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ARTICLE INFO ABSTRACT

Handling editor: Dr. Xavier Querol Integrated assessment models (IAMs), often coupling Shared Socioeconomic Pathways (SSPs) and Representative
Concentration Pathways (RCPs), simulate how socioeconomic drivers, technology, policy, and environmental
processes interact over time. However, these models typically treat socioeconomic drivers as exogenous input,
overlooking how environmental outcomes, like air pollution, can in turn affect health and demographics. This
limits our understanding of health co-benefits and weakens the basis for climate-health policy integration. Here,
we tackle this gap by linking ambient PMj 5 concentrations from four SSP-RCP scenarios to the cause-specific risk
functions and use the resulting risk impacts to adjust the age- and sex-specific demographic projections from the
SSPs. This allows for more coherent estimation of how air quality trajectories influence health outcomes across
186 countries and territories through 2050. Our results reveal notable deviations from conventional SSP-based
projections. In low-emission scenario (SSP1-1.9), PMjy s-related deaths over 2020-2050 are overestimated by
8 % (10 million) due to improved air quality. In contrast, deaths are underestimated by 6 % (15 million) in high-
emission scenario (SSP3-7.0), where pollution worsens. These differences translate into life expectancy at birth
changes of +0.23 and —0.16 years, respectively. The feedback effects are pronounced in Southeast Asian
countries with elevated pollution exposure and population vulnerability, exacerbating the Global North-South
mortality gaps under SSP3-7.0 while narrowing them in SSP1-1.9/2.6. Our findings underscore the need and
potential of incorporating air pollution-health feedback into the integrated modeling frameworks, which would
enhance the realism of long-term demographic projections, especially in pollution-prone regions, and support
better-aligned climate and public health strategies.
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SSP3 “regional rivalry”), while the Representative Concentration Path-
ways (RCPs) represent trajectories of radiative forcing (the additional

1. Introduction

Integrated assessment models (IAMs) combine socioeconomic dy-
namics, technological development, policy choices, and environmental
processes to explore long-term climate and sustainability outcomes
(Moss et al., 2010; van Vuuren et al., 2012). IAMs link how energy, land
use, the economy and emissions evolve, assess how the climate responds
and evaluate “what-if” futures and policy options. The Shared Socio-
economic Pathways (SSPs) describe alternative futures of societal
development (e.g., SSP1 “sustainability,” SSP2 “middle-of-the-road,”

energy trapped by greenhouse gases, in W-m™, typically referenced for
2100) based on different emission profiles (O’Neill et al., 2016). The
coupled SSP-RCP scenarios enable IAMs to simulate emissions, land use,
and climate responses under distinct socioeconomic assumptions, and is
widely used to inform assessments by the Intergovernmental Panel on
Climate Change (IPCC) (Calvin et al., 2023; O’Neill et al., 2020a; van
Beek et al., 2020). While initially focused on climate mitigation and
adaptation, climate change analyses using SSP-RCP scenarios are now
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increasingly used to investigate broader sustainability issues, such as
food security and air pollution (Fujimori et al., 2019; Yang et al., 2023;
Yue et al., 2024).

In the integrated modeling framework, socioeconomic variables like
population are typically treated as exogenous inputs (Fig. S1), over-
looking the important feedback between environmental change, human
health, and changes in population size and age structure (O’ Neill et al.,
2020b; Verburg et al., 2016; Wiebe et al., 2023). One key example is air
pollution: climate mitigation policies that reduce fossil fuel use can
lower emissions of air pollutants, such as ambient particulate matter
(PM35), decreasing exposure risk and associated deaths—an effect
rarely reflected in current models (McCollum et al., 2013). Given that air
pollution remains one of the leading environmental hazards to human
health, such feedback could alter existing projections of demographic
outcomes (IHME, 2024; Rafaj et al., 2018; WHO, 2021; Xu et al., 2023;
Yim et al., 2024). Addressing the feedback is crucial to improving how
integrated modeling frameworks capture environmental health risks and
to move towards more comprehensive wellbeing-related assessments
under climate change (Chaplin-Kramer et al., 2024; Madaniyazi et al.,
2015; Ravindra et al., 2019).

Several country-level studies that explore air pollution-health feed-
back have revealed significant impacts on both PMj s-related premature
deaths and life expectancy at birth (LEy) under different mitigation
scenarios. By directly adjusting the mortality rates based on PMj 5
concentration levels across different legislation scenarios, Sanderson
et al. (2013) demonstrated a potential LE,; gain of 2.8 years and 2.5
million averted deaths in India by 2030, compared to projections
without feedback. Similarly, accounting for the feedback effects of
policy-driven PM, 5 change on mortality rates, Dimitrova et al. (2021)
projected up to 8 million averted deaths and a 0.7-year LE( gain by 2050
in India. In England and Wales, Milner et al. (2023) projected potential
gains of 13.7 million life-years by 2100 under a multisectoral mitigation
scenario, compared to a 2020-constant baseline scenario.

Yet, two key limitations remain. First, the underlying mortality rates
applied in these studies are either fixed or obtained from other studies,
which reflect historical trends but fail to capture future trends under
alternative socioeconomic pathways. Second, there is a lack of
comprehensive, global-scale assessments that integrate the air pollution-
health feedback. While recent global studies have begun incorporating
scenario-based mortality rates using models like International Futures
(Hughes et al., 2011), these rates still lack direct linkage to specific air
pollution levels such as PM5 5 concentrations (Huang et al., 2023; Yang
et al., 2023; Yue et al., 2024). A consistent approach that integrates
global emission trajectories, air pollution, and dynamic health responses
would facilitate the global long-term demographic projections, enhance
our understanding of the health co-benefits of sustainability strategies,
and better inform climate-health policy integration.

The objective of this study is to improve understanding of the air
pollution-health feedback in integrated modeling frameworks, thereby
advancing a more nuanced assessment of health impacts under climate
change and socioeconomic pathways. We integrate scenario-based
PM, 5 projections, exposure-response functions, and SSP demographic
pathways into a coherent modeling framework. By dynamically
adjusting mortality rates in response to varying pollution levels, we
project health impacts beyond the limitations of conventional ap-
proaches that fix the mortality rate change solely to socioeconomic
trends. Our approach provides the first explicit global estimate of the air
pollution-health feedback across 186 countries and territories under
long-term scenarios. Specifically, we focus on three assessments: (1) the
overall magnitude of health impacts under divergent PMj 5 trajectories
across varying environmental and socioeconomic pathways, (2) regional
and demographic variation in the strength of the air pollution-health
feedback, and (3) the identification of population-disease combina-
tions most vulnerable to its effects. This study delivers insights into the
public health implications of climate and development trajectories
based on an integrated modeling framework, with particular relevance
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for regions and populations most vulnerable to pollution exposure.
2. Materials and methods
2.1. Study scope and analytical framework

This study analyses the global health impacts of air pollution expo-
sure under four SSP-RCP scenarios, with a specific focus on integrating
air pollution-health feedback in demographic projections. We quantify
PM, s-related premature deaths for six PMj s-related diseases, by sex
and 5-year age cohorts, and assess corresponding impacts on LE( across
186 countries and territories from 2020 to 2050. Our analysis combines
three inputs (Fig. 1): (1) Ambient PM; 5 concentrations from scenario-
specific SSP-RCP trajectories, representing the levels of air pollution to
which populations are exposed. (2) SSP demographic projections
providing population counts and baseline all-cause mortality rates. (3)
Forecasts of the share of specific diseases to total deaths and risk curves
for each PM; s-related disease from the Global Burden of Disease Study
2021 (GBD 2021), showing how all-cause deaths are distributed across
PM, s-related diseases and how risks vary with exposure levels.

We proceed in three steps. First, we disaggregate all-cause mortality
rates from SSP demographic projections into cause-specific mortality
rates using the GBD 2021 forecasts. Second, we combine ambient PM; 5
concentration levels with corresponding risk functions to derive
scenario-specific relative risk levels and calculate the excess relative risk
relative to SSP2-4.5 as the effects of air pollution-health feedback. Third,
we adjust the cause-specific mortality rates and quantify the effects of air
pollution-health feedback on health outcomes.

2.2. SSP-RCP scenarios

This study employs the SSP-RCP scenarios, which form the scenario
foundation for the Scenario Model Intercomparison Project (Scenar-
ioMIP) within the Coupled Model Intercomparison Project Phase 6
(CMIP6), used in IPCC assessments (Calvin et al., 2023; O’Neill et al.,
2016; Tebaldi et al., 2021). The SSP-RCP scenarios integrate socioeco-
nomic and environmental changes, enabling a comprehensive assess-
ment of climate impacts, adaptation, and mitigation strategies across
divergent development pathways. The SSPs describe plausible global
socioeconomic developments through qualitative narratives and quan-
titative projections of key factors such as population growth, economic
development, urbanization and education attainment (Cuaresma, 2017;
Jiang & O’Neill, 2017; K.C and Lutz, 2017). These development vari-
ables are commonly required by impact and emissions models (e.g.
IAMs) and are internally linked, for example, education informs both
population and GDP projections (O’Neill et al., 2020a). Importantly, the
SSPs do not include mitigation or adaptation policies or climate impacts
(Fig. S1). Each SSP represents a unique pathway of development, such as
sustainable development (SSP1) or a fragmented and inequitable world
(SSP3). Complementarily, the RCPs define climate futures through
radiative forcing levels (W/m?) projected up to 2100. The RCPs repre-
sent various greenhouse gas emissions trajectories and mitigation pol-
icies (Riahi et al., 2017; Van Vuuren et al., 2011). They are designed to
provide inputs for climate models and represent a range of mitigation
scenarios, from very low emissions (RCP1.9) to high emissions (RCP7.0).
For example, RCP2.6 aligns with ambitious mitigation efforts to limit
global warming to below 2.0 °C, while RCP7.0 represents high-
emissions pathways that could result in 4 °C warming by 2100 (Calvin
et al., 2023). While multiple societal pathways can lead to similar
forcing levels, combined SSPs and RCPs are a common and consistent
practice where an SSP provides the socioeconomic context and the
paired RCP specifies the climate forcing used to drive Earth system
models (O’Neill et al., 2020b).

Here we rely on the SSP-RCP scenarios commonly adopted in Sce-
narioMIP. We consider four combinations of SSPs and RCPs to allow a
multidimensional exploration of future pathways, as illustrated in
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Fig. 1. Analytical framework linking SSP-RCP scenarios, demographic projections, and air pollution risk data to estimate PM, s-related health outcomes. The
framework combines scenario-based ambient PM, 5 concentrations, age- and sex-specific populations and mortality rates from SSP demographic projections, and
cause-specific relative risk functions from GBD 2021. It enables dynamic adjustments of mortality rates to account for the health effects of air pollution under

divergent development and climate trajectories.

Fig. S2. We select three SSP-RCP scenarios from Tier 1 in the Scenar-
ioMIP for CMIP6, including SSP1-2.6 (sustainable development with
strong mitigation), SSP2-4.5 (middle-of-the-road development with
moderate mitigation) and SSP3-7.0 (regional rivalry with minimal
mitigation efforts). SSP5-8.5 is excluded due to concerns about its
plausibility and its demographic patterns resembling those of SSP1
(Hausfather & Peters, 2020; Ritchie & Dowlatabadi, 2017). Addition-
ally, SSP1-1.9, which represents sustainable development with stringent
mitigation, is selected to represent the optimistic scenario corresponding
to the Paris Agreement’s goal of limiting global mean temperature rise to
1.5 °C (Bevacqua et al., 2025; Rogelj et al., 2018).

2.3. Modeling air pollution-health feedback within the SSP-RCP scenarios

2.3.1. Demographic projections from the SSPs

The SSP demographic projections provide narrative-consistent pop-
ulation and human capital data across different socioeconomic devel-
opment trajectories. These projections serve as exogenous inputs for
climate models that forecast future emissions, including air pollutants
(O’Neill et al., 2016; Rafaj et al., 2018). The SSP demographic pro-
jections were first published in 2013 and recently updated in 2024 to
incorporate the 2020 population baseline and major events such as the
COVID-19 pandemic (K.C. et al., 2013, K.C et al., 2024; K.C and Lutz,
2017). The SSP demographic projections consider future changes in four
key elements: fertility, mortality, migration and educational attainment,
corresponding to differentiated SSP storylines. SSP1 assumes a low-
population-growth trajectory, characterized by high levels of educa-
tion and health improvements, while SSP3 envisions rapid population
growth in developing regions alongside persistent inequality and limited
progress in education. We obtain the population data and generate the
mortality rates from the 2024 updated demographic projections from
the SSPs. The calculation of the mortality rates is detailed in Supple-
mentary note 1.

2.3.2. Integrating air pollution-health feedback

The SSP demographic projections do not explicitly account for
changes in air quality impacts under different trajectories, as they
generally exclude climate change effects (Fig. S1). We address this gap
by introducing air pollution-health feedback. Our methodology firstly

employs an all-cause mortality rates disaggregation approach utilizing
cause-specific forecast data from the GBD 2021 (Dimitrova et al., 2021;
Vollset et al., 2024). The GBD 2021 forecast study projects cause-specific
health metrics for 2022-2050 across alternative scenarios based on key
health determinants including income, education, fertility, and exposure
to risk factors. In this study, we use the cause-specific share of total
deaths data from the 'Reference’ scenario, which represents the envi-
ronmental conditions that align with the SSP2-4.5 trajectory (Brauer
et al., 2024). Leveraging this forecast data, we disaggregate all-cause
mortality rates into two components: (1) diseases unaffected by
ambient air pollution, and (2) six diseases associated with PM; 5 expo-
sure including ischemic heart disease (IHD), stroke, chronic obstructive
pulmonary disease (COPD), lung cancer, lower respiratory infection
(LRI), and type 2 diabetes. Here we use the GBD ‘Tracheal, bronchus,
and lung cancer’ category to represent lung cancer. The trend for the
share of six PMjs-related diseases to total deaths is represented in
Fig. S3. To test the reliability of this disease-disaggregation method, we
compare our estimates with the empirical data of GBD 2021 and find
them consistent (Table S1).

We incorporate air pollution-health feedback to account for excess
health impacts from air pollution exposure in the scenario of interest
compared to the reference scenario. We choose SSP2-4.5 as the reference
scenario based on the settings of the SSP demographic projection and the
‘Reference’ scenario in the GBD 2021 forecast. Specifically, the “middle-
of-the-road” scenario SSP2 represents moderate development, reflecting
continuing historical trends. It is used as a reference scenario for SSP
demographic modeling. The key parameters of other SSPs are derived
through quantitative adjustment to the ‘medium’ assumptions in SSP2.
For example, the ‘high’ mortality trends (in SSP3) are derived by
reducing the gain in LE by one year for both sexes from the ‘medium’
scenario baseline for every ten years, and vice versa for ‘low’ mortality
trends (in SSP1). Hence, the mortality rates of SSP2 represent the
‘reference’ scenario of the future demographic changes, which reflects
the baseline for all associated risk factors, including air pollution (K.C.
et al., 2024). Meanwhile, the ‘Reference’ scenario data of the cause-
specific share of total deaths we use is consistent with the SSP2-4.5
environmental conditions (Vollset et al., 2024). This approach allows
us to assess how differing air pollution trajectories modify conventional
SSP-based projections while preserving their fundamental demographic
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structure by (1) incorporating scenario-specific air pollution impacts on
cause-specific mortality rates, (2) maintaining consistency with the
underlying demographic assumptions of the SSP framework and (3)
isolating and quantifying the specific health effects attributable to
varying PMj 5 exposure across scenarios.

The air pollution-health feedback is incorporated as a risk-mediated
multiplier to adjust each cause-specific mortality rate. This multiplier is
defined as the ratio of the relative risk under the scenario of interest to
the relative risk under the reference scenario SSP2-4.5. This construction
preserves the SSP2-4.5 baseline (multiplier equals 1) and passes through
the non-linear exposure-response function of relative risks. This
adjustment approach follows life table methods in health impact as-
sessments that rescale hazards to reflect changes in mortality impacts
(Miller & Hurley, 2003). Dimitrova et al (2021) applied a similar
approach in demographic projection for India, adjusting mortality rates
using varying hazard ratios from PM; 5 exposure levels under different
mitigation scenarios compared to 2010 conditions. The approach is also
consistent with the GBD comparative risk assessment, in which
exposure-specific risks are applied to cause-specific mortality to derive
attributable burdens (Brauer et al., 2024). We apply population-
weighted PM; 5 concentrations at the country level to estimate health
impacts. PMy 5 concentration projection data are obtained from Yang
et al. (2023) and processed into a 5-year interval from 2020 to 2050
(Supplementary note 2).

For each pathway p, country/territory c, age group a and sex s and
disease d in a certain year t, the adjusted mortality rates are calculated
as:

Rateﬁf’:ff;(t) = Ratepa?lc;cgme.Unadjmted(t) X Sharessp2,4_5_c‘a‘5_d(t)
RRp,c,a.d (t)

X
RRsspy_45.ca4(t)

(€8]

Adjusted

Here, the Rate,’ "'

air pollution-health feedback. Ratej V" (t) js the baseline all-

(t) represents the adjusted mortality rates with

cause mortality rates from SSP demographic projections.
Sharesspz_45¢4q54(t) denotes the share of deaths attributable to disease d
relative to the total deaths, in which the environmental conditions align
with the ‘reference’ scenario SSP2-4.5. RR,.q4(t) is the relative risk
associated with the corresponding PMss concentration level for
pathway p, while RRgspr_45¢4.4(t) is the relative risk for SSP2-4.5. Hence,

the air pollution-health feedback are quantified by the multiplier

RRpcadlt)
RRsspy—45.cad(t)

mortality rates with and without this multiplier represents the effects of
incorporating air pollution-health feedback. The relative risk values are
derived using state-of-the-art PMy 5 risk functions from the GBD 2021
study (Brauer et al. 2024). Detailed description of cause-specific relative
risk is illustrated in Supplementary note 3 and the relative risk curves
are shown in Fig. S4.

Then, combining all six diseases with the unaffected part together,
we get an adjusted all-cause mortality rates with air pollution-health
feedback, as expressed in the following equation:

, and the change in health impacts due to this difference in

all—cause Adjusted _ all—cause,Unadjusted
Ratep‘c.a,s (t) - Ratep,c.a.s (t)

6 6
X (1 - ZSharesspz4_5‘C,a,s‘d(t)> + ZRate:‘z’_’ff;(t)
a

d=1

(2)

The Rate;?lc;f?"s“‘dj“md(t) is the adjusted all-cause mortality rates

incorporating the air pollution-health feedback.

2.4. Evaluating impacts from air pollution-health feedback

The effects of the air pollution-health feedback on health outcomes
are measured by comparing the difference between the adjusted results
with the air pollution-health feedback and the conventional SSP-based
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results. Specifically, the adjusted results are obtained using the mor-
tality rates obtained in equations (1) and (2) with the air pollution-
health feedback multiplier. The conventional SSP-based results are
calculated using the unadjusted mortality rates without the air
pollution-health feedback multiplier. For uncertainty, we report the
central estimates and include 95 % confidence interval (CI) obtained by
propagating parameter uncertainty from the GBD 2021 exposur-
e-response functions (2.5th-97.5th percentiles of the resulting draws)
through the relative risk multiplier and health outcome calculations.
More details can be found in Supplementary note 3.

2.4.1. Life expectancy at birth (LEp)

The LE, results are estimated through life tables generated in the
SSPs demographic projections. The life tables connect age- and sex-
specific mortality rates with the survival ratio of the population co-
horts. They are generated by combining the SSPs-projected survival rate
data and life tables forecasts from the World Population Prospective by
the United Nations (UN WPP). Further details can be found in K.C et al.
(2024) and UN WPP (2022). The generated life tables are pathway-,
country-, time- and sex-specific, corresponding to the mortality rates at
the same resolution. We use the adjusted all-cause mortality rates
incorporating the air pollution-health feedback obtained in equation (2)
to replace the previous unadjusted mortality rate. Then we recalculate
the life table using these adjusted all-cause mortality rates and get a new
LEg. The gain or loss in LEy due to air pollution-health feedback is
estimated as the difference between the new LE( and conventional SSP-
based LE,. Note here we report period LEj, which reflects the life ex-
pectancy under the age-specific mortality rates in a given year or period.

2.4.2. PMy s-related premature deaths
The premature deaths associated with PM; 5 exposure are calculated
as:

Moty q5a(t) = Rate,eurs () x POPycas(t) x AFpcqa(t) 3)

Where Mort, .4 represents the premature deaths attributable to
PM3, 5 exposure for a specific pathway p, country/territory c, age group a
and sex s and disease d in a certain year t. POP, . is the population size
of each exposed demographic group: we adhere to the categorization
from GBD 2021 by applying the population above 25 years old for IHD,
stroke, COPD, lung cancer, and type 2 diabetes while applying the
population of all ages for LRI. AF,..q refers to the corresponding
attributable fraction (calculation detailed in Supplementary note 3).
Cumulative premature deaths per scenario are obtained by summing
results across time, demographic subgroups and the six diseases. We also
calculate the premature deaths using the conventional SSP-based mor-
tality rates without the air pollution-health feedback. The change in
premature deaths due to air pollution-health feedback is estimated as
the difference between these two results.

3. Results

3.1. Air pollution-health feedback alters global health trajectories and
amplifies scenario-based disparities

Accounting for the air pollution-health feedback leads to important
differences in absolute health outcomes across the SSP-RCP scenarios,
compared to conventional SSP-based projections (Fig. 2a, b). In the low-
emission scenarios (SSP1-1.9 and SSP1-2.6), improved air quality leads
to average gains of 0.23 years (95 % CI based on the relative risk
functions: 0.12-0.40 years) and 0.18 years (CI: 0.09-0.31 years) in
global LEy from 2020 to 2050, respectively. These improvements
translate into 10.0 and 8.7 million fewer cumulative premature deaths,
suggesting that ignoring these pollution-related benefits would over-
estimate the global premature deaths by approximately 6-8 %. In
contrast, under the high-emission scenario SSP3-7.0, sustained air
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Fig. 2. The effects of air pollution-health feedback on global health outcomes under various SSP-RCP scenarios. (a) Change in global LE, due to air pollution-health
feedback, representing the 2020-2050 average. (b) Change in PM; s-related cumulative premature deaths in 2020-2050 due to air pollution-health feedback. (c)
Global LE, in 2020 (baseline) and 2050 (adjusted with air pollution-health feedback). (d) PM, s-related cumulative premature deaths in 2020-2050 (adjusted with
air pollution-health feedback). Notes: 1) Values in (a-b) represent the difference between adjusted results with the air pollution-health feedback minus the con-
ventional results. 2) Values in (c—d) represent the absolute health outcome results calculated with the air pollution-health feedback. 3) SSP1 represents sustainability
pathways with low challenges to mitigation and adaptation; SSP2 represents middle-of-the-road development with moderate challenges to both mitigation and
adaptation; SSP3 represents regional rivalry with high challenges to both mitigation and adaptation. The RCP numbers following SSP indicate target radiative forcing
levels (W/m?) by 2100. More information can be found in Section 2.2 SSP-RCP scenarios. 4) Main bars/points and the error bars show the central estimates, and 95%

CI estimates of the relative risk functions of the GBD 2021 respectively.

pollution exacerbates health outcomes, causing an additional 14.6
million premature deaths and an average loss of 0.15 years (CI:
0.08-0.25 years) in global LE, over the same period.

Incorporating the air pollution-health feedback thus widens health
disparities across the SSP-RCP scenarios (Fig. 2a-d). The gap in global
LE( between SSP1-1.9 and SSP3-7.0 increases by an average of 0.38
years (CI: 0.19-0.65 years) when the air pollution-health feedback is
included. Similarly, the air pollution-health feedback adds 24.6 million
deaths to the cumulative premature deaths gap between SSP1-1.9 and
SSP3-7.0, contributing 19 % of the total disparity from 2020 to 2050
between the two scenarios. By 2050, global LE, adjusted for the air
pollution-health feedback spans a wide range from 73.3 years under
SSP3-7.0 to 82.8 years under SSP1-1.9, up from 72.4 years in 2020.
PM, s-related cumulative premature deaths between 2020 and 2050

vary from 121 million (SSP1-1.9) to 251 million (SSP3-7.0). In the
reference case SSP2-4.5, global LE, rises moderately to 78 years by
2050, with cumulative premature deaths of 186 million, representing a
health trajectory following business-as-usual trend.

Despite scenario-specific improvements, exposure to ambient PMj 5
remains a major health threat globally. PM; s-related premature deaths
are projected to account for 5.7 % of global total deaths in 2050 even
under SSP1-1.9, which rises to 10.2 % in SSP3-7.0, compared to 7.7 % in
2020. Annual PM; s-related premature deaths decline only in SSP1-1.9
and SSP1-2.6, while doubling in SSP3-7.0 to reach 10.7 million per
year by 2050, compared to 4.8 million in 2020 (Fig. S5). Furthermore,
the life expectancy at age 65 (LEgs, an indicator of the expected
remaining years of life for those aged 65) shows gains of 0.20 years (CI:
0.10-0.34 years) in SSP1-1.9 and a loss of 0.13 years (CI: 0.07-0.22
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years) in SSP3-7.0 due to air pollution-health feedback, while the in-
crease in LEgs between 2020 and 2050 is only half of that in LEg
(Fig. S6a, b).

3.2. Air pollution-health feedback alters Global North-South mortality
gaps depending on the scenario

The regional disparities in PM, s-related health outcomes are altered
by the air pollution-health feedback across the SSP-RCP scenarios.
Under SSP1-1.9 and SSP1-2.6, health gains are concentrated in low- and
middle-income countries (Global South) with air quality improvement,
narrowing the gap relative to the high-income countries (Global North)
(Fig. 3a,b,d,e). In contrast, under SSP3-7.0, continued high emissions
and limited mitigation efforts exacerbate this gap: premature deaths rise
most sharply in already heavily affected low- and middle-income
countries, while high-income countries experience relatively minor
changes (Fig. 3c, f).

India and China, which together account for 61 % of the global
PM, s-related cumulative premature deaths in 2020, illustrate this
contrast. In SSP1-1.9, reduced PM, 5 levels lead to 6.5 million and 1.3
million fewer deaths in India and China, respectively, compared to
conventional SSP-based projections of 42 and 34 million in 2020-2050.
Conversely, under SSP3-7.0, the effects of air pollution-health feedback
add over 5 million deaths in both countries, pushing cumulative totals to
75-81 million. Other highly polluted countries in Southeast Asia
(including Bangladesh, Nepal, Indonesia, and Pakistan) also exhibit
large shifts in premature deaths due to air pollution-health feedback.
Regions including Central and Eastern Europe & Central Asia (CEEUCA),
high-income countries (HICs), and Latin America & the Caribbean (LAC)
contribute less than 9 % of total PM; s-related premature deaths and
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experience relatively minor changes across all scenarios—less than 0.2
million additional or avoided deaths compared to conventional results.

Air pollution-health feedback also plays a role in shaping regional
inequality in LEq (Fig. 3d, e, f & Fig. S8). Most health benefits occur in
South Asia countries under SSP1-1.9, where LE, gains of up to 0.8 years
in 2050 due to air pollution-health feedback compared to the conven-
tional SSP-based projections. For India and Bangladesh, the average LE,
gains during 2020-2050 are 0.8 years. However, under SSP3-7.0,
Southeast Asia countries experience the most severe declines, with
average losses in LE( reaching 0.5 years in 2050. The most impacted
countries, including Vietnam, North Korea, and China, experience de-
clines of around 0.4 years.

Compared to the considerable health improvements in South and
Southeast Asia, the air pollution-health feedback in Sub-Saharan Africa
(SSA) and North Africa & the Middle East (NAME) result in relatively
modest gains in LEy under SSP1 scenarios. These smaller benefits from
air quality improvements cause SSA and NAME’s combined share of the
global PM, s-related premature deaths to increase from 14 % in 2020 to
24 % under SSP1-1.9. Nonetheless, several countries such as Burundi,
Rwanda (in SSA) and Uzbekistan (in CEEUCA) see moderate LEg in-
creases exceeding 0.26 years. In a contrasting trend, a few SSA countries,
including Guinea-Bissau and Gambia, exhibit slight health gains even
under SSP3-7.0. These arise from air pollution-health feedback tied to
lower PMy 5 levels in SSP3-7.0 relative to SSP2-4.5, likely driven by
slower economic and industrial development.

3.3. Heterogeneous health impacts across demographics, regions and
scenarios

PM, s-related health risks vary widely across demographic groups,
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under various SSP-RCP scenarios. (a, b, ¢) Change in cumulative premature deaths due to air pollution-health feedback against cumulative premature deaths in
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geographies and pollution trajectories (Fig. 4). Among all age groups,
older adults (aged 65 and above) consistently face the highest PMy s-
related health risks due to their elevated baseline mortality rates, which
also leads to the largest changes in mortality rates from the air pollution-
health feedback (Fig. 4a, d). By 2050, the share of older adults among
PM, s-related premature deaths is projected to rise from 71 % in 2020 to
80 % under SSP3-7.0 and 85 % under SSP1-1.9/2.6, driven by the
population aging trend and pollution pattern (Fig. S9a—d). The young
(below 25) and the working-age adults (25-64) face significantly less
health risk are expected to account for at most 2 % and 18 % of pre-
mature deaths under SSP3-7.0, respectively.

Significant regional disparities also emerge in PMj s-related health
outcomes. South and Southeast Asia exhibit the highest PM; 5 mortality
rates and the strongest effects of air pollution-health feedback across all
six diseases and scenarios (Fig. 4b, c). In stark contrast, HICs show
relatively low mortality rates even among their most vulnerable sub-
populations. For instance, under SSP3-7.0, older adults in HICs experi-
ence at most 22 deaths per 100,000 people from IHD, whereas in the
same scenario, working-age adults in South Asia face 36 deaths per
100,000 people, surpassing even the most at-risk age group in HICs
(Fig. 4d). Notably on country level, older residents in Turkmenistan (in
CEEUCA) and Chad and Niger (in SSA) face the highest aggregated PMs 5
mortality rates for six diseases, reaching around 1000 deaths per
100,000 people under SSP1-1.9/2.6. (Fig. 4e, f).

The leading PM, s-related diseases also differ by region and scenario.
For the older adults in South Asia who are most at-risk, COPD becomes
the dominant health burden among older adults under the higher
polluted SSP2-4.5 and SSP3-7.0 scenarios, overtaking IHD, which re-
mains dominant in cleaner scenarios (SSP1-1.9/2.6). Stroke consistently
poses the greatest threat for adults (25+) in SEAO across all scenarios
and emerges as the leading cause in SSA under SSP2-4.5 and SSP3-7.0.
IHD, however, remains the primary contributor in most other region-
scenario combinations. Overall, the total of six PMj s-related diseases
is expected to account for 40 % of all-cause deaths from 2020 to 2050
(Fig. S3b), with IHD (32-35 %), COPD (18-23 %), and stroke (23 %)
being the most significant contributors at the global scale. Notably,
under SSP3-7.0, COPD-induced deaths are projected to increase and
equal IHD in their portion (28 % each) to PMj s-related premature
deaths globally by 2050.

Gender disparities also persist across scenarios. While regional pat-
terns are similar, men consistently face higher PMj s-related health risks
than women. This is primarily due to higher baseline mortality rates
among males, which heighten their sensitivity to air pollution exposure
and amplify the effects of air pollution-health feedback (Fig. S10).

4. Discussion and conclusion

Our findings show that mortality impacts from future PM; 5 exposure
would remain substantial under different climate and socioeconomic
scenarios. By 2050, we project that PMj s-related premature deaths will
range from 121 million in SSP1-1.9 to 251 million under SSP3-7.0. These
impacts are unevenly distributed: they are more pronounced in lower-
middle-income countries and among older adults, who are already
exposed to higher baseline health risks and elevated PMj; 5 levels. In the
health impact projections, we introduce the air pollution-health feed-
back in the integrated modeling framework. This approach allows
mortality rates to be adjusted dynamically in response to varying PMj 5
exposure levels, compared to conventional approaches that fix mortality
rates to socioeconomic pathways. Beyond the direct assessments of ab-
solute health impacts, we find that including air pollution-health feed-
back from climate projections leads to notable differences in future
mortality and life expectancy outcomes, depending on the emissions and
development pathway. Under SSP1-1.9, the effects of air pollution-
health feedback reduce cumulative premature deaths by 7-8 % and in-
crease LEy by 0.23 years; in contrast, under SSP3-7.0, they increase
premature deaths by 6 % and reduce LEy by 0.15 years. The largest
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absolute changes in premature deaths occur in South and Southeast
Asia, particularly in India and China, due to their large populations and
elevated exposure levels. At the disease level, IHD, COPD and stroke
account for the largest shares of both the mortality burden and feedback
sensitivity. The results highlight both the substantial future burden of
PMjsrelated mortality and the necessity of accounting for
environmental-social feedback in long-term projections using integrated
modeling framework. We also emphasize the need for continued global
action to reduce air pollution, especially for older populations in lower-
middle-income countries and those with pre-existing cardiovascular and
respiratory conditions.

This work, to our knowledge, represents the first global, demo-
graphically explicit quantification of how air pollution-health feedback
could potentially bias conventional health impact assessments under
climate and socioeconomic scenarios. Our findings provide empirical
evidence for integrating environmental-health feedback into long-term
scenario planning and underscore a key methodological implication
for the IAMs: the exclusion of dynamic feedback between environmental
conditions and human health can potentially deviate long-term pro-
jections and thus weaken the interpretation. IAMs are central to pro-
jecting sustainability outcomes under climate change, yet many models
treat demographic and health parameters as exogenous, missing critical
feedback through which environmental changes like air pollution affect
human systems. By incorporating feedback effects from PM; 5 exposure
into SSP-based mortality trajectories, our study demonstrates how sce-
nario realism can be improved. As well-being-oriented projections gain
prominence in sustainability research, integrating such feedback will be
essential for enhancing the credibility and policy relevance of pro-
jections based on IAMs (Chaplin-Kramer et al., 2024; Emmerling et al.,
2021; Liu et al., 2024; Lutz et al., 2021).

This study focuses on a single feedback mechanism linking air
pollution, mortality rate, and socioeconomic scenario, but this repre-
sents only part of a broader system of interactions. Future research
should extend this approach to capture additional feedback mecha-
nisms, such as heat-related mortality and morbidity, extreme weather
events, and food scarcity (Ebi et al., 2021; Hasegawa et al., 2016; Huang
et al., 2011; Yuan et al., 2024). Moreover, given the localized nature of
environmental health impacts, more granular demographic modeling, e.
g., at subnational or urban-rural levels, is needed to capture within-
country disparities and better inform targeted policy responses
(Chowdhury et al., 2018; K.C. et al., 2018).

Several limitations should be acknowledged when interpreting the
results. First, we assume a static population size and structure that does
not respond to changes in deaths due to the air pollution-health feed-
back. This simplification may lead to underestimation of deaths in low-
emission scenarios (e.g., SSP1-1.9) and overestimation in high-emission
scenarios (e.g., SSP3-7.0), as extra lives survive to the next stage, the
exposed population will increase, which amplifies the deaths. However,
because most saved lives occur among the older age groups, the de-
mographic impact on fertility or the younger population remains mini-
mal. The period life expectancy estimates derived from life tables are
based on age-specific mortality rates and are therefore not influenced by
changes in the absolute size or structure of the population. Second, this
study focuses solely on ambient PMy s exposure, excluding other
important pollutants such as ozone and household air pollution due to
data limitations. This may particularly underestimate risks in low-
income regions where indoor pollution is prevalent (Ferguson et al.,
2020; Meng et al., 2019; Rao et al., 2021). Third, the approach of
adjusting mortality risk with a relative risk multiplier assumes propor-
tional risks and immediate translation of exposure changes into mor-
tality (no explicit lag structure). It does not account for behavioral,
health-system, or other responses, nor for interactions beyond the six
PM, s-related causes as it provides limited treatment of competing risks.
Accordingly, the relative risk multiplier should be interpreted as a
conservative, first-order approximation consistent with GBD compara-
tive risk assessment and life-table applications, providing a transparent
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way to propagate risk-mediated changes rather than a full causal. We
therefore present the results as scenario-based projections rather than
forecasts. Finally, our estimates are subject to multiple sources of un-
certainty, including: (1) the relative risk functions from the GBD 2021
study, (2) the baseline demographic projections from the SSPs (K.C.
et al., 2024), (3) the assumption that the SSP2-4.5 PM, 5 exposure level
is implicit in the demographic modeling for all scenarios, (4) modeled
PM, 5 concentrations from Earth system model outputs (Yang et al.,
2023), and (5) the disease burden forecasts from the GBD 2021 foresight
study (Vollset et al., 2024). Despite these limitations, the direction and
magnitude of the feedback effects have been carefully verified.

To conclude, this study quantifies the global air pollution-health
feedback within a scenario-based integrated modeling framework,
advancing the integration of human health into climate projections. Our
results show that failing to account for the feedback can lead to sys-
tematic misestimation of future health outcomes, particularly in regions
with high pollution exposure and aging populations. The findings
highlight the importance of incorporating further feedback into inte-
grated modeling frameworks to improve the realism and policy rele-
vance of long-term sustainability projections. Beyond the air pollution
scope, our approach may be extended to other climate-health feedback
mechanisms, such as those related to heat stress, extreme weather
events, and food insecurity. Finally, we call for the development of
higher-resolution, subnational projections to capture urban-rural and
intra-regional disparities, which are essential for designing more tar-
geted and equitable mitigation strategies.
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