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ABSTRACT
Chlorophyll breakdown is a central process during plant senescence or stress responses, and leaf chlorophyll content is therefore 
a strong predictor of plant health. Chlorophyll quantification can be done in several ways, most of which are time-consuming or 
require specialized equipment. A simple alternative to these methods is the use of image-based chlorophyll estimation, which 
uses the color values in RGB images to calculate colorimetric visual indexes as a measure of the leaf chlorophyll content. Image-
based chlorophyll measurement is non-destructive and requires no specialized equipment, apart from a digital camera. Here, we 
developed the ImageJ plugin Green Leaf Visual Index that facilitates high-throughput image analysis for quantifying leaf chlo-
rophyll content. Our plugin offers the option to white-balance images to decrease variation between images and has an optional 
background removal step. We show that this method can reliably quantify leaf chlorophyll content in a variety of plant species. 
In addition, we show that image-based chlorophyll quantification can replicate Genome-Wide Association Study results based 
on traditional chlorophyll extraction methods, showing that this method is highly accurate.

1   |   Introduction

Plant health can, in many cases, be deduced from the leaf chlo-
rophyll (Chl) content, as several stress factors can affect the pho-
tosynthetic capacity of plants. The Chl content can be reduced in 
response to stresses, such as drought, high salt, nutrient deficiency, 
or pathogen infection, or as a result of programmed plant senes-
cence (Hörtensteiner and Kräutler 2011). Quantification of Chl is 
therefore an important tool to monitor plant health in a variety of 
conditions (Kalaji et al. 2017; Wang et al. 2022). Various methods 
for measuring Chl content are available, such as solvent-based Chl 

isolation like acetone extraction followed by photospectrometry at 
645 and 663 nm (Arnon 1949), Soil Plant Analysis Development 
(SPAD) measurement (Yadava 1986; Markwell et al. 1995; Konica 
Minolta Optics I 2009), Chl fluorescence measurement (Murchie 
and Lawson  2013; Legendre et  al.  2021), hyperspectral imaging 
(Zhang, Ge, et al. 2022; Taha et al. 2024) and image-based colo-
rimetric visual index (CVI) estimations of Chl (Ali et  al.  2012; 
Bresson et al. 2018; Guo et al. 2020; Guendouz et al. 2021; Taha 
et  al.  2024). The acetone-based Chl extraction method directly 
measures Chl content (mg Chl cm−2 or in mg Chl mL−1), and is one 
of the most accurate ways to quantify Chl. However, this method 
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is labor-intensive and destructive and requires specialized equip-
ment to measure the OD645 and OD663. Due to the destructive na-
ture of this method, it is also poorly suited to monitor Chl content 
over a plant's lifetime or under changing conditions. Chl measure-
ments with a SPAD meter are non-destructive, but SPAD measure-
ments remain labor-intensive, as each measurement needs to be 
recorded manually, and SPAD values are strongly affected by the 
position on the leaf where the measurements are made. In addi-
tion, the SPAD meter can only be used on leaves above a certain 
size, which excludes the possibility of measuring young or small 
leaves, or plants grown in tissue culture that need to remain in 
sterile conditions. Chl fluorescence measurements and hyperspec-
tral imaging methods are non-destructive and can yield useful 
information, but require specialized equipment that can be ex-
pensive and are therefore not universally available to researchers. 
In addition, measuring Chl fluorescence makes use of the photo-
saturation of Chl followed by a cool-down period, which makes 
this type of measurement relatively time-consuming. In contrast, 
image-based Chl quantification methods require only the use of a 
digital camera and uniform lighting, are non-destructive, and are 
highly adaptable to different environments and experimental set-
ups. Because no specialized equipment is required, image-based 
Chl quantification can readily be applied in any environment 
and is almost universally available to all researchers. Moreover, 
digital images can be easily processed in batch, allowing high-
throughput monitoring of Chl content in a variety of experimental 
setups (Prakash Yadav et al. 2010; Zhang et al. 2018; Zhang, Ge, 
et al. 2022; Fernando Sánchez-Sastre et al. 2020; Guo et al. 2020; 
Özreçberoğlu and Kahramanoğlu  2020; Guendouz et  al.  2021; 
Taha et al. 2024).

Image-based Chl quantification relies on the relative pixel intensity 
in the Red, Green, and Blue channels of RGB images, from which 
Chl content can be deduced by using different mathematical mod-
els (Woebbecke et al. 1995; Kawashima and Nakatani 1998; Guo 
et al. 2020; Taha et al. 2024). Alternatively, values in the hue, satu-
ration value color-space (HSV) can be measured (Sass et al. 2012; 
Bresson et al. 2018). Various studies have shown the usefulness 
of RGB image analysis and their derived CVIs in estimating Chl 
content in different species, and strong correlations with total Chl 
content have been shown for many plant species. For example, 
Kawashima and Nakatani (1998) showed that the Chl content of 
wheat and rye leaves could be measured by using a video cam-
era and showed that the best method to quantify Chl content 
was the normalized difference between the Red and Blue values 
(R − B)/(R + B), henceforth referred to as the Kawashima index. 
Other well-performing models that were tested by Kawashima and 
Nakatani include the normalized Red, Green, and Blue indexes 
(R/[R + G + B], G/[R + G + B], B/[R + G + B]), and the difference 
between red and blue divided by the sum of all channels ([R − B]/
[R + G + B]). Ali et al.  (2012) showed that the Kawashima index 
correlated strongly with SPAD-502 readings in tomato, and Taha 
et  al.  (2024) showed the same in hydroponically grown lettuce. 
Similarly, Fernando Sánchez-Sastre et al. (2020) showed that the 
highest-scoring models tested by Kawashima and Nakatani (1998) 
also showed a strong correlation with the Chl content (measured 
using Chl fluorescence) in sugar beet leaves. On the other hand, 
Ibrahim et al. (2021) and Ali et al. (2012) found that the Green:Red 
ratio (G:R) correlated with SPAD-502 Chl measurements in lettuce 
more strongly than the Kawashima index. Other researchers have 
used custom models to link the RGB color values to Chl content. 

For example, Prakash Yadav et al. (2010) showed that Chl content 
quantified by SPAD-502 could be measured in micro-propagated 
potato with similar accuracy when using RGB images as well as 
by the hue, saturation, and intensity values derived from these 
images, and a similar approach was used in Sorghum by Zhang, 
Ge, et al. (2022). Other applications of the RGB color space have 
also been applied, for example, by Govindasamy et al. (2017), who 
used RGB images to monitor the symbiosis efficiency between 
rhizobia and soybean plants, and Bu et al. (2024), who used RGB 
parameters to measure soybean pod freshness. Han et al. (2021) 
used aerial images to monitor the growth of Hibiscus cannabinus 
based on RGB-derived parameters, and Zhang et al. (2018) used a 
similar approach for maize. Finally, Barraza-Moraga et al. (2022) 
applied RGB analysis to satellite images to measure the Chl-A con-
tent of algae in Lake Lanalhue in Chile. Overall, these examples 
show that RGB image analysis can successfully be applied in plant 
research and is a feasible method of Chl measurement.

Digital phenotyping relies on careful image acquisition and 
processing. The open-source software FIJI is a distribution of 
the image analysis program ImageJ, which is a commonly used 
and highly customizable tool for image analysis in the life sci-
ences (Schindelin et al. 2012). FIJI offers the possibility of au-
tomating analysis steps via macros or custom-made plugins. In 
recent years, several tools have been developed to quantify leaf 
Chl content from digital images, such as the Python-based pro-
gram plantCV (Gehan et al. 2017; Casto et al. 2022) or ImageJ 
plugins such as the one developed by Liang et al. (2017). In other 
cases, researchers made use of custom-made analysis tools, such 
as in MatLab (Ali et  al.  2012; Perez-Patricio et  al.  2018; Taha 
et al. 2024). Despite their usefulness, these tools present certain 
drawbacks for researchers wishing to use RGB images for Chl 
quantification. PlantCV, while highly customizable and suitable 
for high-throughput analyses, is based on the Python language 
and requires a degree of familiarity with this programming lan-
guage before it can be applied. On the other hand, many biolo-
gists are already familiar with the user interface of FIJI/ImageJ, 
which can be used without prior knowledge of programming 
languages due to its graphical user interface (Schindelin 
et  al.  2012; Schneider et  al.  2012). However, the existing tools 
available for leaf image analysis in ImageJ either do not quan-
tify leaf Chl content (e.g., LeafJ by Maloof et  al.  2013), or re-
quire several manual image calibration steps (Liang et al. 2017), 
making them unsuitable for high-throughput analysis of Chl. 
To our knowledge, there is no tool allowing for high-throughput 
analysis of RGB images for direct quantification of Chl content 
that does not require programming skills. We therefore set out 
to develop a FIJI plugin that reliably quantifies leaf Chl con-
tent based on digital images in a high-throughput manner for 
various applications, which we named Green Leaf Visual Index 
(GreenLeafVI). GreenLeafVI offers the option to normalize 
image brightness, segment images to reduce background noise, 
and calculate the RGB values of multiple objects per image, 
along with various methods of leaf Chl content quantification, 
and can process images in batch mode, making it suitable for 
high-throughput image processing. The output data is stored in 
a tidyR-compatible format that can readily be used for further 
statistical analysis in R or other statistical software. We show 
that GreenLeafVI can be applied to quantify Chl content in dif-
ferent plant species and can accurately reproduce Genome-Wide 
Association Study (GWAS) results obtained by traditional Chl 
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quantification methods in lettuce, validating its use for high-
throughput phenotyping experiments.

2   |   Material and Methods

2.1   |   Plant Materials and Growth Conditions

Arabidopsis thaliana (Arabidopsis) ecotype Col-0 seeds were 
sown on humid soil (90% turf, 10% sand) and stratified at 4°C 
for 3 days and subsequently transferred to a growth chamber 
with long-day conditions (16/8 h light/dark) at 21°C and 65% rel-
ative humidity. Seedlings were repotted to individual pots after 
7 days, and the fifth leaf of each plant was harvested 23 days 
after the end of stratification. Leaves incubated for 0–5 days in 
the dark were used for senescence measurements to represent 
various stages of leaf senescence.

For testing the correlation between colorimetric measure-
ments and Chl content, Lactuca sativa (lettuce) cv. Cobham 
Green seeds were sterilized in 50% chlorix bleach and 50% 
MilliQ solution and stratified in distilled water for 4 days at 4°C. 
Subsequently, seeds were sown on moist soil (90% turf, 10% 
sand) and transferred to a growth chamber with long-day condi-
tions (16/8 h light/dark) at 21°C and 70% relative humidity. The 
fourth leaf was harvested 10 days after emergence, and 25 mm 
Ø leaf disks were taken and incubated in demineralized water 
with 1% agarose in the dark for up to 5 days. Leaves subjected to 
different dark incubation periods were used for Chl quantifica-
tion to represent a range of senescence stages. For the GWAS ex-
periment, we selected a total of 184 Lactuca sativa accessions as 
described by Dijkhuizen et al. (2025). Seeds were treated as de-
scribed above, and leaf disks of the fourth leaf from three plants 
per cultivar were taken at 10 days after leaf emergence and used 
directly for imaging and Chl extraction.

Nicotiana benthamiana (tobacco) seeds were sown on moist soil 
(90% turf, 10% sand) and germinated in a growth chamber with 
long-day conditions (16/8 h light/dark) at 21°C and 70% relative 
humidity. After 7 days, seedlings were repotted into individual 
pots. After 3 weeks, mature leaves were detached and incubated 
in large petri dishes on demineralized water with 0.5% agarose 
in the dark for up to 7 days.

Solanum lycopersicum (tomato) cv. Moneymaker seeds were 
sterilized in bleach and germinated on solid MS medium and 
transferred to soil after 3 weeks. Plants were grown in long-day 
conditions (16/8 h light/dark) at a 24/18°C day/night tempera-
ture regime. Leaves were harvested from flowering plants and 
incubated in large petri dishes on demineralized water with 
0.5% agarose in the dark for up to 7 days, with harvesting points 
between 0 and 7 days of dark incubation.

2.2   |   Senescence Induction, Imaging, and Chl 
Isolation

Arabidopsis leaves were floated on 5 mM MES buffer (pH 5.6) in 
5 cm Petri dishes sealed with parafilm, wrapped in aluminum 
foil, and kept at 21°C for up to 5 days. Lettuce, tomato, and to-
bacco leaves were harvested at various ages and placed in Petri 

dishes with demineralized water with 0.5% agarose, sealed with 
parafilm, wrapped in aluminum foil, and stored at 21°C for up 
to 7 days. Leaves were imaged at different time points between 
0 and 7 days of dark incubation, and leaf disks were collected 
for Chl extraction after imaging. All images were taken with a 
Nikon DC3000 DSLR camera under uniform white light. Plant 
leaves were placed on a homogeneous white or black back-
ground along with a white square that served as a reference for 
image brightness.

Chl extraction was performed according to the protocol of 
Arnon  (1949). Briefly, 5 mm diameter round leaf disks were 
taken after imaging (2 per Arabidopsis leaf and 3 per leaf for 
other species) and placed in a 96-well deep-well plate along 
with a metal bead and stored at −80°C until extraction. For 
extraction, the leaf tissue was pulverized and resuspended in 
200 μL 25 mM sodium phosphate buffer (pH 7) and 800 μL 80% 
(v/v) acetone. Samples were then incubated at room tempera-
ture in the dark for 1 h with gentle shaking and centrifuged for 
10 min at 3000 g. Two hundred microliter of the supernatant was 
then transferred to a 96-well transparent-bottom plate, and the 
absorption (D) at 645 and 663 nm was measured with a Spark 
10 M microplate reader (TECAN Group AG). The total Chl con-
tent in mg L−1 was then calculated with the following formula: 
ChlTotal = 20.2·D645 + 8.02·D663 as described by Arnon (1949). We 
decided to measure the Chl content in mg cm−2 rather than mg 
g−1 fresh weight to minimize variation between measurements 
because we observed that leaves often wilted after several days 
of dark incubation, reducing the fresh weight, whereas leaf area 
was less affected by the senescence process. To calculate the Chl 
content in mg cm−2, the mg Chl in 1 mL (the extraction volume 
for each sample) was divided by the total area of leaf tissue used 
for extraction.

2.3   |   Image Analysis

All images were analyzed using the FIJI open-source release of 
ImageJ2 (Schindelin et al. 2012), with the custom GreenLeafVI 
plugin that can perform white balancing, automatic selection of 
leaves and removal of background, and RGB pixel intensity mea-
surements semi-automatically. The plugin is described in detail 
in Protocol S1, and Figure 1 shows a schematic overview of the 
steps performed by the plugin.

2.3.1   |   White Balancing

In order to calibrate the image brightness and reduce inter-
image variation, we normalized the pixel intensity to the white 
reference area included in each image (Figure 1). This was done 
by splitting the image into Red, Green, and Blue channels and 
automatically measuring the mean pixel intensity in the white 
reference area. Next, the pixel adjustment factor for each of the 
channels was calculated by dividing the maximum brightness 
(255 for 8-bit images) by the mean pixel intensity of the white 
area (adjustment factor = 255/mean). The white reference was 
then set to an intensity of 255 in all three channels, and the pix-
els outside of the reference area were normalized based on the 
adjustment factor for each channel and re-stacked into an RGB 
image with a “_whitebalanced” suffix for further analysis.
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2.3.2   |   Segmentation of Images to Reduce Background

In order to exclude measurements of non-leaf objects or areas 
in the background of the image, we included an optional seg-
mentation step in the GreenLeafVI plugin (Figure 1). The seg-
mentation step extracts leaf-like objects from the background 
by creating a mask covering the leaves based on minimum and 
maximum HSV and minimum area parameters, and removes 
the background by setting the pixel intensity outside of masked 
areas to 0. The HSV values used to distinguish leaves from the 
background were calibrated manually for each species. The im-
ages were then saved, extended by a “_segmented” suffix for 
further analysis. We chose HSV as a color model for segmen-
tation as it not only filters for color (Hue) but also incorporates 
intensity (Saturation) and lightness (Value), improving object-
to-background segmentation.

2.3.3   |   RGB Analysis and Color-Based Methods 
of Chl Estimation

To measure the R, G, and B pixel intensities of individual objects 
in an image, a mask selecting individual objects was made, as 
in the segmentation step. The original image was then split into 
Red, Green, and Blue channels, and the minimum, maximum, 
median, and mean pixel intensity was measured in each object 
of the mask covering the leaves (Figure 1). The mean values of 

each leaf measured in the Red, Green, and Blue channels were 
used to calculate the different visual indexes: Green:Red ratio 
(GR_ratio), Red:Green ratio (RG_ratio), Kawashima index 
(Kawashima), Green Leaf Index (GLI), Normalized Difference 
Index (NDI), normalized Red (Red_norm), normalized 
Green (Green_norm), normalized Blue (Blue_norm), and the 
Woebbecke index (Woebbecke).

2.4   |   Data Analysis

2.4.1   |   Correlation Analyses

Data generated by the ImageJ plugin and from spectrophotom-
etry results were analyzed in R (R Core Team 2023). Pearson's 
correlation analysis between the different colorimetric indexes 
and the total Chl content as mg Chl cm−2 was performed with 
the R package psych (Revelle  2023), and plots were generated 
by using the ggplot2 (Wickham  2016) and ggpubr packages 
(Kassambara 2023).

2.4.2   |   GWAS Analysis

SNP data were obtained from Dijkhuizen et al. (2025). Kinship 
was computed as the covariance matrix of SNPs using the cov() 
function in R. SNPs were filtered for a MAF > 0.05. For GWAS, 

FIGURE 1    |    Workflow for high-throughput Chl measurement with GreenLeafVI. Images are taken under homogenous light with a white ref-
erence area. The images are then batch-processed for (1) white-balancing based on the white reference area; (2) segmentation to remove the back-
ground; and (3) measurement of pixel intensity in the Red, Green, and Blue channels. The results of the RGB analysis are stored in a results.csv file, 
which, in addition to the RGB values, also contains the region of interest (ROI), the area of the objects, and several colorimetric visual indices (CVIs).
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we used R version 4.2.2 and the lme4QTL package (Ziyatdinov 
et al. 2018). GWAS was performed on the filtered SNP set using 
a linear mixed model (relmatLmer and matlm), with the kinship 
matrix included as a random effect. The Bonferroni method was 
used to correct for multiple testing, with the Bonferroni-corrected 
significance threshold being −log10(0.05/2,485,803) > 7.69. 
Manhattan plots were created using ggplot (Wickham  2016). 
Quantile–Quantile (Q–Q) plots were created using the ggfast-
man R-package (Tremmel  2021). The genome annotation and 
gene function prediction of the Salinas reference genome V8 
were used for annotation of significantly associated loci (Reyes-
Chin-Wo et al. 2017).

3   |   Results and Discussion

3.1   |   Normalized Red and Green:Red Ratios Are 
Accurate Predictors of the Chl Content in Leaves

We designed the GreenLeafVI plugin as a tool to easily phe-
notype the Chl content in different plant species. We therefore 
ran the three steps of the GreenLeafVI plugin (white balancing, 

segmentation, and RGB analysis) on four different plant spe-
cies: Arabidopsis, tobacco, tomato, and lettuce. In addition, we 
measured the Chl content (in mg cm−2) in extracts from each 
imaged leaf to test how well the different CVIs calculated by 
the GreenLeafVI plugin correlated with the Chl content in mg 
cm−2. To assess which CVI most accurately quantifies the Chl 
content, we performed linear regression analysis with several 
previously described CVIs and the Chl content in mg cm−2 as 
determined by the classical extraction method for the four plant 
species. Our data show that several CVIs show a strong correla-
tion with the content of total Chl (Chl A and Chl B, in mg cm−2) 
for these different plant species (Figure 2A–D). Overall, the CVI-
based quantification of Chl was most accurate for lettuce, where 
the Green:Red ratio (G:R) and the Normalized Difference Index 
(NDI; [Rn − Gn]/[Rn + Gn + 0.01]) were the most robust prox-
ies of Chl content, followed by the normalized Red value (Rn; 
R/[R + G + B]) (Figure  2D, Table  1). For Arabidopsis, tobacco, 
and tomato, the normalized Red value best correlated with the 
Chl content, although we also found a strong correlation with 
the NDI and G:R (Figure 2A–C, Table 1). Interestingly, we ob-
served that the correlation of CVIs and Chl content in mg cm−2 
differed between species, with lettuce showing the best overall 

FIGURE 2    |    Application of CVIs for measuring Chl content in different species. (A–D) Correlations between total Chl content as mg Chl cm−2 
and the best-scoring CVI for each species. (A) Arabidopsis, (B) tomato, and (C) tobacco each show the strongest correlation between mg Ch·cm−2 and 
the normalized Red value (Rn). (D) In lettuce, mg Chl·cm−2 correlates best with the Green: Red ratio (G:R). (E) Manhattan plot of the GWAS on the 
Green: Red ratio measured on the fourth leaf of 184 lettuce cultivars. Genomic position, indicated in megabasepairs (Mbp), is shown on the x-axis, 
chromosome numbers are indicated on top. Significance as –log10(p) is shown on the y-axis. The Bonferroni threshold of −log10(p) > 7.69 is indicated 
by the red horizontal line.
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correlation, and tobacco the weakest, suggesting that CVIs are 
more suitable for quantifying Chl levels in some species com-
pared to others. Previous research has shown that G:R is a good 
proxy of Chl content in lettuce (Taha et al. 2024) and that Rn 
shows the best consistency between species (Ali et  al.  2012). 
Taken together, our data show that overall, Rn, G:R, and NDI 
are the best proxies of Chl content and can be reliably used to 
compare Chl levels in different samples.

Surprisingly, the correlation between the Chl content and the 
Kawashima index was not as strong as shown in some earlier 
reports (e.g., Kawashima and Nakatani 1998; Taha et al. 2024), 
and was outperformed by G:R, NDI, and Rn in all four species. 
Similar results were obtained by Guo et al. (2020), who showed 
that both the Kawashima and Woebbecke Indexes were out-
performed by G:R and GLI when using aerial RGB images to 
quantify the Chl content in field-grown maize. Ali et al. (2012) 
showed that the Kawashima index performed well in tomato, 
but not in lettuce or broccoli, whereas Rn performed well and 
was most consistent between species, a finding that is rein-
forced by our results. One possible explanation for the poor per-
formance of the Kawashima index compared to Rn and other 
indexes could be the omission of G in the Kawashima index for-
mula ([R − B]/[R + B]; Table  1), despite the green color of Chl. 
This corresponds with the fact that each of the best-performing 
indexes in our setup (Rn, G:R, NDI) included green pixel inten-
sity in their formulas (Table 1), showing that the green value is 
of importance for Chl quantification. However, greenness alone 
was not sufficient to accurately quantify the Chl content, as the 
normalized Green value (Gn; G/[R + G + B]) showed only a mod-
erate correlation with the actual Chl content in our experiments 
(Table 1) as well as in previous studies (Ali et al. 2012). Together 
with our finding that Rn and G:R are the top performing CVIs, 

the intensity in the green and especially red channels best re-
flects the Chl content, whereas the intensity in the blue channel 
provides additional, but not indispensable, information.

Upon initial linear regression analysis, the Woebbecke Index ap-
peared to correlate very poorly with the Chl content. While most 
CVIs showed a linear correlation with the actual Chl content of 
the type y = x (with x = CVI, y = mg Chl cm−2; Figures  S1–S7), 
the Woebbecke Index appeared to form a non-linear, hyperbolic 
relation with the Chl content (Figure S8). A linear model using 
a regression curve fitting with a formula of the type y = −1/x 
(with x = Woebbecke Index, y = mg Chl cm−2) showed that the 
Woebbecke Index actually correlated more strongly than any 
other CVI with the Chl content in tomato and lettuce, with an 
R2 of 0.801 in tomato and an R2 of 0.768 in lettuce (Figure S2, 
Table  1). However, despite the high R2 values implying the 
Woebbecke Index as the superior CVI, we observed that the 
Woebbecke Index sometimes caused extremely positive or neg-
ative values that were not reflected by the other CVIs or the Chl 
content in mg cm−2, which could complicate comparisons be-
tween different measurements. While for lettuce and tobacco 
the Woebbecke Index generated exclusively negative values 
in a relatively narrow range, we observed that the Woebbecke 
Index formula generated extremely low (< −200) or extremely 
high (> 400) measurements in senescent leaves of Arabidopsis 
and tomato (Figure  S8). The Woebbecke Index formula is de-
fined as the difference between the G and B channels divided 
by the difference between R and G ([G − B]/[R − G]; Table  1). 
Because of this, the Woebbecke Index can create two types of 
abnormal values: extreme outliers and unexpected positive val-
ues. In cases where the R and G values are similar, such as in 
senescent leaves, the denominator of this formula approaches 0, 
resulting in extreme outlier values that may be either positive 

TABLE 1    |    Correlations of various CVIs with the chlorophyll content in mg Chl·cm−2 (linear regression).

Index Formula

Arabidopsis Tomato Tobacco Lettuce

R2 p R2 p R2 p R2 p

Green:Red ratio G/R 0.607 < 2.2e−16 0.739 4.55E−08 0.3627 6.10E−05 0.752 1.61E−14

Kawashima 
Index

(R − B)/(R + B) 0.205 1.33E−13 0.551 2.00E−05 −0.027 0.7600 0.195 0.0016

Normalized Red 
(Rn)

R/(R + G + B) 0.647 < 2.2e−16 0.775 8.62E−09 0.590 2.72E−08 0.673 5.92E−12

Normalized 
Green (Gn)

G/(R + G + B) 0.343 < 2.2e−16 0.481 1.04E−04 0.204 0.0034 0.646 3.11E−11

Normalized Blue 
(Bn)

B/(R + G + B) 0.009 0.0755 0.092 0.0821 0.005 0.2876 0.363 9.02E−06

Normalized 
Difference Index 
(NDI)

(Rn − Gn)/
(Rn + Gn + 0.01)

0.608 < 2.2e−16 0.739 4.45E−08 0.370 4.98E−05 0.754 1.37E−14

Green Leaf Index 
(GLI)

(2G − R – B)/
(2G + R + B)

0.339 < 2.2e−16 0.487 9.10E−05 0.203 0.0034 0.649 2.60E−11

Woebbecke 
Index*

(G − B)/(R − G) 0.638 < 2.2e−16 0.822 6.603E−10 0.513 5.49E−07 0.768 4.03E−15

Note: In the formula column, R, G, and B stand for average Red, Green, and Blue pixel intensity values. Curves were fitted with a linear model fitting y ∼ x, with y 
representing mg Chl cm−2 and x the CVIs in all cases except for the Woebbecke Index (*), where the curve was fit to a model of y ∼ −

1

x
. For each plant species the CVIs 

correlating best with the Chl content are highlighted in bold.
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(when R > G ≥ B or B > G ≥ R) or negative (when B > G and R ≥ G 
or G > B and G ≥ R). In addition, more mild but still unexpected 
positive values can be generated in situations where R > G > B or 
B > G > R. These unexpected positive values or extreme values 
complicate the comparison between groups, as the mean value 
of the measurements in one group will be strongly affected by 
such values. Therefore, while the Woebbecke Index shows a 
strong hyperbolic correlation with mg Chl cm−2 and might be 
suitable to compare greenness among healthy, non-senescent 
plants where R and G values are sufficiently different, our re-
sults show that it is unsuitable for quantifying Chl in senescent, 
yellowing leaves. We therefore advise using more robust indexes 
such as Rn, NDI, or G:R.

For this study, we used leaves at various stages of senescence 
(non-senescent up to completely senesced) for Chl measure-
ments and imaging. By including leaves in a range of senes-
cence stages, we generated a dataset that is representative of a 
variety of conditions, where yellowing can represent different 
types of stress. Previous research (Woebbecke et al. 1995; Liang 
et  al.  2017) largely focused on measuring the Chl content in 
healthy and/or young plants to monitor plant health during early 
development. Although this has yielded well-performing CVIs, 
the omission of senescent or otherwise yellow leaves in the index 
calibration could explain why some indexes (e.g., Kawashima or 
Woebbecke) perform less in our conditions compared to previ-
ous studies. In addition, most studies have made use of SPAD-
502 readings to calibrate or measure the success of a CVI (e.g., 
Ali et  al.  2012; Guendouz et  al.  2021; Wang et  al.  2022; Yuan 
et al. 2022; Taha et al. 2024), whereas we have directly measured 
the fluorescence of acetone-extracted Chl. Although SPAD-
502 readings and extraction-based Chl quantification methods 
correlate strongly, with R2 values larger than 0.9 (Markwell 
et al. 1995; Castelli et al. 1996), the two methods still show slight 
differences, which could partially explain why some CVIs per-
form better in our study compared to previous research and vice 
versa. Despite these differences, our data shows that several vi-
sual indexes accurately quantify Chl content, and that the Rn, 
G:R, and NDI indexes are all reliable, with slight differences in 
the top-performing CVI for each species.

3.2   |   GWAS Using GreanLeafVI Accurately 
Identifies Chlorophyll Biosynthesis Genes

To test whether visual indexes are sufficiently accurate to 
identify phenotypic differences between genotypes, we ran a 
GWAS on leaf Chl content in lettuce, the plant species where 
the use of digital images correlated most strongly with mg Chl 
cm−2. We used a panel of 184 lettuce cultivars grown in con-
trolled conditions and harvested the fourth leaf 10 days after 
emergence for three plants of each genotype. We then imaged 
a 30 mm leaf disk of this leaf, ran the GreenLeafVI plugin on 
the images thus generated, and used the results for subsequent 
analyses. We used an extensive SNP dataset to run GWASs on 
G:R (the best-performing CVI for lettuce) and Rn (the overall 
best-performing CVI) as a measure of Chl content. From these 
GWASs, a significant peak on chromosome 4 was identified 
(Figure 2E, Figures S9 and 10), which corresponded to the peak 
found by Zhang, Qian, et al.  (2022) in their GWAS on 125 let-
tuce genotypes using Chl measurements on leaf extracts. This 

peak was shown to be associated with the lettuce Golden-Like 
(LsGLK) gene, which is an important regulator of chloroplast 
development (Zhang, Qian, et al. 2022). The association of the 
significant peak that was observed in all three GWASs with a 
gene regulating chloroplast development explains the variation 
in Chl content that was observed by either direct Chl measure-
ment (Zhang, Qian, et al. 2022) or, in our case, by using digital 
images as a reference. The similarity in outcomes between the 
two GWASs clearly shows that our G:R and Rn data can repro-
duce the association between the Chl content phenotype and the 
SNP located near the LsGLK gene, indicating that these CVIs 
accurately quantify Chl content and offer a reliable method to 
identify a phenotypic vs. genotypic association.

4   |   Concluding Remarks

Our results show that the GreenLeafVI plugin provides an 
easy-to-use and reliable tool for high-throughput digital 
image-based quantification of Chl content in leaves of differ-
ent plant species. Importantly, image-based Chl quantifica-
tion is non-destructive, allowing researchers to monitor the 
same plant over time, and digital images can be easily stored 
and re-examined later. Other traits besides Chl content (e.g., 
anthocyanin production, leaf shape and size, etc.) can be mea-
sured using digital images, and such traits may be examined 
at any moment, whereas this information is lost when using 
destructive methods of Chl quantification. Thus, image-based 
Chl quantification offers additional benefits compared to 
other methods. Taking digital images and automated image 
processing are also less labor-intensive, less costly, and a 
more sustainable alternative to large-scale Chl extractions. 
Considering the various benefits of digital image-based Chl 
quantification, we propose that this method be used in future 
applications.
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Supporting Information

Additional supporting information can be found online in the 
Supporting Information section. Figure S1: Correlation between Green: 
Red ratio and Chl content in Arabidopsis, tomato, tobacco, and lettuce. 
Correlation analysis was done by linear regression using a model where 
y = x. Figure S2: Correlation between the Kawashima Index and Chl 
content in Arabidopsis, tomato, tobacco, and lettuce. Correlation anal-
ysis was done by linear regression using a model where y = x. Figure 
S3: Correlation between the Normalized Red value (Rn) and Chl con-
tent in Arabidopsis, tomato, tobacco, and lettuce. Correlation analysis 
was done by linear regression using a model where y = x. Figure S4: 
Correlation between the Normalized Green value (Gn) and Chl con-
tent in Arabidopsis, tomato, tobacco, and lettuce. Correlation analysis 
was done by linear regression using a model where y = x. Figure S5: 
Correlation between Normalized Blue value (Rn) and Chl content 
in Arabidopsis, tomato, tobacco, and lettuce. Correlation analysis 
was done by linear regression using a model where y = x. Figure S6: 
Correlation between the Normalized Difference Index (NDI) and Chl 
content in Arabidopsis, tomato, tobacco, and lettuce. Correlation anal-
ysis was done by linear regression using a model where y = x. Figure 
S7: Correlation between the Green Leaf Index (GLI) and Chl content in 
Arabidopsis, tomato, tobacco, and lettuce. Correlation analysis was done 
by linear regression using a model where y = x. Figure S8: Correlation 
between the Woebbecke Index and Chl content in Arabidopsis, tomato, 
tobacco, and lettuce. Correlation analysis was done by linear regression 
using a model where y = −

1

x
. Figure S9: Quantile-Quantile plot for 

Green: Red ratio on the fourth leaf of 184 lettuce cultivars. Figure S10: 
Manhattan plot of the GWAS on the Normalized Red value measured 
on the fourth leaf of 184 lettuce cultivars. Genomic position, indicated 
in megabasepairs (Mbp), is shown on the x-axis, chromosome numbers 
are indicated on top. Significance as –log10(p) is shown on the y-axis. 
The Bonferroni threshold of –log10(p) > 7.69 is indicated by the red hori-
zontal line. Protocol S1. User guide for GreenLeafVI plugin. 
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