HRMS refers to mass 

analyzers, such as time-of-flight, Orbitrap, and Fourier-transform ion cyclotron 

resonance, with high mass accuracy, dissociating metabolites up to 0.001 atomic 

mass units. This high metabolite resolving power of HRMS facilitates the 

confident identification of metabolites to study metabolic changes without a 

time-consuming separation step and confident comparison of  acquired m/z 
features to the masses of previously identified metabolites stored in mass spectral 
libraries79. This enables relatively fast metabolic fingerprinting, which can be 
used to screen for metabolic adaptation during AMR development in a larger set 

of conditions with higher throughput. The high throughput provided the 

possibility to research metabolic evolution and immediate metabolic response 

during antibiotic treatment with a variety of antibiotic classes within single 

studies38,65. Comparison studies between bacterial species, environments, or 

antibiotic classes relying on metabolic data measured within a single do not fully 

rely on data acquired in other studies, reducing the variability caused by 
differences in experimental design. 

The high mass accuracy achieved with HRMS can also be used to assign 

the molecular composition of completely unknown metabolites, which was for 

instance applied for the discovery of novel metabolites. All metabolites covered 

in central carbon metabolism are covered in most metabolite databases, while 

many secondary metabolites like QS molecules are yet to be discovered80. 

However, the robust identification of chemical structures requires the addition of 
low-resolution fragmenting mass analyzers or the multidimensional information 

from NMR detectors. This metabolite identification method combined with 
spatial oriented ionization techniques demonstrated the influence of the 
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nutritional environment and biofilm formation in the production of signaling 
molecules74,81. Thus, the advances in HRMS technologies provide the opportunity 

to confidently screen for metabolic adaptations or unidentified metabolites 
concerning AMR, which can be used to better understand AMR mechanisms or 

develop metabolism-targeted treatment strategies82. 

Targeted metabolomics  

Targeted metabolomics approaches require prior knowledge of metabolite 
targets to enable efficient extraction and isolation from the sampled cells, 
providing sensitive and selective quantitative analytical methods. This is in 
contrast with untargeted methods which come with the bottleneck of limited 

detection range and quantitative accuracy due to detector saturation by 
thousands of signal-producing analytes. The confident identification and high 
sensitivity of targeted metabolomics enables the characterization of exact 

changes in metabolites concentrations. However, this requires the use of 
expensive or complex standardization procedures and time consuming analytical 

validation. The specialization of targeted methods limits the metabolic targets, 

which results in studies focusing on specific metabolic pathways40,45,69,78,83. 

Nevertheless, the absolute quantitative data obtained in targeted metabolomics 
are superior for biological interpretation. For example, the quantitative analysis 
of nutrient uptake and metabolism with both NMR and MS was combined with 

earlier obtained RNA sequencing data to determine QS-controlled metabolic 

repression69. This study was not able to analyze broad spectrum of potential 

carbon or nitrogen sources in the nutrient-rich culture medium, impeding the 

full characterization of the metabolic phenotype, which can be addressed by 

using a combination of analytical methods or elaborate targeted methods using 

chemical derivatization84,85. Targeted metabolomics platforms enable the 

interpretation of metabolite utilization during or aơer AMR development, in 
particular for metabolic flux studies using isotope labeling. The isotope labels in 
core nutrients can be followed over time until a metabolic steady state is 

achieved, providing information about enzyme function and metabolite 

transport through various metabolic pathways86. The high precision of targeted 

methods is of utmost importance as changes in measured metabolite levels 

influence the metabolic network model. The metabolic networks in combination 
with transcript and protein changes are key for the understanding of cellular 
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regulatory systems. For example, extensive fluxomics research demonstrated 
different metabolic specialization on physiological relevant carbon sources 
during infection in the cystic fibrosis lung24. Similar metabolic flux adaptation 
was observed during AMR development, which was successfully targeted using 

nutrient supplementation31. The targeted analytical methods used in metabolic 

flux studies benefit from the high sensitivity and metabolite coverage of MS 
detectors hyphenated to separation methods but can be transferred to NMR to 

determine nutrient exchange and utilization on an intercellular level. The non-

destructive nature of NMR detectors enables the real-time quantification of 
metabolic fluxes in living samples, used for studies on nutrient interchange 

between biofilm sub-populations78. 

Sample preparation 

Metabolomic data should represent the metabolic state of the microbial 

population at the moment of sample collection. Metabolic quenching is a critical 
initial step in the sample preparation process to provide an unbiased snapshot of 

metabolism, given that many metabolites have a rapid turnover rate87. Especially 

the role of energy metabolism in AMR mechanisms demands efficient quenching 
techniques as energy and electron carrying molecules are chemically labile 

metabolites with extremely high turnover rates. Quenching methods need to be 
chosen based on the cell-wall composition of the strain of interest to prevent the 

leakage of intracellular metabolites87,88. 

Composing the further sample preparation steps consists of the choice 

for the metabolite extraction procedure and the sample clean-up method. The 

extraction of intracellular metabolites can be achieved by the chemical or 

mechanical lysis of the cell wall87,89,90. Chemical lysis reduces the metabolite 

degradation or leakage of macromolecules but needs to be chosen based on the 

analytes of interest. Here, the polarity of the lysis solvent influences the 
extraction efficiency of different metabolite classes. For example, a study on the 

influence of colistin treatment on membrane profiles and energy metabolites 
uses two different extraction methods57. Combining chemical lysis with 

mechanical cell disruption is another method to increase the metabolite coverage 

of the analytical method. Changes in the sample extraction method and targeted 

bacterial species can impact the extraction efficiency differently per metabolite90. 

The final step of the sample preparation procedure is sample clean-up, in 
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particular important for MS-based methods. The ionization step in MS can be 

interfered by common components such as salts, sugars, lipids, and proteins91. 

The ionization suppressing elements can be removed by non-selective protein 

precipitation or optimized techniques such as liquid-liquid extraction and solid-

phase extraction91,92. The sample preparation decisions are dependent on the 

analytical approach since untargeted metabolomics approaches aim for high 

metabolite coverage achieved with non-selective sample preparation, and 

targeted metabolomics aims for sample preparation methods resulting in high 

recovery values for the analytes of interest93. Importantly, the development and 

use of standardized protocols in sample preparation techniques are beneficial for 

the comparison of metabolomics data between studies because of the dynamic 

nature of metabolism.  

Future perspectives on metabolomics technologies 

Because metabolomics is closely related to biological phenotype it is therefore 

expected to be essential tool to unravel the phenotypical AMR mechanisms and 

metabolic adaptations during genetic AMR. The integration of metabolomics 

with microfluidic systems, enables further elucidation of the complex 
communication systems94,95. Metabolomic analysis of co-cultivated strains and 

their environment can be used to study small molecule virulence factors, such as 

QS, in both commensal and competitive interactions, and their effect on 
metabolic diversity during host colonization. Here, the advances in resolution 

and sensitivity of MS analysis can enable both the identification of QS molecules 
and the elucidation of the metabolic footprint.  

The next fundamental step in unraveling phenotypic heterogeneity and 

their role in AMR mechanisms is the characterization of metabolic profiles from 
single cells within a heterogeneous population96. Slow growth and dormancy are 

considered essential in antibiotic tolerant or persistent subpopulations5,97,98. 

However, the metabolic activity in these cells and its role in AMR is still 

debated7,97,99,100. NMR imaging and spatial ionization techniques demonstrated 
different metabolite profiles within bacterial populations, but currently lack the 

resolution to scrutinize the contribution of single bacterial cells. A prevalent 

single cell technique attains its resolution by sampling one cell in an ionization 
probe before MS analysis, where metabolic coverage is mainly dependent on MS 

resolution or the integration of innovative separation techniques such as ion 
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mobility101. Applying these techniques in resolving bacterial heterogeneity 
during antibiotic treatment requires multiple improvements to handle low 

bacterial intracellular volumes and the stochastic distribution.  

5.4. Conclusion 

Metabolic changes due to evolution and phenotypic adaptation at the infection 

site are associated with a broad range of AMR mechanisms. Enabling 

metabolomics technologies can help further unravel and characterize these 

AMR-associated metabolic effects. So far, metabolomics studies have however 

focused on a limited number of bacterial species and antibiotics. Systematic 

application of metabolomics studies in conjunction with complementary next-

generation sequencing approaches and experimental evolution models in 

clinically relevant conditions will allow to further unravel the role of microbial 

metabolism in AMR. The improved understanding may support the discovery of 

novel metabolism-targeted treatment strategies to be used in combination with 

established antibiotic agents. 
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Abstract 

The pathogen Pseudomonas aeruginosa can exploit its metabolic flexibility during 
cystic fibrosis lung infections to reduce antibiotic sensitivity and offset antibiotic 
resistance costs, two key traits influencing its evolutionary trajectory. Although 
each trait has been associated with nutrient conditions, the link between nutrient 

conditions and antibiotic evolution remains poorly characterized. We examined 

how single-nutrient conditions influence antibiotic resistance evolution in P. 

aeruginosa through phenotypic and genotypic adaptations. We used adaptive 

laboratory evolution with different antibiotic classes in single nutrient media, we 
then compared these results to those obtained in nutrient-rich synthetic cystic 

fibrosis sputum medium (SCFM). Antibiotic susceptibility testing aơer evolution 

showed limited differences in minimal inhibitory concentrations (MIC) between 

single nutrient conditions for ceơazidime and imipenem, but more pronounced 
impact for ciprofloxacin, colistin, and tobramycin. Ciprofloxacin evolution 

resulted in the highest MIC increase, with at least a 4-fold increase observed in 

glutamate-evolved lineages, whereas glucose-evolved lineages showed up to 4-

fold reduction in MICs for tobramycin, compared to lineages evolved under all 

other nutrient conditions for the same antibiotic. Growth kinetics of the evolved 

strains showed reduced growth rates specific to the antibiotic but not the nutrient 
condition in itself. Whole-genome sequencing showed nutrient-specific 
mutational profiles for tobramycin and ciprofloxacin. Tobramycin evolution 
resulted in glucose specific mutation in wbpL and a SCFM-specific mutation in 

rplA, alongside fusA and pmrB mutations in multiple conditions. Ciprofloxacin 
resistance was not caused by a nfxB mutation in glucose and arginine evolved 

lineages, which was present in all other lineages, with a specific mutation in yicC 

in the glutamate evolved lineages. No distinct differences between nutrient 
conditions for colistin were observed. Overall, these findings underscore the 

significant role nutrient conditions play in shaping resistance and highlight the 
importance of considering physiologically relevant media when studying 

antibiotic resistance evolution. 
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6.1. Introduction 

Pseudomonas aeruginosa is the most prevalent pathogen causing chronic 

infections in the distinctive lung environment of adult cystic fibrosis (CF) 
patients1. This dominance is attributed to the exceptional metabolic versatility of 

P. aeruginosa and its rapid capacity to develop antimicrobial resistance2–5. 

Growing evidence highlights a strong interconnection between these traits, as 

metabolism influences antibiotic sensitivity and antibiotic resistance 
mechanisms impose a metabolic burden6–9. To advance our understanding of 

antibiotic resistance evolution, it is crucial to study how nutrients in the 

environment shape this relationship, a process that remains poorly explored.   

In the CF lung, P. aeruginosa can utilize a diverse array of nutrients, 

including amino acids and short-chain fatty acids, whose composition varies 

substantially among different microenvironments10,11. P. aeruginosa adapts its 

metabolism to these varying conditions, which results in class-specific effects on 
antibiotic sensitivity12–15. Altering a single nutrient in the culture condition has 

been shown to significantly impact antibiotic sensitivity16. Because antibiotic 

sensitivity is a key determinant of selection strength during antibiotic resistance 

evolution17, nutrient-induced changes in antibiotic sensitivity can drive the 

emergence of diverse antibiotic-resistant lineages.  

Nutrients also play a role in reducing the fitness cost of antibiotic 
resistance mutations that alter vital cellular functions, by supporting efficient 
metabolic rearrangement18–20. Consequently, resistance mechanisms with high 
metabolic burden are less likely to prevail in nutrient-poor environments as this 

imposes a metabolic constraint21.  

Overall, these studies demonstrate that nutrient environments 

profoundly influence metabolic adaptations, antibiotic sensitivity, and fitness 
compensation, all of which shape the evolution of antibiotic resistance. However, 

the high variability within the CF lung environment, combined with pronounced 
phenotypic variability, complicates direct comparisons between laboratory 

conditions and clinical scenarios. Prior research has mainly addressed 

comparisons between nutrient-rich and nutrient-poor environments concerning 

fitness landscapes21,22. The subsequent essential step is understanding how 
specific nutrients individually impact resistance evolution. Given the well-
documented metabolic flexibility of P. aeruginosa23, accurately evaluating the 
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influence of individual nutrients within complex media remains challenging. 
Instead, examining central carbon metabolism responses to single-nutrient 

conditions can reveal precisely how nutrient-specific adaptations cascade into 
broader metabolic and biochemical changes24. Elucidating how these specific 

nutrient induced changes influence antibiotic resistance evolution could be 
essential for optimization or selection of more clinically relevant laboratory 

conditions.  

 

In this study, we challenged the P. aeruginosa metabolic flexibility in single 
nutrient conditions during antibiotic resistance evolution and explored the 

phenotypic and genotypic adaptation capabilities in these environments. We 

conducted adaptive laboratory evolution (ALE) for a range of common antibiotics 

used to treat P. aeruginosa (ceơazidime, ciprofloxacin, colistin, imipenem, and 
tobramycin), utilizing single nutrient media. The selection of the nutrients 

arginine, glutamate, glucose, and lactate was based on their physiological 

relevance in CF mucus and their distinct roles in P. aeruginosa metabolism10,24. 

These nutrients have also been shown to affect antibiotic sensitivity differently16. 

Nutrient concentrations were set at 30 mM to prevent nutrient starvation, thereby 

maintaining stable growth conditions throughout evolution experiments. We 

assessed phenotypic changes of the nutrient-antibiotic combinations through 

antibiotic susceptibility testing and growth rate analysis, and genomic changes 

through whole genome sequencing. To contextualize these findings, we 
compared the results from single-nutrient conditions to those from a nutrient-

rich synthetic CF medium (SCFM), providing insights into how P. aeruginosa 

adapts and maintains metabolic flexibility in minimal environments.  

6.2. Material & Methods 

Strains and culture conditions 

Synthetic CF sputum medium (SCFM) was prepared consisting of physiologically 
relevant concentrations of nutrients in synthetic CF sputum as described 
previously10, 0.11M phosphate buffer, ammonium chloride, potassium nitrate, 
ferrous sulfate, Basal Medium Eagle 1x vitamins, and trace metals (Table S1). 

Single nutrient media were prepared with the salts, vitamins and trace metals as 

basal medium, spiked with 4 unique nutrients including arginine, glucose, 
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glutamate, or lactate, at a concentration of 30 mM. The P. aeruginosa PAO1 

laboratory strain (DSM 1117; DSMZ, Leibniz Institute, Germany) was used as the 

parental strain for all evolution experiments.  

Antibiotics 

Antibiotic stock solutions were freshly prepared on the day of the experiment and 

diluted to desired concentrations using an Opentrons OT-2 (Opentrons Inc., New 

York, NY, USA) liquid handling system. Ceơazidime pentahydrate was purchased 
from Thermo Fisher Scientific (Breda, The Netherlands). Ciprofloxacin, 
imipenem monohydrate, and tobramycin were purchased from Chem-Impex 

International (Wood Dale, IL, USA). Colistin sulfate was purchased from Cayman 

Chemical Company (Ann Arbor, MI, USA). 

Laboratory evolution experiment 

Three biological replicates of the P. aeruginosa starting cell line per media 

condition were propagated for 10 days under antibiotic pressure to examine the 

antibiotic resistance development between different culture conditions.  

P. aeruginosa PAO1 was streaked out on LB agar plates, and 10 randomly 

selected colonies were transferred to SCFM (2 mL) and cultured overnight. The 
liquid cultures were diluted to an optical density at 600 nm (OD600) of 0.05 to reach 

the starting inoculation solution, corresponding to an approximate bacterial 

density of 5*106 CFU/mL. The bacterial inoculum (100 µL) was added to 7 wells 

with fresh medium with increasing antibiotic concentrations (900 µL) in a 48-well 

microtiter plate. Aơer 48 hours of incubation, plates were transferred to a BMG 

microplate reader (Ortenberg, Germany) for OD600 acquisition. Cultures at the 
highest antibiotic concentration reaching the culture density threshold of an 

OD600 of 0.5 were transferred (100 µL) to a new range of antibiotic concentrations 

(900 µL) in a new 48-well microtiter plate. If the carrying capacity of any of the 

cultures did not exceed the OD600 threshold, the culture under the highest 

antibiotic pressure reaching at least 80% of the OD600 of the positive control was 

transferred. Cultures under ceơazidime pressure were extensively mixed and the 
threshold was increased to an OD600 of 0.65 due to the build-up of debris in the 

microtiter plate. At the end of the evolution experiment, the cultures reaching the 

OD600 threshold were transferred (100 µL) to an antibiotic free LB agar plate. 
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Colonies were collected with a pre-wet swab and stored in 20% glycerol in LB at -

80 °C. 

Antimicrobial susceptibility testing 

Ceơazidime, ciprofloxacin, imipenem, and tobramycin minimal inhibitory 
concentrations were determined for the parenteral P. aeruginosa PAO1 strain, the 

antibiotic-free lineages, and the lineages evolved under the pressure of the 

antibiotic in SCFM by a broth microdilution method.  Prior to each susceptibility 
test, fresh subcultures were prepared from the -80 °C stored colonies in 2 mL 

fresh SCFM. Susceptibility testing was conducted aơer 24 hours incubation at 37 
°C with orbital shaking at 150 rpm or 72 hours including two 20 µL passages into 

2 mL fresh SCFM medium. The starting cell density in each condition was 
approximately 106

 CFU/mL in a serial twofold dilution of the antibiotics in 96-well 

microtiter plates (Greiner Bio-one, transparent, flat bottom) with a total volume 
of 200 µL. The minimal inhibitory concentration (MIC) was defined as the first 
concentration of antibiotic with no visible growth aơer 24 hours of incubation at 
37 °C. 

Growth rate analysis 

Growth rate analysis was conducted by culturing the parental P. aeruginosa PAO1 

strain and all lineages in the single nutrient media and SCFM. The cells were 
subcultured in 2 mL SCFM and incubated for 24 hours at 37 °C shaking at 150 rpm 
before dilution to an optical density at 600 nm (OD600) of 0.05 before inoculation. 

The starting cell density was approximately 106
 CFU/mL in a transparent 96-well 

microtiter plate. Aơer inoculation, microtiter plates were transferred to a Liconic 
StoreX STX44 119 incubator (Mauren, Principality of Liechtenstein) for 

incubation (95% relative humidity). A Peak Analysis and Automation KX-2 

Laboratory Robot (Hampshire, United Kingdom) transferred the microtiter plate 

every hour between the incubator and the BMG Labtech Fluostar Omega 

microplate reader (Ortenberg, Germany) for time-course OD600 acquisition.  

Genome sequencing and bioinformatics  

Cells were subcultured in 2 mL SCFM and incubated for 24 hours at 37 °C shaking 
at 150 rpm. 500 µL of the subculture was pelleted by centrifugation for 10 minutes 

at 5000 x g. Genomic DNA was extracted using the QIAcube Connect automated 
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sample preparation system and DNeasy Blood & Tissue Kit extraction kit (Qiagen, 
Hilden, Germany) following the manufacturer s̓ protocols. Extracted DNA was 
sent to SeqCoast Genomics for short read whole genome sequencing and 
bioinformatic analysis. Bioinformatic analysis was executed using Breseq 
(version 0.37.0) for mutation prediction and analysis, Trimmomatic (version 0.39) 

for read trimming and quality control, and CNOGpro (version 
deprecated/restored) for copy number variation analysis towards the P. 

aeruginosa PAO1 reference genome. All sequences are stored in the Sequence 
Read Archive (SRA) database under the PRJNA1217434 identifier25.  

Data Analysis 

All data analyses were performed using R. Minimal inhibitory concentrations 

(MICs) for each evolutionary lineage were determined by calculating the median 

value from antibiotic susceptibility tests performed in quadruplicate (n = 4 
biological replicates). Fold changes in MIC were calculated relative to the median 
MIC of the parental strain. Antibiotic-free evolution did not result in any 

significant change in MIC compared to the parental strain (data not shown). To 
assess differences in MIC between conditions, a Welch two-sample t-test was 

conducted between the SCFM group and each single nutrient medium. 

Maximal growth rates (µmax) were determined using the splines 

function from the grofit package 26, fitted to growth curves (n = 3 biological 
replicates) for each evolutionary lineage. Growth measurements were recorded 

at regular intervals to ensure accurate curve fitting. Fold changes in µmax for 
antibiotic-evolved lineages were calculated relative to the corresponding 

antibiotic-free lineages in the same evolution medium. A Welch two-sample t-

test, using the R base function, was used to compare the evolved lineages with the 

antibiotic-free controls evolved under the same medium condition. 

To determine how mutation profiles differed between nutrient 
conditions, a partial least squares discriminant analysis (PLS-DA) was performed 

separately for each antibiotic using the mixOmics package 27. The first four 
components were extracted to generate Variable Importance in Projection (VIP) 

scores, which were used to evaluate the distinguishability of mutated genes 

across nutrient conditions. VIP scores provided a measure of each gene's 

contribution to differentiation between nutrient environments, aiding in the 

identification of key mutations. 



Chapter 6 

 

138  

 

6.3. Results 

Single nutrients conditions differentially shape antibiotic resistance 
evolution 

We assessed the impact of specific single nutrient conditions on antibiotic 
resistance acquisition in P. aeruginosa PAO1. To this end we performed serial 

passaging under stepwise increasing antibiotic concentrations for five different 
antibiotics for a period of 10 days. P. aeruginosa PAO1 evolved in nutrient-rich 

SCFM medium was used as control. We evaluated changes in antibiotic 
susceptibility for the lineages under differential medium and antibiotic 
conditions through determination of the relative change in minimum inhibitory 

concentration (MIC) of SCFM-lineages in comparison to the parental strain (Fig. 

1).  

 

 

 

  

Figure 1. Change in minimum inhibitory concentrations (MICs) for five antibiotics in 
lineages evolved under different medium conditions. P. aeruginosa PAO1 strain was evolved 

in single nutrient media (arginine, glucose, glutamate, lactate) and synthetic cystic fibrosis 
sputum media (SCFM) as control, under incrementally increasing antibiotic 
concentrations. All MICs were determined in SCFM. Bold horizontal lines represent the 

mean fold change in MIC of the evolution condition relative to the parental strain. 

Different evolutionary lineages are indicated by shapes: (•) for replicate 1, (▲) for replicate 

2, and (▪) for replicate 3. A Welch two-sample t-test was performed between the SCFM 
group and each single nutrient medium, with * indicating p < 0.05. 
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When considering the differential effects of media on resistance acquisition, for 
ceơazidime, the magnitude of MIC increase was consistently lower across all 
single nutrient media compared to SCFM, with limited differences between 
specific minimal media. For all four remaining antibiotics, substantial 
differences in MIC were found across single nutrient media. For ciprofloxacin, 
evolution in glutamate medium led to a substantially increased MIC, while the 

arginine condition results in a comparatively smaller MIC. Imipenem MICs only 

increased in arginine and glutamate medium, with no significant MIC change 
aơer evolution in SCFM, glucose, or lactate. For tobramycin, evolution in glucose 
medium resulted in substantially lower MICs compared to all other conditions. 

For colistin, the largest MIC increases were observed aơer evolution in SCFM and 
glutamate medium, while the smallest MIC decrease was noted in arginine. 

Across all antibiotics, it can be concluded that evolution in single nutrient media 

with arginine, glucose, and lactate oơen results in attenuated resistance 
acquisition, while resistance acquisition in glutamate media showed higher 
outcomes (Fig. S1).  

Resistance evolution under single-nutrient conditions results in 

limited fitness changes 

To evaluate if differences aơer evolution across single nutrient media could be 
explained by differences in fitness, we compared the maximal growth rate (µmax) 

of all evolution lineages under antibiotic-free conditions in the original evolution 

media and SCFM. Overall, largest effects on µmax were found when the original 

growth medium was used. Significant reductions in µmax were observed for 

ceơazidime and tobramycin lineages evolved in glucose, and for ciprofloxacin 
lineages evolved in arginine and lactate (Fig. 2). These reductions were however 

absent for µmax estimated derived in SCFM. The magnitude of changes in µmax did 

not correlate with the changes in MIC in the evolution lineages (Fig. S2).  

To further evaluate whether observed µmax changes were antibiotic or 

medium dependent, we performed growth rate analysis of all evolution lineages 

across all conditions (Fig. S3). The observed reduction in µmax for colistin- and 

imipenem-resistant lineages was consistent in glucose minimal media, 

regardless of the evolution media. Ciprofloxacin-resistant lineages generally 

exhibited reduced µmax in minimal arginine media, except for those evolved in 

lactate. Notably, ciprofloxacin lineages evolved in lactate exhibited reduced 
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growth in all other single nutrient media, suggesting a unique metabolic 
adaptation or trade-off specific to lactate-driven resistance evolution. 

 

 

Figure 2. Changes in maximal growth rate of antibiotic evolved lineages upon re-culturing 

in their evolution medium and SCFM. The maximal growth rates (µmax) were determined 
by applying a spline function to triplicate growth curves obtained under antibiotic-free 

conditions. Fold changes are calculated relative to lineages without antibiotic in the 
corresponding medium. A Welch two-sample t-test was used to determine the difference 
between the evolved lineages and the antibiotic free controls evolved in the same medium 

(* indicating p<0.05). 

 
 

Medium-specific genetic variations differentiate between evolution 
conditions.  
Whole genome sequencing was performed for final evolution lineages for 
ciprofloxacin, colistin, and tobramycin to evaluate genetic variants across 
parallel evolved biological replicates (Fig. 3). Single nucleotide polymorphisms 

(SNPs), insertions, and deletions observed with a frequency higher than 20% and 
present within more than 1 lineage were included due to large heterogeneity 

within evolutionary lineages.   

To determine how mutations differ between the evolution media, a 
partial least squares discriminant analysis (PLS-DA) was applied for each 

antibiotic. This analysis indicates the discriminatory importance of mutations 

that allow differentiation across specific medium conditions, quantified using a  
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Figure 3. Whole-genome sequencing-derived mutations in evolution lineages from 

different antibiotic and nutrient conditions. The occurrence of single nucleotide 
polymorphisms (SNPs), deletions, and insertions associated with annotated genes are 

indicated. The color scale represents the number of evolutionary lineages under the same 

condition where a mutation was observed. All mutations detected only once are excluded 

from the figure.   
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variance importance in projection (VIP) score. Mutations in the top six genes 

ranked by VIP score were selected and visualized as potential mutations 

associated with media-specific adaptation for each antibiotic (Fig. 4).  Among the 

top distinguishing genes, only three loci mutations appeared in a single evolution 

condition. Two were in tobramycin lineages: rplA for SCFM and wbpL for glucose 

medium (Fig. 4A). Other genes specific for tobramycin were mutations in the 
pmrB gene, which was mutated in all media except glucose, and the fusA gene, 

which was specific to arginine and glutamate minimal media. For ciprofloxacin, 
mutations in yicC were unique for the ciprofloxacin-glutamate condition, while 

mutations in nfxB were present in lineages evolved glutamate, lactate, and SCFM 
media (Fig. 4B). Finally, mutations in bisC, cobK, dgcP, PA3157, preA, pchH, and 

sdaA had high VIP scores for distinguishing evolution conditions when stratified 
by antibiotic, but were also present in various other media conditions across 

different antibiotics, including antibiotic-free evolution. The top VIP scores aơer 
colistin evolution consist only of these genes, indicating a limited presence of 

condition-specific mutations in colistin resistance (Fig. 4C).  

 

6.4. Discussion 

We demonstrated that P. aeruginosa can rapidly develop antibiotic resistance in 

single nutrient media, with the magnitude of MIC increase varying substantially 

between evolution conditions as well as antibiotics. Despite the MIC variation, 

changes in mutant growth rates (µmax) were generally consistent among lineages 

evolved under the same antibiotic. 

Across the single nutrient conditions, we found the smallest increase in MIC in 

lineages evolved for the beta-lactam antibiotics imipenem and ceơazidime. This 
may be explained by  resistance development against imipenem requiring 
multiple mutation steps28 and the limited duration of the evolution experiment. 

Previous findings demonstrated similar limited MIC increases for ceơazidime 
during evolution in minimal media conditions29–31. Lineages evolved during 

exposure to ciprofloxacin, colistin, and tobramycin, larger differences between 
MICs for different nutrient conditions were observed, which were further 
genetically characterized.  
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For ciprofloxacin lineages, the lowest MIC increases were found in arginine-

lineages and the highest increases in glutamate-lineages. These differences may 
be explained due to differences in accumulation of specific established 
fluoroquinolone resistance mutations, particularly gyrA and nfxB32. The gyrA 

gene encodes a subunit of DNA gyrase, which is the primary target of 

fluoroquinolones, and mutations in this gene typically reduce the binding affinity 
of the antibiotic. Mutations in nfxB lead to overexpression of the MexCD-OprJ 

efflux pump, which exports various antibiotics. Whilst mutations in gyrA were 

common across all media, the glutamate-lineages with the highest MIC increases 

also carried nfxB mutations. We observed no changes in µmax for these mutants, 

in line with previous reports for P. aeruginosa on compensatory effects 

Figure 4. Key mutations distinguishing mutational profiles of culture conditions across 
(A) tobramycin, (B) ciprofloxacin and (C) colistin. (Leơ) VIP (Variable Importance in 
Projection) scores from a 4-dimensional partial least squares discriminant analysis (PLS-

DA) highlight key mutations distinguishing culture conditions. The three lowest VIP scores 

for each mutation are colored grey, while the highest VIP score per drug is highlighted in 

black, and in red if identified as a key distinguishing mutation. (Right) Heatmaps display 
the six highest-scoring locus mutations, with colored tiles indicating mutation presence 

(x-axis) across evolutionary lineages (y-axis). These visualizations provide a comparative 

overview of mutation patterns across culture conditions and evolutionary lineages for the 

different antibiotics. 
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associated with gyrA mutations and nfxB-induced MexCD-OprJ efflux pump 
upregulation19,33. The burden of these compensatory effects could however still 
influence the evolutionary selection of these mutations. Ciprofloxacin-lineages 

demonstrated reduced µmax in arginine medium, the condition in which this 

specific mutation combination was absent. The absence of gyrA and nfxB 

mutations in arginine-lineages, along with the lower µmax of ciprofloxacin-

lineages in arginine, suggests that metabolic constraints may hinder the 

establishment of these mutations under such conditions. In the case of nfxB-

mediated upregulation of the MexCD-OprJ efflux pump, an active proton motive 
force (PMF) is required for export34. Arginine metabolism may lead to a reduced 

PMF, as energy can also be derived via the arginine deiminase pathway rather 
than PMF-generating oxidative phosphorylation35. Glutamate, by contrast, serves 

as a central metabolite in nitrogen metabolism and has been shown to reduce 

ciprofloxacin sensitivity in P. aeruginosa36–38. Glutamate has also been reported to 

enhance antibiotic penetration and counters efflux, thereby increasing 
intracellular ciprofloxacin concentration39–41. This combination raises the 

evolutionary pressure of ciprofloxacin in glutamate medium, which can result in 
faster and different acquisition of resistance17. We speculate that this pressure 

contributes to the unique yicC mutation observed in glutamate medium. 

Although less studied in P. aeruginosa, yicC in E. coli has been linked to DNA stress 

responses and RNA degradation42,43, both processes linked to ciprofloxacin 
exposure. 

 

Colistin resistance development showed considerable variation in MICs between 

lineages and across nutrient conditions. Similarly, no distinct patterns in 

mutations emerged across different nutrient conditions. Colistin resistance in P. 

aeruginosa primarily arises from lipid A modifications in the lipopolysaccharide 
(LPS) layer44,45, with no observed fitness cost45,46. This aligns with our findings of 
increased MIC and unaffected µmax in lineages carrying mutations in the lipid A 

regulatory genes phoQ and pmrAB. Interestingly, we observed a reduced µmax 

when re-growing colistin-evolved lineages in glucose medium, except for those 

lineages originally evolved in glucose. Glucose is central to glycolysis and the 

pentose phosphate pathway, both of which supply precursors essential for the 

lipid A modifications regulated by phoQ and pmrAB47. P. aeruginosa possesses an 

inherently less efficient glycolytic pathway24, and our findings suggest this 
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efficiency is further compromised if glucose utilization is not actively selected 
during colistin exposure. Under colistin exposure, P. aeruginosa has been 

suggested to utilize glucose as an osmotic regulator48–50. The fact that glucose-

lineages exhibited a distinct phenotype, which could not be readily explained 

from high diversity in mutational profiles across all lineages, underscores the 
plasticity of colistin resistance in P. aeruginosa. 

 

The evolution of tobramycin resistance exhibited significant variation in MIC 
across nutrient conditions. Substantial differences in mutational patterns among 
lineages were found, consistent with the extensive aminoglycoside resistome51. 

One key mutation observed was in fusA, a gene encoding elongation factor G, 

which is involved in ribosomal translocation. Mutations in the fusA gene have 

been identified in clinical isolates and are known to confer tobramycin resistance 
by altering ribosome function, the primary target of aminoglycosides52. Although 

these mutations are oơen associated with a fitness cost, they had not previously 
been linked to specific nutrient conditions. In our study, fusA mutations were 

observed exclusively in lineages evolved in arginine and glutamate media. One 

possible explanation is the known enrichment of fusA mutations in biofilm-

grown populations53. This may be relevant given the reduced motility of P. 

aeruginosa in arginine, a phenotype commonly associated with biofilm 
formation54. Additionally, fusA mutations are known to influence quorum 
sensing, particularly through interaction with lasR, a quorum sensing regulator 
that increases aminoglycoside resistance55. Since glutamate nitrogen metabolism 

plays a critical role in quorum sensing pathways in other species56,57, this may 

suggest a metabolic link between glutamate availability and selection for fusA 

mutations during tobramycin exposure. The fusA mutations co-occurred twice 

with pmrB mutations but did not lead to significant MIC changes to single 

mutations. The pmrB gene encodes a sensor kinase involved in LPS modification, 
a mechanism linked to both increased tobramycin resistance and increased 

susceptibility in some contexts58,59. The highest increase in tobramycin MIC was 

observed when pmrB mutation was accompanied with an SCFM-specific rplA 

mutation. The rplA gene is involved in ribosome assembly, and is known to 

reduce aminoglycoside binding and induce efflux pump overexpression in other 
species60,61. The combination of pmrB-rplA mutation seemed to be specific to 
nutrient rich conditions, yet there is no direct link between these mutations and 
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nutrient conditions in the literature. The pmrB mutations were found in lineages 

evolved in all nutrient conditions except glucose. Similar to the observed fitness 
cost of LPS-modifying mutations under colistin pressure in glucose medium, the 

absence of pmrB mutations in glucose-evolved lineages may be related to the 

altered and less efficient glycolytic pathway of P. aeruginosa24. Instead, glucose-

evolved lineages harbored mutations in wbpL, another gene essential for LPS 

biosynthesis. Alteration of wbpL likely reduces aminoglycoside uptake51,62. 

Consistent with this, we observed no changes in µmax across all tobramycin 

lineages. This demonstrates that, even in the absence of significant fitness costs, 
nutrient-induced adaptations favor distinct mutational patterns, as the 

importance of cellular processes related to tobramycin activity varies between 

conditions. These findings align with previous observations showing that LPS-

modifying mutations are common in sessile biofilm populations, whereas 

transcriptional regulator mutations dominate in planktonic populations53. 

Together, our data support the conclusion that nutrient environments strongly 

influence both the metabolic state and lifestyle of P. aeruginosa, thereby shaping 

the adaptive pathways used to acquire tobramycin resistance. 

 

To our knowledge, nutrient-specific differences in resistance evolution have not 
been explored beyond this study, although several studies have examined the 

impact of nutrient-rich versus nutrient-poor environments on antibiotic 

resistance development18–21,29,63. In this light, for ceơazidime and tobramycin, we 
observed a significantly higher MIC increase in nutrient-rich SCFM compared to 
the single nutrient conditions. For colistin, ciprofloxacin, and imipenem, such 
differences were less evident, with only ciprofloxacin evolution in glutamate 
minimal medium resulting in a significantly higher MIC compared to SCFM. 
Overall, our findings highlight the importance of carefully considering medium 
nutrient composition during in vitro experimental evolution studies. 

In this study, all MIC testing of evolved lineages was conducted in SCFM. 
This approach enabled direct comparisons of permanent phenotypic and 

genotypic changes among evolved lineages, as confirmed through sequencing 
data. Conducting MIC assays in SCFM rather than in the specific evolution media 
resulted in the loss of a phenotypic dimension related to nutrient-specific 
antibiotic sensitivity adaptations. Although addressing this additional complexity 

was beyond the scope of the current study, changing nutrient conditions are 
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known to significantly influence antibiotic sensitivity13,16. Consequently, our 
results may underestimate the full spectrum of phenotype variability, further 

underscoring the importance of identifying the biochemical mechanisms driving 

antibiotic sensitivity changes. The use of -omics approaches offers valuable 
insights into how cells adapt to different environments during antibiotic 
exposure. For instance, metabolomics studies would be relevant to further 
evaluate changes in cellular energy metabolism or metabolic rewiring that 

support membrane modifications64, whereas proteomics has been employed to 

unravel a broad range of cellular adaptations65. By integrating these system-level 

analysis with extensive genotypic data66, we can better understand the nutrient-

specific differences in phenotype-genotype relationships observed between 

laboratory findings and clinical isolates. Multiple studies in other pathogens have 
demonstrated that adjusting media composition to better mimic in vivo 

conditions leads to in vitro antibiotic responses more closely mirroring clinical 

observations67–71, underscoring the importance of environmental specific 
conditions to enhance clinical relevance of ALE.  

We employed a stepwise increase in antibiotic concentration to rapidly 

drive resistance evolution over short timescale72, enabling us to investigate a 

broad set of nutrient-antibiotic combinations. While this strategy provides 

valuable insights, additional confirmatory experiments with increased replicates 
and extended evolution periods would offer a more comprehensive view of how 

nutrients influence evolutionary trajectories in the long run. In clinical settings, 
antibiotic concentrations are highly dynamic, whereas nutrient profiles, though 

variable across infection sites, tend to remain relatively stable within the larger 

volumes of human tissues and fluids11,73. Building on our findings from stepwise 
adaptation studies, future work could leverage continuous culture systems to 

better control nutrient levels and mimic realistic antibiotic concentration 

profiles74,75. 
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Overall, our findings demonstrate that evolution in single nutrient conditions 
results in significant variation in antibiotic resistance acquisition in P. aeruginosa. 

By focusing on multiple antibiotics and nutrient environments, we showed that 

the effects are specific to combinations of antibiotics and nutrients. These 
findings lay the groundwork for broader incorporation of nutrient composition 
as a key factor in antibiotic resistance evolution studies. Understanding the 

mechanisms behind these nutrient-induced differences is an important step 
toward unraveling the complex evolutionary trajectories seen in the CF lung.  
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6.7. Supplementary Materials 

Supplemental table 1. Detailed content list of synthetic cystic fibrosis sputum 

media 

 

 Name 
Concentration 

(mM) 
Company information 

M
9 

bu
ffe

r 

di-sodium hydrogen phosphate (Na2HPO4) 90.2 Thermo Fisher Scientific 

Potassium di-hydrogen phosphate (KH2PO4) 22.0 VWR International 

Sodium chloride (NaCl) 8.5 Merck KGaA (Avantor™) 

Ammonium chloride (NH4Cl) 18.6 Alfa Aesar  

Magnesium sulphate hepta-hydrate (MgSO4) 1.0 VWR International 

Calcium chloride (CaCl2) 0.1 Acros Organics  

S
a

lts 

Potassium nitrate (KNO3) 0.35 Acros Organics 

Iron sulphate (FeSO4) 0.0036 Alfa Aesar  

Suppl. BME Vitamin solution 1x Thermo Fisher Scientific 

T
ra

ce
 m

et
a

ls
 

Di-sodium Ethylene di-amine tetra-acetic 

acid (EDTA) 
0.002 (mg/mL) J.T. Baker (Avantor™) 

Zinc Sulphate hepta-hydrate (ZnSO4) 0.23 (mg/mL) Alfa Aesar  

Boric acid (H3BO3) 0.111 (mg/mL) Acros Organics  

Manganese chloride tetra-hydrate (MnCl2) 0.051 (mg/mL) Sigma Aldrich (Avantor™)  

Cobalt chloride (CoCl2) 0.017 (mg/mL) Alfa Aesar  

Copper Sulphate penta-hydrate (CuSO4) 0.015 (mg/mL) Sigma Aldrich (Avantor™) 

Ammonium hepta-molybdate tetra 

hydrate ((NH4)6 Mo7O2) 
0.01 (mg/mL) Alfa Aesar 

N
u

tr
ie

n
ts

 

Alanine (Ala) 1.8 Chem-Impex International 

Arginine (Arg) 0.3 Chem-Impex International 

Aspartate (Asp) 0.8 Chem-Impex International 

Cysteine (Cys) 0.2 Chem-Impex International 

Glucose (GLC) 3.2 Alfa Aeser 

Glutamate (Glu) 1.5 Chem-Impex International 

Glycine (Gly) 1.2 Acros Organics  

Histidine hydrochloride (His) 0.5 Chem-Impex International 

Isoleucine (Ile) 1.1 Chem-Impex International 

Lactate (LAC) 9.0 Biosynth International 

Leucine (Leu) 1.6 Chem-Impex International 

Lysine hydrochloride (Lys) 2.1 Thermo Fisher Scientific 

Methionine (Met) 0.6 Chem-Impex International 

Phenylalanine (Phe) 0.5 Chem-Impex International 

Proline (Pro) 1.7 Thermo Fisher Scientific 

Serine (Ser) 1.4 Chem-Impex International 

Threonine (Thr) 1.0 Chem-Impex International 

Tryptophan (Trp) 0.01 Chem-Impex International 

Tyrosine (Tyr) 0.8 Chem-Impex Internationa 

Valine (Val) 1.1 Chem-Impex International 



Nutrients drive the antibiotic-specific evolution of resistance in P. aeruginosa 

155 

 

 

Supplemental figure 1. Comparison of minimum inhibitory concentrations (MIC) 

between lineages evolved in single-nutrient media and nutrient-rich synthetic cystic 

fibrosis sputum medium (SCFM). P. aeruginosa PAO1 was evolved in single-nutrient media 

(arginine, glucose, glutamate, lactate) with incrementally increasing antibiotic 

concentrations. The difference in evolution conditions is shown as the fold change in MIC 
of lineages evolved in single-nutrient media relative to lineages evolved in SCFM. All MICs 
were determined in SCFM. Bold horizontal lines indicate the mean fold change in MIC of 
the SCFM lineages. Symbols represent distinct evolutionary replicates: (•) replicate 1, (▲) 

replicate 2, and (▪) replicate 3. 

 

 

Supplemental Figure 2. Correlation between the maximal growth rate (µmax) and 

minimal inhibitory concentration (MIC) of evolved P. aeruginosa PAO1 lineages. Maximal 

growth rates were determined by spline fitting of triplicate growth curves under antibiotic-

free conditions and expressed as fold changes relative to lineages evolved without 

antibiotic in the same medium. MICs were measured for lineages evolved in single-

nutrient media under incrementally increased concentrations of ceơazidime (CEF), 
ciprofloxacin (CIP), colistin (COL), imipenem (IMI), or tobramycin (TOB). MIC fold 

changes are shown relative to the parental strain. 
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Supplemental figure 3. Changes in the maximal growth rates of antibiotic-evolved 

lineages aơer re-culturing in antibiotic-free media. Lineages were obtained by 

incrementally increasing concentrations of five antibiotics (ceơazidime (CEF), 
ciprofloxacin (CIP), colistin (COL), imipenem (IMI), and tobramycin (TOB)) under various 

nutrient conditions. Maximal growth rates were determined by spline fitting of triplicate 
growth curves in antibiotic-free synthetic cystic fibrosis sputum medium (SCFM) or in 
single-nutrient media (arginine (ARG), glucose (GLC), glutamate (GLU), lactate (LAC)). Fold 
changes are shown relative to lineages evolved under antibiotic-free conditions in each 

respective medium. 
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7.1. Summary and general discussion 

Pseudomonas aeruginosa is classified by the World Health Organization as a top-

priority pathogen, owing to its capacity for severe infections and its resistance to 

many antimicrobials. This threat is particularly acute for immunocompromised 

patients, such as those with cystic fibrosis (CF), who oơen acquire chronic P. 
aeruginosa infections early in life. Prolonged antimicrobial exposure in these 

infections drives the development of multidrug-resistant strains. To combat this 

rise in resistance, it is increasingly recognized that understanding how P. 

aeruginosa survives within the CF lung is crucial. In this context, a key element 
lies in the infectious microenvironment, which shapes bacterial physiology and 

influences antibiotic efficacy1. In an effort to capture the influence of the 
infectious microenvironment, recent studies have employed innovative in vitro 

culture media to better replicate the infectious phenotype. However, the diverse 

microenvironments in the CF lung, coupled with the biological versatility of P. 

aeruginosa, call for a more comprehensive approach to elucidate its triangular 

relationship with antibiotic pharmacodynamics (PD). This thesis hypothesized 

that nutrient conditions in the environment play a central role as 

pharmacodynamic drivers and key determinants in the evolution of antibiotic 

resistance, ultimately affecting therapeutic outcomes.  To address this, 
foundational work was conducted to elucidate how altered nutrient and oxygen 

conditions influenced the antibiotic pharmacodynamics of P. aeruginosa. 

 

In Section I, a comprehensive overview of the diverse microenvironments within 

the CF lung was provided and the ways in which P. aeruginosa adapts to the 

available nutrients were described (Chapter 2). This thesis highlights that these 

microenvironments can vary among patients and even within the same lung, 

potentially affecting P. aeruginosa adaptation in distinct ways. To explore this in 

more detail in Section II, the impact of specific nutrients (Chapter 3) and oxygen 

gradients (Chapter 4) relevant to the CF lung on antibiotic sensitivity was 

investigated. In Section III, the role of microenvironmental interactions in 

driving evolutionary processes by influencing the selection of mutants was 

examined. It was discussed how exploiting metabolic adaptations during 

resistance evolution may offer therapeutic advantages (Chapter 5), and P. 
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aeruginosa adaptation during antibiotic resistance development was reported 

under single-nutrient conditions (Chapter 6). 

Adaptation to heterogeneous cystic fibrosis lung  

In Chapter 2, the nutrient environments present in the CF lung were reviewed 

for its role in shaping the metabolic adaptation of P. aeruginosa, as these 

adaptations play a key role in the failure of antibiotic therapies. The bacterial 

metabolic state determines bacterial growth, redox balance, and energy levels, 

all factors that influence antibiotic susceptibility. In this context, the thick, 

dehydrated mucus in the CF lung creates diverse microenvironments 
characterized by nutrient-rich but oxygen-limited conditions. These gradients 

support the formation of biofilm aggregates by P. aeruginosa, which further 

compartmentalize nutrients and oxygen, shaping metabolic heterogeneity. The 

metabolic versatility of P. aeruginosa is central to its survival and adaptation 

within the CF lung environments. P. aeruginosa can utilize a wide range of 

substrates, including amino acids and short-chain fatty acids, and flexibly switch 
between aerobic respiration, fermentation, and denitrification to maintain 
energy production under varying conditions2. 

 

Metabolic adaptations strongly influence antibiotic sensitivity. Antibiotics such 
as aminoglycosides, fluoroquinolones, β-lactams, and polymyxins all depend on 

specific metabolic states for their effectiveness3. P. aeruginosa can rewire its 

metabolism by suppressing respiration, activating metabolic shunts, or 

producing protective extracellular matrix components, thereby reducing the 

impact of these drugs. 

Importantly, the CF lung microenvironment is not uniform. Intra- and 

inter-patient variability shaped by factors like lung compartmentalization4, CF 
genotype5, comorbidities6  leads to significant differences in nutrient availability 
and thus in antibiotic response. Understanding these metabolic responses in 

physiologically relevant contexts is a critical step toward more effective, 
personalized antibiotic interventions. Progress depends on integrating clinical 

insights with advanced in vitro models and multi-omics approaches to accurately 

reflect the complex CF lung environment7. Overall, this chapter outlined the 

current understanding on this topic and identified important gaps to guide future 

research. 
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Nutrients shape antibiotic treatment response 

Nutrients and oxygen are among the most evident drivers of metabolic processes, 

which have increasingly been linked to the mechanisms of action of multiple 

antibiotic classes8,9. As a result, reduced antibiotic sensitivity is oơen associated 
with nutrient-scarce or oxygen-deprived environments, and supplementation is 

sometimes used to sensitize pathogens10. Although these observations highlight 

the regulatory role of the nutrient environment in shaping microbial responses 

to antibiotics, the impact of specific conditions relevant to the CF lung remains 
poorly understood. 

 

In Chapter 3, the impact of specific nutrients antibiotic sensitivity was 

investigated. To this end, a basal culture medium was modified by alternately 

adding individual nutrients, and changes in antibiotic response were measured 

using time-kill assays with a bioluminescent P. aeruginosa strain, allowing real-

time monitoring of bacterial population dynamics.  

Using mathematical PD modeling, changes in antibiotic responses across 

different nutrient conditions were assessed. By focusing on quantification of 
changes in the half-maximal effective concentration (EC50), nutrient-induced, 

antibiotic class-specific changes in antibiotic PD were revealed, indicating 

distinct underlying biochemical mechanisms. This finding expands beyond the 
traditional view of reduced metabolic activity in nutrient-poor conditions 

typically correlated with antibiotic tolerance or persistence mechanisms3. The 

absence of significant fitness differences among bacterial populations in our 
media formulations further suggests that biochemical, rather than purely 

growth-rate dependent adaptations, underly the observed sensitivity shiơs. This 
aligns with a previous mathematical model, showing a stronger correlation 

between antibiotic lethality and metabolic states rather than growth rates alone11.  

Investigating the impact of single-nutrient alterations provides 

mechanistic clarity by establishing a direct relationship between specific 
metabolic pathways and antibiotic responses. These single-nutrient effects were 
shown to have clinical relevance, as illustrated by our in vitro pharmacokinetic-

pharmacodynamic (PK-PD) simulations showing nutrient-induced changes in 

treatment outcomes. Previous studies have similarly shown the potential for 

leveraging nutrient-based findings to identify adjuvant therapies, combining 
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antibiotics with nutrient modulation to enhance bacterial killing10. While it is 

important to acknowledge the inherent limitations of our in vitro models, since 

antibiotic responses in clinical environments involve a broader and more 

complex range of interactive factors, our results nonetheless represent 

meaningful progress. Specifically, these findings advance our understanding of 
the personalized nature of treating P. aeruginosa infections, which are heavily 

influenced by microenvironmental interactions.  

In addition to nutrient availability, oxygen levels represent another key 

environmental factor that is oơen overlooked in conventional in vitro 
antimicrobial activity assays. In Chapter 4, the specific impact of oxygen 
availability on antibiotic responses in P. aeruginosa was investigated. Instead of 

focusing solely on acute responses to anoxia, the study also assessed how 

prolonged anoxic exposure (<1% oxygen for 22 days) impacts antibiotic 

sensitivity. To this end, time-kill assays were performed, comparing a laboratory 

strain of P. aeruginosa to lineages adapted through prolonged growth under 

anoxic conditions. 

The results indicated that antibiotic effects under anoxic conditions are 
antibiotic-specific, consistent with known differences in oxygen dependency 
among antibiotic mechanisms of action reported previously12–14. The antibiotic 

sensitivity profiles changed profoundly following prolonged anoxic conditioning, 
suggesting sustained modifications in cellular processes related to antibiotic 
sensitivity. Importantly, these differences sustained when anoxically adapted 

strains were subsequently cultured under atmospheric conditions, underscoring 
stable physiological adaptations. 

The distinct antibiotic sensitivity profiles observed following anoxic 
adaptation highlight the potential limitations of standard in vitro antimicrobial 

activity assays, which do not accurately replicate conditions of anoxic infection 

sites. This emphasizes the urgent need to develop culture conditions that better 

mimic in vivo infection environments. Additionally, the  findings suggest that 
brief exposure to clinically relevant conditions is insufficient. Instead, a 

comprehensive characterization encompassing multiple, sustained 

environmental conditions is required to reflect the true complexity of clinical 
infections. Although this study initially focused on conditions relevant to cystic 

fibrosis (CF), similar considerations likely apply to other P. aeruginosa infection 
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sites, such as urinary tract infections15, mucus plugs in chronic obstructive 

pulmonary disease (COPD) or bronchiectasis16.  

 

Overall, the findings in Section II highlight the critical role of metabolic 

regulation in determining antibiotic sensitivity of P. aeruginosa under diverse 

nutrient and oxygen conditions. Nutrients and oxygen form the foundational 

components for cellular biosynthesis and energy metabolism. Thus, their 

influence on antibiotic effectiveness might logically follow, since antibiotics oơen 
target actively dividing cells. However, the results demonstrate that antibiotic 

sensitivity can be substantially altered by even single-nutrient changes, with 

specific outcomes dependent on the precise combination of nutrient conditions 
and antibiotic class. 

The observations across various antibiotic classes support the concept 

that increased nutrient availability does not necessarily translate into enhanced 

antibiotic efficacy. Research on the metabolic-targeting natural product 

promysalin, which can exhibit both synergistic and antagonistic effects when 
combined with standard antibiotics in P. aeruginosa17, underscores that nutrient 

metabolism can activate protective cellular pathways that counteract antibiotic 

actions. This indicates that nutrient metabolism can indeed trigger protective 

cellular pathways dependent on the antibiotic pressure18. It is also important to 

acknowledge that P. aeruginosa harbors an efficient hierarchical nutrient-

utilization regulatory systems in nutrient-rich conditions, which means that 

combining separate nutrient media formulations will likely not produce additive 

antibiotic sensitivity effects. For example, P. aeruginosa can produce redox-active 

metabolites that suppress respiration and induce a low-energy cellular state even 

in oxygen-rich conditions19. These nutrient-induced metabolic changes result in 

phenotypic adapted strains over long-term colonization of the CF lung20. The 

findings in this section demonstrated that these adaptation processes profoundly 

impact antibiotic sensitivity profiles. Such insights underscore the importance of 

elucidating the biochemical basis of nutrient-driven antibiotic sensitivity and 

highlight the need for integrative, phenotype-focused -omics approaches. 

Metabolomics and proteomics are powerful techniques that can capture subtle 
shiơs in intracellular metabolite concentrations, enzyme levels, and metabolic 

flux patterns, thereby providing a high-resolution view of the metabolic 

reconfigurations during antibiotic treatment21,22.  
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If we are to adopt a more biochemically informed approach, it is crucial that 

future studies be conducted in environments representative of both the 

antibiotic s̓ mechanism of action and the conditions of actual infections. In 
addition to the incremental approach of distinguishing the effects of individual 
nutrients, detailed investigation into the nutrient composition of the infectious 

environment is essential. The infectious microenvironment is dynamically 

shaped by interactions with host cells and microbial communities, generating 

metabolic byproducts and oxidative stress that modulate bacterial metabolism. 

Consequently, the use of co-culture systems that model host-pathogen23 or 

polymicrobial interactions24 is essential for fully capturing the intricate interplay 

between nutrient environments and antibiotic sensitivity. By building on this 

experimental data, future research can more accurately account for the complex 

nutritional and metabolic landscapes which P. aeruginosa exploits to influence 
antibiotic susceptibility.  

Nutrients shape antibiotic resistance evolution 

It is well established that phenotypic changes play a central role in the adaptive 

capacity of populations, driving natural selection. In this context, populations 

that adapt to environmental perturbations with higher fitness levels come to 

dominate. Under antibiotic pressure, heritable changes, such as chromosomal 

mutations that confer resistance through target modifications, reduced uptake, 
or increased active efflux, rapidly prevail. These changes are oơen integral to 
essential cellular mechanisms and, consequently, frequently incur a fitness cost. 
Beyond the fact that alterations in fitness and resistance mechanisms induce 
metabolic changes, it is increasingly recognized that mutations affecting 
metabolism represent a key category of antibiotic resistance mechanisms25.   

In Chapter 5, metabolic adaptations during antibiotic resistance 

evolution were reviewed, and it was discussed how metabolomics can be applied 

to understand and exploit these adaptations. Although metabolomics is the 

comprehensive study of all small molecules in a biological sample, there is no 

single analytical method that can measure them all due to their extensive 

physicochemical diversity. Therefore, effective metabolomics studies require 
thoughtful selection of analytical approaches and sample preparation methods 

that are tailored to the specific biological questions at hand. For example, the role 
of metabolic quenching was discussed to counter the high turnover rate of energy 
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metabolism; apolar extraction procedures were highlighted for retrieving 

membrane profiles for studying cell envelope changes; and spatially oriented 

ionization techniques were noted for their utility in examining cell-to-cell 

communication within biofilm structures. Although 23 metabolomics-focused 

papers were included in the review, these studies were distributed across various 

bacterial species and antibiotic classes. It can therefore be concluded that a more 

systematic application of metabolomics is needed to further elucidate the role of 

metabolism in antimicrobial resistance mechanisms. 

In Chapter 6, the role of metabolism in antibiotic resistance evolution 

was further explored by challenging the metabolic versatility of P. aeruginosa 

through antibiotic adaptive laboratory evolution experiments conducted under 

single-nutrient conditions. This work was built on the concept that the metabolic 

constraints imposed by antibiotic resistance mutations, together with the 

regulatory influence of nutrient supply, shape the evolutionary response26,27. 

Phenotypic and genotypic changes in P. aeruginosa were investigated following a 

10 day evolution period under antibiotic pressure, using high concentrations of 

arginine, glucose, glutamate, and lactate as single-nutrient conditions.   

The evolved lineages displayed significant differences in minimal 

inhibitory concentrations (MIC) across the single-nutrient evolution conditions. 

Earlier work also reported nutrient-dependent MIC shiơs in P. aeruginosa, but 

primarily when comparing nutrient-rich with nutrient-poor media28. Although 

that study found only modest MIC divergence, it still identified medium-specific 
resistance mutations. In our experiment, mutations unique to specific evolution 
conditions were also detected, but only six across the 15 distinct conditions that 

were sequenced. An additional partial least-squares discriminant analysis 
(PLS-DA) revealed a small set of mutational patterns that reliably distinguished 

our evolution conditions. The narrow range of mutational change parallels the 

almost identical post-evolution growth-rate shiơs observed within each antibiotic 
class. This limited fitness variation steers the populations toward a restricted set 

of genotypes29.  

These findings demonstrated that even in single-nutrient media 

P. aeruginosa can evolve along multiple trajectories. However, this diversity 

manifests primarily as shiơs in MIC rather than as distinct mutational signatures. 
Because P. aeruginosa can persist in the CF lung for years, the phenotypic changes 
observed may eventually solidify into stable genotypic differences. Continuous, 
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automated in vitro systems are well suited to study such long-term evolution30, 

but they are technically demanding, time-consuming, and resource intensive. A 

more practical first step would be to investigate in more detail how 

infection-relevant nutrient conditions shape antibiotic resistance development, 

bearing in mind that altering even a single nutrient can tip the evolutionary 

balance. 

 

In summary, Section III highlighted that metabolic processes play a crucial role 

in antibiotic resistance development and demonstrated that, despite its 

metabolic versatility, nutrients exert a regulatory influence on P. aeruginosa 

resistance development. Although our findings delve into how the nutrient 
environment contributes to the complex evolutionary trajectories observed in the 

CF lung, they represent only a small piece of the overall picture, and further 
research in this area remains essential. Nevertheless, the results indicate that the 

influence of the nutrient environment is antibiotic-dependent, underscoring the 

need for more in-depth investigation of the biochemical responses and 

specialization processes that occur during antibiotic exposure. 

7.2.  Future perspectives  

Antibiotics are indispensable for everyday healthcare, yet immunocompromised 

patients bear a disproportionate burden of infectious disease and also serve as a 

reservoir for antibiotic-resistant strains. Examining infections in these 

individuals provides an unique window into the various ways antibiotic therapies 
can fail. The CF lung represents such an unique environment, where a typically 
commensal bacterium like P. aeruginosa becomes one of the most challenging 

infections to treat. Understanding the mechanisms that make the combination of 

the CF lung and P. aeruginosa so burdensome may also offer critical insights into 
other bacterial infections. A key factor shaping P. aeruginosa infection in the CF 
lung is the unique nutrient environment, yet this aspect is oơen overlooked. The 
nutrient environment can profoundly influence bacterial behavior and can lead 
to misinterpretation of antibiotic susceptibility testing performed using standard 

culture media. Therefore, in the quest to better understand the P. aeruginosa 

pathophysiology, it is essential to focus on: I) mapping physiologically relevant 

infection sites, II) examining the influence of nutrients on antibiotic 
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susceptibility testing, III) working on capturing nutrient-induced antibiotic 

sensitivity changes, and IV) elucidating the underlying biological mechanisms 

responsible for the antibiotic effect changes.  

Mapping of physiologically relevant infection sites 

The respiratory tract is a spatially organized system comprising diverse 

microenvironments, each of which may support distinct infection dynamics31. 

The findings presented in this thesis, demonstrating the strong influence of 
nutrient availability on antibiotic pharmacodynamics, underscore the critical 

need to improve our understanding of the chemical composition of these distinct 

niches. Accurate mapping of these environments is therefore an essential next 

step in this line of research. 

It is crucial to recognize that not all samples taken from the CF lung are 
created equal and each sample carries inherent biases and limitations that 

influence interpretation. For instance, expectorated sputum is the most 
accessible and commonly used sample type, but it represents a heterogeneous 

blend of secretions from multiple regions of the lung. This pooling of distinct 

microenvironments reduces spatial resolution and contributes to a substantial 

disconnect between the chemical profiles observed in sputum and those derived 

from in vitro P. aeruginosa cultures32. Sampling epithelial lining fluid via 
microsamplers offers more region-specific insights but is limited by its 
invasiveness and the need for saline instillation, which dilutes the sample and 

complicates direct metabolite comparisons across patients or timepoints33,34. 

Another layer of complexity arises from the heterogeneous biofilms. Spatially 

resolved analytical techniques have revealed intricate metabolic structuring 
within biofilms, including mathematical models informed by -omics data that 

demonstrate their metabolic heterogeneity35.  

The field of oncology has pioneered efforts to address such complex 
biological heterogeneity through network-based frameworks. Over the past 

decade, researchers have begun constructing multiscale “tumor atlases” that 

integrate cellular phenotypes, bulk -omic alterations, and interactions with the 

tumor microenvironment36. These atlases are built by combining conventional 

pathology with spatial biology and multi-omic datasets, offering a comprehensive 
view of tumor evolution shaped by local conditions37. Beyond advancing 
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fundamental understanding, these tools now support stratification of patient 
populations and guide personalized treatment strategies. 

Inspired by these advances in oncology, future efforts to characterize the 
infectious microenvironment of the CF lung must similarly embrace integrative, 
spatially resolved frameworks. This means not only aligning molecular, 

microbial, and pathological data layers, but also actively distinguishing between 

different CF patient phenotypes. Stratifying infections based on 

microenvironmental features will be essential for translating nutrient-induced 

pharmacodynamic effects into meaningful, individualized treatment decisions. 

In vitro nutrient composition in antimicrobial activity assays 

While our understanding of the spatial and chemical complexity of the infectious 

environment advances, accurately measuring its clinical impact requires that in 

vitro antimicrobial activity assays be adapted accordingly. The physicochemical 

composition of the culture medium represents a critical and tractable factor for 

more accurately mimicking infectious conditions38. Prior studies have shown that 

medium composition can significantly alter antibiotic activity39, and findings 
presented in Chapter 3 demonstrate that even a single nutrient modification can 
markedly shiơ antibiotic sensitivity. Combined with the environmental 
heterogeneity outlined previously, these results underscore the need to adapt in 

vitro antimicrobial assays to infection-specific microenvironments to better 
predict clinical outcomes and guide therapy. 

Nutrient conditions are also likely to influence other in vitro 

antimicrobial activity assays, including combination antibiotic testing and 

biofilm susceptibility testing. For instance, the synergy of antibiotic 
combinations depends on drug-specific mechanisms of action40, which can be 

sensitive to medium composition41. In biofilm models, nutrients critically impact 
maturation. In the CF lung, P. aeruginosa grows in aggregates that can be 

mimicked using alginate beads, but mature biofilms represented by full bead 

coverage require supplementation with alternative electron acceptors42. The 

reduced antibiotic susceptibility of biofilm populations are closely linked to the 

metabolic adaptations associated with their heterogeneous structure43. 

Incorporating infection-relevant nutrient environments into these alternative in 

vitro assays may be essential to overcome the inconsistent clinical outcomes they 

currently produce44,45.  
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Completely changing the in vitro experimental methodologies for clinical 

antimicrobial susceptibility testing (AST) is challenging, as current standardized 

protocols ensure interlaboratory comparability and are far less time-consuming 

than alternative approaches. Another potential step in improving AST is refining 
isolate selection by extracting bacterial populations from different lung regions 
of the same patient, as regional adaptations may significantly influence antibiotic 
susceptibility46. For example, Chapter 4 shows that oxygen levels affect antibiotic 
sensitivity, highlighting how microenvironmental specialization drives distinct 

colony phenotypes. A well-known CF-relevant subpopulation, small colony 

variants (SCVs), can survive otherwise lethal antibiotic concentrations but are 

oơen underrepresented in conventional AST due to their difficult-to-culture 

nature47. Moreover, as demonstrated in Chapter 4, specialization to anoxic 

conditions can lead to different treatment outcomes during aerobic in vitro 

experiments. To accurately assess antibiotic susceptibility in such specialized 

populations, AST must replicate the infection conditions under which isolates 

evolved. In this context, incorporating anaerobic AST may be particularly 

valuable for chronic P. aeruginosa infections. 

In summary, accurately predicting antibiotic efficacy in the 
heterogeneous CF lung environment will require antimicrobial assays that 

incorporate relevant nutrient conditions, assay parameters, and isolate selection. 

Nutrient induced changes to antibiotic pharmacodynamics  

To map how nutrient availability modulates antibiotic PD, this thesis moved 

beyond static MIC testing and applied dynamic time-kill assays combined with 

mathematical modeling. Although MIC values remain the clinical standard, they 

cannot resolve the differences in growth and kill kinetics that emerge 
immediately aơer antibiotic addition. Recording full time-kill curves in different 
media conditions and fitting them with PD models revealed that identical MICs 
can mask substantial variation in growth and kill rates48. These lessons underline 

the need to complement standard AST with kinetic assays that explicitly 

incorporate nutrient context. 

Both the nutrient and oxygen environments exert a significant influence 
on these growth and killing dynamics, as they are oơen associated with slow 
growth, tolerance, and persistence effects. In Chapter 3, a sigmoidal 

concentration–effect model was employed to more accurately describe the 
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antibiotic PD changes under varying nutrient conditions. Although this approach 

enabled the study of a wide range of antibiotic–nutrient combinations, it also 

presents clear disadvantages when moving towards more antibiotic-specific 
responses. The response data used to design our one-compartment PD model 

were obtained from a static time-kill assay, which fails to accurately capture 

biphasic killing curves of heterogeneous populations, exhibits variability 

depending on bacterial population size, and fails to track bacterial adaptation 

during antibiotic exposure. These limitations highlight the need for dynamic in 

vitro culturing systems, which could provide deeper insight into time-dependent 

PD characteristics like shiơing growth and killing kinetics and resistance 
development49.  

Chapters 3 and 4 demonstrated that nutrient availability strongly 

influences antibiotic sensitivity, and in Chapter 6 genetic outcomes of resistance 

evolution under these varied conditions were observed. To bridge these findings, 
PD models capturing the full time course of antibiotic effects can reveal 
differences in antibiotic selection pressure. These PD differences can 

subsequently inform population genetic models, linking observed antibiotic 
sensitivity shiơs directly to genetic variation50. The complex interplay between 

nutrient conditions, bacterial growth rates, and antibiotic susceptibility 

highlights the difficulty of accurately replicating selective pressures in vitro. 

Although continuous culture systems (e.g., chemostats) are technically 

challenging to maintain, they offer more precise control. Chemostats allow 

microbial populations to be maintained in a constant environment over extended 

periods, while enabling deliberate manipulation of specific selective forces such 
as nutrient levels or antibiotic exposure51. 

Molecular drivers of nutrient induced antibiotic sensitivity changes 

An important aspect highlighted throughout this thesis is that changes in 

antibiotic effect are oơen unique to specific nutrient-antibiotic combinations. 

While significant progress has been made through the rapid development of 
genomic databases cataloging resistance-conferring mutations (ʻresistomesʼ)52, 
these approaches primarily correlate known mutations with antimicrobial 

resistance profiles. Less conventional mechanisms, such as metabolism-driven 

resistance, are oơen underrepresented in these databases, as they are embedded 

within more complex networks25. Resistance-associated mutations in such 
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networks typically arise aơer prolonged periods of selection pressure (Chapter 

6), whereas phenotypic adaptive responses can cause a transient reduction in 

antibiotic efficacy during earlier phases of exposure48, exemplified in Chapter 3. 

Although this thesis did not explicitly investigate molecular mechanisms, the 

observed nutrient-antibiotic-specific effects emphasize the need for future 
studies to dissect the specific biochemical responses involved.  

Transcriptomics, proteomics, and metabolomics probe molecular layers 

that lie much closer to the phenotype than genomic data, and thus provide the 

biochemical resolution needed to dissect antibiotic-response mechanisms. For 
example, whole-genome sequencing of two P. aeruginosa isolates accounted for 

only part of their divergent β-lactam phenotypes, whereas transcriptomics 

uncovered additional resistance-linked expression changes invisible at the DNA 

level53. Likewise, quantitative proteomics detected the early induction of heat-

shock chaperones, proteases, and metabolic enzymes when P. aeruginosa was 

exposed to sub-inhibitory tobramycin, highlighting rapid adaptive pathways54.  In 

Chapter 5, it was shown how metabolomics can track nutrient utilization, 

antibiotic-induced metabolite signatures21, and how those metabolic read-outs 

can be exploited by supplementing targeted nutrients to enhance antibiotic 

sensitivity9. Each technique carries its own analytical limitations and, most 
critically, captures only a snapshot of an inherently dynamic system.   

Fluxomics adds this missing temporal dimension by tracing how carbon 
and energy flow through metabolic networks under changing conditions. Such 

data reveal compensatory pathways that support survival during nutrient stress 

and antibiotic pressure55. Yet, building isolate-specific flux models for CF 
infections is data-intensive, and the necessary parameters for making robust 

extrapolations are seldom available.  

Recent genome-scale metabolic reconstructions, which integrate 

hundreds of reactions and multi-omics inputs, improve confidence in flux 
predictions. For example, a model combining transcriptomics, proteomics, and 
metabolomics successfully captured lipopolysaccharide remodeling during 

polymyxin resistance in P. aeruginosa56. These integrative models better capture 

time-dependent processes such as fluctuating drug concentrations or nutrient 
availability. 

Most -omics platforms are advancing toward single-cell resolution 

because that level of detail can reveal subtle phenotypic adaptations during 
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antibiotic exposure. Yet, despite their analytical power, single-cell studies have 

limited biological impact if they are not anchored to a broader mechanistic 

framework. The heterogeneity of bacterial populations is well established, as 

repeatedly illustrated by phenomena like antibiotic persistence57. Instead, 

research efforts should begin with established analytical techniques, integrate 
their datasets, and first map P. aeruginosa responses to each antibiotic. Once the 

antibiotic mode of action and the population-level biochemical responses have 

been well defined, single-cell approaches can then illuminate the fine-scale 

heterogeneity that underlies treatment failure. 

7.3. Overall conclusion 

In conclusion, this thesis demonstrates that shiơs in nutrient and oxygen 
availability can rewire P. aeruginosa physiology and alter antibiotic 

pharmacodynamics. These findings confirm that effective drug evaluation must 
consider antibiotic mechanism, pathogen physiology, and microenvironment as 

interdependent factors, especially for heterogeneous infection sites such as the 

CF lung. The work presented here lays the groundwork for explicitly 

incorporating nutrient and oxygen levels into antimicrobial sensitivity assay 

development and systems-level analyses of bacterial responses. Looking ahead, 

combining detailed infection-site mapping with environment-aware 

experimental assays represents a necessary first step toward patient-specific 
antibiotic therapy. 
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8.1. Algemene introductie  

Pseudomonas aeruginosa: een hardnekkige ziekteverwekker 

Pseudomonas aeruginosa is een bacterie die goed gedijt op vochtige plekken, 

zoals stilstaand water, beekjes of vochtige aarde. Hoewel deze bacterie op veel 

plaatsen voorkomt, is deze bacteriesoort voor de meeste mensen geen 

ziekteverwekker. Voor mensen met een verzwakt afweersysteem kan P. 

aeruginosa echter wel gevaarlijk zijn: hun afweer is vaak niet sterk genoeg om de 

bacterie onder controle te houden. Omdat P. aeruginosa alleen onder bepaalde 

omstandigheden ziekte veroorzaakt, wordt de bacteriesoort beschouwd als een 

opportunistisch pathogeen. Maar omdat de bacterie niet alleen voorkomt in 

vochtige plekken in de natuur, maar ook in waterleidingen, kranen en 

airconditioningsystemen, kan ze zich gemakkelijk verspreiden in ziekenhuizen 

en verzorgingshuizen. Precies de plekken waar veel zieke en kwetsbare mensen 

verblijven. Hierdoor is P. aeruginosa verantwoordelijk voor een aanzienlijk deel 

van de infecties die patiënten tijdens hun ziekenhuisopname oplopen. 

Voorbeelden hiervan zijn urineweginfecties via katheters, bloedbaaninfecties bij 

infusen, of longontstekingen bij beademde patiënten. Wanneer iemand zoʼn 
infectie oploopt, wordt vaak gestart met een antibioticakuur: een behandeling 

die gericht is op het doden van de bacterie. Hoewel deze behandeling in veel 

gevallen effectief is, komt het steeds vaker voor dat de infectie niet verdwijnt 
omdat het pathogeen niet meer gevoelig is voor de antibiotica (Box 1).  

Box 1. De effectiviteit van antibiotica bij infecties 

Het eerste antibioticum werd bij toeval ontdekt in 1928. Een schimmel scheidde een stofje 

uit dat de groei van omliggende bacteriën remde. Pas in 1940 slaagden wetenschappers 

erin om dit middel, penicilline, op grote schaal te produceren. Antibioticabehandelingen 

waren namelijk essentieel om infecties als gevolg van verwondingen of operaties te 

voorkomen, juist in een periode waarin de druk op het medisch personeel enorm was, 

tijdens de Tweede Wereldoorlog. Sindsdien is antibiotica niet meer weg te denken uit de 

gezondheidszorg. Dankzij deze middelen kunnen jonge kinderen die vroeger dagenlang 

ziek op de bank lagen, soms al na één dag behandeling weer vrolijk rondlopen. Ook 

ingrijpende operaties zijn een stuk veiliger geworden, omdat het risico op 

levensbedreigende infecties achteraf sterk is afgenomen. 

Maar tegelijkertijd met de doorbraak van antibiotica werden ook de eerste bacteriën 

waargenomen die niet meer geremd werden bij blootstelling aan deze middelen. Deze 
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bacteriën ontwikkelden antibioticaresistentie door de doelwitten van antibiotica zodanig 

aan te passen dat de werking ervan verloren ging. Omdat bacteriën in grote populaties 

voorkomen en zich zeer snel delen, kan een verandering die een overlevingsvoordeel biedt 

snel dominant worden binnen een populatie. Deze snelle evolutionaire aanpassing leidde 

ertoe dat al kort na de introductie van antibiotica bacterielijnen ontstonden die volledig 

resistent waren, zoals de bekende ziekenhuisbacterie methicilline-resistente 

Staphylococcus aureus (MRSA). 

Om infecties met antibioticaresistente bacteriën toch te kunnen blijven 

behandelen, zijn er in de loop der tijd veel nieuwe antibiotica ontwikkeld. Dit heeơ geleid 
tot een breed scala aan antibioticaklassen met verschillende werkingsmechanismen. Om 

de werking van antibioticaklassen te waarborgen gelden er strikte voorschrijfregels. Toch 

overlijden jaarlijks nog altijd miljoenen mensen aan infecties waarbij antibioticaresistente 

bacteriën een rol spelen. Vaak omdat deze bacteriën ongevoelig zijn voor meerdere 

antibioticaklassen.  

Hoewel onverantwoord gebruik van antibiotica vaak wordt genoemd als 

belangrijke aanjager van de ontwikkeling van multiresistente bacteriën, valt dit buiten de 

reikwijdte van dit proefschriơ. Dit proefschriơ richt zich op infecties die klinisch moeilijk 
te behandelen zijn doordat bacteriën zich tijdens de infectieperiode kunnen aanpassen 

door falende antibiotica therapieën. Als gevolg hiervan kunnen infecties langdurig blijven 

bestaan (soms maanden tot zelfs jaren), en dus overgaan in een chronisch ziektebeeld. 

 

P. aeruginosa infecties in de longen van cystische fibrosepatiënten 

Cystische fibrose (CF), ook wel taaislijmziekte genoemd, is een genetische 

aandoening die leidt tot een abnormaal dikke slijmlaag in de luchtwegen. In 

gezonde longen helpt het slijm bij het afvoeren van pathogenen en afvalstoffen. 

Bij CF-patiënten is het slijm gedehydrateerd en stroperig, waardoor deze 

klaringsfunctie ernstig verstoord is. Dit creëert een gunstige omgeving voor 

micro-organismen om zich in de longen te vestigen. Het afweersysteem reageert 

op deze kolonisatie, wat leidt tot ontstekingsreacties en infecties. Al op jonge 

leeơijd worden bij CF-patiënten herhaaldelijk bacteriële kolonies aangetroffen in 
de luchtwegen. Om deze kolonies onder controle te houden en verdere 

longschade te beperken, zijn CF-patiënten vaak aangewezen op langdurige 

onderdrukkende antibioticatherapieën. Helaas zijn deze behandelingen bij een 

aanzienlijk deel van de patiënten niet effectief genoeg om chronische 
longinfecties volledig te voorkomen. In sommige gevallen zijn de infecties zo 
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hardnekkig en therapieresistent dat een risicovolle longtransplantatie de enige 

overgebleven optie is om de infectie te elimineren. 

P. aeruginosa is één van de meerdere pathogenen die verantwoordelijk 

zijn voor chronische longinfecties bij CF-patiënten. Wat P. aeruginosa specifiek 
maakt, is dat de infectie vaak al op jonge leeơijd wordt opgelopen en vervolgens 
niet meer volledig geëlimineerd kan worden. Hierdoor is P. aeruginosa de meest 

dominante pathogeen in de luchtwegen van volwassen CF-patiënten. Meer 

inzicht in de manier waarop de chronische P. aeruginosa infectie ontstaat en de 

respons op antibiotica bij CF-patiënten biedt niet alleen kansen om de klinische 

uitkomst voor deze specifieke patiëntengroep te verbeteren, maar is ook van 

groot belang om het groeiende probleem van infecties met multiresistente P. 

aeruginosa-stammen het hoofd te bieden. 

De stofwisseling van P. aeruginosa in de longen van CF-patiënten 

Door de vorming van een dikke laag slijm en het gebrek aan effectieve klaring 
ontstaat een unieke leefomgeving in de mucus van de luchtwegen van CF-

patiënten. In deze directe, lokale micro-omgeving waarin P. aeruginosa zich 

vestigt, hopen potentiële voedingsstoffen zich op, terwijl de hoeveelheid 
beschikbare zuurstof zeer beperkt is. Door de slechte zuurstofpenetratie in de 

mucus ontstaan zuurstofarme tot zelfs volledig zuurstofvrije omstandigheden. 

De stofwisseling van P. aeruginosa speelt een belangrijke factor waarom de 

bacterie zich gemakkelijk kan vestigen in deze unieke micro-omgevingen.   

Het veelzijdige en flexibele metabolisme van P. aeruginosa sluit goed aan 

op het aanbod voedingsstoffen in de mucus van de longen van CF-patiënten (Box 

2). In de mucus worden namelijk hoge concentraties gemeten van de nutriënten 

die P. aeruginosa efficiënt benut: aminozuren, korte-keten organische zuren, en 

nitraat. Daarnaast kan P. aeruginosa grotere moleculen actief afbreken om de 

gewenste nutriënten vrij te maken, en beschikt het over virulentiefactoren die 

het vrijkomen van nutriënten in humane cellen forceren. Dankzij deze overvloed 

aan beschikbare nutriënten kan de bacterie zich gemakkelijk vestigen in zowel 

zuurstofrijke (aerobe) als zuurstofarme (anaerobe) micro-omgevingen in de 

longen van CF-patiënten. 
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Box 2. Metabolisme van P. aeruginosa 

Het metabolisme van P. aeruginosa wijkt af van veel andere pathogenen en humane cellen. 

In humane cellen start de energieproductie meestal met suikers zoals glucose, die worden 

afgebroken tot kleinere moleculen. Deze tussenproducten kunnen dienen als 

bouwstenen, of in combinatie met zuurstof worden gebruikt in oxidatieve fosforylatie. 

Tijdens oxidatieve fosforylatie wordt de energie uit de suikerafbraak opgeslagen in de 

vorm van ATP. Het ATP-molecuul is de universele energiedrager van cellen. In humane 

cellen vindt de oxidatieve fosforylatie plaats in de mitochondriën, die daardoor de bijnaam 

'energiecentrales van de celʼ dragen. Hoewel oxidatieve fosforylatie een zeer efficiënte 
manier is van energieproductie, vereist het de aanwezigheid van zowel suikers en zuurstof. 

P. aeruginosa daarentegen maakt juist veelvuldig gebruik van alternatieve 

koolstofbronnen, zoals aminozuren en korte-keten organische zuren. Deze aminozuren 

en organische zuren zijn kleine moleculen die fungeren in humane cellen ook als 

belangrijke bouwstenen voor macromoleculen zoals eiwitten en lipiden. Maar P. 

aeruginosa beschikt over meerdere alternatieve metabole routes om deze kleine 

moleculen efficiënt te benutten voor energieproductie. Het gebruik van deze alternatieve 
nutriënten geven P. aeruginosa niet alleen een voordeel in de concurrentie om nutriënten, 

maar zorgt ook voor een hoge mate van flexibiliteit.  

De metabole flexibiliteit van P. aeruginosa wordt verder vergroot doordat de 

bacterie, naast zuurstof, ook nitraat kan gebruiken als alternatief voor het proces om 

energie op te slaan in de vorm van ATP. Dit proces, denitrificatie genoemd, stelt P. 

aeruginosa in staat om ook in anaerobe omgevingen waar geen zuurstof aanwezig is 

efficiënt energie te blijven produceren. Wanneer zowel zuurstofrespiratie als denitrificatie 
niet mogelijk zijn, kan P. aeruginosa terugvallen op fermentatie en deiminatie. 

Fermentatie is een anaerobe metabole route voor energieproductie, vergelijkbaar met wat 

er in spieren gebeurt tijdens zware inspanning: glucose wordt dan deels afgebroken 

zonder dat zuurstof nodig is, met lactaat productie als gevolg. Bij deiminatie worden 

aminozuren afgebroken via specifieke enzymatische routes waarbij eveneens ATP wordt 
gegenereerd. Deze metabole veerkracht stelt P. aeruginosa in staat zich uitstekend aan te 

passen aan de vaak anaerobe mucus in de longen van CF-patiënten. 

 

Het metabolisme van bacteriën beïnvloed de efficiëntie van 
antibiotica 

Bacteriën beschikken over meerdere mechanismen om de werking van 

antibiotica te verminderen of zelfs volledig uit te schakelen. Antibiotica 

resistentie is verantwoordelijk voor het overgrote deel van de miljoenen 

sterfgevallen die jaarlijks wereldwijd worden toegeschreven aan het falen van 
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antibiotica behandelingen. Er is dan ook veel onderzoek gedaan naar de 

mechanismen die leiden tot antibioticaresistentie.  

Door antibiotica resistentiemechanismen is een bacterie in staat zijn om 

te blijven delen bij antibiotica-concentraties die normaal gesproken de groei van 

de populatie remmen of dodelijk zijn (Figuur 1A). Veelvoorkomende 

resistentiemechanismen zijn: (1) enzymatische afbraak of modificatie van het 
antibioticum, (2) actieve efflux, waarbij antibiotica uit de cel worden gepompt, (3) 
veranderingen in het doelwit van het antibioticum, waardoor het niet meer 

effectief kan binden, en (4) verminderde opname of doorlaatbaarheid van het 

antibioticum.  

Deze resistentiemechanismen ontstaan door veranderingen in het 

bacteriële DNA. Een voorbeeld hiervan is een spontane mutatie in het stukje DNA 

dat de informatie bevat voor het maken van de eiwitten waaraan een antibioticum 

normaal bindt om celprocessen te verstoren. Als de aanpassing in het DNA ervoor 

zorgt dat het antibioticum niet meer goed kan binden, wordt deze specifieke 
bacteriecel ongevoelig voor het antibioticum. Omdat DNA wordt doorgegeven 

aan nakomelingen, zullen ook de nieuwgevormde cellen dezelfde aanpassing in 

het DNA hebben. De bacteriecellen die de mutatie niet hebben en dus nog wel 

gevoelig zijn voor het antibioticum, zullen tijdens de behandeling afsterven of 

stoppen met delen. Daardoor kunnen de resistente cellen met de mutatie snel de 

overhand nemen binnen de bacteriepopulatie. De kans op het ontstaan van zoʼn 

mutatie die deze evolutie in gang zet is op zichzelf klein. Maar omdat een infectie 

vaak uit miljoenen bacteriën bestaat die zich bovendien zeer snel kunnen 

verdubbelen, is de kans dat er ergens in de populatie een resistente variant 

ontstaat reëel. Zeker bij de langdurige antibioticatherapieën die gebruikt worden 

om longschade bij CF-patiënten te beperken. 

 

Naast deze stabiele, genetische resistentiemechanismen maken bacteriën ook 

gebruik van tijdelijke strategieën waarmee ze een antibiotica behandeling 

tijdelijk kunnen overleven. Een infectie met een pathogeen dat zulke transiënte 

mechanisme toepast lijkt tijdens de behandeling vaak succesvol bestreden, maar 

keert terug zodra de antibiotica wordt stopgezet (Figuur 1B). Bij hervatting van 

dezelfde behandeling is de bacterie meestal opnieuw gevoelig, omdat het gaat om 
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een tijdelijke fenotypische aanpassing. Er vindt dus geen stabiele verandering 

plaats in het DNA. Toch vergroten deze tijdelijke aanpassingen de kans dat op 

termijn wel stabiele, genetische resistentie ontstaat en zich vastzet binnen de 

bacteriële populatie. 

Het bacteriële metabolisme speelt een belangrijke rol in zulke tijdelijke 

veranderingen in antibioticagevoeligheid. Dit is duidelijk zichtbaar bij de werking 

van aminoglycoside-antibiotica. Aminoglycosiden, zoals tobramycine, 

verstoren de eiwitsynthese in bacteriën, wat uiteindelijk leidt tot celdood. De 

opname van deze antibiotica in de bacteriecel is echter afhankelijk van een 

elektrisch spanningsverschil over het celmembraan, dat wordt opgewekt tijdens 

de energieproductie via oxidatieve fosforylatie. Hierdoor hopen aminoglycosiden 

zich vooral op in metabool actieve cellen met een hoog energieniveau, en is de 

Figuur 1. Visualisatie van hoe bacteriële populaties reageren op antibiotische 

behandeling. (A) antibiotica resistentie: een stabiele genetische verandering zoals een 

mutatie zorgt ervoor dat bacteriën kunnen blijven groeien tijdens blootstelling aan 

antibiotica. (B) Transiënte verlaging van antibiotica gevoeligheid: door een fenotypische 

verandering ontstaat een verlaagde gevoeligheid, waardoor bacteriën de antibiotische 

werking tijdelijk overleven. 
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aminoglycoside effectiever in celdoding. Dit staat in contrast met de werking van 

polymyxines, een andere klasse van bacteriedodende antibiotica. Polymyxines, 

zoals colistine, binden aan lipiden in de buitenste laag van de celwand. Om deze 

binding te verhinderen, kan de bacterie de samenstelling van de lipiden in de 

celwand actief aanpassen. Echter kost dit proces veel energie en dus niet mogelijk 

is in cellen met een laag energieniveau. Daardoor zijn polymyxines juist 

dodelijker voor cellen met een lage metabole activiteit. 

Net als bij mensen verschillen bacteriecellen binnen een populatie van 

elkaar, zowel in genotypisch als fenotypisch opzicht. Deze heterogeniteit tussen 

cellen maakt dat een bacteriepopulatie zich goed kan aanpassen aan 

veranderende omstandigheden. Een goed voorbeeld van variatie tussen P. 

aeruginosa cellen in de luchtwegen van CF-patiënten zijn biofilm-aggregaten. 

Biofilms bestaan uit bacteriën die hun beweeglijkheid opgeven en samen een 
beschermende matrix uitscheiden. Deze extracellulaire matrix beschermt de 

bacteriën tegen schadelijke omgevingsfactoren, zoals antibiotica en het 

afweersysteem. Naast deze bescherming zorgt de matrix er ook voor dat 

voedingsstoffen beperkt tot de kern van de biofilm komen. Daardoor ontstaat in 
de kern een voedselarme en zuurstofarme micro-omgeving, waarin bacteriën 

inactief of dormant raken. Colistine werkt vooral goed op de inactieve cellen diep 

in de biofilm, terwijl tobramycine juist effectief is tegen de actieve bacteriën aan 
de buitenkant. Het toevoegen van voedingsstoffen tijdens de antibiotica 

behandeling zorgt dat bacteriën actiever worden, waardoor onder andere 

tobramycine beter gaat werken. Dit benadrukt hoe belangrijk het is om bij de 

keuze van een behandeling niet alleen naar het antibioticum te kijken, maar ook 

naar de metabole activiteit van de bacterie. 

De micro-omgevingen beïnvloeden P. aeruginosa antibiotica 

gevoeligheid 

De werking van antibiotica hangt nauw samen met de metabole activiteit van P. 

aeruginosa, die grotendeels wordt bepaald door de hoeveelheid beschikbare 

nutriënten en zuurstof in de omgeving. In de longen van CF-patiënten bestaan 

veel verschillende micro-omgevingen, die ontstaan door variatie in de ernst van 

de ziekte, de snelheid van longfunctieverlies, bijkomende infecties en de 

structuur van de luchtwegen. P. aeruginosa past zijn metabolisme aan deze 

omstandigheden aan, wat leidt tot een breed scala aan resistentiemechanismen. 
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Het is daarom belangrijk om te begrijpen welke specifieke veranderingen in de 

omgeving invloed hebben op de antibioticagevoeligheid van P. aeruginosa. Dit 

inzicht is essentieel om terugkerende behandelproblemen te voorkomen en 

chronische infecties beter onder controle te krijgen. 

Analyse van bacteriële groei en antibioticawerking in het 

laboratorium 

Om het effect van de groeicondities op antibioticagevoeligheid te bestuderen, zijn 
gecontroleerde omstandigheden nodig. In het menselijk lichaam wordt de 

omgeving beïnvloed door talloze factoren, waardoor het lastig is om het effect 
van één specifieke factor te isoleren. Daarom wordt vaak uitgeweken naar in vitro 

laboratoriumonderzoek.  

In de kliniek wordt bijvoorbeeld het pathogeen uit een patiënt geïsoleerd 

om de gevoeligheid voor antibiotica te bepalen. In het laboratorium worden deze 

bacteriën vervolgens gekweekt onder gecontroleerde omstandigheden: bij 

lichaamstemperatuur (37 °C) en in een voedingsrijk kweekmedium. Vervolgens 

worden de bacteriën blootgesteld aan een verdunningsreeks van een 

antibioticum, waarbij elke volgende concentratie het dubbele is van de vorige. Na 

20 tot 24 uur incubatie wordt het effect beoordeeld door te kijken naar de 

troebelheid van het medium: als het medium troebel is geworden, betekent dit 

dat de bacterie groeit ondanks de aanwezigheid van het antibioticum. De laagste 

concentratie waarbij geen zichtbare groei optreedt, wordt de minimale 

inhibitieconcentratie (MIC) genoemd. 

Hoewel de MIC een belangrijke maat is voor de gevoeligheid van een 

bacterie voor een antibioticum, heeơ deze methode ook een aantal beperkingen. 

Zo geeơ de MIC slechts een momentopname weer, en wordt de groei of afname 
van de bacterie in de tijd niet in kaart gebracht. Daarnaast worden 

gestandaardiseerde kweekmedia gebruikt die de complexe omgeving van de 

longen in CF-patiënten niet goed nabootsen, waardoor de resultaten niet altijd 

representatief zijn voor de situatie in het lichaam.  

 

Om de beperking van de meting op één enkel tijdspunt bij MIC-bepalingen te 

omzeilen, kunnen time-kill experimenten worden gebruikt. In deze  
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Box 3. Bepalen van de bacteriedichtheid 

De bacteriedichtheid kan op verschillende manieren worden bepaald. De snelste en 

goedkoopste methode is het meten van de optische dichtheid (OD). Dit is vergelijkbaar met 

de eindmeting van een MIC-test, maar kan bij time-kill experimenten dynamisch worden 

uitgevoerd met behulp van een fotospectrometer. De fotospectrometer schijnt licht met 

een golflengte van 600 nanometer door het kweekmedium. Dit licht wordt deels 
geabsorbeerd en verstrooid, waardoor er minder licht de detector bereikt. De gemeten 

waarde, OD600, geeơ een indicatie van de troebelheid van het medium. Omdat bacteriën 
de dichtheid van het medium verhogen, neemt de OD600-waarde toe met de groei van de 

cultuur. De OD600 zegt echter niets over het aantal levende bacteriën, omdat ook dode 

cellen het licht tegenhouden. Hierdoor is OD600 niet geschikt om celdoding door antibiotica 

vast te stellen. Om zowel groei als afname van levende bacteriën te meten, wordt daarom 

vaak gebruikgemaakt van het tellen van colony forming units (CFU). Eén CFU staat voor 
een levende bacterie die in staat is een kolonie te vormen op een voedingsbodem in een 

petrischaal. Aangezien bacterieculturen vaak uit tientallen miljoenen bacteriën bestaan, 

wordt de cultuur verdund om het aantal kolonies telbaar te maken. Het maken van 

verdunningen, incuberen van de platen en handmatig tellen van CFU s̓ is echter 
tijdrovend. Daarom kan een indirecte bepaling van levende cellen veel tijd besparen. In 

dit proefschriơ is hiervoor gebruikgemaakt van bioluminescente bacteriën. Deze 

bacteriën zijn genetisch aangepast om een eiwit te produceren dat voortdurend licht 

uitzendt. Dit eiwit functioneert alleen in levende cellen, omdat het ATP nodig heeơ om 
luminescentie te genereren. Wanneer bacteriën afsterven, daalt het ATP-gehalte en neemt 

het uitgezonden licht af. Dankzij deze methode kan de bacteriële dichtheid gedurende het 

time-kill experiment volledig automatisch worden gevolgd met een fotospectrometer. 

 

experimenten wordt de bacteriedichtheid gedurende de tijd gevolgd (Box 3), 

waardoor het mogelijk is om het groeiverloop en de mate van afname door 

antibiotica nauwkeurig te bepalen. In tegenstelling tot de statische MIC-meting 

kunnen time-kill experimenten subtiele veranderingen in groeidynamiek 

zichtbaar maken, zoals tijdelijke overlevingsstrategieën of het opnieuw opkomen 

van groei door het ontstaan van resistentie (Hoofdstuk 1, Figuur 1). 

 

De bacteriedichtheid over tijd uit het time-kill experiment kan vervolgens worden 

gebruikt als input voor farmacodynamische (PD) modellen. Deze wiskundige 

modellen beschrijven de relatie tussen concentratie van het antibioticum en het 

effect op de bacteriedichtheid (Box 4). De parameters uit het model geven 

daarmee een kwantitatieve beschrijving van de concentratie-effectrelatie van 
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het antibioticum en de bacterie. Op deze manier kunnen ook subtiele 

veranderingen in groeidynamiek uit het time-kill experiment worden 

meegenomen bij het vergelijken van antibiotica of groeicondities. 

 

Box 4. Farmacometrie 

Farmacometrie is het vakgebied dat focust op het kwantitatief modelleren en analyseren 

van de werking van geneesmiddelen in het lichaam. Het combineert farmacokinetiek en 

farmacodynamiek met statistiek en wiskunde om te begrijpen, voorstellen en 

optimaliseren hoe medicijnen werken bij patiënten. In antibioticastudies wordt 

farmacometrie gebruikt om de juiste dosis en toedieningsfrequentie te bepalen die nodig 
zijn om een zo effectief mogelijk effect op de bacteriën te bereiken. 

 

Farmacokinetiek (PK) beschrijơ hoe het lichaam invloed uitoefent op de concentratie van 
een geneesmiddel. Denk hierbij aan processen zoals de opname in de darmen, de 

verdeling binnen het lichaam, de afbraak van het middel en de uitscheiding ervan. In een 

PK-model worden deze processen wiskundig weergegeven met parameters die de 

concentratie beïnvloeden. Op basis hiervan kan het verloop van de 

geneesmiddelconcentratie tijdens een behandeling worden gesimuleerd en weergegeven 

in een concentratie-tijd grafiek. 

 

Farmacodynamiek (PD) beschrijơ het effect van het geneesmiddel op het lichaam of 
micro-organismen. In dit proefschriơ is het effect de afname van bacteriegroei. Door 
meerdere time-kill experimenten uit te voeren met verschillende concentraties kan een 

verschil in effect bepaald worden. De concentratie-effect relatie wordt vervolgens met een 
wiskundig model beschreven, zodat ook het effect bij concentraties die niet zijn getest 
gesimuleerd kunnen worden. In dit proefschriơ wordt een Emax model gebruikt om de 

concentratie-effect relatie te beschrijven (vergelijking 1).  

 

 𝐵𝐵𝐵𝐵ܿ𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵݋𝐵𝐵𝐵𝐵([ܣ끫롨]) = ௠௔௫ܧ + 
ா0−ா೘ೌೣ1+௘೙ಹ(log([ಲಳ])−log(ಶ಴50))

   (1) 

 

 

Een Emax model beschrijơ hoe sterk het effect is van een antibioticum door de relatie te 
bepalen tussen 2 asymptoten. Het maximale effect van het antibioticum wordt beschreven 
in de onderste asymptoot, de Emax (Figuur 2A). De concentraties waarbij nog geen effect 
waarneembaar is wordt beschreven door de bovenste asymptoot, de E0 (Figuur 2B). En het 
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effect-concentratie tussen de asymptoten door de Hill coëfficiënt, de nH (Figuur 2C). De 

computer berekent de modelparameters die het beste passen bij de metingen uit het time-

kill experiment, door de fout tussen model en data zo klein mogelijk te maken (Figuur 2D-

E). 

 
Figuur 2. Het beschrijven van de concentratie-effect relatie met het Emax model. De figuren A-E zijn 

een concentratie-effect plot met op de Y-as het effect aangegeven met bacteriegroei en op de x-as de 

concentratie van het antibioticum. Bij een hogere concentratie van het antibioticum zal de 

bacteriegroei verminderen, waardoor het effect groter is. 

 

Om tijdens deze laboratorium in vitro experimenten beter de omstandigheden 

in het lichaam na te bootsen, is in 2007 een synthetisch CF-sputum medium 
(SCFM) ontwikkeld. Dit kweekmedium lijkt qua nutriënten op het mucus van CF-

patiënten.  P. aeruginosa gedraagt zich in SCFM gelijkwaardiger aan hoe ze zich in 

het lichaam gedragen dan wanneer ze in standaard laboratorium media worden 

gekweekt. Omdat P. aeruginosa anders gedraagt in de verschillende media, 

reageren ze ook anders op antibiotica. Hoewel SCFM dus beter lijkt op de echte 
situatie in de longen, geeơ een MIC-test met slechts één soort kweekmedium nog 

steeds geen volledig beeld. In de longen van CF-patiënten zijn namelijk veel 

verschillende soorten voedingsomgevingen aanwezig.  
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Daarnaast kan de invloed van voeding op het gedrag van de bacterie en de reactie 

op antibiotica beter worden onderzocht met behulp van PD modellen (Hoofdstuk 

1, Figuur 2). De veranderingen in antibiotica gevoeligheid worden vaak grof 

geclassificeerd op basis van de PD veranderingen. Zo wordt bijvoorbeeld groei 

tijdens antibiotica behandeling geclassificeerd als resistentie, terwijl 
veranderingen in de dynamiek van bacteriedoding vaak worden toebedeeld aan 

transiënte mechanisme. Maar deze veranderingen in antibiotica PD zijn het 

gevolg van ingewikkelde veranderingen in onderliggende cel-processen die zich 

uiten in de fenotypische veranderingen. Omdat de voedingsomgeving ook effect 
heeơ op dezelfde cel-processen, speelt dit ook een rol op het fenotype van de 

bacterie in het vormen de PD uitkomsten.  

 

De veranderingen die optreden in bacteriën tijdens een antibioticabehandeling 

variëren van aanpassingen in het DNA tot veranderingen in de stofwisseling. Het 

bestuderen van deze processen is belangrijk om beter te begrijpen waarom 

antibiotica soms wel en soms niet goed werken. Uiteindelijk helpt dit om PD 

onderzoeksresultaten beter te vertalen naar effectieve behandelstrategieën in de 
kliniek. Dit onderzoek gaat enerzijds om het genetisch in kaart brengen van 

mutaties in bacteriën die de gevoeligheid voor antibiotica beïnvloeden. Maar ook 

om het toepassen van andere omics-technieken zoals transcriptomics, 

proteomics en metabolomics om fenotypische veranderingen in bacteriën te 

volgen (Box 5). Vooral bij transiënte veranderingen in antibioticagevoeligheid 

zijn deze technieken waardevol, bijvoorbeeld als reactie op verschillen in 

nutriënten. Door de resultaten van deze omics-methodes te combineren, ontstaat 

een beter beeld van hoe de omgeving en de bijbehorende bacteriële 

aanpassingen de werking van antibiotica beïnvloeden op moleculair niveau. Dit 

inzicht maakt het mogelijk om laboratoriummodellen op specifieke onderdelen 
realistischer te maken, zodat bacteriën onder testomstandigheden meer lijken op 

hoe ze zich gedragen in het lichaam van de patiënt. Daardoor kunnen 

behandelingen beter afgestemd worden op specifieke ziektebeelden. Daarnaast 

is het ontwikkelen van realistische modellen belangrijk voor het testen van 

nieuwe antibiotica. Of een nieuw middel kans maakt op verdere klinische 

ontwikkeling, hangt sterk af van hoe goed het werkt in laboratoriumtests. Een 

testomgeving die beter aansluit bij de situatie in het lichaam bij moeilijk te 

behandelen infecties verhoogt de voorspellende waarde van zulke experimenten. 
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Voor luchtweginfecties bij CF-patiënten is de kennis voor het verbeteren van 

laboratoriummodellen ook belangrijk. De longomgeving bij CF wordt 
gekenmerkt door een unieke samenstelling van nutriënten, terwijl P. aeruginosa 

het vermogen om zich flexibel fenotypisch aan te passen. Deze complexe 

wisselwerking vraagt om een gestructureerde en stapsgewijze benadering. Die 

begint bij het systematisch onderzoeken van afzonderlijke omgevingsfactoren. 

Daarmee wordt de basis gelegd voor beter inzicht in hoe de CF-longomgeving, 

het bacteriële metabolisme en antibiotica elkaar beïnvloeden. 

 

Box 5. -Omics benadering 

"Meten is weten" is het uitgangspunt van de -omics-technieken. Het woord -omics verwijst 

naar een groep onderzoeksvelden die zich richten op het in kaart brengen van 

verschillende lagen binnen een cel. Elk van deze velden bestudeert een ander aspect van 

hoe een cel werkt. De naam van deze onderzoeksgebieden eindigt op -omics, zoals 

genomics, transcriptomics, proteomics, en metabolomics (Tabel 1). Door deze lagen 

systematisch te meten, kunnen onderzoekers beter begrijpen hoe een cel zich aanpast aan 

zijn omgeving, bijvoorbeeld bij stress of blootstelling aan antibiotica. 

 

Tabel 1. Voorbeelden van -omics velden. 

Veld Wat het meet Toepassing 

Genomics Het volledige DNA 

Identificeert genetische 
veranderingen, zoals mutaties of 

resistentiegenen 

Transcriptomics 
De RNA-moleculen die worden 

afgelezen van het DNA 

Laat zien welke genen op een 

bepaald moment actief zijn 

Proteomics 
De eiwitten die in de cel worden 

geproduceerd 

Toont welke celprocessen en 

functies actief zijn 

Metabolomics 
Kleine moleculen (metabolieten) die 

ontstaan uit de stofwisseling 

Geeơ inzicht in de metabole 
activiteit van de cel 
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8.2. Doel van dit proefschriȅ 

De impact van de fenotypische flexibiliteit van P. aeruginosa en de uiteenlopende 

micro-omgevingen in de CF-longen op de werking van antibiotica en het ontstaan 

van resistentie is nog onvoldoende begrepen. Om de behandelstrategieën met 

antibiotica voor chronische luchtweginfecties door P. aeruginosa bij CF-patiënten 

te verbeteren, is het essentieel om beter te begrijpen hoe de infectieuze micro-

omgeving de respons op antibiotica vormgeeơ. In dit proefschriơ stellen wij de 
hypothese dat nutriëntcondities een centrale rol spelen in veranderingen in 

antibiotica PD en de evolutie van antibioticaresistentie beïnvloeden. Hierdoor 

hebben de nutriëntcondities uiteindelijk invloed op het therapeutisch resultaat.  

 

8.3. Aanpassingen aan de verschillende 

omgevingen in de CF-long 

Om onze huidige kennis met betrekking tot de hypothese van dit proefschriơ 

samen te vatten, biedt Hoofdstuk 2 (Sectie I) een uitgebreid overzicht van de 

metabole aanpassingen van P. aeruginosa aan de uiteenlopende nutriënt-niches 

in de longen van CF-patiënten. Deze metabole aanpassingen van de bacterie 

bepaalt onder meer de groeisnelheid, energiehuishouding, en hoeveelheid stress 

in de cellen. Deze factoren hebben allemaal invloed op de gevoeligheid voor 

antibiotica. In dit kader spelen de diverse micro-omgevingen met verschillende 

nutriënten en verschillen in zuurstofconcentraties een centrale rol in de werking 

van antibiotica behandelingen. Deze verschillen in micro-omgevingen worden 

nog verder versterkt binnen de voedingsstofgradiënten binnen biofilm-

aggregaten van P. aeruginosa. Door deze verschillen in micro-omgevingen 

ontstaat er een metabole heterogeniteit binnen de infectie. 

 Om te begrijpen wat het effect is van de metabole heterogeniteit 
tussen P. aeruginosa cellen op antibiotica gevoeligheid is het belangrijk om de 

metabole flexibiliteit te begrijpen. P. aeruginosa is in staat om uiteenlopende 

substraten te benutten, zoals aminozuren en vetzuren, en kan moeiteloos 

schakelen tussen aerobe respiratie, fermentatie en denitrificatie om de 
energieproductie op peil te houden onder wisselende omstandigheden. Deze 

metabole plasticiteit beïnvloedt de gevoeligheid voor verschillende klassen van 
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antibiotica, waaronder aminoglycosiden, fluoroquinolonen, β-lactams en 

polymyxines. Deze antibioticaklassen zijn elk op een manier afhankelijk van 

specifieke metabolische toestanden om effectief te zijn. Naast dat P. aeruginosa 

het flexibele metabolisme gebruikt voor het aanpassen verschillende 
omstandigheden, kan het metabolisme ook actief herstructureerd worden om de 

effectiviteit van antibiotica vermindert. 

Het begrijpen van deze metabole responsen in fysiologisch relevante 

contexten is cruciaal voor het ontwikkelen van effectievere en meer 
gepersonaliseerde antibioticabehandelingen. Hiervoor moet wel benoemd 

worden dat er binnen een patiënt (intra-) als tussen patiënten (inter-) aanzienlijke 

variatie is in de micro-omgevingen. Factoren zoals constructie van de longen, 

ziektebeelden die samengaan met CF, en het CF-genotype zorgen voor 

substantiële verschillen in nutriëntbeschikbaarheid, en dus in 

antibioticagevoeligheid. Daarom vereist vooruitgang het integreren van klinische 

inzichten met geavanceerde in vitro-modellen en multi-omics benaderingen die 

de complexiteit van de CF-long realistisch benaderen.  

 

Op basis van de huidige stand van kennis en het benoemen van de hiaten 

beschreven in dit hoofdstuk is het onderzoek in dit proefschriơ opgebouwd. Het 
onderzoek is vervolgens verdeeld in het effect van nutriënten op 
antibioticagevoeligheid (Sectie II) en als sturende factor in antibiotica resistentie-

evolutie (Sectie III).  

8.4. Voedingsstoffen beïnvloeden het effect van 
antibiotica 

Nutriënten en zuurstof behoren tot de meest voor de hand liggende aanjagers van 

metabole processen, en deze processen worden in toenemende mate in verband 

gebracht met de werking van verschillende klassen antibiotica. Toch is de 

regulerende rol van specifieke omstandigheden die kenmerkend zijn voor de CF-

long nog onvoldoende begrepen. 

 

In Hoofdstuk 3 is onderzocht hoe specifieke nutriënten de 
antibioticagevoeligheid van P. aeruginosa beïnvloeden door in een basaal basis 
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medium telkens één nutriënt toe te voegen. Door time-kill experimenten met een 

bioluminescente stam van P. aeruginosa uit te voeren hebben we populatie 

dynamiek onder veel omstandigheden kunnen analyseren.  

Met behulp van PD modellering werden nutriënt-afhankelijke, 

antibioticaklasse-specifieke verschuivingen aangetoond. Deze patronen wijzen 
op onderliggende biochemische mechanismen en gaan verder dan de klassieke 

verklaring dat een lagere metabolische activiteit resulteert in lagere gevoeligheid. 

Daarnaast suggereert de afwezigheid van duidelijke verschillen in groeisnelheid 

tussen de verschillende nutriëntcondities dat de gevoeligheidsverandering niet 

primair door groeisnelheid wordt bepaald. Ook hebben in vitro PK-PD-simulaties 

lieten zien dat nutriënten de verwachte behandeluitkomst veranderd.  

Hoewel de gebruikte in vitro-modellen beperkt zijn vergeleken met de 

complexiteit van klinische infecties, vormen deze resultaten een waardevolle 

stap vooruit. Ze vergroten ons begrip van de gepersonaliseerde aard van de 

behandeling van P. aeruginosa-infecties, die sterk worden beïnvloed door 

interacties met de lokale micro-omgeving. 

 

Hoofdstuk 4 beschrijơ hoe zuurstofbeschikbaarheid de antibioticagevoeligheid 

van P. aeruginosa beïnvloedt. In plaats van uitsluitend te focussen op acute 

reacties op anoxie, beoordeelde de studie ook hoe langdurige anoxische 

blootstelling (<1% zuurstof gedurende 22 dagen) de antibioticagevoeligheid 
beïnvloedt. Met time-kill experimenten werd deze anoxische geconditioneerde 

stam met de moederstam vergeleken. De effecten bleken antibioticum specifiek 
en de gevoeligheidsprofielen veranderden sterk na langdurige anoxie. Daarnaast 

liet de anoxische geconditioneerde stam ook zien dat er blijvende fysiologische 

aanpassingen waren onder normale zuurstofcondities. Dit onthult beperkingen 

van standaard in vitro experimenten en benadrukt de noodzaak voor 

kweekcondities die anoxische infectiecondities beter nabootsen. Hoewel het 

proefschriơ vooral gericht op is CF, zijn deze inzichten waarschijnlijk ook 
relevant voor andere infectielocaties zoals in de urineweg, COPD-slijmproppen. 

 

Samenvattend laat Sectie II zien dat metabole regulatie bepalend is voor de 

antibioticagevoeligheid van P. aeruginosa onder uiteenlopende nutriënt- en 

zuurstofcondities. Zelfs een enkele nutriëntverandering kan de gevoeligheid 
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substantieel verschuiven, afhankelijk van de combinatie nutriëntconditie-

antibioticaklasse. Meer nutriënten betekent niet automatisch betere werking 

omdat de metabole flexibiliteit beschermende routes kunnen activeren die 

antibiotica tegenwerken. Door deze metabole regulatiesystemen zal het mixen 

van nutriënten in de geteste media niet per se additieve effecten opleveren. 

Dergelijke inzichten benadrukken het belang van het ontrafelen van de 

biochemische basis van nutriënt-gestuurde antibioticagevoeligheid en 

benadrukken de noodzaak van integratieve, fenotype-gerichte -omics 

benaderingen. Metabolomics en proteomics zijn krachtige technieken die 

subtiele verschuivingen in intracellulaire metabolietconcentraties, 

enzymniveaus kunnen vastleggen om metabole herconfiguraties tijdens 
antibioticabehandeling in kaart te brengen. 

Voor deze biochemische benadering in toekomstig onderzoek zijn 

klinisch representatieve omgevingen essentieel. Naast de incrementele aanpak 

van het onderscheiden van de effecten van individuele nutriënten, is 
gedetailleerd onderzoek naar de nutriëntsamenstelling van de infectieuze 

omgeving essentieel. Daarbij moeten ook de interacties met andere cellen die het 

bacteriële metabolisme moduleren meegenomen worden. Door voort te bouwen 

op deze experimentele data kan toekomstig onderzoek nauwkeuriger rekening 

houden met de complexe nutritionele en metabole landschappen die P. 

aeruginosa benut om de antibioticagevoeligheid te beïnvloeden. 

8.5. Nutriënten sturen de evolutie van 

antibioticaresistentie 

Fenotypische veranderingen spelen een centrale rol spelen in het 

aanpassingsvermogen van bacteriële populaties en daarom de natuurlijke 

selectie aansturen. In deze context gaan populaties die zich aan 

omgevingsverstoringen aanpassen met een voortplantingsvoordeel gaan 

domineren. Tijdens de druk van antibiotica kunnen erfelijke mutaties die de 

gevoeligheid sterk verminderen zich snel verspreiden. Echter gaat dit gepaard 

met ingrijpende veranderingen in essentiële cellulaire processen die de fitheid 
van de cellen verlagen. Daarom gaan de resistentie-mutaties vaak samen met 

ondersteunende aanpassingen om dit voorplantingsnadeel verminderen. 

Metabole aanpassingen zijn hier onderdeel van, als de voedingsstoffen in de 
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omgeving dit toelaten. Daarnaast wordt het steeds duidelijker dat metabolisme-

gerichte mutaties ook een klasse van resistentiemechanismen vormen. Hierdoor 

kunnen de nutriënt- en stofwisselingscontext de evolutie van resistentie actief 

mede sturen. 

 

Hoofdstuk 5 beschrijơ de metabole aanpassingen tijdens resistentie-evolutie en 

hoe metabolomics kan helpen die te beter te begrijpen. Omdat één methode niet 

alle kleine moleculen kan meten, vraagt metabolomics om gerichte keuze van 

analysetechnieken en monstervoorbereiding passend bij de onderzoeksvraag. 

Omdat het metabolisme sterk kan verschillen tussen bacteriestammen en 

aanpassingen per antibioticaklasse anders zijn, maakt dit de keuze wel 

ingewikkeld. Daarnaast is de keuze nog beperkt, wat wordt weergegeven door de 

23 geïncludeerde studies in de review uiteenlopende bacteriën en 

antibioticaklassen bestrijken. Dit benadrukt dat er systematischer 

metabolomics-onderzoek nodig is die vooral focussen op een juiste combinatie 

van biologisch vraagstuk en analytische methodologie. Uiteindelijk kan de rol van 

metabolisme in antimicrobiële resistentie beter te verklaard worden met deze 

analytische methodes.  

 

In Hoofdstuk 6 is getest hoe de resistentie-evolutie van P. aeruginosa tijdens 

adaptieve laboratoriumevolutie plaatsvindt in kweekmedium met een enkele 

nutriënt. Na deze evolutieperiode van 10 dagen zijn de fenotypische en 

genotypische veranderingen onderzocht. De geëvolueerde lijnen vertoonden 

significante verschillen in MIC tussen de verschillende enkelvoudige-

nutriëntcondities. In het experiment werden ook mutaties gedetecteerd die uniek 

waren voor specifieke evolutiecondities, maar slechts zes mutaties in totaal over 

de 15 onderscheiden condities waarvan het DNA was gesequencet. Ook is er maar 

een kleine set van mutatiepatronen gevonden die de evolutiecondities 

betrouwbaar van elkaar onderscheidde. De smalle bandbreedte van deze 

mutatieverandering loopt parallel aan de vrijwel identieke 

groeisnelheidsverschuivingen na evolutie binnen elke antibioticaklasse. Deze 

beperkte variatie in fitness stuurt populaties richting een beperkte set genotypen.  

De diversiteit manifesteerde zich dus vooral als MIC-verschuivingen, niet 

als uitgesproken mutatieprofielen. Omdat P. aeruginosa langdurig in CF-longen 

kan persisteren, kunnen zulke fenotypische verschuivingen die al na 10 dagen 
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optreden op termijn ook vestigen in stabiele genotypische verschillen. Maar met 

deze kennis dat enkele nutriënten de resistentieontwikkeling veranderen kan een 

volgende stap om te onderzoeken hoe verschillende infectierelevante 

nutriëntcondities de ontwikkeling van resistentie sturen genomen worden.  

 

Samenvattend liet Sectie III zien dat metabole processen een cruciale rol spelen 

in de ontwikkeling van antibioticaresistentie en dat nutriënten een regulerende 

invloed uitoefenen ondanks de metabole veelzijdigheid van P. aeruginosa. Echter 

is de invloed van de samenstelling van het kweekmedium slechts een klein 

gedeelte van de complexe evolutionaire trajecten die in de CF-long worden 

waargenomen. Niettemin wijzen de resultaten erop dat de invloed van de 

nutriëntomgeving antibioticumafhankelijk is. Dit benadrukt diepgaander 

onderzoek naar de onderliggende aanpassingen die tijdens 

antibioticablootstelling optreden. 

8.6.  Vervolgstappen  

Antibiotica zijn onmisbaar in de dagelijkse gezondheidszorg om infecties te 

bestrijden, toch zijn er groepen patiënten waarbij infectieziekten nog een groot 

probleem veroorzaken. Daarnaast is fungeert de lage kans van slagen van de 

antibioticabehandeling in de patiëntengroep als een reservoir voor 

antibioticaresistente stammen. Het bestuderen van de bacteriële aanpassingen 

in deze patiëntengroep geeơ cruciale informatie over de uiteenlopende manieren 

waarop antibiotica therapieën kunnen falen. De luchtwegen van CF-patiënten 

vormen zoʼn unieke omgeving. In deze omgeving groeit de doorgaans 

onschuldige bacterie P. aeruginosa uit tot een van de meest uitdagende infecties 

om te behandelen.  

Een sleutel factor van P. aeruginosa-infecties in de CF-long is de specifieke 
nutriëntomgeving. Dit is een aspect dat vaak over het hoofd wordt gezien. De 

nutriëntomgeving kan het bacteriële gedrag diepgaand beïnvloeden en leiden tot 

misinterpretatie van gevoeligheidstesten wanneer deze met standaard 

kweekmedia worden uitgevoerd. Daarom is het essentieel om te focussen op: (I) 

het in kaart brengen van fysiologisch relevante infectielocaties, (II) het 

onderzoeken van de invloed van nutriënten op antibioticagevoeligheidstesten, 

(III) het vastleggen van door nutriënten geïnduceerde veranderingen in 
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antibioticagevoeligheid, en (IV) het ontrafelen van de onderliggende biologische 

mechanismen die verantwoordelijk zijn voor veranderingen in het antibiotisch 

effect. 

 

Het beter in kaart brengen van welke voedingsstoffen in welke delen van de CF-

long aanwezig zijn is belangrijk omdat dit proefschriơ laat zien dat voedingstoffen 
een grote rol spelen de PD van antibiotica. Het is daarbij goed om te beseffen dat 
niet alle monsters die uit de CF-long worden genomen dezelfde informatie geven. 

Sputum is het makkelijkst te verzamelen, maar bestaat uit materiaal uit 

verschillende delen van de long. Hierdoor geeơ het alleen een gemiddeld beeld 

van de chemische samenstelling. Andere methoden die vocht verzamelen van het 

longoppervlak met speciale instrumenten zijn specifieker, maar ook lastiger uit 

te voeren met een minder nauwkeurige bepaling van de voedingsstoffen. 
Daarnaast zijn er ook biofilms, die binnen de biofilm-structuur verschillende 

micro-omgevingen hebben.  

In de oncologie is veel vooruitgang geboekt in het begrijpen van zulke 

complexe structuren door het gebruik van ʻtumoratlassen .̓  In de tumoratlassen 

wordt informatie gecombineerd over celtypes, genetische veranderingen en de 

lokale omgeving. Deze kennis wordt inmiddels ook gebruikt om patiënten 

gerichter te behandelen. Voor infecties in de CF-long zouden we op eenzelfde 

manier ook met geïntegreerde kaarten van de infectieomgeving gaan werken. 

Hierbij kunnen moleculaire, microbiële en klinische gegevens worden 

gecombineerd voor het onderscheiden van verschillende typen longomgevingen. 

Deze onderscheiding tussen patiënten is de basis om het effect van 
voedingstoffen op de werking van antibiotica te begrijpen. 

 

Om beter te voorspellen hoe antibiotica werken in de CF-long, moeten de in vitro 

testen aangepast worden om de infectieomstandigheden beter te imiteren. Dit 

proefschriơ laat zien dat zelfs kleine veranderingen in de voedingsstoffen de 

effectiviteit van antibiotica beïnvloeden. Een volledige hervorming van klinische 

testmethodes is lastig, maar stappen vooruit zijn mogelijk. Hierbij is het in eerste 

instantie noodzakelijk om de bovengenoemde omgevingen goed in kaart te 

brengen. Maar er kunnen al veranderingen gemaakt worden zoals het testen van 

bacteriën uit verschillende delen van de long, of door ook anaerobe condities te 

gebruiken voor een van origine aerobe bacterie als P. aeruginosa. 
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Bacteriestammen passen zich door langdurige blootstelling aan condities aan, 

waardoor de stammen moeilijk te kweken zijn in het laboratorium. Toch kunnen 

deze gespecialiseerde stammen een factor spelen in therapiefalen wanneer ze in 

de niche omgeving van de patiënt zitten. 

  

Om beter te begrijpen hoe voedingsstoffen de werking van antibiotica 
beïnvloeden, is in dit proefschriơ gekozen voor time-kill experimenten en 

farmacodynamische modellen. De resultaten uit dit proefschriơ laten zien dat 
een standaard MIC-test grote verschillen in groeisnelheid en afsterven van 

bacteriën kan verbergen. Daarom is het belangrijk om vervolgonderzoek naar de 

invloed van voedingsomstandigheden kritisch te kijken naar uiteindelijke read-

out van de experimenten. Zo heeơ ook de sigmoïde concentratie-effectcurve die 

in dit proefschriơ gebruikt is om combinaties van antibiotica en voedingsstoffen 
in kaart te brengen ook beperkingen. De effectdata die zijn gebruikt voor het 

ontwerp van het farmacodynamisch model zijn verkregen uit een statische time-

kill experimenten. Deze methodologische aanpak kan bacteriële aanpassingen 

tijdens de blootstelling aan antibiotica slecht nauwkeurig vastleggen. Deze 

beperkingen benadrukken de noodzaak van dynamische in vitro kweeksystemen, 

die beter inzicht kunnen geven in tijdsafhankelijke farmacodynamische 

kenmerken zoals veranderende groeisnelheden, dodingskinetiek en 

resistentieontwikkeling. 

 

Een belangrijk inzicht uit dit proefschriơ is dat het effect van antibiotica sterk 
afhangt van de combinatie met specifieke voedingsstoffen. Zulke voedingsstof-
antibioticumcombinaties kunnen unieke aanpassingen in bacteriën 

veroorzaken, die niet altijd verklaard worden door bekende resistentie-mutaties 

in genetische databanken. Om deze mechanismen beter te begrijpen zijn 

technieken zoals transcriptomics, proteomics en metabolomics nodig. Deze 

brengen veranderingen in genexpressie, eiwitten en metabolieten in kaart en 

geven zo beter inzicht in hoe bacteriën reageren op antibiotica. In Hoofdstuk 5 is 

bijvoorbeeld beschreven hoe metabolomics kan worden ingezet om antibiotica-

gevoeligheid te verbeteren door gerichte nutriënten toe te voegen tijdens de 

behandeling. 

Een andere veelbelovende techniek is fluxomics, die laat zien hoe 
metabolieten en energie door cellen stromen. Hoewel dit waardevolle inzichten 
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oplevert tijdens stress of antibioticadruk, is de brede toepassing op klinische 

stammen beperkt omdat de modellen te complex en specifiek zijn. Om de 
extrapolatie tussen de verschillende stammen te verbeteren kunnen 

geavanceerde computermodellen gebruikt worden die meerdere -omics datasets 

combineren. Deze modellen geven een breder beeld van de veranderingen over 

tijd zoals nutriëntenschommelingen en resistentieontwikkeling. Ook zijn er 

single-cell technieken in opkomst om verschillen binnen bacteriepopulaties te 

begrijpen. Deze technieken zijn waardevol, maar moeten ingebed zijn in bredere 

analyses om goed te interpreteren hoe bacteriële heterogeniteit bijdraagt aan 

behandelresistentie. 

7.3. Conclusies 

Concluderend laat dit proefschriơ zien dat de beschikbaarheid van 
voedingsstoffen en zuurstof een grote invloed heeơ op hoe P. aeruginosa zich 

gedraagt en de antibiotica farmacodynamiek. Een antibioticabehandeling is dus 

niet alleen afhankelijk van het medicijn en de bacterie, maar ook van de 

omgeving waarin de bacterie zich bevindt. Dit geldt vooral voor complexe 

infecties zoals in de luchtwegen van CF-patiënten.  

De bevindingen in dit onderzoek vormen een belangrijke stap naar het 

verbeteren van antibioticatesten in het laboratorium, door daarbij beter rekening 

te houden met realistische omstandigheden zoals zuurstofgebrek of specifieke 

nutriënten. De volgende uitdaging is om deze kennis te koppelen aan de situatie 

in het lichaam van de patiënt, zodat behandelingen beter afgestemd kunnen 

worden op de plek van de infectie. Zo komen we dichter bij antibiotica 

behandelingen op maat. 
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