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Chapter 1

1.1. Introduction

Pseudomonas aeruginosa: a high-risk pathogen

Pseudomonas aeruginosa is a versatile, opportunistic environmental pathogen
responsible for a wide range of severe infections’. In 2017, the World Health
Organization classified P. aeruginosa as a top-priority pathogen due to its severe
threat to vulnerable patient populations?® Infections caused by P. aeruginosa are
typically associated with the respiratory tract, wounds, and bloodstream, as well
as catheters and medical implants®. Effective treatment of P. aeruginosa infections
can be challenging due to high rates of multidrug resistance that reduces the
effectiveness of many commonly used antibiotics, thereby limiting therapeutic
options®.

Eradicating P. aeruginosa is particularly challenging in respiratory tract
infections among cystic fibrosis (CF) patients, where the pathogen frequently
establishes chronic infections despite extensive antibiotic therapy>®. The CF
respiratory tract is characterized by thick mucus that impairs pathogen
clearance, making control of bacterial load and infection-induced lung damage
reliant on long-term suppressive therapy with multiple antibiotics’. This
prolonged exposure to antibiotics promotes the development of antibiotic
resistance®’, often leaving lung transplantation the only viable option for
effectively clearing the infection. Enhancing our understanding of P. aeruginosa
pathogenesis and response to antibiotics in CF patients has the potential not only
to improve clinical outcomes, but also to address the growing challenge of
treating infections caused by multidrug-resistant P. aeruginosa strains.

Bacterial resilience is more than antibiotic resistance

Antibiotic resistance is a major global health threat, contributing to millions of
deaths annually and representing the leading cause of antibiotic treatment
failure™. Antibiotic resistance refers to the ability of bacteria to grow in the
presence of antibiotic concentrations that would normally lead to growth
inhibition or kill'>. Commonly observed resistance mechanisms include
mechanisms that lead to reduced antibiotic uptake, the modification of antibiotic
targets, enzymatic inactivation of antibiotics, and the activation of efflux pumps

which remove antibiotics from the cell’®. Stable antibiotic resistance can arise
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through spontaneous mutations in the bacterial genome or by acquiring mobile
genetic elements through horizontal gene transfer. In addition to these genetic,
stable resistance mechanisms, pathogens can also employ diverse transient
mechanisms that allow bacteria to temporarily tolerate exposure to antibiotics'.
These transient mechanisms vary by bacterial species and antibiotic class,
involving phenotypic adaptations such as entering a dormant state', or genetic
changes such as unstable gene amplifications'. The ability to transiently
withstand antibiotic exposure is believed to facilitate the development of
antibiotic resistance by providing additional opportunities for stable genetic
traits to evolve and become fixed within bacterial populations'". This is
particularly evident during the prolonged antibiotic treatments required to
manage P. aeruginosa infections in the respiratory tract of CF patients.
Consequently, there is a need to better understand how the distinct CF lung
environment contributes to altered antibiotic sensitivity and the emergence of
antibiotic resistance.

P. aeruginosa adaptation to the cystic fibrosis environment

The CF lung environment is characterized by thick, dehydrated mucus resulting
from dysregulated electrolyte transport. This leads to limited oxygen penetration,
impaired mucus clearance, and relatively high nutrient availability'®. P.
aeruginosa thrives in this challenging environment due to its versatile
metabolism, efficiently utilizing nutrients that are less preferred by surrounding
cells and adapting to anaerobic conditions through fermentation pathways and
denitrification'®%.

The metabolic plasticity of P. aeruginosa critically influences the
antibiotic sensitivity?'. For instance, aminoglycosides rely on the proton motive
force generated during cellular respiration to enter bacterial cells??, while
fluoroquinolones depend on elevated oxidative phosphorylation and reactive
oxygen species production for their bactericidal activity?®. Conversely, other
antibiotics such as polymyxins specifically target cells with low metabolic
activity, as bacterial resistance mechanisms require active metabolic remodeling
of the lipopolysaccharide layer in the cell envelope®.

Respiratory tract infections caused by P. aeruginosa in patients with CF
are often associated with the formation of biofilms®. Biofilms are characterized

by structured communities of bacteria embedded in a self-produced extracellular
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matrix, which provides protection from antibiotics and the host immune system.
Moreover, they are characterized by a heterogeneous cell populations which
includes both actively dividing as well as dormant cells, which can lead to
differential drug effects depending on the mode of action of antibiotics®. For
example, the polymyxin antibiotic colistin predominantly targets the
metabolically dormant biofilm core, whereas fluoroquinolones or
aminoglycosides primarily target the metabolically active peripheral biofilm
population®?®, Recent in wvitro studies demonstrated that nutrient
supplementation enhanced aminoglycoside or fluoroquinolone efficacy by
universally activating energy metabolism?"?°. These findings illustrate the
important role of considering nutrients and cellular metabolism. However, the
clinical relevance of these potentiation strategies remains uncertain, as P.
aeruginosa is known to reconfigure its metabolic processes even in the absence

of environmental pressures®.

The interplay between transient antibiotic resistance responses and the
remarkable metabolic versatility of P. aeruginosa creates a particularly complex
challenge for antibiotic treatment in the unique environment of the CF
respiratory tract. This complexity is further amplified by the diverse
microenvironments within CF lungs, which arises from differences in underlying
CF pathology, rates of lung function decline, comorbidities, polymicrobial
infections, and the compartmentalized structure of the lung®'. The influence of
adaptation to these varied conditions is reflected in the wide range of resistance
mechanisms and metabolic specializations observed in clinical P. aeruginosa
isolates®34, Gaining a deeper understanding of how P. aeruginosa adapts to these
distinct CF lung environments impacts antibiotic treatment and is a crucial step
toward addressing recurring treatment failures and preventing chronic

infections.

Studying bacterial growth and pharmacodynamic responses in vitro
In current clinical practice, antibiotic treatment selection is guided by
standardized antimicrobial susceptibility testing through determination of the
minimum inhibitory concentration (MIC). The MIC aims to quantify the lowest
concentration of an antibiotic that inhibits visible bacterial growth under
standardized conditions. Limitations of the MIC include the static nature of the
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Figure 1. Difference between read-outs to evaluate the effect of antibiotics on bacterial
growth and/or kill using minimal inhibitory concentration (MIC) and time-kill assays. MIC
assays evaluate antibiotic drug effects at a fixed time point and can only assess growth
inhibition. Time kill assays can characterize the dynamic effect of antimicrobial and can
distinguish between growth inhibition and bacterial kill effects.

assay, i.e., after approximately 20 hours of incubation, the inability to
characterize the pharmacodynamic response because bacterial kill cannot be
measured, and the use of standard culture media which do not reflect the CF lung
environment'2,

To overcome the limitations posed by the static endpoint measurements
of MIC assays, time-kill assays can be employed. Time-kill assays monitor
bacterial density over time and capture dynamic patterns of growth and killing®®.
Unlike MIC testing, these time-kill assays can reveal subtle shifts in bacterial
population growth dynamics, offering valuable insights into transient responses
to antibiotics (Figure 1), and regrowth patterns due to the development of
antibiotic resistance. Typically in time kill assays, bacterial densities are
quantified by counting the number of colony forming units (CFU), although
surrogate readouts, such as constitutive bioluminescent bacteria® as used in this
PhD thesis, can also be employed. Subsequently, mathematical
pharmacodynamic modeling can be applied to these dynamic time kill profiles to
infer concentration-effect relationships and uncover drivers of
pharmacodynamic responses across different antibiotics and growth

environments®’.
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To better incorporate physiologically relevant conditions during in vitro assays, a
synthetic CF sputum medium (SCFM) has been proposed in 2007 to mimic
nutrient composition of CF sputum®. Culturing P. aeruginosa in SCFM more
accurately reflects the physiological phenotypes of P. aeruginosa compared to
standardized laboratory media**“*°, which consequently impacts P. aeruginosa
responses to antibiotics*'3. Despite the improved physiological relevance of
SCFM, performing MIC tests with a single medium composition falls short of
capturing the extensive nutrient heterogeneity encountered in the CF lung.
Additionally, nutrient-driven phenotypic factors influencing the antibiotic
response of P. aeruginosa can be more accurately characterized using
pharmacodynamic modeling (Figure 2). These changes in antibiotic response are
often broadly categorized. For example, continued growth during antibiotic
exposure is typically labeled as mutation-induced antibiotic resistance, while
altered killing dynamics are frequently attributed to transient mechanisms'.
However, the link between nutrient environment, bacterial phenotype and
antibiotic effects points toward an intersection of underlying biochemical
pathways that shape pharmacodynamic outcomes.

Antibiotic
songeriratian 1g/L 2g/L 4g/L 8g/L 16 g/L
Growth Growth Growth inhibition Kill Kill
Medium A f i 2 i 3 2 2
5 A o I 3 3
o o >
Time Time Time Time Time
Growth Reduced Growth Growth inhibition Slow kill Kill
2 2 2 z
Medium B ~/_ 2 z
=z a a O f—— a :
Time Time Time Time Time
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/
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Figure 2. Examples illustrating the effect of media/nutrient conditions on phenotypic
responses to antibiotic exposure. Although the dynamic responses differ, these conditions

would yield similar outcomes in minimal inhibitory concentration (MIC) assays.
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Studying the underlying genetic and biochemical pathways associated with
altered antimicrobial drug effects is essential to further improve the translation
of experimental pharmacodynamic findings into successful clinical treatment
outcomes. This includes both the use of genetic characterization to identify driver
mutations as well as the use of transcriptomic, proteomic and metabolomic
techniques to identify downstream biochemical changes, in particular in relation
to transient mechanisms that promote antibiotic tolerance in relation to the
nutrient environment. Integrating data from these omics approaches can bridge
this gap by providing a systems-level understanding of how environmental
conditions and resulting phenotypic adaptations influence antibiotic
effectiveness and the underlying molecular mechanisms*, thereby facilitating
the selection or optimization of experimental models that better reflect the
clinical context. Accounting for the phenotypic context of antibiotic sensitivity
testing will not only be critical for guiding treatment strategies, but also for
improving preclinical testing of new antimicrobials*. To translate these insights
into practical advances in P. aeruginosa respiratory tract infections, a structured
and incremental approach is needed, beginning with the systematic evaluation
of individual environmental components. This is the groundwork to elucidate the
dynamic interplay between the CF lung microenvironment, P. aeruginosa
metabolism, and antibiotic effects.
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1.2. Thesis outline and scope

The impact of the phenotypic plasticity of P. aeruginosa and the distinct CF lung
microenvironments on antibiotic drug effects and resistance remains poorly
understood. To improve antibiotic treatment strategies for chronic respiratory
infections caused by P. aeruginosa in CF patients, it is essential to gain deeper
insights into how the infectious microenvironment shapes bacterial metabolism
and antibiotic responses. In this thesis, we hypothesize that nutrient conditions
play a central role as pharmacodynamic drivers and key determinants in the
evolution of antibiotic resistance, ultimately affecting therapeutic outcomes. To
summarize our current understanding regarding this hypothesis, Chapter 2
(Section I) provides a comprehensive overview of the metabolic adaptations of P.
aeruginosa to the diverse nutrient niches within the CF lung. These metabolic
adaptations are further discussed in relation to their influence on antibiotic
efficacy and their potential to explain the variability in treatment outcomes
observed among patients. Building on this foundation, the thesis is structured
into two key sections: examining nutrient-driven changes in antibiotic sensitivity
(Section II), and investigating the influence of nutrients on antibiotic resistance
evolution (Section III).

Section II: Nutrients shape antibiotic sensitivity

Section IT investigates the role of physicochemical components of physiologically
relevant habitats in the CF respiratory tract on antibiotic sensitivity. In Chapter
3, a study is described that systematically examines how specific in vitro nutrient
conditions modulate the antibiotic pharmacodynamics of P. aeruginosa. To this
end, single nutrients relevant to both P. aeruginosa metabolism and CF sputum
are altered, and the resulting changes in pharmacodynamics are assessed across
multiple antibiotic classes. Chapter 4 explores how long-term adaptation of P.
aeruginosa to anoxic conditions impacts antibiotic effects. An anoxic-adapted
strain is generated through experimental evolution and its antibiotic response is
compared to that of the parental strain.

Section llI: Nutrients shape antibiotic resistance evolution

Section III aims to fill the current knowledge gap regarding how nutrient

conditions are involved in the biochemical adaptation during development of
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antibiotic resistance. In Chapter 5, the contribution of bacterial metabolism to
antimicrobial resistance mechanisms is examined, along with how state-of-the-
art metabolomics approaches can be used to map metabolic pathways that may
be targeted to counteract resistance. Chapter 6 investigates how nutrient
conditions influence the evolution of antibiotic resistance in P. aeruginosa. Using
adaptive laboratory evolution in single-nutrient media, specific nutrient-
antibiotic combinations are examined to understand how they shape phenotypic
resistance, fitness trade-offs, and mutational profiles across multiple antibiotic
classes.

Section IV: General discussion and summary

In Chapter 7, the main findings of this thesis are discussed and summarized. The
implications of these findings are considered, and next steps are outlined,
particularly regarding characterizing nutrient niches in infection sites to better

understand antibiotic responses and resistance emergence.



Chapter 1

1.3. References

18

S.P. Diggle, M. Whiteley (2020).
Microbe  Profile: Pseudomonas
aeruginosa: opportunistic pathogen
and lab rat: This article is part of the
Microbe Profiles collection.
Microbiology 166:30-33.

World Health Organization (2017).
WHO Priority Pathogens List for R&D
of New  Antibiotics.  Geneva,
Zwitserland.

D. Reynolds, M. Kollef (2021). The
Epidemiology and Pathogenesis and
Treatment of Pseudomonas
aeruginosa Infections: An Update.
Drugs 81:2117-2131.

V. Aloush, S. Navon-Venezia, ... Y.
Carmeli (2006). Multidrug-Resistant
Pseudomonas aeruginosa : Risk Factors
and Clinical Impact. Antimicrob Agents
Chemother 50:43-48.

S.C. Langton Hewer, S. Smith, ... A.R.
Smyth (2023). Antibiotic strategies for
eradicating Pseudomonas aeruginosa
in people with cystic fibrosis. Cochrane
Database of Systematic Reviews 2023.

R. Nickerson, C.S. Thornton, ... Z.
Cheng (2024). Pseudomonas
aeruginosa in chronic lung disease:
untangling the dysregulated host
immune response. Front Immunol
15:1405376.

C. Castellani, A.J.A. Duff, ... P.
Drevinek (2018). ECFS best practice
guidelines: the 2018 revision. Journal
of Cystic Fibrosis 17:153-178.

T.M. Barbosa, S.B. Levy (2000). The
impact of antibiotic use on resistance
development and persistence. Drug
Resistance Updates 3:303-311.

J. Lynch, G. Zhanel, N. Clark (2017).
Emergence of Antimicrobial
Resistance among Pseudomonas

10.

11.

12.

13.

14.

15.

16.

17.

18.

aeruginosa: Implications for Therapy.
Semin Respir Crit Care Med 38:326-345.

J. Vazirani, T. Crowhurst, ... G.I. Snell
(2021). Management of Multidrug
Resistant  Infections in  Lung
Transplant Recipients with Cystic
Fibrosis. IDR Volume 14:5293-5301.

CJ.L. Murray, K.S. Ikuta, ... M.
Naghavi (2022). Global burden of
bacterial antimicrobial resistance in
2019: a systematic analysis. The Lancet
399:629-655.

A. Brauner, O. Fridman, ... N.Q.
Balaban (2016). Distinguishing
between resistance, tolerance and
persistence to antibiotic treatment.
Nat Rev Microbiol 14:320-330.

J.M.A. Blair, M.A. Webber, ... L.JV.
Piddock (2015). Molecular
mechanisms of antibiotic resistance.
Nat Rev Microbiol 13:42-51.

N.Q. Balaban, J. Merrin, ... S. Leibler
(2004). Bacterial Persistence as a
Phenotypic Switch. Science 305:1622-
1625.

D.I. Andersson, H. Nicoloff, K. Hjort
(2019). Mechanisms and clinical
relevance of bacterial
heteroresistance. Nat Rev Microbiol
17:479-496.

I. Levin-Reisman, I. Ronin, ... N.Q.
Balaban (2017). Antibiotic tolerance
facilitates the evolution of resistance.
Science 355:826-830.

E.M. Windels, J.E. Michiels, ... J.
Michiels (2019). Antibiotics:
Combatting Tolerance To  Stop
Resistance. mBio 10.

R. La Rosa, H.K. Johansen, S. Molin
(2019). Adapting to the Airways:
Metabolic Requirements of



19.

20.

21.

22.

23.

24.

25.

26.

27.

Pseudomonas aeruginosa during the
Infection of Cystic Fibrosis Patients.
Metabolites 9:234.

E. Rossi, R. La Rosa, ... H.K. Johansen
(2021). Pseudomonas aeruginosa
adaptation and evolution in patients
with cystic fibrosis. Nat Rev Microbiol
19:331-342.

H. Arai (2011). Regulation and
Function of Versatile Aerobic and
Anaerobic Respiratory Metabolism in
Pseudomonas  aeruginosa.  Front
Microbio 2.

J.M. Stokes, A.]J. Lopatkin, ... J.J.
Collins (2019). Bacterial Metabolism
and Antibiotic Efficacy. Cell Metabolism
30:251-259.

K.R. Allison, M.P. Brynildsen, J.J.
Collins (2011). Metabolite-enabled
eradication of bacterial persisters by
aminoglycosides. Nature 473:216-220.

A. Gutierrez, J. Stokes, I. Matic (2018).
Our Evolving Understanding of the
Mechanism of Quinolones. Antibiotics
7:32.

M. Kolpen, C.F. Appeldorff, ... T.
Coenye (2016). Increased bactericidal
activity of colistin on Pseudomonas
aeruginosa biofilms in anaerobic
conditions. Pathog Dis 74:ftv086.

N. Heiby, O. Ciofu, T. Bjarnsholt
(2010). Pseudomonas aeruginosa
Biofilms in Cystic Fibrosis. Future
microbiology 5:1663-74.

S.J. Pamp, M. Gjermansen, ... T.
Tolker-Nielsen (2008). Tolerance to the
antimicrobial peptide colistin in
Pseudomonas aeruginosa biofilms is
linked to metabolically active cells,
and depends on the pmr and mexAB-
oprM genes. Mol Microbiol 68:223-240.

A. Crabbé, P.g. Jensen, ... T. Coenye
(2019). Antimicrobial Tolerance and
Metabolic Adaptations in Microbial

28.

29.

30.

31.

32.

33.

34.

35.

36.

General introduction and scope

Biofilms.
27:850-863.

Trends in  Microbiology

0. Ciofu, C. Moser, ... N. Hgiby (2022).
Tolerance and resistance of microbial
biofilms. Nat Rev Microbiol 20:621-635.

S. Meylan, IL.W. Andrews, J.J. Collins
(2018). Targeting Antibiotic Tolerance,
Pathogen by Pathogen. Cell 172:1228-
1238.

S. Ahn, J. Jung, ... W. Park (2016). Role
of Glyoxylate Shunt in Oxidative Stress
Response.  Journal of Biological
Chemistry 291:11928-11938.

S. Van Den Bossche, E. De Broe, ... A.
Crabbé (2021). The cystic fibrosis lung
microenvironment alters antibiotic
activity: causes and effects. Eur Respir
Rev 30:210055.

C. Winstanley, S. O’Brien, M.A.
Brockhurst (2016). Pseudomonas
aeruginosa Evolutionary Adaptation
and Diversification in Cystic Fibrosis
Chronic Lung Infections. Trends in
Microbiology 24:327-337.

L.J. Rojas, M. Yasmin, ... R.A. Bonomo
(2022). Genomic  heterogeneity
underlies multidrug resistance in
Pseudomonas aeruginosa: A
population-level analysis beyond
susceptibility testing. PLoS ONE
17:e0265129.

N. Cramer, J. Klockgether, B. Tiimmler
(2023). Microevolution of
Pseudomonas aeruginosa in the
airways of people with cystic fibrosis.

Current Opinion in  Immunology
83:102328.
N.Q. Balaban, S. Helaine, ... A.

Zinkernagel (2019). Definitions and
guidelines for research on antibiotic
persistence. Nat Rev Microbiol 17:441-
448.

H.L. Rocchetta, C.J. Boylan, ... T.R.
Parr (2001). Validation of a

19



Chapter 1

37.

38.

39.

40.

41.

42.

20

Noninvasive, Real-Time Imaging
Technology Using Bioluminescent
Escherichia coli in the Neutropenic
Mouse Thigh Model of Infection.
Antimicrob Agents Chemother 45:129-
137.

L.C. Pereira, M.A.D. Fatima, ... FJ.
Azeredo (2022).
Pharmacokinetic/Pharmacodynamic
Modeling and  Application in
Antibacterial and Antifungal
Pharmacotherapy: A Narrative
Review. Antibiotics 11:986.

K.L. Palmer, L.M. Aye, M. Whiteley
(2007). Nutritional Cues Control
Pseudomonas aeruginosa Multicellular
Behavior in Cystic Fibrosis Sputum. J
Bacteriol 189:8079-8087.

C.L. Haley, J.A. Colmer-Hamood, A.N.
Hamood (2012). Characterization of
biofilm-like structures formed by
Pseudomonas aeruginosa in a
synthetic mucus medium. BMC
Microbiol 12:181.

R.L. Neve, B.D. Carrillo, V.V. Phelan
(2021). Impact of Artificial Sputum
Medium Formulation on
Pseudomonas aeruginosa Secondary
Metabolite Production. J Bacteriol
203:e00250-21.

S. Kirchner, J.L. Fothergill, ... C.
Winstanley (2012). Use of Artificial
Sputum Medium to Test Antibiotic
Efficacy  Against Pseudomonas
aeruginosa in Conditions More
Relevant to the Cystic Fibrosis Lung.
JoVE 3857.

Y. Diaz Iglesias, F. Van Bambeke
(2020). Activity of Antibiotics against
Pseudomonas aeruginosa in an In
Vitro Model of Biofilms in the Context
of Cystic Fibrosis: Influence of the
Culture Medium. Antimicrob Agents
Chemother 64:€02204-19.

43.

44,

45.

A. Aiyer, J. Manos (2022). The Use of
Artificial Sputum Media to Enhance
Investigation and Subsequent
Treatment of Cystic Fibrosis Bacterial
Infections. Microorganisms 10:1269.

Z.P. Bulman, S.G. Wicha, ... B.T. Tsuji
(2022). Research priorities towards
precision antibiotic therapy to
improve patient care. The Lancet
Microbe 3:€795-e802.

D.A. Sanchez, L.R. Martinez (2019).
Underscoring interstrain variability
and the impact of growth conditions
on associated antimicrobial
susceptibilities in preclinical testing
of novel antimicrobial drugs. Critical
Reviews in Microbiology 45:51-64.



General introduction and scope

21



ysnoyj 10} poo-

psouibniap sbuowopnasd ul Ay3A13isuas snoiqijue adeys sjpuaiiinu moyH



Nutrient-driven metabolic modulation of antibiotic
efficacy in Pseudomonas aeruginosa

Maik Kok, Suruchi Nepal, Coen van Hasselt



Chapter2

Abstract

Pseudomonas aeruginosa is a versatile pathogen that can adapt its metabolism to
diverse nutritional environments. It is a frequent cause of chronic respiratory
infections, particularly in people with cystic fibrosis (pwCF). In pwCF, the
infectious microenvironment is characterized by a unique and patient-specific
nutrient environment. The nutrient-rich yet hypoxic mucus suppresses aerobic
metabolism and promotes alternative metabolic pathways such as denitrification
and fermentation, as well as the establishment of a biofilm-associated lifestyle.
These adaptations promote sustained bacterial survival in the CF respiratory tract
and may impair the efficacy of antibiotic therapy. This review summarizes how
physiologically relevant nutrient environments drive metabolic changes in P.
aeruginosa and subsequently its responses to antibiotics. We also discuss how CF-
related pathophysiology may contribute to nutrient heterogeneity, potentially
altering antibiotic effects. In conclusion, the complex interplay between nutrient
availability, bacterial metabolism, and antibiotic response may provide both
explanations and opportunities for tailoring antibiotic therapies in patients with

chronic P. aeruginosa infections.
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2.1. Introduction

Cystic fibrosis (CF) is associated with the formation of a thick, dehydrated mucus
layer, hindering both oxygen (0,) diffusion and waste clearance (Figure 1A),
which often results in the establishment of chronic respiratory tract infections.
Pseudomonas aeruginosa, a versatile Gram-negative opportunistic pathogen, is
among the most predominant causes of chronic bacterial respiratory tract

infections in adult patients with CF (pwCF)"22.

Mucus in the respiratory tract of pwCF provides a complex environment
with energy substrates that can be efficiently utilized by P. aeruginosa* (Figure
1B). Mucus composition varies substantially between individual patients®® and is
spatially distributed across the compartmentalized lung’. P. aeruginosa is capable
of adapting to these varying local environments due to its versatile and well-
regulated metabolism®®. In pwCF, P. aeruginosa is typically present in a biofilm
lifestyle, wherein the biofilm extracellular matrix serves as a protective shield
against both host immunity and antibiotics'®. Mature biofilm structures impose
constraints on O, and nutrient penetration, leading to the segregation of aerobic
and anaerobic metabolic subpopulations which can impact antibiotic treatment
effects"" (Figure 1C-D).

Understanding the intricate relationship between diverse nutrient
microenvironments and antibiotic responses is key to improving antibiotic
treatment of chronic P. aeruginosa respiratory tract infections in pwCF. The
current review aims to provide an overview of: (i) P. aeruginosa metabolic
adaptation within clinically relevant CF lung microenvironments; (ii) the
influence of changing nutrient environments on biofilm formation and antibiotic
sensitivity; and (iii) the role of patient heterogeneity in nutrient diversity and

treatment response.
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A. Healthy lung B. Cystic fibrosis lung microenvironement

D. Anaerobic biofilm core

Figure 1. Overview of P. aeruginosa in the cystic fibrosis (CF) lung microenvironment. (A)
demonstrates the efficient clearance of the mucus in healthy lungs with functional
transmembrane proteins. (B) Accumulation of viscous dehydrated mucus and the
microenvironmental influences in biofilm formation. Metabolic processes of cells in the
(C) peripheral layer and (D) core of the biofilm.

2.2. Metabolic adaptation within the nutritional
microenvironment in cystic fibrosis
The CF lung microenvironments are characterized by a large diversity in

nutrients and O, levels. The following section describes P. aeruginosa metabolic
pathways that are utilized or affected under these nutritional conditions.
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Aerobic metabolism

Tricarboxylic acid (TCA) cycle

Amino acids and lactate are systematically increased in the CF lung and represent
important nutrients for P. aeruginosa energy production through the TCA
cycle'®'314, These nutrients have different entry points into the TCA cycle,
facilitating metabolic flux versatility (Figure 2). For instance, lactate is converted
to pyruvate by lactate dehydrogenases (LIdDE and L1dA) to fuel the TCA cycle'®,
while L-glutamate enters halfway in the cycle by glutamate dehydrogenases
(GdhA and GdhB)'8. The resulting electron carriers from the TCA cycle play a
crucial role in oxidative phosphorylation (OXPHOS), supporting energy-
demanding processes like extracellular matrix production during biofilm
maturation'”'®, Matrix-producing biofilm cells exhibit comparable TCA cycle
activity to planktonic cells'®, underlining the high metabolic activity in the
peripheral biofilm sub-population where nutrients and O, are still available.
Finally, P. aeruginosa can also operate anaplerotic pathways in the TCA cycle, such
as the pyruvate and glyoxylate shunt, if nutrients or O, become scarce. Shunting
the TCA cycle reduces electron carrier production to maintain the redox balance
during low energy demanding circumstances, such as the dormant biofilm
core'®20,

Glucose catabolism

Glucose levels are elevated in the CF respiratory fluid due to active stimulation of
glucose leakage from lung epithelial cells and the induction of hemoptysis by P.
aeruginosa®'-3. Unlike many organisms, P. aeruginosa typically does not prefer
glucose as primary carbon source in CF sputum due to the absence of glycolytic
enzymes®. However, glucose catabolism remains crucial for the bacterial survival
and pathogenicity, primarily through efficient production of pyruvate through
the Entner-Doudoroff (ED) pathway'®?4. P. aeruginosa employs a combination of
enzymes from both the ED and Embden-Meyerhof-Parnas (EMP) pathway for a
full carbohydrate degradation loop. The ED-EMP cycle is primarily used for
anabolic functions, but also yields precursors for biofilm matrix and cell
envelope production'. P. aeruginosa also actively secretes lipases and elastases to
cleave macromolecules into metabolites suitable for the ED-EMP cycle®?®. For
example, the peptidoglycan component N-acetylglucosamine present in CF
sputum is processed within the ED-EMP system to be utilized intracellularly as a
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carbon source®®*. The heightened levels of glycolytic substrates in CF sputum
may contribute to the biofilm-aggregate structure observed in the CF lung. P.
aeruginosa biofilms grown solely on glucose demonstrate reduced motility
aggregate populations?’, suggesting an intricate interplay of glycolytic
metabolism in shaping microbial community characteristics in the biofilm.

Amino acids and D-isoforms

Amino acids play a pivotal role in P. aeruginosa metabolism within the CF lung
environment, serving as carbon or nitrogen sources and building blocks for
proteins. Both P. aeruginosa and host immune cells contribute to the elevated
amino acid concentrations in CF sputum through the excretion of peptidases?®%.
The abundance of amino acids in CF sputum provides a favorable growth
environment, whereby long-term evolution of pathogens in the CF lung can lead
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P. aeruginosa biofilm formation, with branched chain amino acids leucine,
isoleucine and valine influencing P. aeruginosa growth rate and swarming
motility®'%2, Biofilm stimulation is isoform-dependent, as the D-isoform of
leucine inhibits biofilm formation®2-¢, In contrast, other studies reported D-
amino acid supplementation did not significantly improve survival outcomes
in mice®, and anti-biofilm effects of D-isoforms disappeared after several
days of incubation®. These conflicting results highlight the relevance for
further studies into the driving mechanisms of amino acids in P. aeruginosa
infection in the CF lung.

Anaerobic metabolism

The dehydrated and thick mucus layer in the CF lung reduces O, diffusion. Levels
of O, are further reduced by neighboring cells, such as lung epithelial cells and
polynuclear monocytes (PMNs)3$3. This O, restriction contributes to the
establishment of fully anaerobic microenvironments within the mature biofilm
structure. In response to these O, constraints, P. aeruginosa employs adaptive
strategies, utilizing two fermentation pathways and shifting from O, to nitrates as
electron acceptors.

Glucose and pyruvate fermentation

The fermentation of glucose comprises two steps: the initial conversion of
glucose to pyruvate, followed by the subsequent fermentation of pyruvate into
lactate, acetate and succinate®. Glucose fermentation to pyruvate is typically
influenced by redox constraints*’. To overcome redox imbalances during
anaerobic fermentation, P. aeruginosa actively produces radical-scavenging
phenazines*'#243, The NADH-dependent conversion of lactate to pyruvate
conversion also preserves the cellular redox balance by limiting electron
accumulation®*2. The emphasis on pyruvate metabolism in anaerobic
conditions becomes evident by the increase in total biofilm biomass upon
pyruvate supplementation and biofilm dispersion after pyruvate deficiency***®.
Efficient cross-feeding of pyruvate and lactate over the O, gradient demonstrates
the cooperative metabolic activity between the biofilm sub-populations'*¢, and
the role of carbon sources for maintaining matured biofilm structures.

Arginine deiminase

Arginine, an amino acid favored by P. aeruginosa as a carbon source, plays a

crucial role in anaerobic metabolism and biofilm development. Arginine serves



Chapter2

as an energy source, undergoing fermentation through deiminase enzymes®.
The transcription of the arcCBAB operon encoding for arginine deiminase
enzymes is upregulated during biofilm formation, indicating its importance in
this process'. The utilization of arginine deiminase enzymes is a relatively
inefficient pathway for energy production, reducing motility and promoting the
transition towards a static biofilm phenotype?#®32, While fermentation
maintains energy levels for cellular maintenance in anaerobic environments, it
does not provide the efficiency to enable net growth*®4’  which might explain the
presence of a dormant sub-population within the biofilm core. The role of
arginine extends beyond serving as an energy source in anaerobic conditions. It
also acts as a precursor of gene-modulating polyamines that contribute to the
formation of the extracellular matrix of biofilms*°. The central role of arginine in
biofilm maturation is further supported by sensory domains, inducing
Pseudomonas Putida biofilm formation in the presence of exogenous arginine®.

Denitrification

P. aeruginosa capitalizes on denitrification for proliferation in anaerobic
conditions. This process substitutes O, with nitrate (NOs-) and nitrite (NO,-) as
electron acceptors (Figure 1D)>%% This shift facilitated by the ample availability
of these compounds in CF mucus, which also enables activation of the
denitrification pathway despite the presence of O,. The high abundance of these
nitrates does not limit the utilization of the denitrification pathway within
anaerobic environments>®. P. aeruginosa also employs denitrification enzymes to
neutralize nitric oxide (NO) produced by immune'*** and to mitigate ROS
production by distributing the electron flow across the respiratory and
denitrification pathways in O,rich conditions®*®. The functionality of
denitrification is iron-dependent™. Reduced transcription of denitrification
proteins hampers anaerobic metabolism under iron scarcity*, whereas sufficient
levels of iron stimulate anerobic metabolism and biofilm development®-%. This
underscores the critical role of denitrification in the maturation of biofilm and
adaptation of anaerobic sub-populations in the core, highlighting how metabolic
processes are intricately linked to multiple nutrients in the surrounding
microenvironment. This metabolic coordination is also regulated at the
transcriptional level. The Anr transcriptional regulator, which controls
denitrification enzymes, also has conserved regulatory effects in central carbon

metabolic pathways***®. For instance, under anaerobic yet nitrate-rich
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conditions, arginine is no longer a preferred carbon source>*. This metabolic
heterogeneity is reflected in biofilm structures, where different metabolic
pathways dominate at varying biofilm depths depending on nutrient
availability’>¢!. Consequently, the metabolic adaptation of P. aeruginosa at the
infection site is influenced by the overall nutritional composition, including O,
metals, salts, and carbon sources. This highlights both the flexibility and diversity
of P. aeruginosa metabolism within the CF lung, underscoring the importance of
understanding the complex interplay between bacterial metabolism and the
nutritional environment for effective therapeutic interventions.

2.3. Nutrient-driven effects of metabolic
adaptation on antibiotic sensitivity

In this section, we discuss the role of nutrients in the metabolic activity of P.
aeruginosa, and how this influences antibiotic sensitivity. Nutrient-limited
environments typically induce low metabolic activity, which is generally linked
to reduced activity of antimicrobials, since antibiotics often target energy-
demanding cellular processes during cell division®?. This includes processes such
as DNA replication (e.g., fluoroquinolones), protein synthesis (e.g.,
aminoglycosides) and cell wall synthesis (e.g., B-lactams). In contrast,
polymyxins are more effective in eradicating metabolically inactive cells®®. An
overview of specific nutrients present in the CF lung and their modulatory role
on antibiotic efficacy is summarized in Table 1.

Fluoroquinolones

Fluoroquinolones require oxidative stress for effective bacterial killing in
addition to their primary mode of action through inhibition of DNA gyrase and
topoisomerase IV8284, Oxidative stress primarily stems from aerobic metabolic
activity, i.e., TCA cycle and OXPHOS, which spearhead ROS production. These
processes can be suppressed in low oxygen environments, for example, in the O,-
and nutrient-deprived core of a biofilm, in addition to phenazine-mediated redox
balancing mechanisms in anaerobic environments to reduce oxidative damage®'.

To illustrate, in P. aeruginosa biofilms, enhanced ciprofloxacin tolerance has been
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Table 1. Nutrient supplements which change antibiotic sensitivity through metabolic

changes
Antibiotic Antimicrobial Nutrient Metabolic Ref
effect environment mechanism )
0, Electron transport 6
Potentiation chain
iati — —
. . Malic acid TCA cycle activity 65,66
Ciprofloxacin — s
Arginine n.r. ’
. n.r. Denitrification 69-71
Reduction - -
Starvation Dormancy
0, n.r. 7
Proton motive force
Fumarate v ’ 475
TCA cycle
Potentiation Glutamate and Proton motive force, %
Tobramvein succinate TCA cycle
Y bicarbonate Alkaline pH 77
Arginine Alkaline pH 67,7879
Proton motive force
. Glyoxylate ? 7
Reduction YOXy TCA cycle
n.r. Denitrification 53
Meropenem Reduction Starvation Oxygen radicals 80
Potentiation Nitrate Anaerobic metabolism 63
Colistin . Glucose “Osmotic homeostasis” 81
Reduction m
Formate n.r.

n.r. = not reported

To illustrate, in P. aeruginosa biofilms, enhanced ciprofloxacin tolerance has been
observed in metabolically inactive cells as compared to metabolically active
cells®®. Consequently, the supplementation of O,, i.e., to promote aerobic
respiration, improves ciprofloxacin efficacy against in vitro grown biofilms54.
Similar ciprofloxacin potentiation was observed when supplementing with
organic acids to increase TCA cycle activity®®®¢. By using metabolic shunts as a
safeguard against oxidative stress while preserving anabolic flexibility?®, P.
aeruginosa demonstrates a form of metabolic defense against fluoroquinolone
action. This adaptability becomes particularly evident in the nitrogen rich CF
lung environment, where P. aeruginosa shifts from OXPHOS to denitrification,
thereby reducing oxidative stress and increase tolerance to fluoroquinolones

while maintaining metabolic activity®®”'. The reduced fluoroquinolone
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susceptibility by the activation of anaerobic metabolism is not observed when
anaerobic nutrients such as NO; and arginine are supplemented. In fact, the
addition of arginine and NO; demonstrated enhanced ciprofloxacin activity in
mature biofilm cultures, while no enhancement was observed in young or

alginate-grown biofilms®7-¢8,

Aminoglycosides

Aminoglycosides penetrate bacterial cells through membrane pores and block
protein synthesis by attaching to ribosomal proteins. Their entry relies on the
electric potential across the cell membrane, driven by the proton motive force
(PMF) during OXPHOS®#”. Stimulating the PMF by elevating OXPHOS activity
through O, supplementation can enhance the effectiveness of tobramycin’.
Similarly, the supplementation of fumarate increases the electron transport
through the elevated TCA cycle, improving aminoglycoside action’7%. However,
supplementing with glyoxylate activates the glyoxylate shunt, which reroutes the
TCA cycle and shifts the balance between OXPHOS and denitrification. This
reduces the PMF and consequently decreases susceptibility to tobramycin?®85374,
This metabolic adaptation is also observed in biofilms exposed to tobramycin,
where cells in aerobic biofilm regions shift to denitrification upon exposure to
tobramycin®3.

The transmembrane pH gradient is another component of the PMF that
plays a crucial role in aminoglycoside activity. The acidic CF lung environment
lowers both the net positive charge of tobramycin and the PMF of P. aeruginosa,
thereby reducing aminoglycoside effectiveness®. This can be counteracted by
increasing the pH through bicarbonate supplementation, which has shown to
enhance tobramycin effect’’. Adjusting the pH showed limited benefits for
aminoglycoside treatment of biofilm, potentially due to the natural acidic pH-
gradient in biofilm structures from accumulated extracellular DNA77-7888.89 I
contrast, arginine supplementation has shown promise in enhancing
aminoglycoside efficiency in biofilms, due to metabolically induced pH
increase®”.7879_ Studies involving the use of 3D cultured lung cells have shown that
a combination of altered pH, transmembrane potential, and carbon metabolism
enhance aminoglycoside effect’®. Alkalinizing the intracellular environment and
increased TCA cycle activity through pyruvate metabolism increased the PMF-

mediated aminoglycoside uptake. Furthermore, enriching the 3D culture media
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with succinate and glutamate significantly improved aminoglycoside-mediated

eradication of biofilms.

B-Lactam antibiotics

B-Lactam antibiotics exert their bactericidal effect by depleting cell wall building
blocks through inhibition of cell envelope precursor synthesis. Primary
mechanisms modulating B-lactam resistance typically have a genetic basis,
including porin modifications, overexpression of efflux pumps, and inactivating
B-lactamase enzymes®. Whereas the primary mechanisms of action and
resistance to f-lactam antibiotics are generally stable across different
environmental and metabolic conditions, secondary effects such as the induction
of oxidative stress are closely linked to both®-4. The bactericidal activity of 3-
lactams can be potentiated by the interaction of ferrous ions with reactive oxygen
species (ROS), which are generated as a result of the elevated metabolic activity
associated with peptidoglycan recycling®. This oxidative mechanism aligns with
observations that meropenem is more effective against Pseudomonas aeruginosa
strains with compromised antioxidant defenses®. In contrast, activation of stress
responses such as the stringent response can enhance antioxidant capacity prior
to antibiotic exposure, thereby promoting antibiotic tolerance®®. The stringent
response also plays a key role during nutrient limitation in the biofilm core?,
contributing to biofilm physiology and potentially reducing susceptibility to -
lactams. Although the influence of the nutritional environment on the early
bacterial response to 3-lactams is not yet fully understood, it may be an important
factor in shaping P. aeruginosa sensitivity.

Polymyxins

Polymyxins are polypeptide antibiotics that disrupt the bacterial cell envelope.
Unlike many other antibiotics, polymyxins are particularly effective against
dormant cell types that lack the high metabolic activity required for cell envelope
remodeling®®. These metabolic demands for lipopolysaccharide modifications
are more readily supported in nutrient-rich environments, which can lead to a
reduction in binding sites for colistin due to alterations of the lipid A component
of lipopolysaccharide®®-%. While such lipid A remodeling typically imposes a
fitness cost in other Gram-negative bacteria, P. aeruginosa appears to tolerate

these modifications without significant fitness penalties®*-'°', Nonetheless,



Nutrient-driven modulation of antibiotic efficacy in P. aeruginosa

colistin susceptibility in P. aeruginosa can be influenced by the nutrient
environment. For example, the carbon sources glucose and formate modulate
antibiotic effects while not directly channeled into the central energy-generating
pathways®'. Glucose has been suggested to reduce susceptibility by alleviating
osmotic stress, while formate induces a sensitizing effect through an as-yet
undefined mechanism. These findings illustrate how P. aeruginosa leverages its
metabolism to adapt to antibiotic exposure in ways that are uncoupled from core
energy metabolism. However, such metabolic adaptations likely depend on
nutrient-rich conditions that maintain energy homeostasis via alternative

substrates.

2.4. Differences in the nutritional environments
between and within patients

Differences in nutrients may impact the response of P. aeruginosa to antibiotics
can occur at different biological scales, contributing to variability within and
between patients. In the previous sections, we highlighted how nutritional
diversity within the CF lung influences P. aeruginosa phenotype and antibiotic
sensitivity at the cellular level, explaining heterogeneity at the cellular level
(Figure 3A). Within the lung, accumulation of mucus and macronutrients can
further contribute to this nutrient diversity. Nutrient conditions vary
substantially across different lung regions due to varying host-pathogen
interactions and oxygen availability'®? (Figure 3B). Patient-specific differences
such as those related to disease severity, inflammation, comorbidities and
microbial colonization significantly impact the nutrient microenvironments'%4-
9 (Figure 3C). In this section, we explore how nutrient heterogeneity at the
tissue and patient level may further contribute to differences in antibiotic

treatment response.
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A. Cellular heterogeneity

Antibiotics

/%enltnﬁcatlon

oQ -
Aerobic \ 6@

respriration \ N\

Reduced
airflow

C. Patient heterogeneity

YW LYY
Genetic Lung Comorbidities | Drug':
differences function exposure

Figure 3. Multiscale heterogeneity contributing to variation in antibiotic treatment
response in (A) patients, (B) site of infection, and (C) bacterial biofilm structure.
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Pulmonary heterogeneity

The compartmentalization of the human lung creates a diverse
microenvironment that significantly influences pathogen-host interactions'®?.
One notable example is the respiratory zone, which is densely populated with
PMNs and, as a result, experiences a pronounced depletion of O, from the
typically aerobic zone'®. It has been suggested that biofilm aggregates encased
by PMNs no longer exhibit an oxygen gradient but instead experience uniform
hypoxia'®. Microbes originating from these hypoxic areas can adapt to become

intolerant to O,"""

, a shift that will directly affect their metabolic processes and
likely their response to antibiotics. For example, proposed strategies focusing on
increasing aerobic respiration may have limited or even counterproductive
effects on these strict anaerobic cells, especially when compared to P. aeruginosa
lineages that have evolved increased aerobic respiration during long-term

adaptation to the CF lung?®.
The O, depleted by PMNs is partly used for ROS production as a pathogen

eradication mechanism, but also inducing oxidative stress in nearby host and
microbial cells. This oxidative stress not only increases nutrient availability
through cell lysis and epithelial cell nutrient leakage'?, but also primes P.
aeruginosa by activating stress responses prior to antibiotic treatment. The pre-
activation of these stress responses can undermine the secondary effects of
antibiotics that depend on ROS production, such as fluoroquinolones and -
lactams, reducing antibiotic effectiveness'.

These observations underscore the critical need to consider the role of
the compartmentalized lung in nutrient availability, oxygen levels, and immune
cell activity in P. aeruginosa treatment response. Understanding the intricate
dynamics of the different CF lung microenvironments and microbial adaptation
offers a pathway to more effective treatment approaches, potentially including
the strategic manipulation of microbial metabolism to enhance antibiotic
efficacy.

Patient heterogeneity
There are nearly 2000 possible mutations of the CF transmembrane regulator
gene that cause CF, leading to a broad spectrum of disease severities'. These

mutations result in diverse manifestations in CF pathophysiology which
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eventually contribute to significant differences in lung function decline's"e.
Progressive lung function decline caused by inflammation results in higher levels
of free amino acids, nutrients that are preferred by P. aeruginosa'®. The more
severe lung damage in chronically infected pwCF is often accompanied by P.
aeruginosa adaptations that further enhance its metabolic dominance in the
inflamed environment'”'%17 These metabolic changes also include the shift

18 a transition that is associated

from aerobic respiration toward denitrification
with decreased antibiotic susceptibility. This suggests that changes in the nutrient
environment and associated metabolic adaptations may be important
considerations in treatment decision-making. Such factors may be particularly
relevant in the treatment strategy during the substantial changes in lung function

that occur at the transition from childhood to adulthood''®.

Diabetes mellitus is one example of an important and frequent
comorbidity in pwCF'"°, which further exacerbates the elevated glucose
concentrations typically observed in the CF lung'?*'2', Elevated glucose levels in
the CF lung have been repeatedly associated with an increased risk of developing
respiratory infections'?>"2%124, In vitro studies have demonstrated that glucose
induces metabolic shifts and increase biofilm formation in P. aeruginosa, which
in turn reduces levofloxacin susceptibility'?®. Glucose also plays a key role in
epithelial cells and PMNs, particularly in anaerobic conditions where it is
fermented into lactate. The subsequent rise in lactate levels has been suggested
as a biomarker for pulmonary exacerbations'®?*'?6, However, the lack of
significant decrease in lactate levels following antibiotic treatment raises
questions about its utility as a reliable biomarker'?”. Nonetheless, the sustained
lactate levels indicate that P. aeruginosa continues to access lactate and glucose
before, during, and after antibiotic treatment. This demonstrates that glucose
serves as an important substrate for P. aeruginosa, despite not being one of its
preferred carbon sources.

2.5. Considering nutrients in antimicrobial
susceptibility testing

Current clinical decisions regarding antibiotic therapy are based on
antimicrobial susceptibility testing, which typically uses standardized nutrient
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and oxygen-rich conditions that do not reflect the in vivo nutrient environment
shaped by CF-related pathophysiological factors. By integrating physiologically
relevant growth conditions that closely mimic the CF-specific environments, the
predictive accuracy of antibiotic effects may be improved'?. Combining these
nutrient-relevant conditions with recent advancements in the development 3D
biofilm* and host-microbe’ models promises a more accurate translation of

laboratory findings into clinical outcomes.

2.6 Opportunities for antimicrobial drug
development

The intricate relationship between metabolic activity and P. aeruginosa antibiotic
sensitivity presents a promising avenue for developing a new class of
antimicrobials that target bacterial metabolism'?°. These novel antimicrobials
could aim to inhibit the specific metabolic pathways that pathogens exploit to
evade or tolerate conventional antibiotics like aminoglycosides and
fluoroquinolones. We have described how the metabolic shift of P. aeruginosa
toward anaerobic energy-generating pathways reduces antibiotic uptake and
decreases ROS production, which are essential to the activity of these antibiotics.
By specifically targeting these anaerobic pathways in combination therapies,
metabolism-targeting antimicrobials could effectively block bacterial escape
routes from antibiotic treatments'®. Unlike nutrient supplementation that relies
on activation of aerobic metabolism, combination therapy with metabolism-
targeting antimicrobials will be a consistent strategy to combat antibiotic
resistance within the diverse oxygen gradients of the CF lung. The success of
these therapeutics hinges on a deep understanding of pathogen metabolism
within physiologically relevant microenvironments. Selecting metabolism-
targeting candidates from drug libraries can only facilitate the development of
successful candidates if the pathogens are studied in screening models that
accurately represent the infection site'®"'%2. The failure of many promising
compounds during the development process often stems from a lack of
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consideration of physiological relevance of screening models'3, underscoring

the importance of this strategy in the fight against antibiotic-resistant infections.
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2.7. Conclusion

There is a complex interplay of nutrients in the CF lung environment, metabolic
adaptations of P. aeruginosa and resulting consequences for antibiotic treatment
efficacy. Various nutritional environments relevant to the CF lung influence
antibiotic efficacy. These insights highlight the importance of further considering
the CF lung microenvironment and its impact in order to refine susceptibility
testing and treatment strategies, although characterization of the nutrient

environment in patients remains challenging.
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Abstract

The infectious microenvironment in chronic respiratory tract infections is
characterized by substantial variability in nutrient conditions, which may impact
colonization and treatment response of pathogens. Metabolic adaptation of the
CF-associated pathogen Pseudomonas aeruginosa has been shown to lead to
changes in antibiotic sensitivity. The impact of specific nutrients on the response
to antibiotics is, however, poorly characterized. Here, we investigated how
different carbon sources impact the antimicrobial pharmacodynamic responses
in P. aeruginosa. We evaluated the effect of six antibiotics (aztreonam,
ceftazidime, ciprofloxacin, colistin, imipenem, tobramycin) on P. aeruginosa
cultured in a basal medium enriched for seven different carbon sources (alanine,
arginine, aspartate, glucose, glutamate, lactate, proline). Pharmacodynamic
responses were characterized by measuring time-kill profiles for a
bioluminescent P. aeruginosa PAO1 Xen41 strain. We show that single-nutrient
modifications minimally affected bacterial growth rate. For specific nutrient-
antibiotic combinations, we find relevant alterations in antibiotic sensitivity (i.e.,
ECso) and the maximum drug effect (Emax), in particular for ciprofloxacin, colistin,
imipenem and tobramycin. The most pronounced effect was observed for
tobramycin, where glucose was found to reduce the ECs, (0.5-fold) while lactate-
enriched conditions led to a 4.3-fold increase in ECs. Using pharmacokinetic-
pharmacodynamic simulations, we illustrate that the magnitude of the nutrient-
driven pharmacodynamic changes impact treatment for clinical dosing strategies
of tobramycin. In summary, this study underscores the impact of nutrient
composition on antimicrobial pharmacodynamics, which could potentially
contribute to observed variability of antimicrobial treatment responses in CF
patients.

Importance

Chronic respiratory tract infections in cystic fibrosis patients present significant
challenges for antibiotic treatment due to the complexity of the respiratory
environment. This study investigated how variations in nutrient levels, altered
during chronic infections, affect pathogen response to antibiotics in an
experimental setting. By simulating different nutrient conditions, we aimed to
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uncover interactions between nutrient availability and antibiotic sensitivity. Our
findings provide critical insights that could lead to more effective treatment
strategies for managing chronic respiratory tract infections in cystic fibrosis
patients, while also guiding future research in improving treatment
methodologies.

3.1. Introduction

Cystic fibrosis (CF) associated lung infections are facilitated by a complex
infectious microenvironment involving a dense mucus layer harboring a diverse
array of potential microbial nutrients'. Antibiotic treatment in patients with CF
often yields unpredictable outcomes and aligns poorly with routine antimicrobial
susceptibility testing®3. Profound variability in microbial nutrients is observed
within the chronic infectious environment, both across and within patients*s.
Unlike many other bacterial pathogens, Pseudomonas aeruginosa prioritizes the
utilization of a wide array of carbon sources over glucose, including alanine,
arginine, aspartate, glutamate, proline, and lactate®’. This metabolic versatility
may explain its pervasive presence in chronic CF-associated infections, and

provides a competitive advantage during antibiotic treatment®°.

Alterations in metabolic processes associated with differences in
available nutrients may impact response to antibiotic treatment in P. aeruginosa'*-
13, For example, nutrient deprivation prevents cell wall modifications due to its
high energy demand, enhancing the effect of cell wall targeting antibiotics (e.g.,
polymyxins and B-lactams)'*'¢. The supplementation of metabolites to activate
energy production through aerobic respiration in nutrient-deprived
environments can increase sensitivity towards fluoroquinolones and
aminoglycosides'’ . While these changes illustrate the modulatory role of
deprived nutrient conditions and microbial metabolism on the response to
antibiotics, insights into the contribution of nutrients relevant to CF lung

microenvironments remain limited.

To assess the effects of nutrient conditions on antimicrobial pharmacodynamics
(PD), conventional readouts such as minimum inhibitory concentrations (MIC)
have important limitations, as this is a static composite measure. More

comprehensive characterization of changes in the pharmacodynamic response



Chapter 3

to antibiotics can be achieved through time kill studies, which monitor bacterial
densities over time when exposed to antibiotics, allowing the evaluation of
bacterial growth, antibiotic-associated killing, and adaptation effects?®*.
Although time-kill studies provide these valuable insights, they remain limited in
their throughput and the number of time points at which data can be collected®.
The use of bacterial strains carrying luminescent reporters allows real-time
monitoring of bacterial growth and killing dynamics during antibiotic
exposure®?*. The resulting profiles can be analyzed using mathematical
pharmacodynamic models to obtain further quantitative insights into PD
relationships. As such, the use of luminescence-based time kill studies in
combination with quantitative pharmacodynamic models is well-suited for
comprehensively assessing the effects of nutrient conditions on antibiotic
response.

In the current study, we aimed to systematically evaluate the impact of a
wide range of CF sputum-relevant carbon sources on antimicrobial time-kill
responses in P. aeruginosa. The nutrients evaluated included alanine, arginine,
aspartate, glutamate, lactate, proline, and glucose. These nutrient-associated
effects were evaluated for six antibiotics commonly used for respiratory tract
infections in CF, including aztreonam, ceftazidime, ciprofloxacin, colistin,
imipenem, and tobramycin. We assessed the bacterial growth/kill time course
profiles using extensive time-kill studies with a modified P. aeruginosa PAO1 strain
carrying a constitutively active luminescent reporter. This strain was
subsequently used to infer PD parameters and perform pharmacokinetic-
pharmacodynamic (PK-PD) simulations to demonstrate the potential clinical

impact of nutrients on antimicrobial PD.

3.2. Materials and Methods

Culture media and bacterial strain

A basal medium was prepared consisting of physiologically relevant
concentrations of amino acids in synthetic CF sputum as described previously’,
calcium and magnesium adjusted 0.11 M phosphate buffer, ammonium chloride,
potassium nitrate, ferrous sulfate, Basal Medium Eagle 1x vitamins, and trace
metals. The pH of the basal medium was confirmed to be 7.4, and was verified

after addition of nutrients and filter sterilization. The specific concentrations of
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all medium components are listed in Table S1. We then prepared 7 unique
nutrient-specific media for each of the carbon sources used in this study,
including alanine, arginine, aspartate, glutamate, glucose, proline, and lactate.
Each of these nutrients was added separately to the basal medium in excess at a
concentration of 15 mM. The P. aeruginosa bioluminescent strain PAO1 Xen41
(Revvity Inc., Waltham, MA, USA) was used in all experiments. The promoterless
insertion of the luxCDABE cassette into the chromosomal genome resulted in a
linear relationship between luminescence in relative light units (RLU) and
CFU/mL (Figure S1)3%,

Antibiotics

Antibiotic stock solutions were freshly prepared on the day of the experiment and
diluted to desired concentrations using an Opentrons OT-2 (Opentrons Inc., New
York, NY, USA) liquid handling system. Aztreonam and ceftazidime pentahydrate
were purchased from Thermo Fisher Scientific (Breda, The Netherlands).
Ciprofloxacin, imipenem monohydrate, and tobramycin were purchased from
Chem-Impex International (Wood Dale, IL, USA). Colistin sulfate was purchased
from Cayman Chemical Company (Ann Arbor, MI, USA).

Experimental workflow

Time-kill assays were conducted by culturing P. aeruginosa in each of the nutrient-
specific media formulations and exposing the cultures to 6 different antibiotics.
We tested 9 different serially diluted concentrations in a microtiter plate format,
centered around their minimal inhibitory concentrations (Figure 1). All
experiments were conducted at 37 °C and with shaking at 150 rpm.

The PAO1 Xen41 strain was streaked on LB agar plates and incubated overnight.
One colony was transferred to a nutrient specific media formulation (4 mL) and
cultured overnight. The liquid cultures were diluted to an optical density at 600
nm (ODsg) of 0.05 before inoculation, corresponding to an approximate bacterial
concentration of 5*10° CFU/mL. The bacterial inoculum (50 uL) was added to
fresh medium with antibiotics (150 uL) in a white 96-well microtiter plate.
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Figure 1. Experimental approach. The experiment started with by a liquid culture in the
media formulation containing 1 or none of the nutrients of interest. The population was
diluted to the starting density and treated with 9 concentrations of antibiotic while the
luminescence was determined every hour in relative light units (RLU). A four parameter
log-logistic function was fitted on the area under the curve or growth rate per antibiotic
concentration to determine the upper limit (Eo), lower limit (Ema), and half-maximal
effective concentration (ECso).

After inoculation, microtiter plates were transferred to a Liconic StoreX STX44
incubator (Mauren, Principality of Liechtenstein) for incubation (95% relative
humidity). A Peak Analysis and Automation KX-2 Laboratory Robot (Hampshire,
United Kingdom) transferred the microtiter plate every hour between the
incubator and the BMG Labtech Fluostar Omega microplate reader (Ortenberg,
Germany) for time-course data acquisition. The density of viable bacteria was
determined by measuring luminescence, quantified as relative light units (RLU).

Data processing and analysis

All data preprocessing and analyses are performed using R. To evaluate fitness
differences between growth media, the maximal population growth rates (Mmax)
and the maximal population density (Nma) under antibiotic free culture
conditions were calculated using the all splines function from the grofit
package®. Differences in growth parameters in the studied media formulations
compared to the basal media were assessed by the Dunnett’s Test from the
DescTools R package?®.

To quantify drug effects, the total bacterial burden was determined by calculating
the area under the curve (AUC) of the RLU between 1 and 15 hours of incubation
(Figure S2). The resulting AUC values were then used to quantify
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pharmacodynamic parameters. We fitted for each antibiotic-nutrient
combination the mean (n=3) AUC to the antibiotic concentration ([AB]) using a
four parameter log-logistic (LL.4) function from the drc R package (Equation 1)%.
This function includes parameters for the hill coefficient (nu), the lower limit
(Emax), the upper limit (Eo), and the relative half-maximal effective concentration
(ECso). The difference in relative ECso among culture conditions was quantified

using the 95% confidence interval.

AUC([AB]) = Eppgy + S0 Fmax @)

1+enH0g([AB])-10g(EC50))

Pharmacokinetic-pharmacodynamic (PK-PD) simulations

We used a previously published pharmacokinetic (PK) model for tobramycin to
perform PK-PD simulations®. We simulated the clinical concentration-time
profiles for a typical dose of 3.3 mg/kg of intravenous tobramycin, administered
every 8 hours (Table S2). Interpatient variability for the parameters was derived
from published interquartile ranges. Antibiotic PD was described by first
estimating growth/kill rates for each antibiotic concentration, which were
subsequently fitted to a pharmacodynamic sigmoidal function relation antibiotic
growth/kill rate to antibiotic concentration. The growth rates where determined
by determining the slope of the phase of the luminescence time kill curve where
the drug effect occurred (Figure S6), using the grofit package.

3.3. Results

Nutrient-dependent shift in antibiotic sensitivity.

We cultured P. aeruginosa under various nutrient conditions in the presence of
different antibiotics to investigate the effect of nutrients on the
pharmacodynamic (PD) response. To summarize the bacterial response kinetics-
encompassing growth enhancement, suppression, or killing during antibiotic
treatment-we calculated the AUC of the luminescence time course profiles. We
then regressed the AUC values against antibiotic concentrations using a sigmoidal
Emax model, allowing us to visualize differences in the pharmacodynamic
response across conditions (Figure 2). Overall, these analyses revealed

significant effects of nutrients on the antibiotic concentration required to achieve
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50% of the total antimicrobial effect (relative ECsy), and the steepness of the
concentration-response profiles (Figure S3).
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Figure 2. Pharmacodynamic exposure-response relationships for antibiotics cultured
under different nutrient conditions. The area under the curve (AUC) for bacterial
growth/kill based on relative light units (RLU) up to 15h in relation to antibiotic
concentrations (n=9) were fitted using sigmoidal Emax curves, for different nutrient-
enriched media formulations and the basal control media condition. The lines represent
the mean predictions derived from 3 biological replicates (n = 3). Abbreviations:
Aztreonam (AZT), ceftazidime (CAZ), ciprofloxacin (CIP), colistin (COL), imipenem (IMI),
and tobramycin (TOB).
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Figure 3. Changes in antibiotic sensitivity (ECso) of P. aeruginosa across different nutrients
and antibiotics. Observed area-under-the-curve for bacterial growth and kill for P.
aeruginosa PAO1-Xen4l were regressed against drug concentrations for different
antibiotics and nutrients, using a sigmoidal Emax function. The resulting ECso estimates
for different antibiotic-nutrient combinations are shown for (A) absolute EC50 values
(mean and 95% confidence intervals), with vertical dashed lines indicating the EC50
obtained from the base media control treatment, and the cross-nutrient median ECso, and
(B) median fold-change (FC) values in ECso, compared to the base media ECs. The
antibiotics and nutrients were clustered using Euclidean distance clustering to showcase
patterns of antibiotic sensitivity and nutrient effect. Abbreviations: aztreonam (AZT),
ceftazidime (CAZ), ciprofloxacin (CIP), colistin (COL), imipenem (IMI), and tobramycin
(TOB).
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The relative ECsy would be the primary metric of relevance to quantitatively
indicate subtle changes in drug potency, i.e., antibiotic sensitivity across
conditions. For several nutrient conditions, we observed clinically relevant
alterations in the ECs, values across different antibiotics (Figure 3A). We observed
both reductions in ECs, as compared to the basal media and increased ECs, values,
indicating increased resistance. Across all antibiotics, no clear trends in ECs
shifts were observed for specific nutrients.

When comparing the relative change in ECs to the basal medium (Figure
3B), both aztreonam and ceftazidime exhibited similarly enhanced sensitivity
across different nutrient conditions. The most notable changes were the
increased sensitivity observed in lactate-enriched media for both antibiotics. In
contrast, imipenem sensitivity was consistently reduced in all nutrient-enriched
conditions, with the most significant reductions observed in aspartate- and
glutamate-enriched media. For ciprofloxacin, colistin and tobramycin a wider
variation in effect was compared to the basal medium. Glucose- and proline-
enriched media resulted in a reduction of ECs,, while aspartate, glutamate- and
lactate-enriched media increased the ECs, for all three antibiotics. The largest
change in sensitivity was observed for tobramycin, where for lactate-rich media,
the ECs value increased profoundly (log2(FC_EC50) = 2.09, a 4.4-fold increase).

Fitness differences in different culture conditions affect PD
parameters.

We studied the effect of different nutrient-enriched media under antibiotic-free
conditions on fitness and growth yield using the growth curve profiles (Figure 4),
to understand their potential contributions to differences in antibiotic response.
Except for alanine, for all nutrients we found an increase of >1.5 fold in the upper
limit of the model (E,), i.e., the antibiotic baseline with no antimicrobial effect
used in our pharmacodynamic analyses (Figure S3). To further understand these
effects we calculated the maximum population growth rate (Uma) and the
maximum population density (Nma) of antibiotic-free conditions (Figure S4).
While the nutrient composition significantly affected umax, the magnitude of the
effect was modest (Figure 4B), with an increase of up to 1.2-fold compared to the
basal control media observed only for aspartate and glutamate. The observed
effects on E, are predominantly explained by differences in Nmax (Figure 4C), with
a >2-fold increase observed for aspartate and glutamate and a fold change
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Figure 4. Nutrient effects on fitness and growth yield under antibiotic-free conditions.
Growth curves for P. aeruginosa were analyzed for different media enriched for alanine,
arginine, aspartate, glucose, glutamate, lactate, and proline on the fold change compared
to basal media. (A) total growth yield described using the upper limit of the antibiotic
concentration-response curve (Eo), (B) the maximal growth rate (Umax) of the growth curve,
(C) maximal population density (Nmax) and the time (tmax) required to reach Nmax.
Significant changes compared to the basal control media are indicated using *’ for p <0.05
and ‘ns’ for p > 0.05.

between 1.2 and 2.0 for all other nutrient conditions. Distinct differences in
growth curves during the transition from the exponential growth phase to the
stationary phase was visible (Figure S4), in particular for the time required to
reach Nmax (tmax)-

The impact of differences in E, across different nutrient conditions on PD
parameters was further evaluated by analyzing the total antimicrobial response.
Comparing the relative ECs, with the absolute ECs, provides an indication of how
the limits of PD model influence the total antimicrobial effect. The relative ECs, is
defined as the midpoint between the two limits of concentration-response curve,
whereas the absolute ECs, denotes a 50% reduction in the AUC from the baseline
with no antimicrobial effect (Eo). A larger discrepancy between these ECs, values
suggests a stronger impact of the two limits on determining the antibiotic ECs, .
For treatments with ciprofloxacin, colistin, imipenem and tobramycin, the
difference between the average relative and absolute ECs, values was less than 5%
(Figure S5). In contrast, ceftazidime and aztreonam treatments showed
difference of respectively 14% and 22% indicating that differences in the PD
model limits between the nutrient conditions do influence the determination of
ECso.
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In vitro nutrient-driven PD differences impact treatment simulations
with a clinically relevant tobramycin PK profile

To assess whether the magnitude of nutrient-associated changes in the PD
response observed in vitro may have significance at clinically relevant antibiotic
concentrations, we performed pharmacokinetic-pharmacodynamic (PK-PD)
simulations. For proof of concept, we focused on tobramycin and the nutrients
glucose and lactate, since for this antibiotic and these nutrient conditions clearly
divergent PD effects were observed.

We re-fitted the PD model (Equation 1) with the in vitro obtained growth
and kill rates from our luminescence time course data per antibiotic
concentration. In the basal media enriched with glucose and lactate, maximum
bacterial growth rates were similar (0.25 h™ and 0.24 h}, respectively), as were the
maximum bacterial kill rates (-0.15 h' and -0.14 h, respectively) (Figure S6).
However, the PD model estimated a 6-fold difference in the ECs, for glucose-
enriched (1.4 ug/mL) and lactate-enriched (8.6 ug/mL) environments, indicating
that tobramycin is profoundly more effective at lower concentrations in glucose-
rich culture conditions.

We simulated clinical tobramycin concentration-time profiles using a
previously published PK model for an intravenous dose of 3.3 mg/kg
administered every 8 hours (Figure 5A). The tobramycin PK simulation shows
that the free drug concentrations fell below the ECs, within 1 hour for glucose-
rich conditions and within 5.5 hours for lactate-rich conditions after dose
administration. As a result, treatment failure was observed for tobramycin under
lactate-rich conditions, whereas growth suppression occurred in simulated
glucose-enriched conditions (Figure 5B).

3.4. Discussion

In this study we used a combination of in vitro time-Kkill studies and mathematical
modeling to investigate how specific nutrient conditions can distinctly affect
bacterial growth and pharmacodynamic response of P. aeruginosa to different
antibiotics.

We found that colistin, ciprofloxacin, imipenem and tobramycin
demonstrated >2-fold differences in nutrient-dependent changes in antibiotic
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Figure 5. Pharmacokinetic and pharmacodynamic simulation of tobramycin treatment in
glucose or lactate-rich environments. (A) Tobramycin concentrations are modelled using
a two-compartment model following a 3.3 mg/kg q8h dosing regimen. (B) Treatment
response is simulated using a pharmacodynamic model based on population growth rates
per drug concentration from in vitro growth/kill curves. The solid lines represent the
median (1000 simulations) with the interquartile range represented by the transparent-
hued areas.

sensitivity (ECsy), while these nutrients only had a limited effect on changes in
bacterial fitness. Our time-course analysis revealed that changes in growth
dynamics induced by these antibiotics occur within the initial hours of treatment,
even when nutrients are abundant and growth rates appear unchanged. This
observation challenges the suggestion that antibiotic sensitivity changes were
caused by nutrient depletion or diminished growth rates®. In contrast, the
response to aztreonam and ceftazidime under various nutrient conditions was

o0 65
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more complex, as both the baseline response (E;) and the maximum

antimicrobial effect (Emax) were differently affected by the various nutrients.

Our findings indicate that the adding glucose to nutrient-limited media
enhances colistin sensitivity. Variations in colistin sensitivity under different
nutrient conditions are thought to arise from nutrient-induced changes in cell
wall structure**®. Glucose-rich conditions have been previously suggested to
decrease colistin sensitivity by stabilizing intracellular osmotic pressure'*. Our
finding of enhanced colistin sensitivity thus challenges the hypothesis of osmotic
stabilization of glucose in nutrient-scarce conditions. This observation is
consistent with documented increases in colistin sensitivity in minimal media
supplemented with glucose®.

We found a diminished sensitivity of imipenem under nutrient conditions
involving arginine, aspartate, glutamate, or proline. This can be explained by
reduced imipenem uptake due to porin competition with these amino acids.
Indeed, imipenem susceptibility in P. aeruginosa relies on the presence of outer
membrane porins, particularly OprD and OprP, which facilitate the diffusion of
sugars and amino acids®*?*. Furthermore, nutrient starvation upregulates
OprD3¥%%  providing an explanation for the increased imipenem sensitivity
observed in both basal and glucose-rich media. The reduced growth rate and
short exponential growth phase in these conditions may prompt an earlier
starvation response, thereby enhancing OprD-mediated imipenem uptake.

We observed reduced ciprofloxacin susceptibility in glutamate media, which has
previously been associated with adaptations in nitrogen metabolism and stress
responses®*®. This metabolic adaptation mitigates ciprofloxacin’s antibacterial
effect of inducing oxidative stress by increasing the generation of reactive oxygen
species during oxidative phosphorylation®®*. The increased -ciprofloxacin
sensitivity observed in arginine-rich conditions may be attributed to the
induction of biofilm formation during treatment. Arginine-induced biofilm
formation imposes a high metabolic burden on the cells®, aligning with the
effective anti-biofilm activity of ciprofloxacin*. The difference in ciprofloxacin
susceptibility among nutrient conditions might be due to a pH-dependent effect,
although our medium was phosphate buffered to a pH of 7.4. Our observations in

ciprofloxacin susceptibility correspond to previous findings of ciprofloxacin

66 o0
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being more effective in alkaline conditions, e.g. arginine, compared to less
sensitivity in acidic conditions, e.g. glutamate and aspartate*. However, this pH-
mediated effect is not present in the observed reduced tobramycin susceptibility
in arginine-rich conditions. Unbuffered arginine increases media alkalinity,
resulting in increased tobramycin cellular uptake by increasing the

transmembrane potential®.

In our study, for tobramycin, we observed enhanced sensitivity for proline and
glucose, whereas for lactate and alanine, reduced sensitivity was found. So far
previous studies have only investigated the effect of glucose-enriched media on
P. aeruginosa tobramycin sensitivity, finding a similar potentiation effect**.
Cellular respiration is key for aminoglycoside uptake, thereby directly relating
tobramycin susceptibility to energy metabolism*. The nutrients alternated in our
media compositions are all closely linked to the TCA cycle, and intermediate
products have been consistently correlated with tobramycin potentiation'®**,
Interestingly, the sensitivity enhancement associated with TCA cycle activity can
be suppressed by reducing the production of electron carriers through the
activation of pleiotropic metabolic pathways. The redox imbalance induced by
these alternative pathways and anaerobic energy production can be mitigated
through the utilization of lactate*. This observation may provide an explanation
for the reduced susceptibility in lactate-rich media. Although proline and alanine
demonstrated a profound effect on tobramycin treatment in our study, and
previous research highlighted their role in alternative energy-producing
pathways such as denitrification*®*, their exact role in P. aeruginosa metabolism

during tobramycin treatment remains to be investigated.

Our PK-PD simulation illustrates how differences in PD response under
nutrient-enriched conditions may lead to clinically relevant changes in antibiotic
treatment response. This is demonstrated using a clinical tobramycin PK profile
and the PD parameters from glucose and lactate-enriched conditions. While
these in vitro conditions do not fully replicate in vivo growth environments,
which may also involve phenotypical adaptations such as biofilm formation or
interspecies interactions, they underscore the relevance of considering nutrient
conditions in the infectious microenvironment. This is especially relevant when
nutrient availability could be altered under specific disease conditions. For

instance, elevated lactate levels have been found in CF patients with declining
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lung function®, which could thus potentially contribute to the reduced
tobramycin efficacy in adult CF patients®. Diabetes is a common disease in CF
patients and for which increased glucose levels can be expected, which could
potentially affect TOB treatment response®.

The nutrient conditions employed in this study do not capture the full complexity
of potential CF lung environments but provide isolated insights into the effect of
specific nutrient conditions. Nutrients showed modest differential impact on
bacterial fitness (Umax) and profound changes in growth yield (Nm.x). The minimal
impact on Umax from substituting a single nutrient is consistent with prior studies
on glucose and lactate addition to minimal media®, and can be explained by a
compressed nutrient utilization hierarchy under nutrient-poor conditions %,
facilitating the simultaneous utilization of the basal medium nutrients and the
added nutrients. This efficient metabolic regulation of P. aeruginosa suggests that
our findings may not directly extrapolate to other conditions or nutrient
combinations. Future research, focusing specifically on nutrient utilization
during antibiotic exposure, will be crucial to deepen our understanding of
specific nutrients’ roles in more complex environments.

In conclusion, our study demonstrates a profound impact of specific nutrient
conditions on antibiotic sensitivity, with only modest effects on fitness. While
broader clinical applicability of our results remains to be further elucidated, our
work underscores the relevance of nutrients in the infectious microenvironment.
Ultimately, it could be envisioned that specific nutrient levels in either plasma or
sputum may be considered a clinically relevant predictor of antibiotic treatment
response. Similarly, the effect of nutrient conditions may be important for
consideration in antibiotic susceptibility testing.
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3.6. Supplementary figures and tables
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Supplemental Figure 1. Linear calibration between luminescence (relative light units,

RLU) and cell counts (CFU/mL) for multiple combinations of detector settings, varying

iteration time (iter, columns) and gain (rows). The iteration time stands for the total

measurement time per well and the gain is amplification in the conversion from light into

electric signal.
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Supplemental figure 2. Dynamic analysis of the population size over time during the

treatment of 6 antibiotics with 9 concentrations and a positive control in 8 media

formulations. The y-axis is the cell density measured by relative light units (RLU). All

conditions have 3 biological replicates. Abbreviations: aztreonam (AZT), ceftazidime
(CAZ), ciprofloxacin (CIP), colistin (COL), imipenem (IMI), and tobramycin (TOB).
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Supplemental Figure 3. Emax model fitting was performed on the area under the curve
(AUC) of growth curves across varying antibiotic concentrations. The model was fitted
using the average AUC values for each antibiotic concentration (n = 3). From this model,
the upper limit (E0), the half-maximal effective concentration (EC50), and the lower limit
(Emax) were determined.
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Supplemental figure 6. Phase selection for growth rate determination for growth rate

based dose-response modeling of tobramycin (TOB). (A) The time-points included (blue

dots) for the determination of the growth or kill rate of the tobramycin concentration using

alinear regression. (B) The sigmoid Emax dose-response curve for glucose and lactate using

the growth rate as response. (C) The pharmacodynamic parameters extracted from the

dose-response model.
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Supplemental table 1. Detailed content list of synthetic media
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Name Concentration Company information
(mM)

di-sodium hydrogen phosphate (Na,HPO.) 90.2 Thermo Fisher Scientific
5 Potassium di-hydrogen phosphate (KH,PO.) 22.0 VWR International
EE Sodium chloride (NaCl) 8.5 Merck KGaA (Avantor™)
'O‘f Ammonium chloride (NH4Cl) 18.6 Alfa Aesar
= Magnesium sulphate hepta-hydrate (MgSO.) 1.0 VWR International
Calcium chloride (CaCl) 0.1 Acros Organics
® Potassium nitrate (KNOs) 0.35 Acros Organics
@ Iron sulphate (FeSOa) 0.0036 Alfa Aesar
Suppl. | BME Vitamin solution 1x Thermo Fisher Scientific
aDCI;ZO((]i;B; ;Ethylene di-amine tetra-acetic 0.002 (mg/mL) JT. Baker (Avantor™)
) Zinc Sulphate hepta-hydrate (ZnSOs) 0.23 (mg/mL) Alfa Aesar
% Boric acid (H3BOs) 0.111 (mg/mL) Acros Organics
E Manganese chloride tetra-hydrate (MnCl,) 0.051 (mg/mL) Sigma Aldrich (Avantor™)
8 | Cobalt chloride (CoCl,) 0.017 (mg/mL) Alfa Aesar
= Copper Sulphate penta-hydrate (CuSO.) 0.015 (mg/mL) Sigma Aldrich (Avantor™)

Ammonium hepta-molybdate tetra
hydrate ((NH4)6II)\/IO702) Y 0.01 (mg/mlL) Alfa Aesar
Cysteine (Cys) 0.2 Chem-Impex International
Glycine (Gly) 1.2 Acros Organics
Histidine hydrochloride (His) 0.5 Chem-Impex International
Isoleucine (Ile) 1.1 Chem-Impex International
*g Leucine (Leu) 1.6 Chem-Impex International
-2 Lysine hydrochloride (Lys) 2.1 Thermo Fisher Scientific
§ Methionine (Met) 0.6 Chem-Impex International
2 Phenylalanine (Phe) 0.5 Chem-Impex International
3 Serine (Ser) 1.4 Chem-Impex International
Threonine (Thr) 1.0 Chem-Impex International
Tryptophan (Trp) 0.01 Chem-Impex International
Tyrosine (Tyr) 0.8 Chem-Impex International
Valine (Val) 1.1 Chem-Impex International
Alanine (Ala) 15 Chem-Impex International
» | Arginine (Arg) 15 Chem-Impex International
% .S Aspartate (Asp) 15 Chem-Impex International
E § | Glutamate (Glu) 15 Chem-Impex International
2 2 | Sodium lactate (LAC) 15 Biosynth International
® | Proline (Pro) 15 Thermo Fisher Scientific
Glucose (GLC) 15 Alfa Aesar
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Supplemental table 2. Pharmacokinetic parameters

Explanation Name Value / Formula Unit
Patient bodyweight BW 55.3 kg
Patient age 29.0 years
Clearance rate per BW CL¢ 0.1212 L/h/kg
Volume comp. 1 per BW Ve 0.20 L/kg
Distribution rate per BW CL4 0.0702 L/h/kg
Volume comp. 2 per BW Vs 0.38 L/kg
NcL, 28.5 %
. o e 28.2 %
I 1 1 ¢
ndividual Variability (n) ey 66.6 %
Ny, 27.8 %
Population size 1000
Dosing interval 8 h
Dosing amount 3.3«BW mg
Dosing duration 0.30 h
Volume compartment 1 Veentral Ve - el«BW L
Elimination rate from Veentral Kelimination (CL¢* et « BW) / Veentral
Volume compartment 2 Va Vs » e« BW L
Rate constant 1-->2 K (CLa * € « BW) / Veentral
Rate constant 2-->1 Ko (CL4* €™« BW) / V.,
Meentral(t) _ N _ R
Amount in compartment 1 Meentral ac = Kerr 2~ (Ketimination + mg
klZ) * Mecentral
Amount in compartment 2 m> m;—it) = K12 * Meentrai(t) — K1 » mo(t) mg
Concentration compartment 1 Ceentral Mecentral / Veentral mg/L
80 [ N
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Explanations Name Value / Formula Unit

Glucose Lactate
Max. drug effect Emax -0.144 -0.146 ‘h
Max. growth rate K(gE“;‘h 0.240 0.254 h

0

Half effective ECso 1.406 8.582 mg/L
concentration
Hill coefficicent nu 1.850 16.057
Starting population No 1+10° CFU/mL
Mazx. population Ninax 9+10° CFU/mL
Effective growth Kgrowth=Emax .
rate Kefect Kgrowth - (Emax + 1+enH(l"g(ccentral)—IOE(ECSO))) h
Infection dN(t) *
population N(t) T = (kgrowth * (l'N(t)/Nmax) - keffect) N(t) CFU/mL

Supplemental table 3. Pharmacodynamic parameters
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Prolonged anoxic exposure impacts antibiotic
sensitivity profiles of Pseudomonas aeruginosa
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Abstract

Chronic respiratory tract infections with Pseudomonas aeruginosa frequently
occur in patients with cystic fibrosis, chronic obstructive pulmonary disease, and
bronchiectasis. A hallmark of these conditions is the accumulation of mucus
plugs, creating oxygen-limited niches. Within these microenvironments, P.
aeruginosa undergoes cellular modifications that may alter its antibiotic
sensitivity. Although the acute effects of anoxia are well studied, the impact of
prolonged anoxic exposure on antibiotic sensitivity remains unclear. In this
study, we developed anoxic-conditioned P. aeruginosa strains by passaging a
laboratory strain for 22 days in an anoxic environment. We performed time-kill
assays with both parental and anoxic-conditioned strains in anoxic and aerobic
environments, using ceftazidime, ciprofloxacin, colistin, and tobramycin. The
anoxic-conditioned strains exhibited increased susceptibility to tobramycin and
reduced sensitivity to colistin and ceftazidime. These differences were attributed
to altered killing rates (as with tobramycin) or reduced regrowth under anoxic
conditions (as with colistin). For ciprofloxacin, a steeper killing rate was observed
against the anoxic-conditioned strains, but 24-hour outcomes were similar to the
parental strain. Overall, our findings demonstrate that long-term anoxia alters
antibiotic sensitivity in P. aeruginosa differently than acute anoxia, with important

implications for treating chronic infections in oxygen-limited environments.
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Prolonged anoxic exposure impacts antibiotic sensitivity profiles of P. aeruginosa

4.1. Introduction

Lung diseases such as chronic lung conditions such as cystic fibrosis (CF), chronic
obstructive pulmonary disease (COPD), and non-CF bronchiectasis? are
characterized by anoxic environments. These anoxic environments are caused by
airway narrowing and the buildup of thick, dehydrated mucus limit oxygen
penetration, and high oxygen consumption of the host immune response further
exacerbates anoxia®. In these anoxic niches, the respiratory pathogen
Pseudomonas aeruginosa uses fermentation and alternative electron acceptors to
sustain cellular functions and proliferation*®. These metabolic adaptations that
support survival of P. aeruginosa in anoxic niches can also influence its sensitivity
to antibiotics. Antibiotics commonly used against P. aeruginosa, including
tobramycin, ciprofloxacin, and ceftazidime, rely on oxygen-dependent processes,
such as oxidative phosphorylation, reactive oxygen species production, and
active bacterial proliferation to exert their antimicrobial effects®. In contrast,
colistin remains effective in anoxic environments because energy-starved cells

are unable to modify their membranes to reduce colistin binding’.

While the differential impact of acute responses to anoxic conditions on
antibiotic sensitivity have been previously studied, the consequences of
prolonged anoxia-induced adaptations remain largely unknown. Longer-term
genetic or transient changes in cellular metabolism, stress responses, biofilm
formation, and membrane remodeling have yet to be characterized in detail®"°.
Alterations in membrane composition and transport proteins may affect the
uptake and effect of membrane-targeting antibiotics such as ceftazidime and
colistin. Additionally, metabolic specialization to anoxia introduces cellular
redox imbalances that can alter antibiotic activity''. In parallel, the development
of oxygen intolerance due to anoxic specialization can lead to higher levels of
reactive oxygen species (ROS) upon re-exposure to oxygen'?.. These prolonged
metabolic adaptations can influence the sensitivity of ROS-dependent antibiotics
such as ciprofloxacin and metabolism-dependent antibiotics such as tobramycin.
Thus, long-term anoxic adaptation affects key mechanisms relevant to antibiotic
activity, but the potential impact on antibiotic sensitivity remains unclear.
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In this study, we investigated how prolonged anoxic exposure affects the
sensitivity of P. aeruginosa to ceftazidime, ciprofloxacin, colistin and tobramycin.
An anoxic-conditioned strain was obtained by passaging a P. aeruginosa
laboratory strain in an anoxic environment (<1% oxygen) for 22 days. The effects
of the antibiotic-classes were then compared between the conditioned and
parental strains under both anoxic and atmospheric oxygen conditions using
time-kill assays, providing a comprehensive view of how anoxic specialization
influences antibiotic sensitivity.

4.2. Materials and Methods

Strains, culture media, agar plates, and antibiotics

Pseudomonas aeruginosa PAO1 (DSM1117) was used as the parental strain in this
study. Synthetic cystic fibrosis sputum medium (SCFM) served as the liquid
medium for anoxic conditioning and time-Kkill experiments (Table S1)'. Samples
for colony-forming unit (CFU) enumeration were diluted using a 1:4 dilution of
SCFM with 0.11 M phosphate buffer before plating. Agar plates were prepared
with Mueller-Hinton broth (MHB) agar supplemented with 10 mM KNO; (Acros
Organics, Geel, Belgium) to prevent the loss of oxygen-intolerant populations
during aerobic plating.

Antibiotic solutions were prepared and diluted with SCFM to the desired
concentrations in microtiter plates using an Opentrons OT-2 liquid handling
system (Opentrons Inc., New York, NY, USA) one day before the time-kill assay.
Ceftazidime pentahydrate was purchased from Thermo Fisher Scientific (Breda,
The Netherlands), ciprofloxacin and tobramycin from Chem-Impex International
(Wood Dale, IL, USA), and colistin sulfate from Cayman Chemical Company (Ann
Arbor, MI, USA).

Anoxic culture environment and anoxic conditioning

Anoxic cultures were performed in a Baker Ruskin anoxic workstation (Sanford,
Maine, United States). All liquid media used for anoxic experiments were pre-
conditioned to the anoxic environment (<1% oxygen) for two days, and antibiotic
microtiter plates were placed in the anoxic chamber one day before the time-kill

assay.
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Anoxic-conditioned strains were generated in triplicate, each from randomly
selecting colonies of the parental strain grown overnight on an aerobic agar plate
culture. Conditioning was conducted in triplicate using 2 mL pre-acclimated
SCFM medium in sealed 12 mL culture tubes at 37 °C in the anoxic chamber. Every
two days, 20 uL of the cultures was transferred into fresh SCFM, continuing for
22 days to achieve anoxic conditioning.

Time-kill assay

Time-kill assays in SCFM were performed in triplicate for the parental and
anoxic-conditioned P. aeruginosa strains in aerobic and anoxic environments to
examine antibiotic sensitivity (Figure S1). The parental strain replicates were
subcultured for 20 hours under aerobic conditions, while the anoxic conditioned
strains were used directly following the 22-day incubation period. Liquid cultures
from the parental and anoxic-conditioned strain were diluted to reach a starting
density of approximately 1 x 10’ CFU/mL, based on optical density measurements
at 600 nm. Cultures were exposed to five antibiotic concentrations in 2-fold serial
dilutions, along with an antibiotic-free control. Antibiotic concentrations for the
assays were guided by visual MIC testing of the parental strain performed
aerobically (Table S2). MIC determination under anoxic conditions was not
feasible due to low final culture densities.

Anoxic time-kill assays were incubated within the anoxic chamber, while
aerobic assays were incubated at 37 °C with shaking (250 rpm) to ensure
oxygenation. At 2 and 24 hours, 100 pL samples were taken, subjected to 10-fold
serial dilutions, and plated on agar. All agar plates were incubated under aerobic
conditions at 37 °C for one day, followed by an additional day at room

temperature, before colony counting to determine bacterial population size.

Growth rate assay

Growth curves were obtained in quadruplicate in both aerobic and anoxic culture
environments for the anoxic-conditioned and parental P. aeruginosa strains to
compare antibiotic-free growth kinetics. Growth curves in the aerobic
environment were obtained by transferring microtiter plates every 30 minutes
between a Liconic StoreX STX44 incubator (Mauren, Liechtenstein) shaking at
150 rpm and a BMG Labtech Fluostar Omega microplate reader (Ortenberg,

Germany), using a Peak Analysis and Automation KX-2 laboratory robot
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(Hampshire, United Kingdom). Growth in the anoxic environment was measured
every 30 minutes using a wireless Cerillo Alto plate reader (Charlottesville, VA,
United States).

Data processing

Drug effects were quantified by calculating the change in bacterial population
size over 24 hours of antibiotic exposure. To evaluate the initial bacterial
response, the antibiotic net killing rate during the first 2 hours was determined
by calculating the slope using the logarithmically transformed population sizes
(N) and the elapsed time (At) (Equation 1). Maximal growth rates in antibiotic-
free media were calculated using the splines function from the growthrates
package in R, based on the growth curves from four technical replicates. All data
analysis was performed in R (version 4.3.0)

log10(N2)—logyo(N1) )
At

Killing rate =

4.3. Results

Acute and prolonged anoxic exposures modulate antibiotic effect
over 24 hours

We investigated how anoxic conditions affect antibiotic activity by comparing
time-kill curves obtained in aerobic and anoxic environments, both for the
parental and the anoxic-conditioned strains. Time-kill experiments with the
parental strain were performed to evaluate the acute effects of anoxic
environments, whereas experiments with the anoxic-conditioned strain reflected
prolonged adaptation to anoxia. We compared the change in bacterial population
size between the inoculum and the 24-hour timepoint as a measure of antibiotic
effect (Figure 1).

For ciprofloxacin, population size reduction of the parental strain was
observed at 0.031 mg L' in anoxic environments, while 0.125 mg L™ was required
in aerobic environments. The anoxic-conditioned strain showed a similar
oxygen-dependent response to ciprofloxacin but at one serial-dilution step lower
(0.016 mg L' in anoxic and 0.062 mg L in aerobic environments).

With tobramycin, population sizes of the parental strain started to
decline after 24 hours at concentrations above 1 mg L*, with a notably more
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Figure 1. Change in cell density of the parental and anoxic-conditioned P. aeruginosa
strains after 24 hours of antibiotic exposure in aerobic and anoxic environments. Orange
lines and points represent the anoxic-conditioned P. aeruginosa strain, evolved over 22 days
in an anoxic environment prior to antibiotic exposure, while navy lines and points
represent the parental PAO1 strain. Solid lines and points denote the mean logio change in
cell density, calculated from the three biological replicates, which are represented as
translucent points.

pronounced reduction at 4 mg L™' under aerobic compared to anoxic conditions.
At these concentrations, the anoxic-conditioned strain mirrored the aerobic

response of the parental strain in both oxygen environments.

For both strains, all evaluated colistin concentrations failed to induce net
reductions in population size in aerobic environments. However, reductions were
observed in anoxic environments, with a smaller reduction for the anoxic-

conditioned strain.

For ceftazidime, a flat concentration—-effect relationship was observed in
anoxic environments for both strains. In the aerobic environment, on the other
hand, a clear concentration-effect relationship was observed for the parental
strain, with population size reductions above 1 mg L™. In contrast, the highest
tested ceftazidime concentration failed to reduce the population size of the

conditioned strain in the aerobic environment.
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Figure 2. Net antibiotic killing rates in parental and anoxic-conditioned P. aeruginosa under
aerobic and anoxic environments. Net killing rates during the initial 2 hours of antibiotic
exposure for each biological replicate (shown as translucent points) were calculated by
determining the slope of the change in logio-transformed cell density. Solid orange lines and
points represent the mean response rate of the conditioned P. aeruginosa strain, which was
evolved in an anoxic environment for 22 days prior to treatment, while navy represents the
mean response rate of the parental PAO1 strain.

Anoxic conditioning impacts antibiotic net killing rates

To assess the effect of anoxic conditioning on the immediate bacterial response
to antibiotics, we analyzed net killing rates during the first 2 hours of antibiotic
exposure (Figure 2). The net killing rate was defined as the slope of the logio-
transformed bacterial population size over time (logio[AN]/t), with steeper
negative slopes indicating faster killing. For ciprofloxacin, faster killing rates
were observed at concentrations of 0.031 mg L' and above for the anoxic-
conditioned strain compared to the parental strain, in both aerobic and anoxic
culture environments. Tobramycin demonstrated consistent effects across most
conditions, except for the anoxic-conditioned strain in aerobic environments, for
which the fastest killing rate of -1.68 (corresponding to a 50-fold reduction per
hour) was observed at 4 mg L, compared to -0.45 for the parental strain (2.8-fold
reduction). For colistin, similar killing rates between strains and oxygen
environments were observed, with rates becoming more negative at higher

concentrations. The largest magnitude of killing (-2.42, corresponding to a 263-

90 o0



Prolonged anoxic exposure impacts antibiotic sensitivity profiles of P. aeruginosa

fold reduction per hour) was observed at 4 mg L* in the parental strain under
anoxic conditions. By contrast, ceftazidime had minimal killing across all strains

and environments, with a fastest killing rate of -0.36 (a 2.3-fold reduction per
hour).

Prolonged anoxic exposure reduces bacterial growth rates

To assess fitness differences between the parental strain and anoxic-conditioned
strains, we derived the maximal growth rates under antibiotic-free conditions.
Here, the growth rate reflects the time a strain requires for doubling its
population size. The growth rate of the parental strain was on average 4.9-fold
increase in aerobic than in anoxic environments, and for the anoxic-conditioned
strain it was 8.1-fold increased (Figure 3). A moderate increase in growth rate
was observed for the parental strain than for the anoxic-conditioned strain in
both aerobic (0.63 h! vs. 0.57 h!) and anoxic (0.13 h! vs. 0.07 h!) environments.
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Figure 3. Growth rates of the parental and anoxic-conditioned P. aeruginosa strains in
aerobic and anoxic environments. Maximal growth rates were calculated from smoothed
spline growth curves of four technical replicates per strain and condition. The growth
curve is based on optical density at 600 nm (OD600) measurements taken every 30 minutes.
Data points represent umax values per biological replicate, and the solid line indicates the
mean pmax of the three biological replicates.
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4.4. Discussion and conclusions

In this study, we demonstrated how prolonged adaptation of a P. aeruginosa
laboratory strain to anoxic environments reduces bacterial growth rates and
alters antibiotic susceptibility in a class-dependent manner. Anoxic
specialization resulted in increased effect of tobramycin, reduced effects of
colistin and ceftazidime, and a higher initial killing rate for ciprofloxacin. In the
aerobic environment, ciprofloxacin and tobramycin exhibited increased initial
killing rates against the anoxic-conditioned strain whereas ceftazidime effects
after 24 hours of exposure were decreased.

The limited difference in ciprofloxacin effects over 24 hours exposure between
anoxic and aerobic environments aligns with previous findings that oxygen-
deprived environments primarily induce fluoroquinolone tolerance rather than
altering antibiotic susceptibility’*'>. The steeper killing rate observed in the
anoxic-conditioned strain under aerobic conditions is consistent with the
dependence of fluoroquinolones on reactive oxygen species for activity'®. Oxygen
radicals are formed in greater quantities when oxygen is introduced to cells that
have undergone anoxic specialization'?. The increased ciprofloxacin effect
observed in the anoxic-conditioned strain in the anoxic environment suggests
that additional biological adaptations to anoxia may influence fluoroquinolone
effects.

Anoxic conditioning increased tobramycin sensitivity in both aerobic and
anoxic environments, contrasting with the established reliance of
aminoglycosides on the proton motive force for intracellular entry'. Although
oxygen-deprived environments typically exhibit lower membrane potentials,
active transport systems can still facilitate aminoglycoside uptake's. Once inside,
aminoglycosides trigger secondary stress responses, such as envelope and
oxidative stress, potentially explaining the enhanced 24-hour tobramycin effect
on the anoxic-conditioned strain. Despite similar 24-hour outcomes between the
strains in the aerobic environment, a substantially higher killing rate was
observed in the anoxic-conditioned strain compared to the parental strain,
highlighting the impact of prolonged anoxic adaptation on aminoglycoside
activity. These observations align with reports of pronounced differences in
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aminoglycoside sensitivity in clinical CF respiratory tract isolates across oxygen

gradients, likely due to prior exposure to anoxic environments''>°,

The drug effect of colistin after 24 hours of exposure was stronger in the
anoxic environment for both strains, consistent with previous findings that
oxygen deprivation enhances colistin activity ?*?'. The increased net effect in
anoxic conditions may be due to lower bacterial growth rates in this
environment, which can result in higher net effect or reduced regrowth. Notably,
the killing rates did not substantially differ between oxygen conditions, and the
anoxically conditioned strain showed a reduced colistin effect. This suggest a
more complex interplay between colistin’s mechanism of action and P. aeruginosa
responses under varying oxygen levels. P. aeruginosa is known to modify the
lipopolysaccharide composition of its membrane?, the primary target of colistin
% as a resistance mechanism when energy supplies are sufficient’. This may
explain the regrowth observed in an aerobic culture environment. Currently,
nebulized colistin is extensively evaluated as an adjunctive therapy to prevent
ventilator-associated pneumonia (VAP) in mechanically ventilated patients®. Our
results suggest that increased lung oxygenation through ventilation might
negatively affect colistin efficacy, potentially contributing to the limited
effectiveness of prophylactic colistin treatment in reducing VAP incidence®.
Colistin exhibits greater clinical efficacy in CF respiratory infections, where
anoxic microenvironments are common®. However, the role of anoxia in
lipopolysaccharide modification remains poorly understood, such modifications
may also explain the reduced colistin effects against the anoxic-conditioned
strain. Investigating these modifications further represents an important
direction for future research.

Ceftazidime displayed a distinct pharmacodynamic profile compared to
the other antibiotics tested. No differences in killing rates were observed during
the initial hours of exposure, which is consistent with the time-dependent activity
of ceftazidime?. However, over the full 24-hour period, ceftazidime sensitivity
was markedly reduced following anoxic conditioning, both under aerobic and
anoxic assay environments. Although ceftazidime is typically bactericidal for P.
aeruginosa®, this effect was only evident in the parental strain, albeit to a lesser
degree in anoxic conditions. For the anoxic-conditioned strains, the effect of
ceftazidime was limited to bacteriostasis in both aerobic and anoxic
environments. This reduction in activity may be explained by previous work
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showing that oxygen deprivation enhances efflux pump activity®®. Reduced
ceftazidime sensitivity in anaerobic biofilms has been reported®, and our results
demonstrate that this effect persists even after re-culturing under aerobic

conditions.

We adopted a 22-day adaptation period to induce anoxic specialization. We
compared the anoxically conditioned strain directly to the unpassaged parental
strain, rather than to a 22-day aerobically subcultured strain. This choice was
deliberate, as prolonged aerobic propagation would introduce substantially
different genetic drift due to markedly higher growth rates and cell densities
compared to the anoxic culture environment. While we acknowledge the
limitations of this control setup, it allowed us to more accurately attribute
observed differences to direct anoxic adaptation resulting from prolonged
conditioning. Additionally, we recognize that the 22-day anoxic incubation used
here is considerably shorter than typically experienced by P. aeruginosa strains
persistently present in the CF lung, where prolonged evolutionary pressures may
drive further specialization®'. The current study utilized P. aeruginosa PAO1
laboratory strain to specifically study the effects of anoxic specialization on
antibiotic response. Clinical isolates exhibit diverse adaptations due to prolonged
in-host evolution, potentially affecting responses to anoxic environments. Using
a defined laboratory strain ensures consistent genetic and phenotypic
backgrounds, facilitating clearer interpretations of the observed antibiotic
responses. Although beyond the scope of this study, future research involving
clinical isolates represents a logical and necessary next step. We anticipate that
such studies will require larger sample sizes to address the inherent
heterogeneity among isolates, and they will greatly benefit from the experimental
framework and treatment conditions established here. Finally, investigations into
membrane modifications and redox imbalances could yield deeper mechanistic
insights to inform the optimization of treatment strategies.

In conclusion, our findings show that anoxic adaptation of a P. aeruginosa
laboratory strain modifies the effects of ceftazidime, ciprofloxacin, colistin, and
tobramycin differently compared to acute anoxic exposure of the parental strain.
Ciprofloxacin and tobramycin became more effective, whereas colistin and

ceftazidime exhibited reduced effects against the anoxic-conditioned strain.
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These altered antibiotic effects were also observed under aerobic conditions,

suggesting sustained anoxia-induced cellular adaptations that alter antibiotic

sensitivity. These findings highlight the importance of considering oxygen

gradients in research aimed at optimizing antibiotic treatment for chronic P.

aeruginosa infections in the CF lung.

4.5. References

D. Worlitzsch, R. Tarran, ... G. Doring
(2002). Effects of reduced mucus
oxygen concentration in airway
Pseudomonas infections of cystic
fibrosis patients. J Clin Invest 109:317-
325.

R.C. Boucher (2019). Muco-
Obstructive Lung Diseases. N Engl J
Med 380:1941-1953.

M. Senderholm, T. Bjarnsholt, ... K.
Kragh (2017). The Consequences of
Being in an Infectious Biofilm:
Microenvironmental Conditions
Governing Antibiotic Tolerance. IJMS
18:2688.

M. Eschbach, K. Schreiber, ... M.
Schobert (2004). Long-Term Anaerobic
Survival of the  Opportunistic
Pathogen Pseudomonas aeruginosa via
Pyruvate Fermentation. J Bacteriol
186:4596-4604.

K.L. Palmer, S.A. Brown, M. Whiteley
(2007). Membrane-Bound Nitrate
Reductase Is Required for Anaerobic
Growth in Cystic Fibrosis Sputum. J
Bacteriol 189:4449-4455.

A. Crabbé, P.@. Jensen, ... T. Coenye
(2019). Antimicrobial Tolerance and
Metabolic Adaptations in Microbial

Biofilms. Trends in  Microbiology
27:850-863.
S.J. Pamp, M. Gjermansen, ... T.

Tolker-Nielsen (2008). Tolerance to the
antimicrobial peptide colistin in

10.

11.

12.

13.

Pseudomonas aeruginosa biofilms is
linked to metabolically active cells,
and depends on the pmr and mexAB-
oprM genes. Mol Microbiol 68:223-240.

M. Wu, T. Guina, ... S.I. Miller (2005).
The Pseudomonas aeruginosa Proteome
during Anaerobic Growth. J Bacteriol
187:8185-8190.

H. Fang, M. Toyofuku, ... N. Nomura
(2013). The Impact of Anaerobiosis on
Strain-Dependent Phenotypic
Variations in Pseudomonas aeruginosa.
Biosci  Biotechnol Biochem 77:1747-
1752.

K.S. Kamath, C. Krisp, ... M.P. Molloy
(2017). Pseudomonas aeruginosa
Proteome under Hypoxic Stress
Conditions Mimicking the Cystic
Fibrosis Lung. J Proteome Res 16:3917-
3928.

N.R. Glasser, S.E. Kern, D.K. Newman
(2014). Phenazine redox cycling
enhances anaerobic survival in P
seudomonas aeruginosa by facilitating
generation of ATP and a proton-
motive force. Mol Microbiol 92:399-
412.

L. Kvich, B. Fritz, ... T. Bjarnsholt
(2019). Oxygen Restriction Generates
Difficult-to-Culture P. aeruginosa.
Front Microbiol 10:1992.

K.L. Palmer, L.M. Aye, M. Whiteley
(2007). Nutritional Cues Control
Pseudomonas aeruginosa Multicellular

95



Chapter 4

14.

15.

16.

17.

18.

19.

20.

96

Behavior in Cystic Fibrosis Sputum. J
Bacteriol 189:8079-8087.

P. King, D.M. Citron, ... M.N. Dudley
(2010). Effect of oxygen limitation on
the in vitro activity of levofloxacin and
other antibiotics administered by the
aerosol route against Pseudomonas
aeruginosa from cystic fibrosis
patients. Diagn Microbiol Infect Dis
66:181-186.

S. Gupta, N. Laskar, D.E. Kadouri
(2016). Evaluating the Effect of Oxygen
Concentrations on Antibiotic
Sensitivity, Growth, and Biofilm
Formation of Human Pathogens.
Microbiol Insights 9:MBI.S40767.

A. Gutierrez, J. Stokes, I. Matic (2018).
Our Evolving Understanding of the
Mechanism of Quinolones. Antibiotics
7:32.

HW. Taber, J.P. Mueller, P.F. Miller

(1987). Bacterial Uptake of
Aminoglycoside Antibiotics.
MICROBIOL REV 51:19.

M. Lang, A. Carvalho, ... C.S.

Detweiler (2023). Aminoglycoside
uptake, stress, and potentiation in
Gram-negative bacteria: new
therapies with old molecules.
Microbiol Mol Biol Rev 87:€00036-22.

T.R. Field, A. White, ... M.M. Tunney
(2005). Effect of oxygen limitation on
the in vitro antimicrobial
susceptibility of clinical isolates of
Pseudomonas aeruginosa grown
planktonically and as biofilms. Eur J
Clin Microbiol Infect Dis 24:677-687.

A. Pompilio, V. Crocetta, ... G. Di
Bonaventura (2015). In vitro activity of
colistin against biofilm by
Pseudomonas aeruginosa is
significantly improved under “cystic
fibrosis-like” physicochemical
conditions. Diagn Microbiol Infect Dis
82:318-325.

21.

22.

23.

24,

25.

26.

27.

28.

M. Kolpen, C.F. Appeldorff, ... T.
Coenye (2016). Increased bactericidal
activity of colistin on Pseudomonas
aeruginosa biofilms in anaerobic
conditions. Pathog Dis 74:tv086.

J.S. Lam, V.L. Taylor, ... D. Kocincova
(2011). Genetic and Functional
Diversity of Pseudomonas aeruginosa
Lipopolysaccharide. Front Microbio 2.

A. Lo Sciuto, M. Cervoni, ... F. Imperi
(2020). Effect of  lipid A
aminoarabinosylation on
Pseudomonas aeruginosa colistin
resistance and fitness. Int J Antimicrob
Agents 55:105957.

X. Zhang, X. Cui, ... M. Yang (2023).
Nebulized colistin as the adjunctive
treatment for ventilator-associated
pneumonia: A systematic review and
meta-analysis. Journal of Critical Care
77:154315.

M. Karvouniaris, D. Makris, ... E.
Zakynthinos (2015). Nebulised colistin
for ventilator-associated pneumonia
prevention. Eur Respir J 46:1732-1739.

W. Stilma, M.]J. Schultz, F. Paulus
(2018). Preventing mucus plugging in
invasively ventilated intensive care
unit patients—routine or personalized
care and ‘primum non nocere. J
Thorac Dis 10:E817-E818.

AE. Muller, JW. Mouton (2014).
Chapter 10 - Continuous Infusion of 3-
lactam Antibiotics, p. . In Vinks, AA,
Derendorf, H, Mouton, JW (eds.),

Fundamentals of  Antimicrobial
Pharmacokinetics and
Pharmacodynamics.  Springer New

York, New York, NY.

A.R. Noel, M. Attwood, ... M. Albur
(2022).  Comparative  bactericidal
activity of representative B-lactams
against Enterobacterales,
Acinetobacter baumannii and
Pseudomonas aeruginosa. Journal of
Antimicrobial Chemotherapy 77:1306-
1312.



29.

30.

31.

Prolonged anoxic exposure impacts antibiotic sensitivity profiles of P. aeruginosa

B. Schaible, C.T. Taylor, K. Schaffer
(2012). Hypoxia Increases Antibiotic
Resistance in Pseudomonas
aeruginosa through Altering the
Composition of Multidrug Efflux
Pumps. AAC 56:2114-2118.

L.L. Bowler, G.G. Zhanel, ... L.L.
Saward (2012). Mature Pseudomonas
aeruginosa Biofilms Prevail Compared
to Young Biofilms in the Presence of
Ceftazidime.  Antimicrob  Agents
Chemother 56:4976-4979.

R. La Rosa, H.K. Johansen, S. Molin
(2019). Adapting to the Airways:
Metabolic Requirements of
Pseudomonas aeruginosa during the
Infection of Cystic Fibrosis Patients.
Metabolites 9:234.

97



Chapter 4

4.6. Supplementary materials

Supplemental table 1. Detailed content list of synthetic cystic fibrosis sputum media

Concentration

Name (mM) Company information
di-sodium hydrogen phosphate (Na,HPO.) 90.2 Thermo Fisher Scientific
5 Potassium di-hydrogen phosphate (KH,PO.) 22.0 VWR International
EE Sodium chloride (NaCl) 8.5 Merck KGaA (Avantor™)
'O‘f Ammonium chloride (NH4Cl) 18.6 Alfa Aesar
= Magnesium sulphate hepta-hydrate (MgSO.) 1.0 VWR International
Calcium chloride (CaClz) 0.1 Acros Organics
» Potassium nitrate (KNOs) 0.35 Acros Organics
g Iron sulphate (FeSOa) 0.0036 Alfa Aesar
Suppl. | BME Vitamin solution 1x Thermo Fisher Scientific
Eé;zo((i;;; ;Ethylene di-amine tetra-acetic 0.002 (mg/mL) J.T. Baker (Avantor™)
) Zinc Sulphate hepta-hydrate (ZnSOs) 0.23 (mg/mL) Alfa Aesar
*g Boric acid (H3BOs) 0.111 (mg/mL) Acros Organics
E Manganese chloride tetra-hydrate (MnCl,) 0.051 (mg/mL) Sigma Aldrich (Avantor™)
Q Cobalt chloride (CoCl») 0.017 (mg/mL) Alfa Aesar
& Copper Sulphate penta-hydrate (CuSO.) 0.015 (mg/mL) Sigma Aldrich (Avantor™)
Ammonium h -mol T
hy dract)e (?NH‘;)iI;\j[a;h OZ)) ybdate tetra 0.01 (mg/mL) Alfa Aesar
Alanine (Ala) 1.8 Chem-Impex International
Arginine (Arg) 0.3 Chem-Impex International
Aspartate (Asp) 0.8 Chem-Impex International
Cysteine (Cys) 0.2 Chem-Impex International
Glucose (GLC) 3.2 Alfa Aeser
Glutamate (Glu) 1.5 Chem-Impex International
Glycine (Gly) 1.2 Acros Organics
Histidine hydrochloride (His) 0.5 Chem-Impex International
@ Isoleucine (Ile) 1.1 Chem-Impex International
'E Lactate (LAC) 9.0 Biosynth International
‘g Leucine (Leu) 1.6 Chem-Impex International
= Lysine hydrochloride (Lys) 2.1 Thermo Fisher Scientific
Methionine (Met) 0.6 Chem-Impex International
Phenylalanine (Phe) 0.5 Chem-Impex International
Proline (Pro) 1.7 Thermo Fisher Scientific
Serine (Ser) 1.4 Chem-Impex International
Threonine (Thr) 1.0 Chem-Impex International
Tryptophan (Trp) 0.01 Chem-Impex International
Tyrosine (Tyr) 0.8 Chem-Impex Internationa
Valine (Val) 1.1 Chem-Impex International
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Supplemental table 2. Median minimal inhibitory concentrations (MIC) of antibiotics for

the parental P. aeruginosa strain (n=3 biological replicates). MICs were determined after 20
hours of aerobic incubation at 37 °C with shaking (250 rpm).
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Supplemental figure 1. Antibiotic time-kill assays comparing parental and anoxic

conditioned P. aeruginosa under anoxic and aerobic conditions. Mean cell densities over

time are shown with solid navy blue points and lines for the parental PAO1 strain, and

orange points and lines for the anoxic conditioned strain. The means were calculated from

the log-transformed cell densities of three biological replicates, represented by

translucent points. Background shading indicates treatment conditions, with blue for

aerobic and orange for anoxic environments.
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Chapter 5

Teaser

Novel treatment strategies are needed to address the emerging threat of
antimicrobial resistance (AMR) in bacterial pathogens. Metabolomics
approaches may help to unravel biochemical underpinnings of AMR, to facilitate
the discovery of metabolism-associated drug targets and treatment strategies.

Abstract

The emergence of antimicrobial resistance (AMR) in bacterial pathogens
represents a global health threat. The metabolic state of bacteria is associated
with a range of genetic and phenotypic resistance mechanisms. This review
provides an overview of the role of metabolic processes associated with AMR
mechanisms including energy production, cell wall synthesis, cell-cell
communication, and bacterial growth rate. These metabolic processes can be
targeted to re-sensitizing resistant pathogens for antibiotic treatments. We
discuss how state-of-the-art metabolomics approaches can be used for
comprehensive analysis of microbial metabolism concerning AMR, which may
facilitate the discovery of novel drug targets and treatment strategies.
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5.1. Introduction

Antimicrobial resistance (AMR) in bacterial pathogens represents an urgent
global health threat associated with significant morbidity and mortality'. To this
end, there exists a need to improve our understanding of underlying molecular
mechanisms of AMR to develop innovative treatment strategies for AMR-
associated bacterial infections?.

Bacterial pathogens can survive antibiotic exposure through a range of
genetic and phenotypic AMR mechanisms. Genetic mechanisms are associated
with a permanent change in antimicrobial sensitivity, for example due to the
acquisition of mobile genetic elements and mutations in chromosomal genes
conferring antibiotic resistance®. Phenotypic mechanisms are typically linked to
transiently decreased antibiotic sensitivity in either a homogeneous (e.g.,
tolerance) or heterogeneous fashion(e.g., heteroresistance, persistence)*®.
Another phenotypic mechanism which decreases antibiotic sensitivity is the
formation of microbial biofilms, which are aggregates of bacteria protected by a
polymeric matrix.”Importantly, the prolonged antibiotic survival of bacteria
through phenotypic AMR mechanisms may act as a stepping-stone for genetic
AMR development.®Bacterial metabolic processes have a fundamental role in
cellular function and are therefore commonly associated with various AMR
mechanisms (Figure 1). The metabolic state of bacterial cells during antibiotic
treatment can either as a contributor to or as a consequence of AMR. Decreased
metabolic activity contributes to AMR by reducing antibiotic uptake or secondary
effects of antibiotics® 2. In contrast, increased metabolic activity is required to
support energy-demanding AMR mechanisms such as cell-wall modifications
and efflux pumps overexpression'* 8. Understanding these underlying metabolic
processes of AMR mechanisms may be used to strategically alter metabolic
activity during antibiotic therapy to re-sensitize pathogens'. Metabolomics
approaches represent a key enabling technology to help identify relationships
between AMR mechanisms and microbial metabolism. Metabolomics represents
the systemic study of the metabolome, all small molecules in a biological sample,
providing a snapshot of the utilized biochemical processes?*®*. The metabolome
is a close link to organismal phenotype, unveiling initial responses to antibiotic
pressure and the adaptations required to sustain AMR mechanisms.
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In this review we discuss the role of bacterial metabolism in AMR mechanisms
and microbial biofilms for clinically relevant bacterial pathogens, using state-of-
the-art metabolomics approaches. Secondly, we discuss how metabolomics may
be applied as a key enabling technology to facilitate the discovery of innovative
metabolism-associated drug targets and treatment strategies.
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Figure 1. Schematic overview of the role of bacterial metabolism concerning

antimicrobial drug action and resistance mechanisms.

5.2. Metabolism and antimicrobial resistance

Key cellular changes associated with AMR where metabolism plays an important
role include (i) cellular energy production, (ii) cell envelope modifications, and
(iii) cell-to-cell interactions in biofilms. Here, we provide an overview of
metabolomics studies that have identified such AMR-associated metabolic effects
(Table 1).
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Table 1. Overview of studies researching the role of metabolism in AMR using

metabolomics techniques

AMR L Metabolic Analytical . )
. Main Finding Antibiotics | Species | Ref.
mechanism pathways approach
Metabolic adaptation in energy production
Ampicillin*
Carbenicillin*
Gentamicin*
Energy production is a better predictor for Kanamycin®
antibiotic efficacy compared to the growth Nucleotides Colorimetric* | Streptomycin* | E. coli 37
ey rate Ciprofloxacin®
metabolism Levofloxacin®
influences Norfloxacin®
antibiotic Cefsulodin®
efficac;
4 Ampicillin®
Gentamicin*
Bacteriostatic antibiotics inhibit the Amino acids Untargeted LG | Levofloxacin® | E. coli
efficacy of bactericidal antibiotics due to ) dGCMS a 30
i an - in<
the reduced energy demand of treated cells Nucleotides Norfloxacin® | S. aureus
Daptomicin”
Rifampin”
Antibiotic resistant cells reduce activity in .
. . Glycolysis Untargeted .
central carbon metabolism, which can be Kanamycin* | E. tarda | 31,32
. . . TCA cycle GC-MS
activated by nutrient supplementations
R e Tobramycin*
supplemen- i i i
PP € Supplementation of TCA cycle stimulating Chloram-
tation nutrients increase aminoglycoside Untargeted LC . .
) . . TCA cycle phenicol E. coli 25
tobramycin proton motive force induced and GC-MS
. Linezolid”
cellular intake
Rafampin”
Amino acids
Resistant cells demonstrate lower levels of .
. . . Glycolysis Untargeted Chloram-
TCA cycle intermediates, reducing ROS . E. tarda | 42
. Lipids LC-MS phenicol”
production
TCA cycle
Respiration Amino acids
and secondary | Decreased central carbon metabolites in Glutathione .
e . L ) ) Untargeted . V. algino-
antibiotic antibiotic resistant cells reduce ROS Glycolysis Gentamicin* i 43
ff ) GC-MS Iyticus
e production Pentose phosphate
TCA cycle
Energy metabolism as a defense . Streptomycin®
g.y . Glycolysis (Un-) targeted L. M. tuber-
mechanism to reduce oxidative stress Isoniazid” . 45
. . TCA cycle LC-MS culosis
during antibiotic treatment Rifampicin®
QS can slow down cell growth by Nucleotides Targeted NMR
coordinating nucleotide production and N.A. B. glumae| 67
X e Pentose phosphate | and CE-MS
Biofilm glucose utilization
heterogeneity Cells in the biofilm core switch to .
Lactate S. onei-
anaerobic fermentation for energy Targeted NMR N.A. . 76
. TCA cycle densis
production
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AMR L . Metabolic Analytical .. .
) Main Finding Antibiotics Species | Ref.
mechanism pathways approach
Metabolic adaptation in energy production
. Targeted LC-
Nutrient P. aeru-
. UV and LC- N.A. ! 40
consumption ginosa
MS
L. Ampicillin*
High nutrient levels promote Lipids . .
ot . . Untargeted Norfloxacin® E. coli
antibiotic resistance development of Glycolysis 38
. MS Chloram-
resistance TCA cycle
phenicol”
Kanamycin*
Metabolic Amino acids Nalidixic acid*
ion i Antibiotic treatment from different .
alaaay ",l o R Glycolysis Untargeted Norfloxacin® .
energy production classes results in distinctive metabolic leotid MS E. coli 63
perturbations and adaptation Nucleotides Ofloxacin
TCA cycle Chloram-
phenicol”
Glycolysis
. . . Lipids Untargeted
Resistant and sensitive bacteria have . A
L ) i Nucleotides and targeted Methicillin* S. aureus | 44
distinctive metabolic fingerprints
Pentose phosphate LC-MS
TCA cycle
Ampicillin*
Carbenicillin*
Amino acids Ciprofloxacin®
Me.ta.boPC fingerprints identify Nucleotides Untargeted Ofloxacin® '
antibiotics (secondary) mode of ) NMR . E. coli 61
action for different antibiotic classes TCA cycle Streptomyecin®
Cefalexin”
Doxycycline”
Tetracycline”
Amino acids Ceftazidime”
Antibiotics and their corresponding Glycolysis Fosmido-
mode of action can be identified . Untargeted ) .
. Lipids mycin® E. coli 62
based on the targeted metabolic LC-MS
Antibiotic pathways of these antibiotics Nucleotides Triclosan®
induced TCA cycle
L
metabc: 1 Ciprofloxacin®
adEpiEion Antibiotic surviving cells actively Streptomycin®
roduce ATP during antibiotic Colori- M. smeg-
P & Nucleotides . Bedaquilline” . 5 100
treatment, dependent on the metric* matis
nutritional environment Isoniazid®
Rifampicin”
Methicillin resistant and sensitive Amino acids Ampicillin’
strains demonstrate different . Targeted LC- ) .
R Nucleotides Ciprofloxacin® |S. aureus | 81
metabolic responses to treatment MS
with other antibiotics TCA cycle Kanamycin®
Antibiotics induce microbiome- Amino acids
independent changes in the host Glycolysis Untargeted N . .
. - Ciprofloxacin® E. coli 41
metabolome which alter antibiotic Nucleotides LC-MS
efficacy Pentose phosphate
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AMR L Metabolic Analytical . .
) Main Finding Antibiotics  |Species Ref.
mechanism pathways approach
Metabolic adaptation in energy production
There is a heterogeneous distribution of P. aeru-
. i . Targeted .
quorum sensing molecules over the biofilm |Quorum sensing N.A. ginosa 72
lati MALDI-SIMS
Biofilm population S. aureus
formation The production of antimicrobials and Tareeted P. aeru-
argete .
signaling molecules is influenced by the ~ |Quorum sensing & N.A. gunosa 79
. . MALDI-SIMS
nutritional environment S. aureus
Cell envelope modifications
The loss of envelope and membrane Amino acids
biogenesis processes results in complete .
.. L. . . |Lipids Untargeted . K. pneu-
lipid reconstruction, including changes in . (LCIMS Colistin* . 55
- moniae
lipid A moiety, resulting in the energy Pentose phosphate
metabolic switch to glycolysis TCA cycle
Lipid A reconstruction results to increase Lipids A. bau-
. Untargeted e ..
pentose phosphate activity and reduced |Pentose phosphate LC-MS Colistin® manni 56
TCA cycle activity in colistin resistant cells |pca cycle
Colistin treatment induces metabolic flux :
Cell wall ) i Glycolysis
towards cell wall repair, forcing the energy | . | Untargeted N M. tuber-
disruption i N Lipids Colistin’ . 57
production flux to glucose utilization and GC-MS culosis
and synthesis shuttled TCA cycle TCA cycle
i -
Combination therapy with colistin and mino acids
doripenem antibiotics affect metabolic Glutathione Colistin® A. bau-
) . . Untargeted ) ..
pathways in cell wall synthesis and energy |Lipids LC-MS Doripenem* |mannit 64
production differently in a time-dependent |Nycleotides
manner
Pentose phosphate
The addition of phosphoethanolamine to
. o . . .. Targeted L. .
lipid A for colistin resistance has a high  [Lipids MALDILMS Colistin* E. coli 59
fitness cost
The overexpression of MDR efflux pumps C
MDR over- R . . N Oxygen and . - P. aeru-
. initiates metabolic rewiring to anaerobic i olorimetric N.A. X 17
expression . nitrates ginosa
respiration Oximeter

*Fluorescent staining of targeted metabolites
*B-Lactam antibiotics

“Fluoroquinolone antibiotics
*Aminoglycoside antibiotics

“Polymixin antibiotics

*Other antibiotic classes

Cellular energy production

The activity of energy producing metabolic pathways translate the activation of
cellular functional responses or dormancy to evade antibiotic killing. The most
energy efficient producing metabolic pathway is aerobic cellular respiration®.
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Cellular respiration includes glycolysis and the tricarboxylic acid (TCA) cycle for
the production of electron carriers, which are used in the electron transport
chain (ETC) for the production of adenosine triphosphate (ATP). In case of fast
energy demand or carbon source depletion, several bacterial pathogens may
switch towards less efficient anaerobic fermentative energy production?. Several
pathogens such as Pseudomonas aeruginosa can utilize anaerobic metabolic
respiration such as the nitrate respiratory chain to maintain cellular homeostasis
in oxygen-depleted environments.”® A switch towards anaerobic energy
metabolism is commonly used for evasion of host defense mechanisms but also
plays an important role to increase aminoglycoside tolerance?*®. For example,
increasing oxygen levels using hyperbaric oxygen treatment (HBOT) to induce
aerobic respiration re-sensitizes P. aeruginosa to aminoglycoside treatment??.
However, this approach is only of interest in specific clinical indications, e.g.

anaerobic microenvironments in cystic fibrosis-associated lung infections.

Stimulation of aerobic energy production as a therapeutic target to
enhance antibiotic sensitivity is an important potential therapeutic strategy.
Specifically, supplementation of essential carbon sources to increase aerobic
respiration®, is a promising novel approach to improve antibiotic efficacy, in
particular for aminoglycoside antibiotics. Comprehensive in vitro screens in
bacteria using different carbon source supplements have demonstrated
pathogen-dependent changes in aminoglycoside susceptibility with nutrient
supplementation®. Metabolomics studies demonstrated such carbon source
supplementation changes the TCA cycle activity for the synthesis of electron
carriers to support the ETC¥2. Aminoglycoside efficacy can be increased by
increasing the passive influx of charged molecules. Stimulating the ETC results
in a higher electric transmembrane potential which enhances the proton-motive
force (PMF) mediated influx of the positively charged aminoglycosides®*.
Increasing the antibiotic uptake by nutrient-induced PMF demonstrated
decreased cell survival in several multi-drug resistant strains.*Other antibiotic
classes, like B-lactams and fluoroquinolones, also partly depend on cellular
respiration for their antimicrobial effects by inducing a redox disbalance as a
secondary antibiotic effect. Fluoroquinolones exert better bactericidal effects in
metabolic active cells by the production of reactive oxygen species (ROS) during
oxidative phosphorylation''?*. B-Lactams induce systemic ROS-associated
cellular toxicity by creating an energy-demanding futile cycle of peptidoglycan
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synthesis and degradation by obstructing cell wall synthesis®*>*. The close kinship
between energy production and antibiotic lethality is further demonstrated by
the increased bactericidal killing in cells with accelerated respiratory activity®.
In accordance, metabolic activity has experimentally shown to better forecast

antibiotic effect than growth rate¥.

It needs to be taken into account that nutrient supplementation to
increase antibiotic uptake and induce secondary antibiotic effects rely on the
metabolic specialization of the targeted bacterial cell. Clinically relevant strains
potentially lose the ability to utilize certain pathways during the acquisition of
antibiotic resistant conferring mutations and adaptation to specific
microenvironments at infection sites*®*-*'. Antibiotic resistant strains demonstrate
distinctive metabolic footprints***. The observed decline in energy metabolism
reduces ROS production thereby further enhancing AMR®. Subsequently,
limiting mutations in core metabolic genes directly results in the development of
antibiotic resistance*. However, metabolism affecting mutations, such as PMF-
limiting mutations, can only be sustained in nutrient-rich environments due to
the high fitness burden*. To further unravel such metabolic effects and
adaptations associated with antibiotic efficacy, the use of mathematical flux
analysis of central metabolic pathways could help to scrutinize the effect of
nutritional supplements on metabolic processes during antibiotic treatment®-*.
Although these approaches targeting cellular energy metabolism are of interest,
there remains a significant knowledge gap concerning the broad spectrum of
bacterial species and clinically occurring strains.

Cell envelope modifications

Cell wall permeability is essential for effective antibiotic treatment since most
antibiotics rely on passive transport across the outer membrane®. In particular
for Gram-negative pathogens, the cell wall can be challenging to penetrate by
antibiotics, in part due to the outer layer of negatively charged
lipopolysaccharides (LPS), preventing passive transport over the cell wall for
large and hydrophobic antibiotics. The uptake of antibiotics in gram-negative
pathogens to exert their effect is mainly dependent on transport through
membrane porins. Here, porin permeability is higher for positively charged
small molecule antibiotics, possibly because of the role of the discussed PMF®.
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The LPS layer in gram-negative pathogens is moreover an important drug target
to disrupt cell envelope integrity, where modifications in LPS lead to AMR.
Polymyxin antibiotics, currently used as last resort antibiotics, bind lipid A in the
LPS layer of gram-negative bacteria to initiate lethal disruption of both outer and
cytoplasmic membranes, and increase intracellular levels of combination
therapeutics®*?. Modifications to lipid A structure through changes in the
biosynthetic pathway of LPS can lead to resistance to polymyxins. Polymyxin
resistance mechanisms include active membrane modifications to reduce the
lipid A binding sites in the LPS layer, through intrinsic adaptation, acquired
chromosomally encoded, and plasmid-mediated®>°. The process of cell
modifications is supported by a wide range of fatty acid biosynthetic pathways*.
Rewiring of fatty acid synthesis, however, comes with a high energy demand,
which is demonstrated by the increased killing efficiency in metabolic inactive
cells®. Metabolomics studies of polymyxin resistant strains demonstrated that
modifications in lipid biosynthesis result in metabolic rewiring in energy
metabolism®”*. Metabolic flux analysis in another strain supports this finding, as
the upper carbon flux in the glycolysis pathways was elevated while the TCA cycle
was shunted®. This suggests the switch to glucose-fermenting metabolism for
energy production polymyxin resistant cells, supported by the use of pH-
mediated detection of lactic acid producing polymyxin resistant
Enterobacteriaceae®®. Although fermentative metabolism can sustain cell
homeostasis, the high metabolic burden of fatty acid synthesis during resistance
acquisition results in a fitness cost*'>®. To this end, enhancing our
understanding of the biosynthetic routes of LPS and fitness cost during
polymyxin resistance can potentially improve the development of drug
candidates targeting the cell envelope.

The overexpression of multidrug resistance (MDR) efflux pumps in the
cell envelope is another mechanism to regulate intracellular concentrations of
antibiotics leading to AMR and a fitness cost. MDR efflux pump-associated AMR
occurs for a range of broad antibiotic classes across pathogenic species®.
Metabolic rewiring is an important enabling mechanism to overcome metabolic
burden accompanied by MDR efflux pump overexpression's®. For instance, the
switch towards the nitrate respiratory chain and anaerobic fermentative
metabolism compensates for the use of oxygen as an alkaline agent, which
enables the acquisition of MDR efflux pump promoting mutations in the absence
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of selective pressure.” The reliance on metabolic adaptation to maintain cellular
homeostasis during AMR mechanisms could potentially be utilized
therapeutically. For instance, metabolic adaptation upon antibiotic exposure®5
can be used to design combination treatments with antibiotic agents. Antibiotics
affect different key metabolic pathways, disrupting cell homeostasis, expected to
be one of the driving forces between the synergistic effect of the combination
therapy of colistin and doripenem®. In conclusion, targeting metabolic changes
due to efflux pump upregulation are of interest to target therapeutically.

Cell-cellinteractions in biofilms

The formation of microbial biofilms forms an important mechanism to decrease
antibiotic sensitivity, through the production of extracellular polymeric
substances (EPS). Production of EPS is however a metabolically expensive
activity, which requires efficient cellular communication and metabolic
adaptation®. Bacteria utilize quorum sensing (QS) systems to coordinate cell-cell
interactions in all biofilm stages. QS occurs through the production of various
hormone-like small molecules excreted in the biofilm microenvironment and is
essential in biofilm formation and maintenance by synchronizing metabolism
for the production of macromolecules to establish the protective layer of
extracellular polymeric substances (EPS) layer®®®. Targeting QS-associated
metabolic processing may thus represent an important target for biofilm-
associated infections.

A promising approach to improve the treatment of biofilms exploits the
role of QS molecules in biofilm physiology. Disruptive microbial communication
treatments can interfere with biofilm integrity over multiple biofilm stages’,
enabling treatment approaches for different stages of infection. The link between
metabolic activity in biofilms and QS is can also be utilized to disrupt biofilm
integrity. The use of QS-controlled circuits for dynamic control of cellular fluxes™
demonstrates that cell-to-cell communication is a key regulator of bacterial
metabolism, which indirectly affects antibiotic susceptibility. Therefore, QS
systems create an opportunity to be used as a treatment target’>” to get a
universal control over metabolic-associated antibiotic potentiation and biofilm
physiology. However, the high variety of QS systems and differences between
species require further identification and characterization of QS molecules which

partake in biofilm biology. Spatial-oriented mass spectrometry techniques can
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identify utilized QS molecules and characterize population dynamics in
biofilms™.

Chronic bacterial infections are commonly associated with well-
developed mature biofilms and are associated with reduced antibiotic efficacy. In
particular well-developed mature biofilms are associated with steep nutrient
gradients induced by the biofilm structure”. The biofilm maturation process is
often dependent on the ability of pathogens to metabolically switch to alternative
nutrient sources’®”’. Real-time analysis of the metabolites from the central
carbon metabolism demonstrated metabolic adaptations to anaerobic
fermentation pathways over time and biofilm depth’. Redirecting metabolism in
P. aeruginosa biofilms by TCA cycle carbon source supplementation has resulted
in increased aminoglycoside eradication®-**, which highlights the potential of
nutrient supplementation to reduce metabolic induced tolerance in biofilms’.

5.3. Metabolomics technologies and approaches

Metabolomics approaches enable organism-wide metabolite identification and
quantification of biochemical networks. Metabolomics approaches can be
broadly differentiated into untargeted metabolite profiling and targeted methods.
Untargeted methods aim for broad metabolite coverage, but may not allow full
identification of molecular structures. Targeted metabolomics approaches aim
for quantitative analysis for a set of metabolites, with enhanced possibilities for
structural resolution of identified metabolites.

Mass spectrometry (MS) and nuclear magnetic resonance (NMR)
spectroscopy are the most commonly used detectors in the metabolomics field.
MS systems generally have superior selectivity, sensitivity, and can detect a larger
range of analytes. The detection is based on the manipulation of ionized analytes
by an electric or magnetic field to obtain the mass-to-charge (m/z) ratio. The
charge-dependent detection requires the ionization of metabolites in the ion
source before entering the MS system. NMR detectors provide, complementary
to MS, quantitative and structural information in a non-destructive manner.

Even though metabolomics technologies advanced extensively over the
years, the analysis of the full organismal metabolome in a single analytical
method is still not possible due to the high diversity in physicochemical
characteristics and broad range of concentrations of the metabolites. Here, we
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discuss practical considerations considering the utility of different metabolomics
approaches in particular in the context of microbial metabolism and AMR (Table
1).

Untargeted metabolomics

Untargeted non-selective screening enables the broad characterization of
(changes in) metabolism. The analysis of multiple metabolite classes, with high
contrast in polarity, requires long separation methods to maintain accurate
metabolite identification. The use of high-resolution mass spectrometers (HRMS)
enables high throughput metabolite profiling without the need for combining
multiple or time-consuming analytical platforms. HRMS refers to mass
analyzers, such as time-of-flight, Orbitrap, and Fourier-transform ion cyclotron
resonance, with high mass accuracy, dissociating metabolites up to 0.001 atomic
mass units. This high metabolite resolving power of HRMS facilitates the
confident identification of metabolites to study metabolic changes without a
time-consuming separation step and confident comparison of acquired m/z
features to the masses of previously identified metabolites stored in mass spectral
libraries”. This enables relatively fast metabolic fingerprinting, which can be
used to screen for metabolic adaptation during AMR development in a larger set
of conditions with higher throughput. The high throughput provided the
possibility to research metabolic evolution and immediate metabolic response
during antibiotic treatment with a variety of antibiotic classes within single
studies®®%. Comparison studies between bacterial species, environments, or
antibiotic classes relying on metabolic data measured within a single do not fully
rely on data acquired in other studies, reducing the variability caused by

differences in experimental design.

The high mass accuracy achieved with HRMS can also be used to assign
the molecular composition of completely unknown metabolites, which was for
instance applied for the discovery of novel metabolites. All metabolites covered
in central carbon metabolism are covered in most metabolite databases, while
many secondary metabolites like QS molecules are yet to be discovered®.
However, the robust identification of chemical structures requires the addition of
low-resolution fragmenting mass analyzers or the multidimensional information
from NMR detectors. This metabolite identification method combined with

spatial oriented ionization techniques demonstrated the influence of the
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nutritional environment and biofilm formation in the production of signaling
molecules’®. Thus, the advances in HRMS technologies provide the opportunity
to confidently screen for metabolic adaptations or unidentified metabolites
concerning AMR, which can be used to better understand AMR mechanisms or

develop metabolism-targeted treatment strategies®.

Targeted metabolomics

Targeted metabolomics approaches require prior knowledge of metabolite
targets to enable efficient extraction and isolation from the sampled cells,
providing sensitive and selective quantitative analytical methods. This is in
contrast with untargeted methods which come with the bottleneck of limited
detection range and quantitative accuracy due to detector saturation by
thousands of signal-producing analytes. The confident identification and high
sensitivity of targeted metabolomics enables the characterization of exact
changes in metabolites concentrations. However, this requires the use of
expensive or complex standardization procedures and time consuming analytical
validation. The specialization of targeted methods limits the metabolic targets,
which results in studies focusing on specific metabolic pathways**>%7883,
Nevertheless, the absolute quantitative data obtained in targeted metabolomics
are superior for biological interpretation. For example, the quantitative analysis
of nutrient uptake and metabolism with both NMR and MS was combined with
earlier obtained RNA sequencing data to determine QS-controlled metabolic
repression®. This study was not able to analyze broad spectrum of potential
carbon or nitrogen sources in the nutrient-rich culture medium, impeding the
full characterization of the metabolic phenotype, which can be addressed by
using a combination of analytical methods or elaborate targeted methods using
chemical derivatization®*®%. Targeted metabolomics platforms enable the
interpretation of metabolite utilization during or after AMR development, in
particular for metabolic flux studies using isotope labeling. The isotope labels in
core nutrients can be followed over time until a metabolic steady state is
achieved, providing information about enzyme function and metabolite
transport through various metabolic pathways®. The high precision of targeted
methods is of utmost importance as changes in measured metabolite levels
influence the metabolic network model. The metabolic networks in combination

with transcript and protein changes are key for the understanding of cellular
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regulatory systems. For example, extensive fluxomics research demonstrated
different metabolic specialization on physiological relevant carbon sources
during infection in the cystic fibrosis lung?. Similar metabolic flux adaptation
was observed during AMR development, which was successfully targeted using
nutrient supplementation®. The targeted analytical methods used in metabolic
flux studies benefit from the high sensitivity and metabolite coverage of MS
detectors hyphenated to separation methods but can be transferred to NMR to
determine nutrient exchange and utilization on an intercellular level. The non-
destructive nature of NMR detectors enables the real-time quantification of
metabolic fluxes in living samples, used for studies on nutrient interchange
between biofilm sub-populations’.

Sample preparation

Metabolomic data should represent the metabolic state of the microbial
population at the moment of sample collection. Metabolic quenching is a critical
initial step in the sample preparation process to provide an unbiased snapshot of
metabolism, given that many metabolites have a rapid turnover rate*”. Especially
the role of energy metabolism in AMR mechanisms demands efficient quenching
techniques as energy and electron carrying molecules are chemically labile
metabolites with extremely high turnover rates. Quenching methods need to be
chosen based on the cell-wall composition of the strain of interest to prevent the
leakage of intracellular metabolites®” .

Composing the further sample preparation steps consists of the choice
for the metabolite extraction procedure and the sample clean-up method. The
extraction of intracellular metabolites can be achieved by the chemical or
mechanical lysis of the cell wall®”#. Chemical lysis reduces the metabolite
degradation or leakage of macromolecules but needs to be chosen based on the
analytes of interest. Here, the polarity of the lysis solvent influences the
extraction efficiency of different metabolite classes. For example, a study on the
influence of colistin treatment on membrane profiles and energy metabolites
uses two different extraction methods”. Combining chemical lysis with
mechanical cell disruption is another method to increase the metabolite coverage
of the analytical method. Changes in the sample extraction method and targeted
bacterial species can impact the extraction efficiency differently per metabolite®.

The final step of the sample preparation procedure is sample clean-up, in
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particular important for MS-based methods. The ionization step in MS can be
interfered by common components such as salts, sugars, lipids, and proteins®'.
The ionization suppressing elements can be removed by non-selective protein
precipitation or optimized techniques such as liquid-liquid extraction and solid-
phase extraction®2. The sample preparation decisions are dependent on the
analytical approach since untargeted metabolomics approaches aim for high
metabolite coverage achieved with non-selective sample preparation, and
targeted metabolomics aims for sample preparation methods resulting in high
recovery values for the analytes of interest®™. Importantly, the development and
use of standardized protocols in sample preparation techniques are beneficial for
the comparison of metabolomics data between studies because of the dynamic
nature of metabolism.

Future perspectives on metabolomics technologies

Because metabolomics is closely related to biological phenotype it is therefore
expected to be essential tool to unravel the phenotypical AMR mechanisms and
metabolic adaptations during genetic AMR. The integration of metabolomics
with microfluidic systems, enables further elucidation of the complex
communication systems®*>. Metabolomic analysis of co-cultivated strains and
their environment can be used to study small molecule virulence factors, such as
QS, in both commensal and competitive interactions, and their effect on
metabolic diversity during host colonization. Here, the advances in resolution
and sensitivity of MS analysis can enable both the identification of QS molecules
and the elucidation of the metabolic footprint.

The next fundamental step in unraveling phenotypic heterogeneity and
their role in AMR mechanisms is the characterization of metabolic profiles from
single cells within a heterogeneous population®. Slow growth and dormancy are
considered essential in antibiotic tolerant or persistent subpopulations®®”%,
However, the metabolic activity in these cells and its role in AMR is still
debated”?”*>1% NMR imaging and spatial ionization techniques demonstrated
different metabolite profiles within bacterial populations, but currently lack the
resolution to scrutinize the contribution of single bacterial cells. A prevalent
single cell technique attains its resolution by sampling one cell in an ionization
probe before MS analysis, where metabolic coverage is mainly dependent on MS

resolution or the integration of innovative separation techniques such as ion
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mobility'™. Applying these techniques in resolving bacterial heterogeneity
during antibiotic treatment requires multiple improvements to handle low
bacterial intracellular volumes and the stochastic distribution.

5.4. Conclusion

Metabolic changes due to evolution and phenotypic adaptation at the infection
site are associated with a broad range of AMR mechanisms. Enabling
metabolomics technologies can help further unravel and characterize these
AMR-associated metabolic effects. So far, metabolomics studies have however
focused on a limited number of bacterial species and antibiotics. Systematic
application of metabolomics studies in conjunction with complementary next-
generation sequencing approaches and experimental evolution models in
clinically relevant conditions will allow to further unravel the role of microbial
metabolism in AMR. The improved understanding may support the discovery of
novel metabolism-targeted treatment strategies to be used in combination with

established antibiotic agents.
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Chapter 6

Abstract

The pathogen Pseudomonas aeruginosa can exploit its metabolic flexibility during
cystic fibrosis lung infections to reduce antibiotic sensitivity and offset antibiotic
resistance costs, two key traits influencing its evolutionary trajectory. Although
each trait has been associated with nutrient conditions, the link between nutrient
conditions and antibiotic evolution remains poorly characterized. We examined
how single-nutrient conditions influence antibiotic resistance evolution in P.
aeruginosa through phenotypic and genotypic adaptations. We used adaptive
laboratory evolution with different antibiotic classes in single nutrient media, we
then compared these results to those obtained in nutrient-rich synthetic cystic
fibrosis sputum medium (SCFM). Antibiotic susceptibility testing after evolution
showed limited differences in minimal inhibitory concentrations (MIC) between
single nutrient conditions for ceftazidime and imipenem, but more pronounced
impact for ciprofloxacin, colistin, and tobramycin. Ciprofloxacin evolution
resulted in the highest MIC increase, with at least a 4-fold increase observed in
glutamate-evolved lineages, whereas glucose-evolved lineages showed up to 4-
fold reduction in MICs for tobramycin, compared to lineages evolved under all
other nutrient conditions for the same antibiotic. Growth kinetics of the evolved
strains showed reduced growth rates specific to the antibiotic but not the nutrient
condition in itself. Whole-genome sequencing showed nutrient-specific
mutational profiles for tobramycin and ciprofloxacin. Tobramycin evolution
resulted in glucose specific mutation in wbpL and a SCFM-specific mutation in
rplA, alongside fusA and pmrB mutations in multiple conditions. Ciprofloxacin
resistance was not caused by a nfxB mutation in glucose and arginine evolved
lineages, which was present in all other lineages, with a specific mutation in yicC
in the glutamate evolved lineages. No distinct differences between nutrient
conditions for colistin were observed. Overall, these findings underscore the
significant role nutrient conditions play in shaping resistance and highlight the
importance of considering physiologically relevant media when studying
antibiotic resistance evolution.
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Nutrients drive the antibiotic-specific evolution of resistance in P. aeruginosa

6.1. Introduction

Pseudomonas aeruginosa is the most prevalent pathogen causing chronic
infections in the distinctive lung environment of adult cystic fibrosis (CF)
patients'. This dominance is attributed to the exceptional metabolic versatility of
P. aeruginosa and its rapid capacity to develop antimicrobial resistance®®.
Growing evidence highlights a strong interconnection between these traits, as
metabolism influences antibiotic sensitivity and antibiotic resistance
mechanisms impose a metabolic burden®®. To advance our understanding of
antibiotic resistance evolution, it is crucial to study how nutrients in the
environment shape this relationship, a process that remains poorly explored.

In the CF lung, P. aeruginosa can utilize a diverse array of nutrients,
including amino acids and short-chain fatty acids, whose composition varies
substantially among different microenvironments'"". P. aeruginosa adapts its
metabolism to these varying conditions, which results in class-specific effects on
antibiotic sensitivity'>'®. Altering a single nutrient in the culture condition has
been shown to significantly impact antibiotic sensitivity'®. Because antibiotic
sensitivity is a key determinant of selection strength during antibiotic resistance
evolution”, nutrient-induced changes in antibiotic sensitivity can drive the

emergence of diverse antibiotic-resistant lineages.

Nutrients also play a role in reducing the fitness cost of antibiotic
resistance mutations that alter vital cellular functions, by supporting efficient
metabolic rearrangement'®?. Consequently, resistance mechanisms with high
metabolic burden are less likely to prevail in nutrient-poor environments as this

imposes a metabolic constraint®'.

Overall, these studies demonstrate that nutrient environments
profoundly influence metabolic adaptations, antibiotic sensitivity, and fitness
compensation, all of which shape the evolution of antibiotic resistance. However,
the high variability within the CF lung environment, combined with pronounced
phenotypic variability, complicates direct comparisons between laboratory
conditions and clinical scenarios. Prior research has mainly addressed
comparisons between nutrient-rich and nutrient-poor environments concerning
fitness landscapes®'?%. The subsequent essential step is understanding how
specific nutrients individually impact resistance evolution. Given the well-

documented metabolic flexibility of P. aeruginosa®, accurately evaluating the
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influence of individual nutrients within complex media remains challenging.
Instead, examining central carbon metabolism responses to single-nutrient
conditions can reveal precisely how nutrient-specific adaptations cascade into
broader metabolic and biochemical changes®. Elucidating how these specific
nutrient induced changes influence antibiotic resistance evolution could be
essential for optimization or selection of more clinically relevant laboratory

conditions.

In this study, we challenged the P. aeruginosa metabolic flexibility in single
nutrient conditions during antibiotic resistance evolution and explored the
phenotypic and genotypic adaptation capabilities in these environments. We
conducted adaptive laboratory evolution (ALE) for a range of common antibiotics
used to treat P. aeruginosa (ceftazidime, ciprofloxacin, colistin, imipenem, and
tobramycin), utilizing single nutrient media. The selection of the nutrients
arginine, glutamate, glucose, and lactate was based on their physiological
relevance in CF mucus and their distinct roles in P. aeruginosa metabolism'?4,
These nutrients have also been shown to affect antibiotic sensitivity differently®.
Nutrient concentrations were set at 30 mM to prevent nutrient starvation, thereby
maintaining stable growth conditions throughout evolution experiments. We
assessed phenotypic changes of the nutrient-antibiotic combinations through
antibiotic susceptibility testing and growth rate analysis, and genomic changes
through whole genome sequencing. To contextualize these findings, we
compared the results from single-nutrient conditions to those from a nutrient-
rich synthetic CF medium (SCFM), providing insights into how P. aeruginosa

adapts and maintains metabolic flexibility in minimal environments.

6.2. Material & Methods

Strains and culture conditions

Synthetic CF sputum medium (SCFM) was prepared consisting of physiologically
relevant concentrations of nutrients in synthetic CF sputum as described
previously', 0.11M phosphate buffer, ammonium chloride, potassium nitrate,
ferrous sulfate, Basal Medium Eagle 1x vitamins, and trace metals (Table S1).
Single nutrient media were prepared with the salts, vitamins and trace metals as

basal medium, spiked with 4 unique nutrients including arginine, glucose,
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glutamate, or lactate, at a concentration of 30 mM. The P. aeruginosa PAO1
laboratory strain (DSM 1117; DSMZ, Leibniz Institute, Germany) was used as the

parental strain for all evolution experiments.

Antibiotics

Antibiotic stock solutions were freshly prepared on the day of the experiment and
diluted to desired concentrations using an Opentrons OT-2 (Opentrons Inc., New
York, NY, USA) liquid handling system. Ceftazidime pentahydrate was purchased
from Thermo Fisher Scientific (Breda, The Netherlands). Ciprofloxacin,
imipenem monohydrate, and tobramycin were purchased from Chem-Impex
International (Wood Dale, IL, USA). Colistin sulfate was purchased from Cayman
Chemical Company (Ann Arbor, MI, USA).

Laboratory evolution experiment

Three biological replicates of the P. aeruginosa starting cell line per media
condition were propagated for 10 days under antibiotic pressure to examine the

antibiotic resistance development between different culture conditions.

P. aeruginosa PAO1 was streaked out on LB agar plates, and 10 randomly
selected colonies were transferred to SCFM (2 mL) and cultured overnight. The
liquid cultures were diluted to an optical density at 600 nm (ODsoo) of 0.05 to reach
the starting inoculation solution, corresponding to an approximate bacterial
density of 5*10° CFU/mL. The bacterial inoculum (100 pL) was added to 7 wells
with fresh medium with increasing antibiotic concentrations (900 pL) in a 48-well
microtiter plate. After 48 hours of incubation, plates were transferred to a BMG
microplate reader (Ortenberg, Germany) for ODgy acquisition. Cultures at the
highest antibiotic concentration reaching the culture density threshold of an
ODggo of 0.5 were transferred (100 pL) to a new range of antibiotic concentrations
(900 pL) in a new 48-well microtiter plate. If the carrying capacity of any of the
cultures did not exceed the ODey threshold, the culture under the highest
antibiotic pressure reaching at least 80% of the ODgg, of the positive control was
transferred. Cultures under ceftazidime pressure were extensively mixed and the
threshold was increased to an ODeg of 0.65 due to the build-up of debris in the
microtiter plate. At the end of the evolution experiment, the cultures reaching the
ODgo threshold were transferred (100 pL) to an antibiotic free LB agar plate.
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Colonies were collected with a pre-wet swab and stored in 20% glycerol in LB at -
80 °C.

Antimicrobial susceptibility testing

Ceftazidime, ciprofloxacin, imipenem, and tobramycin minimal inhibitory
concentrations were determined for the parenteral P. aeruginosa PAO1 strain, the
antibiotic-free lineages, and the lineages evolved under the pressure of the
antibiotic in SCFM by a broth microdilution method. Prior to each susceptibility
test, fresh subcultures were prepared from the -80 °C stored colonies in 2 mL
fresh SCFM. Susceptibility testing was conducted after 24 hours incubation at 37
°C with orbital shaking at 150 rpm or 72 hours including two 20 pL passages into
2 mL fresh SCFM medium. The starting cell density in each condition was
approximately 10° CFU/mL in a serial twofold dilution of the antibiotics in 96-well
microtiter plates (Greiner Bio-one, transparent, flat bottom) with a total volume
of 200 pL. The minimal inhibitory concentration (MIC) was defined as the first
concentration of antibiotic with no visible growth after 24 hours of incubation at
37°C.

Growth rate analysis

Growth rate analysis was conducted by culturing the parental P. aeruginosa PAO1
strain and all lineages in the single nutrient media and SCFM. The cells were
subcultured in 2 mL SCFM and incubated for 24 hours at 37 °C shaking at 150 rpm
before dilution to an optical density at 600 nm (OD600) of 0.05 before inoculation.
The starting cell density was approximately 10° CFU/mL in a transparent 96-well
microtiter plate. After inoculation, microtiter plates were transferred to a Liconic
StoreX STX44 119 incubator (Mauren, Principality of Liechtenstein) for
incubation (95% relative humidity). A Peak Analysis and Automation KX-2
Laboratory Robot (Hampshire, United Kingdom) transferred the microtiter plate
every hour between the incubator and the BMG Labtech Fluostar Omega
microplate reader (Ortenberg, Germany) for time-course ODs acquisition.

Genome sequencing and bioinformatics

Cells were subcultured in 2 mL SCFM and incubated for 24 hours at 37 °C shaking
at 150 rpm. 500 pL of the subculture was pelleted by centrifugation for 10 minutes

at 5000 x g. Genomic DNA was extracted using the QIAcube Connect automated
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sample preparation system and DNeasy Blood & Tissue Kit extraction kit (Qiagen,
Hilden, Germany) following the manufacturer’s protocols. Extracted DNA was
sent to SeqCoast Genomics for short read whole genome sequencing and
bioinformatic analysis. Bioinformatic analysis was executed using Breseq
(version 0.37.0) for mutation prediction and analysis, Trimmomatic (version 0.39)
for read trimming and quality control, and CNOGpro (version
deprecated/restored) for copy number variation analysis towards the P.
aeruginosa PAO1 reference genome. All sequences are stored in the Sequence
Read Archive (SRA) database under the PRINA1217434 identifier®.

Data Analysis

All data analyses were performed using R. Minimal inhibitory concentrations
(MICs) for each evolutionary lineage were determined by calculating the median
value from antibiotic susceptibility tests performed in quadruplicate (n = 4
biological replicates). Fold changes in MIC were calculated relative to the median
MIC of the parental strain. Antibiotic-free evolution did not result in any
significant change in MIC compared to the parental strain (data not shown). To
assess differences in MIC between conditions, a Welch two-sample t-test was
conducted between the SCFM group and each single nutrient medium.

Maximal growth rates (umax) were determined using the splines
function from the grofit package %, fitted to growth curves (n = 3 biological
replicates) for each evolutionary lineage. Growth measurements were recorded
at regular intervals to ensure accurate curve fitting. Fold changes in umax for
antibiotic-evolved lineages were calculated relative to the corresponding
antibiotic-free lineages in the same evolution medium. A Welch two-sample t-
test, using the R base function, was used to compare the evolved lineages with the
antibiotic-free controls evolved under the same medium condition.

To determine how mutation profiles differed between nutrient
conditions, a partial least squares discriminant analysis (PLS-DA) was performed
separately for each antibiotic using the mixOmics package #. The first four
components were extracted to generate Variable Importance in Projection (VIP)
scores, which were used to evaluate the distinguishability of mutated genes
across nutrient conditions. VIP scores provided a measure of each gene's
contribution to differentiation between nutrient environments, aiding in the

identification of key mutations.
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6.3. Results

Single nutrients conditions differentially shape antibiotic resistance
evolution

We assessed the impact of specific single nutrient conditions on antibiotic
resistance acquisition in P. aeruginosa PAOL. To this end we performed serial
passaging under stepwise increasing antibiotic concentrations for five different
antibiotics for a period of 10 days. P. aeruginosa PAO1 evolved in nutrient-rich
SCFM medium was used as control. We evaluated changes in antibiotic
susceptibility for the lineages under differential medium and antibiotic
conditions through determination of the relative change in minimum inhibitory

concentration (MIC) of SCFM-lineages in comparison to the parental strain (Fig.

1).
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Figure 1. Change in minimum inhibitory concentrations (MICs) for five antibiotics in
lineages evolved under different medium conditions. P. aeruginosa PAO1 strain was evolved
in single nutrient media (arginine, glucose, glutamate, lactate) and synthetic cystic fibrosis
sputum media (SCFM) as control, under incrementally increasing antibiotic
concentrations. All MICs were determined in SCFM. Bold horizontal lines represent the
mean fold change in MIC of the evolution condition relative to the parental strain.
Different evolutionary lineages are indicated by shapes: (*) for replicate 1, (A ) for replicate
2, and (=) for replicate 3. A Welch two-sample t-test was performed between the SCFM

group and each single nutrient medium, with * indicating p < 0.05.
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When considering the differential effects of media on resistance acquisition, for
ceftazidime, the magnitude of MIC increase was consistently lower across all
single nutrient media compared to SCFM, with limited differences between
specific minimal media. For all four remaining antibiotics, substantial
differences in MIC were found across single nutrient media. For ciprofloxacin,
evolution in glutamate medium led to a substantially increased MIC, while the
arginine condition results in a comparatively smaller MIC. Imipenem MICs only
increased in arginine and glutamate medium, with no significant MIC change
after evolution in SCFM, glucose, or lactate. For tobramycin, evolution in glucose
medium resulted in substantially lower MICs compared to all other conditions.
For colistin, the largest MIC increases were observed after evolution in SCFM and
glutamate medium, while the smallest MIC decrease was noted in arginine.
Across all antibiotics, it can be concluded that evolution in single nutrient media
with arginine, glucose, and lactate often results in attenuated resistance
acquisition, while resistance acquisition in glutamate media showed higher
outcomes (Fig. S1).

Resistance evolution under single-nutrient conditions results in
limited fitness changes

To evaluate if differences after evolution across single nutrient media could be
explained by differences in fitness, we compared the maximal growth rate (Mmax)
of all evolution lineages under antibiotic-free conditions in the original evolution
media and SCFM. Overall, largest effects on pm.x Wwere found when the original
growth medium was used. Significant reductions in Um. Were observed for
ceftazidime and tobramycin lineages evolved in glucose, and for ciprofloxacin
lineages evolved in arginine and lactate (Fig. 2). These reductions were however
absent for pm.x estimated derived in SCFM. The magnitude of changes in pmax did
not correlate with the changes in MIC in the evolution lineages (Fig. S2).

To further evaluate whether observed um.x changes were antibiotic or
medium dependent, we performed growth rate analysis of all evolution lineages
across all conditions (Fig. S$3). The observed reduction in pm.x for colistin- and
imipenem-resistant lineages was consistent in glucose minimal media,
regardless of the evolution media. Ciprofloxacin-resistant lineages generally
exhibited reduced um.x in minimal arginine media, except for those evolved in

lactate. Notably, ciprofloxacin lineages evolved in lactate exhibited reduced
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growth in all other single nutrient media, suggesting a unique metabolic
adaptation or trade-off specific to lactate-driven resistance evolution.
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Figure 2. Changes in maximal growth rate of antibiotic evolved lineages upon re-culturing
in their evolution medium and SCFM. The maximal growth rates (umax) were determined
by applying a spline function to triplicate growth curves obtained under antibiotic-free
conditions. Fold changes are calculated relative to lineages without antibiotic in the
corresponding medium. A Welch two-sample t-test was used to determine the difference
between the evolved lineages and the antibiotic free controls evolved in the same medium

(* indicating p<0.05).

Medium-specific genetic variations differentiate between evolution
conditions.

Whole genome sequencing was performed for final evolution lineages for
ciprofloxacin, colistin, and tobramycin to evaluate genetic variants across
parallel evolved biological replicates (Fig. 3). Single nucleotide polymorphisms
(SNPs), insertions, and deletions observed with a frequency higher than 20% and
present within more than 1 lineage were included due to large heterogeneity
within evolutionary lineages.

To determine how mutations differ between the evolution media, a
partial least squares discriminant analysis (PLS-DA) was applied for each
antibiotic. This analysis indicates the discriminatory importance of mutations
that allow differentiation across specific medium conditions, quantified using a
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variance importance in projection (VIP) score. Mutations in the top six genes
ranked by VIP score were selected and visualized as potential mutations
associated with media-specific adaptation for each antibiotic (Fig. 4). Among the
top distinguishing genes, only three loci mutations appeared in a single evolution
condition. Two were in tobramycin lineages: rplA for SCFM and wbpL for glucose
medium (Fig. 4A). Other genes specific for tobramycin were mutations in the
pmrB gene, which was mutated in all media except glucose, and the fusA gene,
which was specific to arginine and glutamate minimal media. For ciprofloxacin,
mutations in yicC were unique for the ciprofloxacin-glutamate condition, while
mutations in nfxB were present in lineages evolved glutamate, lactate, and SCFM
media (Fig. 4B). Finally, mutations in bisC, cobK, dgcP, PA3157, preA, pchH, and
sdaA had high VIP scores for distinguishing evolution conditions when stratified
by antibiotic, but were also present in various other media conditions across
different antibiotics, including antibiotic-free evolution. The top VIP scores after
colistin evolution consist only of these genes, indicating a limited presence of
condition-specific mutations in colistin resistance (Fig. 4C).

6.4. Discussion

We demonstrated that P. aeruginosa can rapidly develop antibiotic resistance in
single nutrient media, with the magnitude of MIC increase varying substantially
between evolution conditions as well as antibiotics. Despite the MIC variation,
changes in mutant growth rates (Umax) Were generally consistent among lineages

evolved under the same antibiotic.

Across the single nutrient conditions, we found the smallest increase in MIC in
lineages evolved for the beta-lactam antibiotics imipenem and ceftazidime. This
may be explained by resistance development against imipenem requiring
multiple mutation steps® and the limited duration of the evolution experiment.
Previous findings demonstrated similar limited MIC increases for ceftazidime
during evolution in minimal media conditions®*?®'. Lineages evolved during
exposure to ciprofloxacin, colistin, and tobramycin, larger differences between
MICs for different nutrient conditions were observed, which were further
genetically characterized.
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Figure 4. Key mutations distinguishing mutational profiles of culture conditions across
(A) tobramycin, (B) ciprofloxacin and (C) colistin. (Left) VIP (Variable Importance in
Projection) scores from a 4-dimensional partial least squares discriminant analysis (PLS-
DA) highlight key mutations distinguishing culture conditions. The three lowest VIP scores
for each mutation are colored grey, while the highest VIP score per drug is highlighted in
black, and in red if identified as a key distinguishing mutation. (Right) Heatmaps display
the six highest-scoring locus mutations, with colored tiles indicating mutation presence
(x-axis) across evolutionary lineages (y-axis). These visualizations provide a comparative
overview of mutation patterns across culture conditions and evolutionary lineages for the

different antibiotics.

For ciprofloxacin lineages, the lowest MIC increases were found in arginine-
lineages and the highest increases in glutamate-lineages. These differences may
be explained due to differences in accumulation of specific established
fluoroquinolone resistance mutations, particularly gyrA and nfxB*. The gyrA
gene encodes a subunit of DNA gyrase, which is the primary target of
fluoroquinolones, and mutations in this gene typically reduce the binding affinity
of the antibiotic. Mutations in nfxB lead to overexpression of the MexCD-Opr]
efflux pump, which exports various antibiotics. Whilst mutations in gyrA were
common across all media, the glutamate-lineages with the highest MIC increases
also carried nfxB mutations. We observed no changes in Um. for these mutants,

in line with previous reports for P. aeruginosa on compensatory effects
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associated with gyrA mutations and nfxB-induced MexCD-Opr] efflux pump
upregulation’?2. The burden of these compensatory effects could however still
influence the evolutionary selection of these mutations. Ciprofloxacin-lineages
demonstrated reduced pma.x in arginine medium, the condition in which this
specific mutation combination was absent. The absence of gyrA and nfxB
mutations in arginine-lineages, along with the lower pma.x of ciprofloxacin-
lineages in arginine, suggests that metabolic constraints may hinder the
establishment of these mutations under such conditions. In the case of nfxB-
mediated upregulation of the MexCD-Opr] efflux pump, an active proton motive
force (PMF) is required for export®. Arginine metabolism may lead to a reduced
PMF, as energy can also be derived via the arginine deiminase pathway rather
than PMF-generating oxidative phosphorylation®. Glutamate, by contrast, serves
as a central metabolite in nitrogen metabolism and has been shown to reduce
ciprofloxacin sensitivity in P. aeruginosa®-2%. Glutamate has also been reported to
enhance antibiotic penetration and counters efflux, thereby increasing
intracellular ciprofloxacin concentration®**'. This combination raises the
evolutionary pressure of ciprofloxacin in glutamate medium, which can result in
faster and different acquisition of resistance'. We speculate that this pressure
contributes to the unique yicC mutation observed in glutamate medium.
Although less studied in P. aeruginosa, yicC in E. coli has been linked to DNA stress
responses and RNA degradation***] both processes linked to ciprofloxacin

exposure.

Colistin resistance development showed considerable variation in MICs between
lineages and across nutrient conditions. Similarly, no distinct patterns in
mutations emerged across different nutrient conditions. Colistin resistance in P.
aeruginosa primarily arises from lipid A modifications in the lipopolysaccharide
(LPS) layer*+*®, with no observed fitness cost**. This aligns with our findings of
increased MIC and unaffected umax in lineages carrying mutations in the lipid A
regulatory genes phoQ and pmrAB. Interestingly, we observed a reduced pmax
when re-growing colistin-evolved lineages in glucose medium, except for those
lineages originally evolved in glucose. Glucose is central to glycolysis and the
pentose phosphate pathway, both of which supply precursors essential for the
lipid A modifications regulated by phoQ and pmrAB?¥. P. aeruginosa possesses an

inherently less efficient glycolytic pathway®, and our findings suggest this
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efficiency is further compromised if glucose utilization is not actively selected
during colistin exposure. Under colistin exposure, P. aeruginosa has been
suggested to utilize glucose as an osmotic regulator*®*. The fact that glucose-
lineages exhibited a distinct phenotype, which could not be readily explained
from high diversity in mutational profiles across all lineages, underscores the
plasticity of colistin resistance in P. aeruginosa.

The evolution of tobramycin resistance exhibited significant variation in MIC
across nutrient conditions. Substantial differences in mutational patterns among
lineages were found, consistent with the extensive aminoglycoside resistome®’.
One key mutation observed was in fusA, a gene encoding elongation factor G,
which is involved in ribosomal translocation. Mutations in the fusA gene have
been identified in clinical isolates and are known to confer tobramycin resistance
by altering ribosome function, the primary target of aminoglycosides®. Although
these mutations are often associated with a fitness cost, they had not previously
been linked to specific nutrient conditions. In our study, fusA mutations were
observed exclusively in lineages evolved in arginine and glutamate media. One
possible explanation is the known enrichment of fusA mutations in biofilm-
grown populations®. This may be relevant given the reduced motility of P.
aeruginosa in arginine, a phenotype commonly associated with biofilm
formation®. Additionally, fusA mutations are known to influence quorum
sensing, particularly through interaction with lasR, a quorum sensing regulator
that increases aminoglycoside resistance®. Since glutamate nitrogen metabolism
plays a critical role in quorum sensing pathways in other species®®*’, this may
suggest a metabolic link between glutamate availability and selection for fusA
mutations during tobramycin exposure. The fusA mutations co-occurred twice
with pmrB mutations but did not lead to significant MIC changes to single
mutations. The pmrB gene encodes a sensor kinase involved in LPS modification,
a mechanism linked to both increased tobramycin resistance and increased
susceptibility in some contexts®®**°. The highest increase in tobramycin MIC was
observed when pmrB mutation was accompanied with an SCFM-specific rplA
mutation. The rplA gene is involved in ribosome assembly, and is known to
reduce aminoglycoside binding and induce efflux pump overexpression in other
species®®®'. The combination of pmrB-rplA mutation seemed to be specific to

nutrient rich conditions, yet there is no direct link between these mutations and
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nutrient conditions in the literature. The pmrB mutations were found in lineages
evolved in all nutrient conditions except glucose. Similar to the observed fitness
cost of LPS-modifying mutations under colistin pressure in glucose medium, the
absence of pmrB mutations in glucose-evolved lineages may be related to the
altered and less efficient glycolytic pathway of P. aeruginosa®. Instead, glucose-
evolved lineages harbored mutations in wbpL, another gene essential for LPS
biosynthesis. Alteration of wbpL likely reduces aminoglycoside uptake®2.
Consistent with this, we observed no changes in um. across all tobramycin
lineages. This demonstrates that, even in the absence of significant fitness costs,
nutrient-induced adaptations favor distinct mutational patterns, as the
importance of cellular processes related to tobramycin activity varies between
conditions. These findings align with previous observations showing that LPS-
modifying mutations are common in sessile biofilm populations, whereas
transcriptional regulator mutations dominate in planktonic populations®.
Together, our data support the conclusion that nutrient environments strongly
influence both the metabolic state and lifestyle of P. aeruginosa, thereby shaping

the adaptive pathways used to acquire tobramycin resistance.

To our knowledge, nutrient-specific differences in resistance evolution have not
been explored beyond this study, although several studies have examined the
impact of nutrient-rich versus nutrient-poor environments on antibiotic
resistance development'®2"2%%_ In this light, for ceftazidime and tobramycin, we
observed a significantly higher MIC increase in nutrient-rich SCFM compared to
the single nutrient conditions. For colistin, ciprofloxacin, and imipenem, such
differences were less evident, with only ciprofloxacin evolution in glutamate
minimal medium resulting in a significantly higher MIC compared to SCFM.
Overall, our findings highlight the importance of carefully considering medium
nutrient composition during in vitro experimental evolution studies.

In this study, all MIC testing of evolved lineages was conducted in SCFM.
This approach enabled direct comparisons of permanent phenotypic and
genotypic changes among evolved lineages, as confirmed through sequencing
data. Conducting MIC assays in SCFM rather than in the specific evolution media
resulted in the loss of a phenotypic dimension related to nutrient-specific
antibiotic sensitivity adaptations. Although addressing this additional complexity

was beyond the scope of the current study, changing nutrient conditions are

146 o0



Nutrients drive the antibiotic-specific evolution of resistance in P. aeruginosa

known to significantly influence antibiotic sensitivity'>'®. Consequently, our
results may underestimate the full spectrum of phenotype variability, further
underscoring the importance of identifying the biochemical mechanisms driving
antibiotic sensitivity changes. The use of -omics approaches offers valuable
insights into how cells adapt to different environments during antibiotic
exposure. For instance, metabolomics studies would be relevant to further
evaluate changes in cellular energy metabolism or metabolic rewiring that
support membrane modifications®, whereas proteomics has been employed to
unravel a broad range of cellular adaptations®. By integrating these system-level
analysis with extensive genotypic data®, we can better understand the nutrient-
specific differences in phenotype-genotype relationships observed between
laboratory findings and clinical isolates. Multiple studies in other pathogens have
demonstrated that adjusting media composition to better mimic in vivo
conditions leads to in vitro antibiotic responses more closely mirroring clinical
observations®””"; underscoring the importance of environmental specific

conditions to enhance clinical relevance of ALE.

We employed a stepwise increase in antibiotic concentration to rapidly
drive resistance evolution over short timescale’, enabling us to investigate a
broad set of nutrient-antibiotic combinations. While this strategy provides
valuable insights, additional confirmatory experiments with increased replicates
and extended evolution periods would offer a more comprehensive view of how
nutrients influence evolutionary trajectories in the long run. In clinical settings,
antibiotic concentrations are highly dynamic, whereas nutrient profiles, though
variable across infection sites, tend to remain relatively stable within the larger
volumes of human tissues and fluids'”3. Building on our findings from stepwise
adaptation studies, future work could leverage continuous culture systems to
better control nutrient levels and mimic realistic antibiotic concentration

profiles’7®,
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Overall, our findings demonstrate that evolution in single nutrient conditions
results in significant variation in antibiotic resistance acquisition in P. aeruginosa.
By focusing on multiple antibiotics and nutrient environments, we showed that
the effects are specific to combinations of antibiotics and nutrients. These
findings lay the groundwork for broader incorporation of nutrient composition
as a key factor in antibiotic resistance evolution studies. Understanding the
mechanisms behind these nutrient-induced differences is an important step

toward unraveling the complex evolutionary trajectories seen in the CF lung.
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6.7. Supplementary Materials

Supplemental table 1. Detailed content list of synthetic cystic fibrosis sputum

media

Name Con‘;::;g‘tmn Company information
di-sodium hydrogen phosphate (Na,HPO.) 90.2 Thermo Fisher Scientific
5 Potassium di-hydrogen phosphate (KH,PO.) 22.0 VWR International
= Sodium chloride (NaCl) 8.5 Merck KGaA (Avantor™)
'O‘f Ammonium chloride (NH4Cl) 18.6 Alfa Aesar
= Magnesium sulphate hepta-hydrate (MgSO.) 1.0 VWR International
Calcium chloride (CaCl.) 0.1 Acros Organics
® Potassium nitrate (KNOs) 0.35 Acros Organics
@ Iron sulphate (FeSOa) 0.0036 Alfa Aesar
Suppl. | BME Vitamin solution 1x Thermo Fisher Scientific
Eé;zo((i;;; ;Ethylene di-amine tetra-acetic 0.002 (mg/mL) JT. Baker (Avantor™)
) Zinc Sulphate hepta-hydrate (ZnSO.) 0.23 (mg/mL) Alfa Aesar
% Boric acid (HsBOs) 0.111 (mg/mL) Acros Organics
E Manganese chloride tetra-hydrate (MnCl,) 0.051 (mg/mL) Sigma Aldrich (Avantor™)
Q Cobalt chloride (CoCl») 0.017 (mg/mL) Alfa Aesar
&= Copper Sulphate penta-hydrate (CuSO.) 0.015 (mg/mL) Sigma Aldrich (Avantor™)

Ammonium hepta-molybdate tetra
hydrate ((NH4)6II)\/IO702) Y 0.01 (mg/mlL) Alfa Aesar
Alanine (Ala) 1.8 Chem-Impex International
Arginine (Arg) 0.3 Chem-Impex International
Aspartate (Asp) 0.8 Chem-Impex International
Cysteine (Cys) 0.2 Chem-Impex International
Glucose (GLC) 3.2 Alfa Aeser
Glutamate (Glu) 1.5 Chem-Impex International
Glycine (Gly) 1.2 Acros Organics
Histidine hydrochloride (His) 0.5 Chem-Impex International
@ Isoleucine (Ile) 1.1 Chem-Impex International
'8 Lactate (LAC) 9.0 Biosynth International
‘g Leucine (Leu) 1.6 Chem-Impex International
= Lysine hydrochloride (Lys) 2.1 Thermo Fisher Scientific
Methionine (Met) 0.6 Chem-Impex International
Phenylalanine (Phe) 0.5 Chem-Impex International
Proline (Pro) 1.7 Thermo Fisher Scientific
Serine (Ser) 1.4 Chem-Impex International
Threonine (Thr) 1.0 Chem-Impex International
Tryptophan (Trp) 0.01 Chem-Impex International
Tyrosine (Tyr) 0.8 Chem-Impex Internationa
Valine (Val) 1.1 Chem-Impex International
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Supplemental figure 1. Comparison of minimum inhibitory concentrations (MIC)

between lineages evolved in single-nutrient media and nutrient-rich synthetic cystic
fibrosis sputum medium (SCFM). P. aeruginosa PAO1 was evolved in single-nutrient media
(arginine, glucose, glutamate, lactate) with incrementally increasing antibiotic
concentrations. The difference in evolution conditions is shown as the fold change in MIC
of lineages evolved in single-nutrient media relative to lineages evolved in SCFM. All MICs
were determined in SCFM. Bold horizontal lines indicate the mean fold change in MIC of

the SCFM lineages. Symbols represent distinct evolutionary replicates: (*) replicate 1, (A)

replicate 2, and (=) replicate 3.

GEE cP coL M TOB
@207
© . |

@ ® [ ] [ ]
S 1.09_ e e’ ° L4 * : g ® e
2 ° ] * ' °
o ° e 8 ° ¢ ° ° . H ° °
S} ® ° H

L]
Q 051 o
4 8 32 128 512 4 8 61 2 4 84 8 16 32
FC MIC

Supplemental Figure 2. Correlation between the maximal growth rate (umax) and
minimal inhibitory concentration (MIC) of evolved P. aeruginosa PAO1 lineages. Maximal
growth rates were determined by spline fitting of triplicate growth curves under antibiotic-
free conditions and expressed as fold changes relative to lineages evolved without
antibiotic in the same medium. MICs were measured for lineages evolved in single-
nutrient media under incrementally increased concentrations of ceftazidime (CEF),
ciprofloxacin (CIP), colistin (COL), imipenem (IMI), or tobramycin (TOB). MIC fold

changes are shown relative to the parental strain.
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Supplemental figure 3. Changes in the maximal growth rates of antibiotic-evolved
lineages after re-culturing in antibiotic-free media. Lineages were obtained by
incrementally increasing concentrations of five antibiotics (ceftazidime (CEF),
ciprofloxacin (CIP), colistin (COL), imipenem (IMI), and tobramycin (TOB)) under various
nutrient conditions. Maximal growth rates were determined by spline fitting of triplicate
growth curves in antibiotic-free synthetic cystic fibrosis sputum medium (SCFM) or in
single-nutrient media (arginine (ARG), glucose (GLC), glutamate (GLU), lactate (LAC)). Fold
changes are shown relative to lineages evolved under antibiotic-free conditions in each

respective medium.
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Chapter 7

7.1. Summary and general discussion

Pseudomonas aeruginosa is classified by the World Health Organization as a top-
priority pathogen, owing to its capacity for severe infections and its resistance to
many antimicrobials. This threat is particularly acute for immunocompromised
patients, such as those with cystic fibrosis (CF), who often acquire chronic P.
aeruginosa infections early in life. Prolonged antimicrobial exposure in these
infections drives the development of multidrug-resistant strains. To combat this
rise in resistance, it is increasingly recognized that understanding how P.
aeruginosa survives within the CF lung is crucial. In this context, a key element
lies in the infectious microenvironment, which shapes bacterial physiology and
influences antibiotic efficacyl. In an effort to capture the influence of the
infectious microenvironment, recent studies have employed innovative in vitro
culture media to better replicate the infectious phenotype. However, the diverse
microenvironments in the CF lung, coupled with the biological versatility of P.
aeruginosa, call for a more comprehensive approach to elucidate its triangular
relationship with antibiotic pharmacodynamics (PD). This thesis hypothesized
that nutrient conditions in the environment play a central role as
pharmacodynamic drivers and key determinants in the evolution of antibiotic
resistance, ultimately affecting therapeutic outcomes. To address this,
foundational work was conducted to elucidate how altered nutrient and oxygen
conditions influenced the antibiotic pharmacodynamics of P. aeruginosa.

In Section I, a comprehensive overview of the diverse microenvironments within
the CF lung was provided and the ways in which P. aeruginosa adapts to the
available nutrients were described (Chapter 2). This thesis highlights that these
microenvironments can vary among patients and even within the same lung,
potentially affecting P. aeruginosa adaptation in distinct ways. To explore this in
more detail in Section II, the impact of specific nutrients (Chapter 3) and oxygen
gradients (Chapter 4) relevant to the CF lung on antibiotic sensitivity was
investigated. In Section III, the role of microenvironmental interactions in
driving evolutionary processes by influencing the selection of mutants was
examined. It was discussed how exploiting metabolic adaptations during

resistance evolution may offer therapeutic advantages (Chapter 5), and P.
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General discussion, future perspectives, and overall conclusion

aeruginosa adaptation during antibiotic resistance development was reported
under single-nutrient conditions (Chapter 6).

Adaptation to heterogeneous cystic fibrosis lung

In Chapter 2, the nutrient environments present in the CF lung were reviewed
for its role in shaping the metabolic adaptation of P. aeruginosa, as these
adaptations play a key role in the failure of antibiotic therapies. The bacterial
metabolic state determines bacterial growth, redox balance, and energy levels,
all factors that influence antibiotic susceptibility. In this context, the thick,
dehydrated mucus in the CF lung creates diverse microenvironments
characterized by nutrient-rich but oxygen-limited conditions. These gradients
support the formation of biofilm aggregates by P. aeruginosa, which further
compartmentalize nutrients and oxygen, shaping metabolic heterogeneity. The
metabolic versatility of P. aeruginosa is central to its survival and adaptation
within the CF lung environments. P. aeruginosa can utilize a wide range of
substrates, including amino acids and short-chain fatty acids, and flexibly switch
between aerobic respiration, fermentation, and denitrification to maintain

energy production under varying conditions?.

Metabolic adaptations strongly influence antibiotic sensitivity. Antibiotics such
as aminoglycosides, fluoroquinolones, -lactams, and polymyxins all depend on
specific metabolic states for their effectiveness®. P. aeruginosa can rewire its
metabolism by suppressing respiration, activating metabolic shunts, or
producing protective extracellular matrix components, thereby reducing the
impact of these drugs.

Importantly, the CF lung microenvironment is not uniform. Intra- and
inter-patient variability shaped by factors like lung compartmentalization*, CF
genotype®, comorbidities® leads to significant differences in nutrient availability
and thus in antibiotic response. Understanding these metabolic responses in
physiologically relevant contexts is a critical step toward more effective,
personalized antibiotic interventions. Progress depends on integrating clinical
insights with advanced in vitro models and multi-omics approaches to accurately
reflect the complex CF lung environment’. Overall, this chapter outlined the
current understanding on this topic and identified important gaps to guide future

research.
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Nutrients shape antibiotic treatment response

Nutrients and oxygen are among the most evident drivers of metabolic processes,
which have increasingly been linked to the mechanisms of action of multiple
antibiotic classes®®. As a result, reduced antibiotic sensitivity is often associated
with nutrient-scarce or oxygen-deprived environments, and supplementation is
sometimes used to sensitize pathogens'. Although these observations highlight
the regulatory role of the nutrient environment in shaping microbial responses
to antibiotics, the impact of specific conditions relevant to the CF lung remains
poorly understood.

In Chapter 3, the impact of specific nutrients antibiotic sensitivity was
investigated. To this end, a basal culture medium was modified by alternately
adding individual nutrients, and changes in antibiotic response were measured
using time-kill assays with a bioluminescent P. aeruginosa strain, allowing real-
time monitoring of bacterial population dynamics.

Using mathematical PD modeling, changes in antibiotic responses across
different nutrient conditions were assessed. By focusing on quantification of
changes in the half-maximal effective concentration (ECs), nutrient-induced,
antibiotic class-specific changes in antibiotic PD were revealed, indicating
distinct underlying biochemical mechanisms. This finding expands beyond the
traditional view of reduced metabolic activity in nutrient-poor conditions
typically correlated with antibiotic tolerance or persistence mechanisms®. The
absence of significant fitness differences among bacterial populations in our
media formulations further suggests that biochemical, rather than purely
growth-rate dependent adaptations, underly the observed sensitivity shifts. This
aligns with a previous mathematical model, showing a stronger correlation

between antibiotic lethality and metabolic states rather than growth rates alone'.

Investigating the impact of single-nutrient alterations provides
mechanistic clarity by establishing a direct relationship between specific
metabolic pathways and antibiotic responses. These single-nutrient effects were
shown to have clinical relevance, as illustrated by our in vitro pharmacokinetic-
pharmacodynamic (PK-PD) simulations showing nutrient-induced changes in
treatment outcomes. Previous studies have similarly shown the potential for

leveraging nutrient-based findings to identify adjuvant therapies, combining
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antibiotics with nutrient modulation to enhance bacterial killingl0. While it is
important to acknowledge the inherent limitations of our in vitro models, since
antibiotic responses in clinical environments involve a broader and more
complex range of interactive factors, our results nonetheless represent
meaningful progress. Specifically, these findings advance our understanding of
the personalized nature of treating P. aeruginosa infections, which are heavily

influenced by microenvironmental interactions.

In addition to nutrient availability, oxygen levels represent another key
environmental factor that is often overlooked in conventional in vitro
antimicrobial activity assays. In Chapter 4, the specific impact of oxygen
availability on antibiotic responses in P. aeruginosa was investigated. Instead of
focusing solely on acute responses to anoxia, the study also assessed how
prolonged anoxic exposure (<1% oxygen for 22 days) impacts antibiotic
sensitivity. To this end, time-kill assays were performed, comparing a laboratory
strain of P. aeruginosa to lineages adapted through prolonged growth under

anoxic conditions.

The results indicated that antibiotic effects under anoxic conditions are
antibiotic-specific, consistent with known differences in oxygen dependency
among antibiotic mechanisms of action reported previously'>'. The antibiotic
sensitivity profiles changed profoundly following prolonged anoxic conditioning,
suggesting sustained modifications in cellular processes related to antibiotic
sensitivity. Importantly, these differences sustained when anoxically adapted
strains were subsequently cultured under atmospheric conditions, underscoring
stable physiological adaptations.

The distinct antibiotic sensitivity profiles observed following anoxic
adaptation highlight the potential limitations of standard in vitro antimicrobial
activity assays, which do not accurately replicate conditions of anoxic infection
sites. This emphasizes the urgent need to develop culture conditions that better
mimic in vivo infection environments. Additionally, the findings suggest that
brief exposure to clinically relevant conditions is insufficient. Instead, a
comprehensive  characterization  encompassing  multiple,  sustained
environmental conditions is required to reflect the true complexity of clinical
infections. Although this study initially focused on conditions relevant to cystic

fibrosis (CF), similar considerations likely apply to other P. aeruginosa infection
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sites, such as urinary tract infections', mucus plugs in chronic obstructive

pulmonary disease (COPD) or bronchiectasis'®.

Overall, the findings in Section II highlight the critical role of metabolic
regulation in determining antibiotic sensitivity of P. aeruginosa under diverse
nutrient and oxygen conditions. Nutrients and oxygen form the foundational
components for cellular biosynthesis and energy metabolism. Thus, their
influence on antibiotic effectiveness might logically follow, since antibiotics often
target actively dividing cells. However, the results demonstrate that antibiotic
sensitivity can be substantially altered by even single-nutrient changes, with
specific outcomes dependent on the precise combination of nutrient conditions
and antibiotic class.

The observations across various antibiotic classes support the concept
that increased nutrient availability does not necessarily translate into enhanced
antibiotic efficacy. Research on the metabolic-targeting natural product
promysalin, which can exhibit both synergistic and antagonistic effects when
combined with standard antibiotics in P. aeruginosa', underscores that nutrient
metabolism can activate protective cellular pathways that counteract antibiotic
actions. This indicates that nutrient metabolism can indeed trigger protective
cellular pathways dependent on the antibiotic pressure'. It is also important to
acknowledge that P. aeruginosa harbors an efficient hierarchical nutrient-
utilization regulatory systems in nutrient-rich conditions, which means that
combining separate nutrient media formulations will likely not produce additive
antibiotic sensitivity effects. For example, P. aeruginosa can produce redox-active
metabolites that suppress respiration and induce a low-energy cellular state even
in oxygen-rich conditions™. These nutrient-induced metabolic changes result in
phenotypic adapted strains over long-term colonization of the CF lung®. The
findings in this section demonstrated that these adaptation processes profoundly
impact antibiotic sensitivity profiles. Such insights underscore the importance of
elucidating the biochemical basis of nutrient-driven antibiotic sensitivity and
highlight the need for integrative, phenotype-focused -omics approaches.
Metabolomics and proteomics are powerful techniques that can capture subtle
shifts in intracellular metabolite concentrations, enzyme levels, and metabolic
flux patterns, thereby providing a high-resolution view of the metabolic

reconfigurations during antibiotic treatment?'?2,
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If we are to adopt a more biochemically informed approach, it is crucial that
future studies be conducted in environments representative of both the
antibiotic’s mechanism of action and the conditions of actual infections. In
addition to the incremental approach of distinguishing the effects of individual
nutrients, detailed investigation into the nutrient composition of the infectious
environment is essential. The infectious microenvironment is dynamically
shaped by interactions with host cells and microbial communities, generating
metabolic byproducts and oxidative stress that modulate bacterial metabolism.
Consequently, the use of co-culture systems that model host-pathogen® or
polymicrobial interactions®* is essential for fully capturing the intricate interplay
between nutrient environments and antibiotic sensitivity. By building on this
experimental data, future research can more accurately account for the complex
nutritional and metabolic landscapes which P. aeruginosa exploits to influence
antibiotic susceptibility.

Nutrients shape antibiotic resistance evolution

It is well established that phenotypic changes play a central role in the adaptive
capacity of populations, driving natural selection. In this context, populations
that adapt to environmental perturbations with higher fitness levels come to
dominate. Under antibiotic pressure, heritable changes, such as chromosomal
mutations that confer resistance through target modifications, reduced uptake,
or increased active efflux, rapidly prevail. These changes are often integral to
essential cellular mechanisms and, consequently, frequently incur a fitness cost.
Beyond the fact that alterations in fitness and resistance mechanisms induce
metabolic changes, it is increasingly recognized that mutations affecting

metabolism represent a key category of antibiotic resistance mechanisms?.

In Chapter 5, metabolic adaptations during antibiotic resistance
evolution were reviewed, and it was discussed how metabolomics can be applied
to understand and exploit these adaptations. Although metabolomics is the
comprehensive study of all small molecules in a biological sample, there is no
single analytical method that can measure them all due to their extensive
physicochemical diversity. Therefore, effective metabolomics studies require
thoughtful selection of analytical approaches and sample preparation methods
that are tailored to the specific biological questions at hand. For example, the role
of metabolic quenching was discussed to counter the high turnover rate of energy
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metabolism; apolar extraction procedures were highlighted for retrieving
membrane profiles for studying cell envelope changes; and spatially oriented
ionization techniques were noted for their utility in examining cell-to-cell
communication within biofilm structures. Although 23 metabolomics-focused
papers were included in the review, these studies were distributed across various
bacterial species and antibiotic classes. It can therefore be concluded that a more
systematic application of metabolomics is needed to further elucidate the role of
metabolism in antimicrobial resistance mechanisms.

In Chapter 6, the role of metabolism in antibiotic resistance evolution
was further explored by challenging the metabolic versatility of P. aeruginosa
through antibiotic adaptive laboratory evolution experiments conducted under
single-nutrient conditions. This work was built on the concept that the metabolic
constraints imposed by antibiotic resistance mutations, together with the
regulatory influence of nutrient supply, shape the evolutionary response®?¥.
Phenotypic and genotypic changes in P. aeruginosa were investigated following a
10 day evolution period under antibiotic pressure, using high concentrations of
arginine, glucose, glutamate, and lactate as single-nutrient conditions.

The evolved lineages displayed significant differences in minimal
inhibitory concentrations (MIC) across the single-nutrient evolution conditions.
Earlier work also reported nutrient-dependent MIC shifts in P. aeruginosa, but
primarily when comparing nutrient-rich with nutrient-poor media®. Although
that study found only modest MIC divergence, it still identified medium-specific
resistance mutations. In our experiment, mutations unique to specific evolution
conditions were also detected, but only six across the 15 distinct conditions that
were sequenced. An additional partial least-squares discriminant analysis
(PLS-DA) revealed a small set of mutational patterns that reliably distinguished
our evolution conditions. The narrow range of mutational change parallels the
almost identical post-evolution growth-rate shifts observed within each antibiotic
class. This limited fitness variation steers the populations toward a restricted set

of genotypes®.

These findings demonstrated that even in single-nutrient media
P. aeruginosa can evolve along multiple trajectories. However, this diversity
manifests primarily as shifts in MIC rather than as distinct mutational signatures.
Because P. aeruginosa can persist in the CF lung for years, the phenotypic changes

observed may eventually solidify into stable genotypic differences. Continuous,

168 o0



General discussion, future perspectives, and overall conclusion

automated in vitro systems are well suited to study such long-term evolution®,
but they are technically demanding, time-consuming, and resource intensive. A
more practical first step would be to investigate in more detail how
infection-relevant nutrient conditions shape antibiotic resistance development,
bearing in mind that altering even a single nutrient can tip the evolutionary
balance.

In summary, Section III highlighted that metabolic processes play a crucial role
in antibiotic resistance development and demonstrated that, despite its
metabolic versatility, nutrients exert a regulatory influence on P. aeruginosa
resistance development. Although our findings delve into how the nutrient
environment contributes to the complex evolutionary trajectories observed in the
CF lung, they represent only a small piece of the overall picture, and further
research in this area remains essential. Nevertheless, the results indicate that the
influence of the nutrient environment is antibiotic-dependent, underscoring the
need for more in-depth investigation of the biochemical responses and

specialization processes that occur during antibiotic exposure.

7.2. Future perspectives

Antibiotics are indispensable for everyday healthcare, yet immunocompromised
patients bear a disproportionate burden of infectious disease and also serve as a
reservoir for antibiotic-resistant strains. Examining infections in these
individuals provides an unique window into the various ways antibiotic therapies
can fail. The CF lung represents such an unique environment, where a typically
commensal bacterium like P. aeruginosa becomes one of the most challenging
infections to treat. Understanding the mechanisms that make the combination of
the CF lung and P. aeruginosa so burdensome may also offer critical insights into
other bacterial infections. A key factor shaping P. aeruginosa infection in the CF
lung is the unique nutrient environment, yet this aspect is often overlooked. The
nutrient environment can profoundly influence bacterial behavior and can lead
to misinterpretation of antibiotic susceptibility testing performed using standard
culture media. Therefore, in the quest to better understand the P. aeruginosa
pathophysiology, it is essential to focus on: I) mapping physiologically relevant

infection sites, II) examining the influence of nutrients on antibiotic
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susceptibility testing, III) working on capturing nutrient-induced antibiotic
sensitivity changes, and IV) elucidating the underlying biological mechanisms
responsible for the antibiotic effect changes.

Mapping of physiologically relevant infection sites

The respiratory tract is a spatially organized system comprising diverse
microenvironments, each of which may support distinct infection dynamics®'.
The findings presented in this thesis, demonstrating the strong influence of
nutrient availability on antibiotic pharmacodynamics, underscore the critical
need to improve our understanding of the chemical composition of these distinct
niches. Accurate mapping of these environments is therefore an essential next
step in this line of research.

It is crucial to recognize that not all samples taken from the CF lung are
created equal and each sample carries inherent biases and limitations that
influence interpretation. For instance, expectorated sputum is the most
accessible and commonly used sample type, but it represents a heterogeneous
blend of secretions from multiple regions of the lung. This pooling of distinct
microenvironments reduces spatial resolution and contributes to a substantial
disconnect between the chemical profiles observed in sputum and those derived
from in vitro P. aeruginosa cultures®. Sampling epithelial lining fluid via
microsamplers offers more region-specific insights but is limited by its
invasiveness and the need for saline instillation, which dilutes the sample and
complicates direct metabolite comparisons across patients or timepoints®3,
Another layer of complexity arises from the heterogeneous biofilms. Spatially
resolved analytical techniques have revealed intricate metabolic structuring
within biofilms, including mathematical models informed by -omics data that
demonstrate their metabolic heterogeneity®.

The field of oncology has pioneered efforts to address such complex
biological heterogeneity through network-based frameworks. Over the past
decade, researchers have begun constructing multiscale “tumor atlases” that
integrate cellular phenotypes, bulk -omic alterations, and interactions with the
tumor microenvironment®. These atlases are built by combining conventional
pathology with spatial biology and multi-omic datasets, offering a comprehensive

view of tumor evolution shaped by local conditions*”. Beyond advancing
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fundamental understanding, these tools now support stratification of patient
populations and guide personalized treatment strategies.

Inspired by these advances in oncology, future efforts to characterize the
infectious microenvironment of the CF lung must similarly embrace integrative,
spatially resolved frameworks. This means not only aligning molecular,
microbial, and pathological data layers, but also actively distinguishing between
different CF patient phenotypes. Stratifying infections based on
microenvironmental features will be essential for translating nutrient-induced

pharmacodynamic effects into meaningful, individualized treatment decisions.

In vitro nutrient composition in antimicrobial activity assays

While our understanding of the spatial and chemical complexity of the infectious
environment advances, accurately measuring its clinical impact requires that in
vitro antimicrobial activity assays be adapted accordingly. The physicochemical
composition of the culture medium represents a critical and tractable factor for
more accurately mimicking infectious conditions®. Prior studies have shown that
medium composition can significantly alter antibiotic activity®®, and findings
presented in Chapter 3 demonstrate that even a single nutrient modification can
markedly shift antibiotic sensitivity. Combined with the environmental
heterogeneity outlined previously, these results underscore the need to adapt in
vitro antimicrobial assays to infection-specific microenvironments to better

predict clinical outcomes and guide therapy.

Nutrient conditions are also likely to influence other in wvitro
antimicrobial activity assays, including combination antibiotic testing and
biofilm susceptibility testing. For instance, the synergy of antibiotic
combinations depends on drug-specific mechanisms of action®, which can be
sensitive to medium composition*'. In biofilm models, nutrients critically impact
maturation. In the CF lung, P. aeruginosa grows in aggregates that can be
mimicked using alginate beads, but mature biofilms represented by full bead
coverage require supplementation with alternative electron acceptors*’. The
reduced antibiotic susceptibility of biofilm populations are closely linked to the
metabolic adaptations associated with their heterogeneous structure®.
Incorporating infection-relevant nutrient environments into these alternative in
vitro assays may be essential to overcome the inconsistent clinical outcomes they
currently produce**“®,

o0 171



Chapter 7

Completely changing the in vitro experimental methodologies for clinical
antimicrobial susceptibility testing (AST) is challenging, as current standardized
protocols ensure interlaboratory comparability and are far less time-consuming
than alternative approaches. Another potential step in improving AST is refining
isolate selection by extracting bacterial populations from different lung regions
of the same patient, as regional adaptations may significantly influence antibiotic
susceptibility*. For example, Chapter 4 shows that oxygen levels affect antibiotic
sensitivity, highlighting how microenvironmental specialization drives distinct
colony phenotypes. A well-known CF-relevant subpopulation, small colony
variants (SCVs), can survive otherwise lethal antibiotic concentrations but are
often underrepresented in conventional AST due to their difficult-to-culture
nature”. Moreover, as demonstrated in Chapter 4, specialization to anoxic
conditions can lead to different treatment outcomes during aerobic in vitro
experiments. To accurately assess antibiotic susceptibility in such specialized
populations, AST must replicate the infection conditions under which isolates
evolved. In this context, incorporating anaerobic AST may be particularly

valuable for chronic P. aeruginosa infections.

In summary, accurately predicting antibiotic efficacy in the
heterogeneous CF lung environment will require antimicrobial assays that
incorporate relevant nutrient conditions, assay parameters, and isolate selection.

Nutrient induced changes to antibiotic pharmacodynamics

To map how nutrient availability modulates antibiotic PD, this thesis moved
beyond static MIC testing and applied dynamic time-kill assays combined with
mathematical modeling. Although MIC values remain the clinical standard, they
cannot resolve the differences in growth and kill kinetics that emerge
immediately after antibiotic addition. Recording full time-kill curves in different
media conditions and fitting them with PD models revealed that identical MICs
can mask substantial variation in growth and kill rates*®. These lessons underline
the need to complement standard AST with kinetic assays that explicitly
incorporate nutrient context.

Both the nutrient and oxygen environments exert a significant influence
on these growth and killing dynamics, as they are often associated with slow
growth, tolerance, and persistence effects. In Chapter 3, a sigmoidal

concentration-effect model was employed to more accurately describe the
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antibiotic PD changes under varying nutrient conditions. Although this approach
enabled the study of a wide range of antibiotic-nutrient combinations, it also
presents clear disadvantages when moving towards more antibiotic-specific
responses. The response data used to design our one-compartment PD model
were obtained from a static time-kill assay, which fails to accurately capture
biphasic killing curves of heterogeneous populations, exhibits variability
depending on bacterial population size, and fails to track bacterial adaptation
during antibiotic exposure. These limitations highlight the need for dynamic in
vitro culturing systems, which could provide deeper insight into time-dependent
PD characteristics like shifting growth and killing kinetics and resistance

development®.

Chapters 3 and 4 demonstrated that nutrient availability strongly
influences antibiotic sensitivity, and in Chapter 6 genetic outcomes of resistance
evolution under these varied conditions were observed. To bridge these findings,
PD models capturing the full time course of antibiotic effects can reveal
differences in antibiotic selection pressure. These PD differences can
subsequently inform population genetic models, linking observed antibiotic
sensitivity shifts directly to genetic variation®®. The complex interplay between
nutrient conditions, bacterial growth rates, and antibiotic susceptibility
highlights the difficulty of accurately replicating selective pressures in vitro.
Although continuous culture systems (e.g., chemostats) are technically
challenging to maintain, they offer more precise control. Chemostats allow
microbial populations to be maintained in a constant environment over extended
periods, while enabling deliberate manipulation of specific selective forces such

as nutrient levels or antibiotic exposure®'.

Molecular drivers of nutrient induced antibiotic sensitivity changes

An important aspect highlighted throughout this thesis is that changes in
antibiotic effect are often unique to specific nutrient-antibiotic combinations.
While significant progress has been made through the rapid development of
genomic databases cataloging resistance-conferring mutations (‘resistomes’)®?,
these approaches primarily correlate known mutations with antimicrobial
resistance profiles. Less conventional mechanisms, such as metabolism-driven
resistance, are often underrepresented in these databases, as they are embedded

within more complex networks®. Resistance-associated mutations in such
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networks typically arise after prolonged periods of selection pressure (Chapter
6), whereas phenotypic adaptive responses can cause a transient reduction in
antibiotic efficacy during earlier phases of exposure®®, exemplified in Chapter 3.
Although this thesis did not explicitly investigate molecular mechanisms, the
observed nutrient-antibiotic-specific effects emphasize the need for future
studies to dissect the specific biochemical responses involved.

Transcriptomics, proteomics, and metabolomics probe molecular layers
that lie much closer to the phenotype than genomic data, and thus provide the
biochemical resolution needed to dissect antibiotic-response mechanisms. For
example, whole-genome sequencing of two P. aeruginosa isolates accounted for
only part of their divergent B-lactam phenotypes, whereas transcriptomics
uncovered additional resistance-linked expression changes invisible at the DNA
level®®. Likewise, quantitative proteomics detected the early induction of heat-
shock chaperones, proteases, and metabolic enzymes when P. aeruginosa was
exposed to sub-inhibitory tobramycin, highlighting rapid adaptive pathways®. In
Chapter 5, it was shown how metabolomics can track nutrient utilization,
antibiotic-induced metabolite signatures®', and how those metabolic read-outs
can be exploited by supplementing targeted nutrients to enhance antibiotic
sensitivity®. Each technique carries its own analytical limitations and, most
critically, captures only a snapshot of an inherently dynamic system.

Fluxomics adds this missing temporal dimension by tracing how carbon
and energy flow through metabolic networks under changing conditions. Such
data reveal compensatory pathways that support survival during nutrient stress
and antibiotic pressure®. Yet, building isolate-specific flux models for CF
infections is data-intensive, and the necessary parameters for making robust
extrapolations are seldom available.

Recent genome-scale metabolic reconstructions, which integrate
hundreds of reactions and multi-omics inputs, improve confidence in flux
predictions. For example, a model combining transcriptomics, proteomics, and
metabolomics successfully captured lipopolysaccharide remodeling during
polymyxin resistance in P. aeruginosa®. These integrative models better capture
time-dependent processes such as fluctuating drug concentrations or nutrient
availability.

Most -omics platforms are advancing toward single-cell resolution

because that level of detail can reveal subtle phenotypic adaptations during

174 o0



General discussion, future perspectives, and overall conclusion

antibiotic exposure. Yet, despite their analytical power, single-cell studies have
limited biological impact if they are not anchored to a broader mechanistic
framework. The heterogeneity of bacterial populations is well established, as
repeatedly illustrated by phenomena like antibiotic persistence®. Instead,
research efforts should begin with established analytical techniques, integrate
their datasets, and first map P. aeruginosa responses to each antibiotic. Once the
antibiotic mode of action and the population-level biochemical responses have
been well defined, single-cell approaches can then illuminate the fine-scale
heterogeneity that underlies treatment failure.

7.3. Overall conclusion

In conclusion, this thesis demonstrates that shifts in nutrient and oxygen
availability can rewire P. aeruginosa physiology and alter antibiotic
pharmacodynamics. These findings confirm that effective drug evaluation must
consider antibiotic mechanism, pathogen physiology, and microenvironment as
interdependent factors, especially for heterogeneous infection sites such as the
CF lung. The work presented here lays the groundwork for explicitly
incorporating nutrient and oxygen levels into antimicrobial sensitivity assay
development and systems-level analyses of bacterial responses. Looking ahead,
combining detailed infection-site mapping with environment-aware
experimental assays represents a necessary first step toward patient-specific
antibiotic therapy.
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Chapter 8

8.1. Algemene introductie

Pseudomonas aeruginosa: een hardnekkige ziekteverwekker

Pseudomonas aeruginosa is een bacterie die goed gedijt op vochtige plekken,
zoals stilstaand water, beekjes of vochtige aarde. Hoewel deze bacterie op veel
plaatsen voorkomt, is deze bacteriesoort voor de meeste mensen geen
ziekteverwekker. Voor mensen met een verzwakt afweersysteem kan P
aeruginosa echter wel gevaarlijk zijn: hun afweer is vaak niet sterk genoeg om de
bacterie onder controle te houden. Omdat P. aeruginosa alleen onder bepaalde
omstandigheden ziekte veroorzaakt, wordt de bacteriesoort beschouwd als een
opportunistisch pathogeen. Maar omdat de bacterie niet alleen voorkomt in
vochtige plekken in de natuur, maar ook in waterleidingen, kranen en
airconditioningsystemen, kan ze zich gemakkelijk verspreiden in ziekenhuizen
en verzorgingshuizen. Precies de plekken waar veel zieke en kwetsbare mensen
verblijven. Hierdoor is P. aeruginosa verantwoordelijk voor een aanzienlijk deel
van de infecties die patiénten tijdens hun ziekenhuisopname oplopen.
Voorbeelden hiervan zijn urineweginfecties via katheters, bloedbaaninfecties bij
infusen, of longontstekingen bij beademde patiénten. Wanneer iemand zo’n
infectie oploopt, wordt vaak gestart met een antibioticakuur: een behandeling
die gericht is op het doden van de bacterie. Hoewel deze behandeling in veel
gevallen effectief is, komt het steeds vaker voor dat de infectie niet verdwijnt
omdat het pathogeen niet meer gevoelig is voor de antibiotica (Box 1).

Box 1. De effectiviteit van antibiotica bij infecties

Het eerste antibioticum werd bij toeval ontdekt in 1928. Een schimmel scheidde een stofje
uit dat de groei van omliggende bacterién remde. Pas in 1940 slaagden wetenschappers
erin om dit middel, penicilline, op grote schaal te produceren. Antibioticabehandelingen
waren namelijk essentieel om infecties als gevolg van verwondingen of operaties te
voorkomen, juist in een periode waarin de druk op het medisch personeel enorm was,
tijdens de Tweede Wereldoorlog. Sindsdien is antibiotica niet meer weg te denken uit de
gezondheidszorg. Dankzij deze middelen kunnen jonge kinderen die vroeger dagenlang
ziek op de bank lagen, soms al na één dag behandeling weer vrolijk rondlopen. Ook
ingrijpende operaties zijn een stuk veiliger geworden, omdat het risico op
levensbedreigende infecties achteraf sterk is afgenomen.

Maar tegelijkertijd met de doorbraak van antibiotica werden ook de eerste bacterién

waargenomen die niet meer geremd werden bij blootstelling aan deze middelen. Deze
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bacterién ontwikkelden antibioticaresistentie door de doelwitten van antibiotica zodanig
aan te passen dat de werking ervan verloren ging. Omdat bacterién in grote populaties
voorkomen en zich zeer snel delen, kan een verandering die een overlevingsvoordeel biedt
snel dominant worden binnen een populatie. Deze snelle evolutionaire aanpassing leidde
ertoe dat al kort na de introductie van antibiotica bacterielijnen ontstonden die volledig
resistent waren, zoals de bekende ziekenhuisbacterie methicilline-resistente
Staphylococcus aureus (MRSA).

Om infecties met antibioticaresistente bacterién toch te kunnen Dblijven
behandelen, zijn er in de loop der tijd veel nieuwe antibiotica ontwikkeld. Dit heeft geleid
tot een breed scala aan antibioticaklassen met verschillende werkingsmechanismen. Om
de werking van antibioticaklassen te waarborgen gelden er strikte voorschrijfregels. Toch
overlijden jaarlijks nog altijd miljoenen mensen aan infecties waarbij antibioticaresistente
bacterién een rol spelen. Vaak omdat deze bacterién ongevoelig zijn voor meerdere
antibioticaklassen.

Hoewel onverantwoord gebruik van antibiotica vaak wordt genoemd als
belangrijke aanjager van de ontwikkeling van multiresistente bacterién, valt dit buiten de
reikwijdte van dit proefschrift. Dit proefschrift richt zich op infecties die klinisch moeilijk
te behandelen zijn doordat bacterién zich tijdens de infectieperiode kunnen aanpassen
door falende antibiotica therapieén. Als gevolg hiervan kunnen infecties langdurig blijven
bestaan (soms maanden tot zelfs jaren), en dus overgaan in een chronisch ziektebeeld.

P. aeruginosa infecties in de longen van cystische fibrosepatiénten

Cystische fibrose (CF), ook wel taaislijmziekte genoemd, is een genetische
aandoening die leidt tot een abnormaal dikke slijmlaag in de luchtwegen. In
gezonde longen helpt het slijm bij het afvoeren van pathogenen en afvalstoffen.
Bij CF-patiénten is het slijm gedehydrateerd en stroperig, waardoor deze
klaringsfunctie ernstig verstoord is. Dit cre€ert een gunstige omgeving voor
micro-organismen om zich in de longen te vestigen. Het afweersysteem reageert
op deze kolonisatie, wat leidt tot ontstekingsreacties en infecties. Al op jonge
leeftijd worden bij CF-patiénten herhaaldelijk bacteri€le kolonies aangetroffen in
de luchtwegen. Om deze kolonies onder controle te houden en verdere
longschade te beperken, zijn CF-patiénten vaak aangewezen op langdurige
onderdrukkende antibioticatherapieén. Helaas zijn deze behandelingen bij een
aanzienlijk deel van de patiénten niet effectief genoeg om chronische

longinfecties volledig te voorkomen. In sommige gevallen zijn de infecties zo
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hardnekkig en therapieresistent dat een risicovolle longtransplantatie de enige

overgebleven optie is om de infectie te elimineren.

P. aeruginosa is één van de meerdere pathogenen die verantwoordelijk
zijn voor chronische longinfecties bij CF-patiénten. Wat P. aeruginosa specifiek
maakt, is dat de infectie vaak al op jonge leeftijd wordt opgelopen en vervolgens
niet meer volledig ge€limineerd kan worden. Hierdoor is P. aeruginosa de meest
dominante pathogeen in de luchtwegen van volwassen CF-patiénten. Meer
inzicht in de manier waarop de chronische P. aeruginosa infectie ontstaat en de
respons op antibiotica bij CF-patiénten biedt niet alleen kansen om de klinische
uitkomst voor deze specifieke patiéntengroep te verbeteren, maar is ook van
groot belang om het groeiende probleem van infecties met multiresistente P.
aeruginosa-stammen het hoofd te bieden.

De stofwisseling van P. aeruginosa in de longen van CF-patiénten

Door de vorming van een dikke laag slijm en het gebrek aan effectieve klaring
ontstaat een unieke leefomgeving in de mucus van de luchtwegen van CF-
patiénten. In deze directe, lokale micro-omgeving waarin P. aeruginosa zich
vestigt, hopen potenti€le voedingsstoffen zich op, terwijl de hoeveelheid
beschikbare zuurstof zeer beperkt is. Door de slechte zuurstofpenetratie in de
mucus ontstaan zuurstofarme tot zelfs volledig zuurstofvrije omstandigheden.
De stofwisseling van P. aeruginosa speelt een belangrijke factor waarom de
bacterie zich gemakkelijk kan vestigen in deze unieke micro-omgevingen.

Het veelzijdige en flexibele metabolisme van P. aeruginosa sluit goed aan
op het aanbod voedingsstoffen in de mucus van de longen van CF-patiénten (Box
2). In de mucus worden namelijk hoge concentraties gemeten van de nutriénten
die P. aeruginosa efficiént benut: aminozuren, korte-keten organische zuren, en
nitraat. Daarnaast kan P. aeruginosa grotere moleculen actief afbreken om de
gewenste nutriénten vrij te maken, en beschikt het over virulentiefactoren die
het vrijkomen van nutriénten in humane cellen forceren. Dankzij deze overvloed
aan beschikbare nutriénten kan de bacterie zich gemakkelijk vestigen in zowel
zuurstofrijke (aerobe) als zuurstofarme (anaerobe) micro-omgevingen in de
longen van CF-patiénten.

184 o0



Nederlandse samenvatting

Box 2. Metabolisme van P. aeruginosa

Het metabolisme van P. aeruginosa wijkt af van veel andere pathogenen en humane cellen.
In humane cellen start de energieproductie meestal met suikers zoals glucose, die worden
afgebroken tot kleinere moleculen. Deze tussenproducten kunnen dienen als
bouwstenen, of in combinatie met zuurstof worden gebruikt in oxidatieve fosforylatie.
Tijdens oxidatieve fosforylatie wordt de energie uit de suikerafbraak opgeslagen in de
vorm van ATP. Het ATP-molecuul is de universele energiedrager van cellen. In humane
cellen vindt de oxidatieve fosforylatie plaats in de mitochondrién, die daardoor de bijnaam
'energiecentrales van de cel’ dragen. Hoewel oxidatieve fosforylatie een zeer efficiénte
manier is van energieproductie, vereist het de aanwezigheid van zowel suikers en zuurstof.
P.  aeruginosa daarentegen maakt juist veelvuldig gebruik van alternatieve
koolstofbronnen, zoals aminozuren en korte-keten organische zuren. Deze aminozuren
en organische zuren zijn kleine moleculen die fungeren in humane cellen ook als
belangrijke bouwstenen voor macromoleculen zoals eiwitten en lipiden. Maar P.
aeruginosa beschikt over meerdere alternatieve metabole routes om deze kleine
moleculen efficiént te benutten voor energieproductie. Het gebruik van deze alternatieve
nutriénten geven P. aeruginosa niet alleen een voordeel in de concurrentie om nutriénten,
maar zorgt ook voor een hoge mate van flexibiliteit.

De metabole flexibiliteit van P. aeruginosa wordt verder vergroot doordat de
bacterie, naast zuurstof, ook nitraat kan gebruiken als alternatief voor het proces om
energie op te slaan in de vorm van ATP. Dit proces, denitrificatie genoemd, stelt P.
aeruginosa in staat om ook in anaerobe omgevingen waar geen zuurstof aanwezig is
efficiént energie te blijven produceren. Wanneer zowel zuurstofrespiratie als denitrificatie
niet mogelijk zijn, kan P. aeruginosa terugvallen op fermentatie en deiminatie.
Fermentatie is een anaerobe metabole route voor energieproductie, vergelijkbaar met wat
er in spieren gebeurt tijdens zware inspanning: glucose wordt dan deels afgebroken
zonder dat zuurstof nodig is, met lactaat productie als gevolg. Bij deiminatie worden
aminozuren afgebroken via specifieke enzymatische routes waarbij eveneens ATP wordt
gegenereerd. Deze metabole veerkracht stelt P. aeruginosa in staat zich uitstekend aan te
passen aan de vaak anaerobe mucus in de longen van CF-patiénten.

Het metabolisme van bacterién beinvloed de efficiéntie van
antibiotica

Bacterién beschikken over meerdere mechanismen om de werking van
antibiotica te verminderen of zelfs volledig uit te schakelen. Antibiotica
resistentie is verantwoordelijk voor het overgrote deel van de miljoenen

sterfgevallen die jaarlijks wereldwijd worden toegeschreven aan het falen van
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antibiotica behandelingen. Er is dan ook veel onderzoek gedaan naar de

mechanismen die leiden tot antibioticaresistentie.

Door antibiotica resistentiemechanismen is een bacterie in staat zijn om
te blijven delen bij antibiotica-concentraties die normaal gesproken de groei van
de populatie remmen of dodelijk zijn (Figuur 1A). Veelvoorkomende
resistentiemechanismen zijn: (1) enzymatische afbraak of modificatie van het
antibioticum, (2) actieve efflux, waarbij antibiotica uit de cel worden gepompt, (3)
veranderingen in het doelwit van het antibioticum, waardoor het niet meer
effectief kan binden, en (4) verminderde opname of doorlaatbaarheid van het
antibioticum.

Deze resistentiemechanismen ontstaan door veranderingen in het
bacteriéle DNA. Een voorbeeld hiervan is een spontane mutatie in het stukje DNA
dat de informatie bevat voor het maken van de eiwitten waaraan een antibioticum
normaal bindt om celprocessen te verstoren. Als de aanpassing in het DNA ervoor
zorgt dat het antibioticum niet meer goed kan binden, wordt deze specifieke
bacteriecel ongevoelig voor het antibioticum. Omdat DNA wordt doorgegeven
aan nakomelingen, zullen ook de nieuwgevormde cellen dezelfde aanpassing in
het DNA hebben. De bacteriecellen die de mutatie niet hebben en dus nog wel
gevoelig zijn voor het antibioticum, zullen tijdens de behandeling afsterven of
stoppen met delen. Daardoor kunnen de resistente cellen met de mutatie snel de
overhand nemen binnen de bacteriepopulatie. De kans op het ontstaan van zo’n
mutatie die deze evolutie in gang zet is op zichzelf klein. Maar omdat een infectie
vaak uit miljoenen bacterién bestaat die zich bovendien zeer snel kunnen
verdubbelen, is de kans dat er ergens in de populatie een resistente variant
ontstaat reéel. Zeker bij de langdurige antibioticatherapieén die gebruikt worden
om longschade bij CF-patiénten te beperken.

Naast deze stabiele, genetische resistentiemechanismen maken bacterién ook
gebruik van tijdelijke strategieén waarmee ze een antibiotica behandeling
tijdelijk kunnen overleven. Een infectie met een pathogeen dat zulke transiénte
mechanisme toepast lijkt tijdens de behandeling vaak succesvol bestreden, maar
keert terug zodra de antibiotica wordt stopgezet (Figuur 1B). Bij hervatting van
dezelfde behandeling is de bacterie meestal opnieuw gevoelig, omdat het gaat om
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A. Antibiotica resistentie

Start Gemuteerde cel Resistente eind
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Antibiotica
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Stop
behandeling

Tijdelijke aanpassing

Figuur 1. Visualisatie van hoe bacteri€le populaties reageren op antibiotische
behandeling. (A) antibiotica resistentie: een stabiele genetische verandering zoals een
mutatie zorgt ervoor dat bacterién kunnen blijven groeien tijdens blootstelling aan
antibiotica. (B) Transiénte verlaging van antibiotica gevoeligheid: door een fenotypische
verandering ontstaat een verlaagde gevoeligheid, waardoor bacterién de antibiotische

werking tijdelijk overleven.

een tijdelijke fenotypische aanpassing. Er vindt dus geen stabiele verandering
plaats in het DNA. Toch vergroten deze tijdelijke aanpassingen de kans dat op
termijn wel stabiele, genetische resistentie ontstaat en zich vastzet binnen de
bacteriéle populatie.

Het bacteriéle metabolisme speelt een belangrijke rol in zulke tijdelijke
veranderingen in antibioticagevoeligheid. Dit is duidelijk zichtbaar bij de werking
van aminoglycoside-antibiotica. Aminoglycosiden, zoals tobramycine,
verstoren de eiwitsynthese in bacterién, wat uiteindelijk leidt tot celdood. De
opname van deze antibiotica in de bacteriecel is echter afhankelijk van een
elektrisch spanningsverschil over het celmembraan, dat wordt opgewekt tijdens
de energieproductie via oxidatieve fosforylatie. Hierdoor hopen aminoglycosiden

zich vooral op in metabool actieve cellen met een hoog energieniveau, en is de
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aminoglycoside effectiever in celdoding. Dit staat in contrast met de werking van
polymyxines, een andere klasse van bacteriedodende antibiotica. Polymyxines,
zoals colistine, binden aan lipiden in de buitenste laag van de celwand. Om deze
binding te verhinderen, kan de bacterie de samenstelling van de lipiden in de
celwand actief aanpassen. Echter kost dit proces veel energie en dus niet mogelijk
is in cellen met een laag energieniveau. Daardoor zijn polymyxines juist
dodelijker voor cellen met een lage metabole activiteit.

Net als bij mensen verschillen bacteriecellen binnen een populatie van
elkaar, zowel in genotypisch als fenotypisch opzicht. Deze heterogeniteit tussen
cellen maakt dat een bacteriepopulatie zich goed kan aanpassen aan
veranderende omstandigheden. Een goed voorbeeld van variatie tussen P.
aeruginosa cellen in de luchtwegen van CF-patiénten zijn biofilm-aggregaten.
Biofilms bestaan uit bacterién die hun beweeglijkheid opgeven en samen een
beschermende matrix uitscheiden. Deze extracellulaire matrix beschermt de
bacterién tegen schadelijke omgevingsfactoren, zoals antibiotica en het
afweersysteem. Naast deze bescherming zorgt de matrix er ook voor dat
voedingsstoffen beperkt tot de kern van de biofilm komen. Daardoor ontstaat in
de kern een voedselarme en zuurstofarme micro-omgeving, waarin bacterién
inactief of dormant raken. Colistine werkt vooral goed op de inactieve cellen diep
in de biofilm, terwijl tobramycine juist effectief is tegen de actieve bacterién aan
de buitenkant. Het toevoegen van voedingsstoffen tijdens de antibiotica
behandeling zorgt dat bacterién actiever worden, waardoor onder andere
tobramycine beter gaat werken. Dit benadrukt hoe belangrijk het is om bij de
keuze van een behandeling niet alleen naar het antibioticum te kijken, maar ook
naar de metabole activiteit van de bacterie.

De micro-omgevingen beinvloeden P. aeruginosa antibiotica
gevoeligheid

De werking van antibiotica hangt nauw samen met de metabole activiteit van P.
aeruginosa, die grotendeels wordt bepaald door de hoeveelheid beschikbare
nutriénten en zuurstof in de omgeving. In de longen van CF-patiénten bestaan
veel verschillende micro-omgevingen, die ontstaan door variatie in de ernst van
de ziekte, de snelheid van longfunctieverlies, bijkomende infecties en de
structuur van de luchtwegen. P. aeruginosa past zijn metabolisme aan deze
omstandigheden aan, wat leidt tot een breed scala aan resistentiemechanismen.
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Het is daarom belangrijk om te begrijpen welke specifieke veranderingen in de
omgeving invloed hebben op de antibioticagevoeligheid van P. aeruginosa. Dit
inzicht is essentieel om terugkerende behandelproblemen te voorkomen en
chronische infecties beter onder controle te krijgen.

Analyse van bacteriéle groei en antibioticawerking in het
laboratorium

Om het effect van de groeicondities op antibioticagevoeligheid te bestuderen, zijn
gecontroleerde omstandigheden nodig. In het menselijk lichaam wordt de
omgeving beinvloed door talloze factoren, waardoor het lastig is om het effect
van één specifieke factor te isoleren. Daarom wordt vaak uitgeweken naar in vitro
laboratoriumonderzoek.

In de kliniek wordt bijvoorbeeld het pathogeen uit een patiént geisoleerd
om de gevoeligheid voor antibiotica te bepalen. In het laboratorium worden deze
bacterién vervolgens gekweekt onder gecontroleerde omstandigheden: bij
lichaamstemperatuur (37 °C) en in een voedingsrijk kweekmedium. Vervolgens
worden de bacterién blootgesteld aan een verdunningsreeks van een
antibioticum, waarbij elke volgende concentratie het dubbele is van de vorige. Na
20 tot 24 uur incubatie wordt het effect beoordeeld door te kijken naar de
troebelheid van het medium: als het medium troebel is geworden, betekent dit
dat de bacterie groeit ondanks de aanwezigheid van het antibioticum. De laagste
concentratie waarbij geen zichtbare groei optreedt, wordt de minimale
inhibitieconcentratie (MIC) genoemd.

Hoewel de MIC een belangrijke maat is voor de gevoeligheid van een
bacterie voor een antibioticum, heeft deze methode ook een aantal beperkingen.
Zo geeft de MIC slechts een momentopname weer, en wordt de groei of afname
van de bacterie in de tijd niet in kaart gebracht. Daarnaast worden
gestandaardiseerde kweekmedia gebruikt die de complexe omgeving van de
longen in CF-patiénten niet goed nabootsen, waardoor de resultaten niet altijd
representatief zijn voor de situatie in het lichaam.

Om de beperking van de meting op één enkel tijdspunt bij MIC-bepalingen te

omzeilen, kunnen time-kill experimenten worden gebruikt. In deze
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Box 3. Bepalen van de bacteriedichtheid

De bacteriedichtheid kan op verschillende manieren worden bepaald. De snelste en
goedkoopste methode is het meten van de optische dichtheid (OD). Dit is vergelijkbaar met
de eindmeting van een MIC-test, maar kan bij time-kill experimenten dynamisch worden
uitgevoerd met behulp van een fotospectrometer. De fotospectrometer schijnt licht met
een golflengte van 600 nanometer door het kweekmedium. Dit licht wordt deels
geabsorbeerd en verstrooid, waardoor er minder licht de detector bereikt. De gemeten
waarde, ODsoo, geeft een indicatie van de troebelheid van het medium. Omdat bacterién
de dichtheid van het medium verhogen, neemt de ODesoo-waarde toe met de groei van de
cultuur. De ODewo zegt echter niets over het aantal levende bacterién, omdat ook dode
cellen hetlicht tegenhouden. Hierdoor is ODsoo niet geschikt om celdoding door antibiotica
vast te stellen. Om zowel groei als afname van levende bacterién te meten, wordt daarom
vaak gebruikgemaakt van het tellen van colony forming units (CFU). Eén CFU staat voor
een levende bacterie die in staat is een kolonie te vormen op een voedingsbodem in een
petrischaal. Aangezien bacterieculturen vaak uit tientallen miljoenen bacterién bestaan,
wordt de cultuur verdund om het aantal kolonies telbaar te maken. Het maken van
verdunningen, incuberen van de platen en handmatig tellen van CFU’s is echter
tijdrovend. Daarom kan een indirecte bepaling van levende cellen veel tijd besparen. In
dit proefschrift is hiervoor gebruikgemaakt van bioluminescente bacterién. Deze
bacterién zijn genetisch aangepast om een eiwit te produceren dat voortdurend licht
uitzendt. Dit eiwit functioneert alleen in levende cellen, omdat het ATP nodig heeft om
luminescentie te genereren. Wanneer bacterién afsterven, daalt het ATP-gehalte en neemt
het uitgezonden licht af. Dankzij deze methode kan de bacteriéle dichtheid gedurende het
time-kill experiment volledig automatisch worden gevolgd met een fotospectrometer.

experimenten wordt de bacteriedichtheid gedurende de tijd gevolgd (Box 3),
waardoor het mogelijk is om het groeiverloop en de mate van afname door
antibiotica nauwkeurig te bepalen. In tegenstelling tot de statische MIC-meting
kunnen time-kill experimenten subtiele veranderingen in groeidynamiek
zichtbaar maken, zoals tijdelijke overlevingsstrategieén of het opnieuw opkomen
van groei door het ontstaan van resistentie (Hoofdstuk 1, Figuur 1).

De bacteriedichtheid over tijd uit het time-kill experiment kan vervolgens worden
gebruikt als input voor farmacodynamische (PD) modellen. Deze wiskundige
modellen beschrijven de relatie tussen concentratie van het antibioticum en het
effect op de bacteriedichtheid (Box 4). De parameters uit het model geven

daarmee een kwantitatieve beschrijving van de concentratie-effectrelatie van
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het antibioticum en de bacterie. Op deze manier kunnen ook subtiele
veranderingen in groeidynamiek wuit het time-kill experiment worden

meegenomen bij het vergelijken van antibiotica of groeicondities.

Box 4. Farmacometrie

Farmacometrie is het vakgebied dat focust op het kwantitatief modelleren en analyseren
van de werking van geneesmiddelen in het lichaam. Het combineert farmacokinetiek en
farmacodynamiek met statistieck en wiskunde om te begrijpen, voorstellen en
optimaliseren hoe medicijnen werken bij patiénten. In antibioticastudies wordt
farmacometrie gebruikt om de juiste dosis en toedieningsfrequentie te bepalen die nodig
zijn om een zo effectief mogelijk effect op de bacterién te bereiken.

Farmacokinetiek (PK) beschrijft hoe het lichaam invloed uitoefent op de concentratie van
een geneesmiddel. Denk hierbij aan processen zoals de opname in de darmen, de
verdeling binnen het lichaam, de afbraak van het middel en de uitscheiding ervan. In een
PK-model worden deze processen wiskundig weergegeven met parameters die de
concentratie beinvloeden. Op Dbasis hiervan kan het verloop van de
geneesmiddelconcentratie tijdens een behandeling worden gesimuleerd en weergegeven
in een concentratie-tijd grafiek.

Farmacodynamiek (PD) beschrijft het effect van het geneesmiddel op het lichaam of
micro-organismen. In dit proefschrift is het effect de afname van bacteriegroei. Door
meerdere time-kill experimenten uit te voeren met verschillende concentraties kan een
verschil in effect bepaald worden. De concentratie-effect relatie wordt vervolgens met een
wiskundig model beschreven, zodat ook het effect bij concentraties die niet zijn getest
gesimuleerd kunnen worden. In dit proefschrift wordt een Emax model gebruikt om de
concentratie-effect relatie te beschrijven (vergelijking 1).

. . Ey—E,
Bacteriegroei([AB]) = Emax + 1+enH(1°;([AB’};‘i’l‘og(ECSO)) 1)

Een Emax model beschrijft hoe sterk het effect is van een antibioticum door de relatie te
bepalen tussen 2 asymptoten. Het maximale effect van het antibioticum wordt beschreven
in de onderste asymptoot, de Emax (Figuur 2A). De concentraties waarbij nog geen effect
waarneembaar is wordt beschreven door de bovenste asymptoot, de E, (Figuur 2B). En het
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effect-concentratie tussen de asymptoten door de Hill coéfficiént, de nu (Figuur 2C). De
computer berekent de modelparameters die het beste passen bij de metingen uit het time-
kill experiment, door de fout tussen model en data zo klein mogelijk te maken (Figuur 2D-
E).
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Figuur 2. Het beschrijven van de concentratie-effect relatie met het Emax model. De figuren A-E zijn
een concentratie-effect plot met op de Y-as het effect aangegeven met bacteriegroei en op de x-as de
concentratie van het antibioticum. Bij een hogere concentratie van het antibioticum zal de
bacteriegroei verminderen, waardoor het effect groter is.

Om tijdens deze laboratorium in vitro experimenten beter de omstandigheden
in het lichaam na te bootsen, is in 2007 een synthetisch CF-sputum medium
(SCFM) ontwikkeld. Dit kweekmedium lijkt qua nutriénten op het mucus van CF-
patiénten. P. aeruginosa gedraagt zich in SCFM gelijkwaardiger aan hoe ze zich in
het lichaam gedragen dan wanneer ze in standaard laboratorium media worden
gekweekt. Omdat P. aeruginosa anders gedraagt in de verschillende media,
reageren ze ook anders op antibiotica. Hoewel SCFM dus beter lijkt op de echte
situatie in de longen, geeft een MIC-test met slechts één soort kweekmedium nog
steeds geen volledig beeld. In de longen van CF-patiénten zijn namelijk veel

verschillende soorten voedingsomgevingen aanwezig.
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Daarnaast kan de invloed van voeding op het gedrag van de bacterie en de reactie
op antibiotica beter worden onderzocht met behulp van PD modellen (Hoofdstuk
1, Figuur 2). De veranderingen in antibiotica gevoeligheid worden vaak grof
geclassificeerd op basis van de PD veranderingen. Zo wordt bijvoorbeeld groei
tijdens antibiotica behandeling geclassificeerd als resistentie, terwijl
veranderingen in de dynamiek van bacteriedoding vaak worden toebedeeld aan
transiénte mechanisme. Maar deze veranderingen in antibiotica PD zijn het
gevolg van ingewikkelde veranderingen in onderliggende cel-processen die zich
uiten in de fenotypische veranderingen. Omdat de voedingsomgeving ook effect
heeft op dezelfde cel-processen, speelt dit ook een rol op het fenotype van de
bacterie in het vormen de PD uitkomsten.

De veranderingen die optreden in bacterién tijdens een antibioticabehandeling
variéren van aanpassingen in het DNA tot veranderingen in de stofwisseling. Het
bestuderen van deze processen is belangrijk om beter te begrijpen waarom
antibiotica soms wel en soms niet goed werken. Uiteindelijk helpt dit om PD
onderzoeksresultaten beter te vertalen naar effectieve behandelstrategieén in de
kliniek. Dit onderzoek gaat enerzijds om het genetisch in kaart brengen van
mutaties in bacterién die de gevoeligheid voor antibiotica beinvloeden. Maar ook
om het toepassen van andere omics-technieken =zoals transcriptomics,
proteomics en metabolomics om fenotypische veranderingen in bacterién te
volgen (Box 5). Vooral bij transiénte veranderingen in antibioticagevoeligheid
zijn deze technieken waardevol, bijvoorbeeld als reactie op verschillen in
nutriénten. Door de resultaten van deze omics-methodes te combineren, ontstaat
een beter beeld van hoe de omgeving en de bijbehorende bacteriéle
aanpassingen de werking van antibiotica beinvloeden op moleculair niveau. Dit
inzicht maakt het mogelijk om laboratoriummodellen op specifieke onderdelen
realistischer te maken, zodat bacterién onder testomstandigheden meer lijken op
hoe ze zich gedragen in het lichaam van de patiént. Daardoor kunnen
behandelingen beter afgestemd worden op specifieke ziektebeelden. Daarnaast
is het ontwikkelen van realistische modellen belangrijk voor het testen van
nieuwe antibiotica. Of een nieuw middel kans maakt op verdere klinische
ontwikkeling, hangt sterk af van hoe goed het werkt in laboratoriumtests. Een
testomgeving die beter aansluit bij de situatie in het lichaam bij moeilijk te

behandelen infecties verhoogt de voorspellende waarde van zulke experimenten.
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Voor luchtweginfecties bij CF-patiénten is de kennis voor het verbeteren van
laboratoriummodellen ook belangrijk. De longomgeving bij CF wordt
gekenmerkt door een unieke samenstelling van nutriénten, terwijl P. aeruginosa
het vermogen om zich flexibel fenotypisch aan te passen. Deze complexe
wisselwerking vraagt om een gestructureerde en stapsgewijze benadering. Die
begint bij het systematisch onderzoeken van afzonderlijke omgevingsfactoren.
Daarmee wordt de basis gelegd voor beter inzicht in hoe de CF-longomgeving,
het bacteriéle metabolisme en antibiotica elkaar beinvloeden.

Box 5. -Omics benadering

"Meten is weten" is het uitgangspunt van de -omics-technieken. Het woord -omics verwijst
naar een groep onderzoeksvelden die zich richten op het in kaart brengen van
verschillende lagen binnen een cel. Elk van deze velden bestudeert een ander aspect van
hoe een cel werkt. De naam van deze onderzoeksgebieden eindigt op -omics, zoals
genomics, transcriptomics, proteomics, en metabolomics (Tabel 1). Door deze lagen
systematisch te meten, kunnen onderzoekers beter begrijpen hoe een cel zich aanpastaan
zijn omgeving, bijvoorbeeld bij stress of blootstelling aan antibiotica.

Tabel 1. Voorbeelden van -omics velden.

Veld Wat het meet Toepassing
Identificeert genetische
Genomics Het volledige DNA veranderingen, zoals mutaties of
resistentiegenen
. . De RNA-moleculen die worden Laat zien welke genen op een
Transcriptomics o
afgelezen van het DNA bepaald moment actief zijn
. De eiwitten die in de cel worden Toont welke celprocessen en
Proteomics q o P
geproduceerd functies actief zijn
. Kleine moleculen (metabolieten) die Geeft inzicht in de metabole
Metabolomics i L. .
ontstaan uit de stofwisseling activiteit van de cel
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8.2. Doel van dit proefschrift

De impact van de fenotypische flexibiliteit van P. aeruginosa en de uiteenlopende
micro-omgevingen in de CF-longen op de werking van antibiotica en het ontstaan
van resistentie is nog onvoldoende begrepen. Om de behandelstrategieén met
antibiotica voor chronische luchtweginfecties door P. aeruginosa bij CF-patiénten
te verbeteren, is het essentieel om beter te begrijpen hoe de infectieuze micro-
omgeving de respons op antibiotica vormgeeft. In dit proefschrift stellen wij de
hypothese dat nutriéntcondities een centrale rol spelen in veranderingen in
antibiotica PD en de evolutie van antibioticaresistentie beinvloeden. Hierdoor
hebben de nutriéntcondities uiteindelijk invloed op het therapeutisch resultaat.

8.3. Aanpassingen aan de verschillende
omgevingen in de CF-long

Om onze huidige kennis met betrekking tot de hypothese van dit proefschrift
samen te vatten, biedt Hoofdstuk 2 (Sectie I) een uitgebreid overzicht van de
metabole aanpassingen van P. aeruginosa aan de uiteenlopende nutriént-niches
in de longen van CF-patiénten. Deze metabole aanpassingen van de bacterie
bepaalt onder meer de groeisnelheid, energiehuishouding, en hoeveelheid stress
in de cellen. Deze factoren hebben allemaal invloed op de gevoeligheid voor
antibiotica. In dit kader spelen de diverse micro-omgevingen met verschillende
nutriénten en verschillen in zuurstofconcentraties een centrale rol in de werking
van antibiotica behandelingen. Deze verschillen in micro-omgevingen worden
nog verder versterkt binnen de voedingsstofgradiénten binnen biofilm-
aggregaten van P. aeruginosa. Door deze verschillen in micro-omgevingen

ontstaat er een metabole heterogeniteit binnen de infectie.

Om te begrijpen wat het effect is van de metabole heterogeniteit
tussen P. aeruginosa cellen op antibiotica gevoeligheid is het belangrijk om de
metabole flexibiliteit te begrijpen. P. aeruginosa is in staat om uiteenlopende
substraten te benutten, zoals aminozuren en vetzuren, en kan moeiteloos
schakelen tussen aerobe respiratie, fermentatie en denitrificatie om de
energieproductie op peil te houden onder wisselende omstandigheden. Deze
metabole plasticiteit beinvloedt de gevoeligheid voor verschillende klassen van
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antibiotica, waaronder aminoglycosiden, fluoroquinolonen, B-lactams en
polymyxines. Deze antibioticaklassen zijn elk op een manier afthankelijk van
specifieke metabolische toestanden om effectief te zijn. Naast dat P. aeruginosa
het flexibele metabolisme gebruikt voor het aanpassen verschillende
omstandigheden, kan het metabolisme ook actief herstructureerd worden om de

effectiviteit van antibiotica vermindert.

Het begrijpen van deze metabole responsen in fysiologisch relevante
contexten is cruciaal voor het ontwikkelen van effectievere en meer
gepersonaliseerde antibioticabehandelingen. Hiervoor moet wel benoemd
worden dat er binnen een patiént (intra-) als tussen patiénten (inter-) aanzienlijke
variatie is in de micro-omgevingen. Factoren zoals constructie van de longen,
ziektebeelden die samengaan met CF, en het CF-genotype zorgen voor
substantiéle  verschillen in  nutriéntbeschikbaarheid, en dus in
antibioticagevoeligheid. Daarom vereist vooruitgang het integreren van klinische
inzichten met geavanceerde in vitro-modellen en multi-omics benaderingen die

de complexiteit van de CF-long realistisch benaderen.

Op basis van de huidige stand van kennis en het benoemen van de hiaten
beschreven in dit hoofdstuk is het onderzoek in dit proefschrift opgebouwd. Het
onderzoek 1is vervolgens verdeeld in het effect van nutriénten op
antibioticagevoeligheid (Sectie II) en als sturende factor in antibiotica resistentie-

evolutie (Sectie III).

8.4. Voedingsstoffen beinvloeden het effect van
antibiotica

Nutriénten en zuurstof behoren tot de meest voor de hand liggende aanjagers van
metabole processen, en deze processen worden in toenemende mate in verband
gebracht met de werking van verschillende klassen antibiotica. Toch is de
regulerende rol van specifieke omstandigheden die kenmerkend zijn voor de CF-
long nog onvoldoende begrepen.

In Hoofdstuk 3 is onderzocht hoe specifieke nutriénten de

antibioticagevoeligheid van P. aeruginosa beinvloeden door in een basaal basis
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medium telkens één nutriént toe te voegen. Door time-kill experimenten met een
bioluminescente stam van P. aeruginosa uit te voeren hebben we populatie
dynamiek onder veel omstandigheden kunnen analyseren.

Met behulp van PD modellering werden nutriént-afhankelijke,
antibioticaklasse-specifieke verschuivingen aangetoond. Deze patronen wijzen
op onderliggende biochemische mechanismen en gaan verder dan de klassieke
verklaring dat een lagere metabolische activiteit resulteert in lagere gevoeligheid.
Daarnaast suggereert de afwezigheid van duidelijke verschillen in groeisnelheid
tussen de verschillende nutriéntcondities dat de gevoeligheidsverandering niet
primair door groeisnelheid wordt bepaald. Ook hebben in vitro PK-PD-simulaties
lieten zien dat nutriénten de verwachte behandeluitkomst veranderd.

Hoewel de gebruikte in vitro-modellen beperkt zijn vergeleken met de
complexiteit van klinische infecties, vormen deze resultaten een waardevolle
stap vooruit. Ze vergroten ons begrip van de gepersonaliseerde aard van de
behandeling van P. aeruginosa-infecties, die sterk worden beinvloed door

interacties met de lokale micro-omgeving.

Hoofdstuk 4 beschrijft hoe zuurstofbeschikbaarheid de antibioticagevoeligheid
van P. aeruginosa beinvloedt. In plaats van uitsluitend te focussen op acute
reacties op anoxie, beoordeelde de studie ook hoe langdurige anoxische
blootstelling (<1% zuurstof gedurende 22 dagen) de antibioticagevoeligheid
beinvloedt. Met time-kill experimenten werd deze anoxische geconditioneerde
stam met de moederstam vergeleken. De effecten bleken antibioticum specifiek
en de gevoeligheidsprofielen veranderden sterk na langdurige anoxie. Daarnaast
liet de anoxische geconditioneerde stam ook zien dat er blijvende fysiologische
aanpassingen waren onder normale zuurstofcondities. Dit onthult beperkingen
van standaard in vitro experimenten en benadrukt de noodzaak voor
kweekcondities die anoxische infectiecondities beter nabootsen. Hoewel het
proefschrift vooral gericht op is CF, zijn deze inzichten waarschijnlijk ook
relevant voor andere infectielocaties zoals in de urineweg, COPD-slijmproppen.

Samenvattend laat Sectie II zien dat metabole regulatie bepalend is voor de
antibioticagevoeligheid van P. aeruginosa onder uiteenlopende nutriént- en
zuurstofcondities. Zelfs een enkele nutriéntverandering kan de gevoeligheid
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substantieel verschuiven, afhankelijk van de combinatie nutriéntconditie-
antibioticaklasse. Meer nutriénten betekent niet automatisch betere werking
omdat de metabole flexibiliteit beschermende routes kunnen activeren die
antibiotica tegenwerken. Door deze metabole regulatiesystemen zal het mixen
van nutriénten in de geteste media niet per se additieve effecten opleveren.
Dergelijke inzichten benadrukken het belang van het ontrafelen van de
biochemische basis van nutriént-gestuurde antibioticagevoeligheid en
benadrukken de noodzaak van integratieve, fenotype-gerichte -omics
benaderingen. Metabolomics en proteomics zijn krachtige technieken die
subtiele  verschuivingen in  intracellulaire = metabolietconcentraties,
enzymniveaus kunnen vastleggen om metabole herconfiguraties tijdens

antibioticabehandeling in kaart te brengen.

Voor deze biochemische benadering in toekomstig onderzoek zijn
klinisch representatieve omgevingen essentieel. Naast de incrementele aanpak
van het onderscheiden van de effecten van individuele nutriénten, is
gedetailleerd onderzoek naar de nutriéntsamenstelling van de infectieuze
omgeving essentieel. Daarbij moeten ook de interacties met andere cellen die het
bacteriéle metabolisme moduleren meegenomen worden. Door voort te bouwen
op deze experimentele data kan toekomstig onderzoek nauwkeuriger rekening
houden met de complexe nutritionele en metabole landschappen die P.
aeruginosa benut om de antibioticagevoeligheid te beinvloeden.

8.5. Nutriénten sturen de evolutie van
antibioticaresistentie

Fenotypische veranderingen spelen een centrale rol spelen in het
aanpassingsvermogen van bacteri€le populaties en daarom de natuurlijke
selectie aansturen. In deze context gaan populaties die =zich aan
omgevingsverstoringen aanpassen met een voortplantingsvoordeel gaan
domineren. Tijdens de druk van antibiotica kunnen erfelijke mutaties die de
gevoeligheid sterk verminderen zich snel verspreiden. Echter gaat dit gepaard
met ingrijpende veranderingen in essenti€le cellulaire processen die de fitheid
van de cellen verlagen. Daarom gaan de resistentie-mutaties vaak samen met
ondersteunende aanpassingen om dit voorplantingsnadeel verminderen.

Metabole aanpassingen zijn hier onderdeel van, als de voedingsstoffen in de
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omgeving dit toelaten. Daarnaast wordt het steeds duidelijker dat metabolisme-
gerichte mutaties ook een klasse van resistentiemechanismen vormen. Hierdoor
kunnen de nutriént- en stofwisselingscontext de evolutie van resistentie actief

mede sturen.

Hoofdstuk 5 beschrijft de metabole aanpassingen tijdens resistentie-evolutie en
hoe metabolomics kan helpen die te beter te begrijpen. Omdat één methode niet
alle kleine moleculen kan meten, vraagt metabolomics om gerichte keuze van
analysetechnieken en monstervoorbereiding passend bij de onderzoeksvraag.
Omdat het metabolisme sterk kan verschillen tussen bacteriestammen en
aanpassingen per antibioticaklasse anders zijn, maakt dit de keuze wel
ingewikkeld. Daarnaast is de keuze nog beperkt, wat wordt weergegeven door de
23 geincludeerde studies in de review uiteenlopende bacterién en
antibioticaklassen bestrijken. Dit benadrukt dat er systematischer
metabolomics-onderzoek nodig is die vooral focussen op een juiste combinatie
van biologisch vraagstuk en analytische methodologie. Uiteindelijk kan de rol van
metabolisme in antimicrobiéle resistentie beter te verklaard worden met deze

analytische methodes.

In Hoofdstuk 6 is getest hoe de resistentie-evolutie van P. aeruginosa tijdens
adaptieve laboratoriumevolutie plaatsvindt in kweekmedium met een enkele
nutriént. Na deze evolutieperiode van 10 dagen zijn de fenotypische en
genotypische veranderingen onderzocht. De geévolueerde lijnen vertoonden
significante verschillen in MIC tussen de verschillende enkelvoudige-
nutriéntcondities. In het experiment werden ook mutaties gedetecteerd die uniek
waren voor specifieke evolutiecondities, maar slechts zes mutaties in totaal over
de 15 onderscheiden condities waarvan het DNA was gesequencet. Ook is er maar
een kleine set van mutatiepatronen gevonden die de evolutiecondities
betrouwbaar van elkaar onderscheidde. De smalle bandbreedte van deze
mutatieverandering  loopt  parallel aan de  vrijwel identieke
groeisnelheidsverschuivingen na evolutie binnen elke antibioticaklasse. Deze

beperkte variatie in fitness stuurt populaties richting een beperkte set genotypen.

De diversiteit manifesteerde zich dus vooral als MIC-verschuivingen, niet
als uitgesproken mutatieprofielen. Omdat P. aeruginosa langdurig in CF-longen
kan persisteren, kunnen zulke fenotypische verschuivingen die al na 10 dagen
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optreden op termijn ook vestigen in stabiele genotypische verschillen. Maar met
deze kennis dat enkele nutriénten de resistentieontwikkeling veranderen kan een
volgende stap om te onderzoeken hoe verschillende infectierelevante

nutriéntcondities de ontwikkeling van resistentie sturen genomen worden.

Samenvattend liet Sectie III zien dat metabole processen een cruciale rol spelen
in de ontwikkeling van antibioticaresistentie en dat nutriénten een regulerende
invloed uitoefenen ondanks de metabole veelzijdigheid van P. aeruginosa. Echter
is de invloed van de samenstelling van het kweekmedium slechts een klein
gedeelte van de complexe evolutionaire trajecten die in de CF-long worden
waargenomen. Niettemin wijzen de resultaten erop dat de invloed van de
nutriéntomgeving antibioticumafhankelijk is. Dit benadrukt diepgaander
onderzoek  naar de  onderliggende  aanpassingen die tijdens
antibioticablootstelling optreden.

8.6. Vervolgstappen

Antibiotica zijn onmisbaar in de dagelijkse gezondheidszorg om infecties te
bestrijden, toch zijn er groepen patiénten waarbij infectieziekten nog een groot
probleem veroorzaken. Daarnaast is fungeert de lage kans van slagen van de
antibioticabehandeling in de patiéntengroep als een reservoir voor
antibioticaresistente stammen. Het bestuderen van de bacteri€le aanpassingen
in deze patiéntengroep geeft cruciale informatie over de uiteenlopende manieren
waarop antibiotica therapieén kunnen falen. De luchtwegen van CF-patiénten
vormen zon unieke omgeving. In deze omgeving groeit de doorgaans
onschuldige bacterie P. aeruginosa uit tot een van de meest uitdagende infecties
om te behandelen.

Een sleutel factor van P. aeruginosa-infecties in de CF-long is de specifieke
nutriéntomgeving. Dit is een aspect dat vaak over het hoofd wordt gezien. De
nutriéntomgeving kan het bacteri€le gedrag diepgaand beinvloeden en leiden tot
misinterpretatie van gevoeligheidstesten wanneer deze met standaard
kweekmedia worden uitgevoerd. Daarom is het essentieel om te focussen op: (I)
het in kaart brengen van fysiologisch relevante infectielocaties, (II) het
onderzoeken van de invloed van nutriénten op antibioticagevoeligheidstesten,
(III) het vastleggen van door nutriénten geinduceerde veranderingen in
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antibioticagevoeligheid, en (IV) het ontrafelen van de onderliggende biologische
mechanismen die verantwoordelijk zijn voor veranderingen in het antibiotisch
effect.

Het beter in kaart brengen van welke voedingsstoffen in welke delen van de CF-
long aanwezig zijn is belangrijk omdat dit proefschrift laat zien dat voedingstoffen
een grote rol spelen de PD van antibiotica. Het is daarbij goed om te beseffen dat
niet alle monsters die uit de CF-long worden genomen dezelfde informatie geven.
Sputum is het makkelijkst te verzamelen, maar bestaat uit materiaal uit
verschillende delen van de long. Hierdoor geeft het alleen een gemiddeld beeld
van de chemische samenstelling. Andere methoden die vocht verzamelen van het
longoppervlak met speciale instrumenten zijn specifieker, maar ook lastiger uit
te voeren met een minder nauwkeurige bepaling van de voedingsstoffen.
Daarnaast zijn er ook biofilms, die binnen de biofilm-structuur verschillende

micro-omgevingen hebben.

In de oncologie is veel vooruitgang geboekt in het begrijpen van zulke
complexe structuren door het gebruik van ‘tumoratlassen’. In de tumoratlassen
wordt informatie gecombineerd over celtypes, genetische veranderingen en de
lokale omgeving. Deze kennis wordt inmiddels ook gebruikt om patiénten
gerichter te behandelen. Voor infecties in de CF-long zouden we op eenzelfde
manier ook met geintegreerde kaarten van de infectieomgeving gaan werken.
Hierbij kunnen moleculaire, microbiéle en klinische gegevens worden
gecombineerd voor het onderscheiden van verschillende typen longomgevingen.
Deze onderscheiding tussen patiénten is de basis om het effect van
voedingstoffen op de werking van antibiotica te begrijpen.

Om beter te voorspellen hoe antibiotica werken in de CF-long, moeten de in vitro
testen aangepast worden om de infectieomstandigheden beter te imiteren. Dit
proefschrift laat zien dat zelfs kleine veranderingen in de voedingsstoffen de
effectiviteit van antibiotica beinvloeden. Een volledige hervorming van klinische
testmethodes is lastig, maar stappen vooruit zijn mogelijk. Hierbij is het in eerste
instantie noodzakelijk om de bovengenoemde omgevingen goed in kaart te
brengen. Maar er kunnen al veranderingen gemaakt worden zoals het testen van
bacterién uit verschillende delen van de long, of door ook anaerobe condities te

gebruiken voor een van origine aerobe bacterie als P aeruginosa.
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Chapter 8

Bacteriestammen passen zich door langdurige blootstelling aan condities aan,
waardoor de stammen moeilijk te kweken zijn in het laboratorium. Toch kunnen
deze gespecialiseerde stammen een factor spelen in therapiefalen wanneer ze in
de niche omgeving van de patiént zitten.

Om beter te begrijpen hoe voedingsstoffen de werking van antibiotica
beinvloeden, is in dit proefschrift gekozen voor time-kill experimenten en
farmacodynamische modellen. De resultaten uit dit proefschrift laten zien dat
een standaard MIC-test grote verschillen in groeisnelheid en afsterven van
bacterién kan verbergen. Daarom is het belangrijk om vervolgonderzoek naar de
invloed van voedingsomstandigheden kritisch te kijken naar uiteindelijke read-
out van de experimenten. Zo heeft ook de sigmoide concentratie-effectcurve die
in dit proefschrift gebruikt is om combinaties van antibiotica en voedingsstoffen
in kaart te brengen ook beperkingen. De effectdata die zijn gebruikt voor het
ontwerp van het farmacodynamisch model zijn verkregen uit een statische time-
kill experimenten. Deze methodologische aanpak kan bacteriéle aanpassingen
tijdens de blootstelling aan antibiotica slecht nauwkeurig vastleggen. Deze
beperkingen benadrukken de noodzaak van dynamische in vitro kweeksystemen,
die beter inzicht kunnen geven in tijdsafhankelijke farmacodynamische
kenmerken =zoals veranderende groeisnelheden, dodingskinetiek en

resistentieontwikkeling.

Een belangrijk inzicht uit dit proefschrift is dat het effect van antibiotica sterk
afhangt van de combinatie met specifieke voedingsstoffen. Zulke voedingsstof-
antibioticumcombinaties kunnen wunieke aanpassingen in bacterién
veroorzaken, die niet altijd verklaard worden door bekende resistentie-mutaties
in genetische databanken. Om deze mechanismen beter te begrijpen zijn
technieken zoals transcriptomics, proteomics en metabolomics nodig. Deze
brengen veranderingen in genexpressie, eiwitten en metabolieten in kaart en
geven zo beter inzicht in hoe bacterién reageren op antibiotica. In Hoofdstuk 5 is
bijvoorbeeld beschreven hoe metabolomics kan worden ingezet om antibiotica-
gevoeligheid te verbeteren door gerichte nutriénten toe te voegen tijdens de
behandeling.

Een andere veelbelovende techniek is fluxomics, die laat zien hoe

metabolieten en energie door cellen stromen. Hoewel dit waardevolle inzichten
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oplevert tijdens stress of antibioticadruk, is de brede toepassing op klinische
stammen beperkt omdat de modellen te complex en specifiek zijn. Om de
extrapolatie tussen de verschillende stammen te verbeteren kunnen
geavanceerde computermodellen gebruikt worden die meerdere -omics datasets
combineren. Deze modellen geven een breder beeld van de veranderingen over
tijd zoals nutriéntenschommelingen en resistentieontwikkeling. Ook zijn er
single-cell technieken in opkomst om verschillen binnen bacteriepopulaties te
begrijpen. Deze technieken zijn waardevol, maar moeten ingebed zijn in bredere
analyses om goed te interpreteren hoe bacteri€le heterogeniteit bijdraagt aan

behandelresistentie.

7.3. Conclusies

Concluderend laat dit proefschrift zien dat de beschikbaarheid van
voedingsstoffen en zuurstof een grote invloed heeft op hoe P. aeruginosa zich
gedraagt en de antibiotica farmacodynamiek. Een antibioticabehandeling is dus
niet alleen afhankelijk van het medicijn en de bacterie, maar ook van de
omgeving waarin de bacterie zich bevindt. Dit geldt vooral voor complexe
infecties zoals in de luchtwegen van CF-patiénten.

De bevindingen in dit onderzoek vormen een belangrijke stap naar het
verbeteren van antibioticatesten in het laboratorium, door daarbij beter rekening
te houden met realistische omstandigheden zoals zuurstofgebrek of specifieke
nutriénten. De volgende uitdaging is om deze kennis te koppelen aan de situatie
in het lichaam van de patiént, zodat behandelingen beter afgestemd kunnen
worden op de plek van de infectie. Zo komen we dichter bij antibiotica

behandelingen op maat.
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